JP2006126145A - 走査型プローブ顕微鏡用走査機構および走査型プローブ顕微鏡 - Google Patents

走査型プローブ顕微鏡用走査機構および走査型プローブ顕微鏡 Download PDF

Info

Publication number
JP2006126145A
JP2006126145A JP2004318352A JP2004318352A JP2006126145A JP 2006126145 A JP2006126145 A JP 2006126145A JP 2004318352 A JP2004318352 A JP 2004318352A JP 2004318352 A JP2004318352 A JP 2004318352A JP 2006126145 A JP2006126145 A JP 2006126145A
Authority
JP
Japan
Prior art keywords
piezoelectric element
axis
direction moving
scanning
probe microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004318352A
Other languages
English (en)
Inventor
Yoshihiro Kami
喜裕 上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2004318352A priority Critical patent/JP2006126145A/ja
Priority to DE102005051581A priority patent/DE102005051581A1/de
Priority to US11/262,537 priority patent/US7348571B2/en
Publication of JP2006126145A publication Critical patent/JP2006126145A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G12INSTRUMENT DETAILS
    • G12BCONSTRUCTIONAL DETAILS OF INSTRUMENTS, OR COMPARABLE DETAILS OF OTHER APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G12B5/00Adjusting position or attitude, e.g. level, of instruments or other apparatus, or of parts thereof; Compensating for the effects of tilting or acceleration, e.g. for optical apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q10/00Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
    • G01Q10/02Coarse scanning or positioning
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/028Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors along multiple or arbitrary translation directions, e.g. XYZ stages

Abstract

【課題】配線の接続に起因するZ方向移動用アクチュエーターの変位特性の劣化が少ない走査機構を提供する。
【解決手段】走査機構は、移動対象物をZ軸に沿って移動させるためのZステージ140を有している。Zステージ140は、絶縁性基板142と、Z方向移動用アクチュエーターを構成するZ方向移動用圧電素子141と、絶縁性基板142に設けられた導電パターン143と、導電パターン143に電気的に接続された配線146と、Z方向移動用圧電素子141と導電パターン143を電気的に接続している電気的接続部144とを有している。Z方向移動用圧電素子141は、絶縁性基板142に機械的に固定されており、Z軸に沿って伸縮可能であり、自由端に移動対象物が取り付けられる。電気的接続部144はZ方向移動用圧電素子141の固定端に設けられている。
【選択図】 図4

Description

本発明は、走査型顕微鏡などにおいて移動対象物を移動させるための走査機構に関する。
走査機構を用いた装置のひとつに走査型プローブ顕微鏡がある。走査型プローブ顕微鏡(SPM)は、プローブすなわち機械的探針を機械的に走査して試料表面の情報を得る走査型顕微鏡であり、走査型トンネリング顕微鏡(STM)、原子間力顕微鏡(AFM)、走査型磁気力顕微鏡(MFM)、走査型電気容量顕微鏡(SCaM)、走査型近接場光顕微鏡(SNOM)、走査型熱顕微鏡(SThM)などを含む。
最近では試料表面にダイヤモンド製の探針を押しつけて圧痕をつけ、その圧痕のつき具合を解析して試料の固さなどを調べるナノインデンテータ等もこのSPMのひとつと位置づけられており、前述の各種の顕微鏡と共に広く普及している。
走査型プローブ顕微鏡は、走査機構によって機械的探針と試料とをXY方向に相対的に走査(例えばラスター走査)しながら、機械的探針によって所望の試料領域の表面情報を得る。XY走査の間、Z方向についても走査機構によって、例えば機械的探針と試料との相互作用が一定になるようフィードバック制御して、機械的探針と試料とを相対的に動かしている。このZ方向の動きは規則的な動きをするXY方向の動きとは異なり、試料の表面形状や表面状態を反映するために不規則な動きであるが、一般にZ方向の走査動作と呼ばれる。Z方向の走査はXYZ各方向の中では最も高い周波数での動きとなる。
走査型プローブ顕微鏡のX方向の走査周波数は0.05から200Hz程度であり、Y方向の走査周波数は、X方向走査周波数のY方向走査ライン数分の1程度であって、Y方向走査ライン数は10から1000ラインである。またZ方向の走査周波数はX走査方向周波数に対し、X方向走査1ラインあたりの画素数相当からその100倍程度である。
例えば、X方向100画素Y方向100画素の画像を1秒で取り込むとき、X方向の走査周波数は100Hz、Y方向の走査周波数は1Hz、Z方向の走査周波数は10kHzとなる。この速度を実現する走査機構が例えば特開2001−330425号公報において提案されている。
特開2001−330425号公報
しかし、最近では画像をビデオレートで観察したいとの要望があり、この場合、Z方向の圧電素子に要求される走査周波数は300kHz以上となる。特開2001−330425号公報の走査機構では、Z走査を受け持つZ方向移動用アクチュエーターが積層型圧電素子で構成されている。300kHz以上の走査周波数を得るためには、積層型圧電素子は例えば一辺が2mm程度の大きさの立方体形状となり、非常に小さなものとなる。また積層型圧電素子の質量は1g以下と非常に小さくなる。
積層型圧電素子は、電圧を印加して駆動されるため、一般に二本の配線が接続される。通常、積層型圧電素子への配線の接続ははんだ付けによって行なわれている。このようなはんだ付けによる配線の接続は、比較的大きい積層型圧電素子に対してはたいして問題はないが、一辺が2mm程度の非常に小さい積層型圧電素子に対しては変位特性に悪影響を与えることがある。
ここでは積層型圧電素子を例示しているが、積層型圧電素子に限るものではなく、例えば円筒型圧電素子においても同様であり、圧電素子一般について同様のことが言える。
本発明は、このような実状を考慮して成されたものであり、その目的は、配線の接続に起因するZ方向移動用アクチュエーターの変位特性の劣化が少ない走査機構を提供することである。
本発明は、移動対象物を互いに直交するX軸とY軸とZ軸に沿って移動させるための走査型プローブ顕微鏡用走査機構であり、移動対象物をZ軸に沿って移動させるためのZステージを備えており、Zステージは、絶縁性基板と、絶縁性基板に固定されたZ方向移動用アクチュエーターと、Z方向移動用アクチュエーターへの電圧印加のための配線と、Z方向移動用アクチュエーターに配線を電気的に接続するための電気的接続部とを有しており、Z方向移動用アクチュエーターはZ軸に沿って伸縮可能な圧電素子を有し、移動対象物は圧電素子の自由端に取り付けられ、電気的接続部は圧電素子の固定端に設けられている。
本発明によれば、配線の接続に起因するZ方向移動用アクチュエーターの変位特性の劣化が少ない走査機構が提供される。
以下、図面を参照しながら本発明の実施形態について説明する。
第一実施形態
本実施形態は、走査型プローブ顕微鏡用の走査機構に向けられている。以下、図1〜図7を参照しながら本実施形態について説明する。
図1は、本発明の第一実施形態の走査機構の上面図である。図2は、図1に示されたII−II線に沿った走査機構の断面図である。
図1と図2に示されるように、本実施形態の走査機構100は、互いに直交する三本の軸、すなわちX軸とY軸とZ軸とを有しており、固定ベース110と、固定ベース110に収容されたXYステージ120と、XYステージ120と固定ベース110の間にX軸に沿って延びているX方向移動用アクチュエーター130Aと、XYステージ120と固定ベース110の間にY軸に沿って延びているY方向移動用アクチュエーター130Bとを備えている。
XYステージ120は、X軸とY軸に沿って移動される可動部121と、可動部121の周囲に位置する固定部122と、可動部121のX軸に沿った両側に位置し、可動部121と固定部122を接続している一対の第一弾性支持部123Aと124Aと、X方向移動用アクチュエーター130Aの側に位置する第一弾性支持部124Aに設けられた、X方向移動用アクチュエーター130Aによって押される押圧部125Aと、可動部121のY軸に沿った両側に位置し、可動部121と固定部122を接続している一対の第二弾性支持部123Bと124Bと、Y方向移動用アクチュエーター130Bの側に位置する第二弾性支持部124Bに設けられた、Y方向移動用アクチュエーター130Bによって押される押圧部125Bと、可動部121のZ軸に沿った片側すなわち下側に位置し、可動部121と固定部122を接続している四つの第三弾性支持部126とを有している。
XYステージ120の固定部122は、これに限定されないが例えばねじ締結や接着によって、固定ベース110に固定されている。
第一弾性支持部123Aと124Aと第二弾性支持部123Bと124Bは共にT字形状を有している。第一弾性支持部123Aと124Aは、それぞれ、ZX面に広がる板ばね部分と、YZ面に広がる板ばね部分とを有している。また、第二弾性支持部123Bと124Bは、それぞれ、YZ面に広がる板ばね部分と、ZX面に広がる板ばね部分とを有している。
より詳しくは、第一弾性支持部123Aと124Aは、ZX面に広がりX軸に沿って細長い矩形の板ばね部分と、YZ面に広がりY軸に沿って細長い矩形の板ばね部分とを有している。X軸に沿って細長い矩形の板ばね部分は、X軸に沿った一方の端部が可動部121に連続し、X軸に沿った一方の端部がY軸に沿って細長い矩形の板ばね部分の中央部に連続している。Y軸に沿って細長い矩形の板ばね部分は、Y軸に沿った両端部が固定部122に連続している。これらの板ばね部分の厚さすなわちZ軸に沿った寸法は共に可動部121の厚さと同じである。
第二弾性支持部123Bと124Bは、向きが90度異なる点を除けば、第一弾性支持部123Aと124Aと全く同じ形態をしている。
このような形態のため、第一弾性支持部123Aと124Aは、Y軸に沿っては弾性変形しやすいが、X軸に沿っては弾性変形しにくい。第二弾性支持部123Bと124Bは、X軸に沿っては弾性変形しやすいが、Y軸に沿っては弾性変形しにくい。第三弾性支持部126は、X軸に沿ってもY軸に沿っても弾性変形しやすいが、Z軸に沿っては弾性変形しにくい。
従って、可動部121は、第一弾性支持部123Aと124AによってX軸に沿った方向に関して高剛性に支持され、第二弾性支持部123Bと124BによってY軸に沿った方向に関して高剛性に支持され、第三弾性支持部126によってZ軸に沿った方向に関して高剛性に支持されている。
押圧部125Aは、直方体状のブロック部分と、ブロック部分と第一弾性支持部124Aとを連結している連結部分とを有している。ブロック部分は、X軸に沿った寸法が大きく、実質的に弾性変形しない。連結部分は、一方の端部がブロック部分の中央部に連続し、他方の端部が第一弾性支持部124AのY軸に沿って細長い矩形の板ばね部分の中央部に連続している。連結部分は、X軸に沿って延びているがX軸に沿った寸法が短く、実質的に弾性変形しない。ブロック部分と連結部分の厚さすなわちZ軸に沿った寸法は共に可動部121の厚さと同じである。
押圧部125Bは、向きが90度異なる点を除けば、押圧部125Aと全く同じ形態をしている。
第三弾性支持部126は、それぞれ、可動部121の重心を通りZ軸に平行な直線に対して対称性良く位置している。例えば、第三弾性支持部126は、いずれも、棒状の形状を有し、Z軸に平行に延びている。
第三弾性支持部126は、可動部121の重心から等距離にあり、可動部121の重心を通りZ軸に平行な直線に対して均等に配置されている。つまり、第三弾性支持部126の中心は、それぞれ、可動部121の重心を通りZ軸に平行な直線上に中心がある円周上に90度の角度間隔で位置している。
好ましくは、可動部121と固定部122と第一弾性支持部123Aと124Aと第二弾性支持部123Bと124Bと第三弾性支持部126は一体的に形成されている。例えば、XYステージ120は、一体の部品、例えばアルミニウム製の金属のブロックを選択的に切り欠いて作製される。
固定ベース110の材質は、XYステージ120の材質と同じであってよいが、より好ましくはXYステージ120の材質よりも高いヤング率を有しているとよい。例えば、XYステージ120はアルミニウム製であるのに対して、固定ベース110はステンレス鋼製である。
X方向移動用アクチュエーター130Aは、押圧部125Aと固定ベース110の間に所定の予圧がかかるように配置されている。例えば、X方向移動用アクチュエーター130Aは積層型圧電素子であり、電圧印加に応じてX軸に沿って伸縮する。また、Y方向移動用アクチュエーター130Bは、押圧部125Bと固定ベース110の間に所定の予圧がかかるように配置されている。例えば、Y方向移動用アクチュエーター130Bは積層型圧電素子であり、電圧印加に応じてY軸に沿って伸縮する。
X方向移動用アクチュエーター130Aの中心軸すなわちX方向移動用アクチュエーター130Aの中心を通りX軸に平行な直線は可動部121の重心を通っている。同様に、Y方向移動用アクチュエーター130Bの中心軸すなわちY方向移動用アクチュエーター130Bの中心を通りY軸に平行な直線は可動部121の重心を通っている。
走査機構100はさらに、移動対象物をZ軸に沿って移動させるためのZステージ140を有している。可動部121は段差を持つ楕円形の貫通穴を有し、Zステージ140は可動部121の貫通穴の大径部分内に収容され、段差によって支持されている。
図3は、図1と図2に示されたZステージの上面図である。図4は、図3に示されたIV−IV線に沿ったZステージの断面図である。
図3と図4に示されるように、Zステージ140は、可動部121の貫通穴の大径部分内に収まる楕円形の絶縁性基板142と、Z方向移動用アクチュエーターを構成するZ方向移動用圧電素子141と、絶縁性基板142に設けられた一対の導電パターン143と、導電パターン143にそれぞれ電気的に接続された配線146と、Z方向移動用圧電素子141と導電パターン143をそれぞれ電気的に接続している電気的接続部144とを有している。
Z方向移動用圧電素子141は、絶縁性基板142の上面に接着剤などにより機械的に固定されており、絶縁性基板142からZ軸に沿って上側に延びている。Z方向移動用圧電素子141の自由端に移動対象物が取り付けられる。移動対象物は例えば観察試料であり、別の例ではカンチレバーである。Z方向移動用圧電素子141は重さが1[g]以下となることもある。Z方向移動用圧電素子141は例えば積層型圧電素子で構成されており、電圧印加に応じてZ軸に沿って伸縮する。Z方向移動用圧電素子141の中心軸は可動部121の重心を通っている。
絶縁性基板142は楕円の長軸に沿った両側に形成された一対の切り欠き145を有している。導電パターン143は、それぞれ、絶縁性基板142の上面をZ方向移動用圧電素子141の固定端の近くから楕円の長軸に沿って外側に向かって延び、切り欠き145を通って絶縁性基板142の上面から下面に回り込み、絶縁性基板142の下面を楕円の長軸に沿って延びている。電気的接続部144は、Z方向移動用圧電素子141の下端すなわち固定端に設けられており、Z方向移動用圧電素子141と導電パターン143に接している。電気的接続部144は、例えば、導電性ペーストや導電性接着剤、ボンディングワイヤーなどの極細ワイヤー、低温で溶融するはんだなどであってよい。また、電気的接続部144は、黒鉛を塗布して形成されてもよい。
配線146は絶縁性基板142の下面側において導電パターン143に接続されている。従って、Z方向移動用圧電素子141は、電気的接続部144と導電パターン143を介して、配線146と電気的に接続されている。
導電パターン143や電気的接続部144など電圧が印加される部位は、漏電や感電を避けるため、その表面が絶縁被覆されているとよい。
走査機構100において、移動対象物はZ方向移動用圧電素子141の自由端に取り付けられる。
X走査の際には、X方向移動用アクチュエーター130AがX軸に沿って伸縮される。X方向移動用アクチュエーター130Aの一端は固定ベース110に固定されているため、X方向移動用アクチュエーター130Aの伸縮はX方向移動用アクチュエーター130Aの自由端のX軸に沿った変位に反映される。
X方向移動用アクチュエーター130Aの伸びすなわち自由端の−X方向への変位は押圧部125Aを−X方向に変位させる。X方向移動用アクチュエーター130Aが伸びると、第一弾性支持部123Aと124Aと第二弾性支持部123Bと124Bの弾性変形に伴う反作用力が固定ベース110のX方向移動用アクチュエーター130Aを固定している部位に作用する。しかし固定ベース110はヤング率の高い材質で作られており、固定ベース110の変形が少ないため、X方向移動用アクチュエーター130Aの自由端の変位はほとんど押圧部125Aへ伝えられる。
押圧部125Aの変位は第一弾性支持部124Aを介して可動部121に伝えられる。第一弾性支持部124AのX軸に沿って延びる板ばね部分はX方向の剛性が高いため、押圧部125Aの変位は可動部121へ伝達される。一方、第一弾性支持部123Aと124AのY軸に沿って延びる板ばね部分はX方向の剛性が低いため、可動部121のX軸に沿った変位を妨げない。また、弾性支持部123Bと124BのY軸に沿って延びる板ばね部分はX方向の剛性が低いため、可動部121のX軸に沿った変位を妨げない。さらに、可動部121のZ方向を高剛性に支持する第三弾性支持部126はXY方向の剛性が低いため、可動部121のX軸に沿った変位を妨げない。
従って、X方向移動用アクチュエーター130Aの伸びすなわち自由端の−X方向への変位に応じて可動部121が−X方向に移動される。
一方、X方向移動用アクチュエーター130Aの縮みすなわち自由端の+X方向への変位は、弾性変形している第一弾性支持部123Aと124Aと第二弾性支持部123Bと124Bの復元の妨げを軽減する。これに伴って第一弾性支持部123Aと124Aと第二弾性支持部123Bと124Bが元の形状に近づくため、可動部121が+X方向に移動される。
結局、X方向移動用アクチュエーター130Aの伸縮すなわち自由端の±X方向への変位に応じて可動部121が±X方向に移動される。
Y走査の際には、Y方向移動用アクチュエーター130BがY軸に沿って伸縮される。前述と同様の理由により、Y方向移動用アクチュエーター130Bの伸縮はY方向移動用アクチュエーター130Bの自由端のY軸に沿った変位に反映される。
Y方向移動用アクチュエーター130Bの伸びすなわち自由端の−Y方向への変位は押圧部125Bを−Y方向に変位させる。前述と同様の理由により、Y方向移動用アクチュエーター130Bの自由端の変位はほとんど押圧部125Bへ伝えられる。
押圧部125Bの変位は第二弾性支持部124Bを介して可動部121に伝えられる。前述と同様の理由により、第二弾性支持部124Bが押圧部125Bの変位を可動部121に伝達する一方で、第一弾性支持部123Aと124Aと第二弾性支持部123Bと124Bと第三弾性支持部126は可動部121のY軸に沿った変位を妨げない。
従って、Y方向移動用アクチュエーター130Bの伸びすなわち自由端の−Y方向への変位に応じて可動部121が−Y方向に移動される。
一方、Y方向移動用アクチュエーター130Bの縮みすなわち自由端の+Y方向への変位は、弾性変形している第一弾性支持部123Aと124Aと第二弾性支持部123Bと124Bの復元の妨げを軽減する。これに伴って第一弾性支持部123Aと124Aと第二弾性支持部123Bと124Bが元の形状に近づくため、可動部121が+Y方向に移動される。
結局、Y方向移動用アクチュエーター130Bの伸縮すなわち自由端の±Y方向への変位に応じて可動部121が±Y方向に移動される。
このような可動部121のX軸とY軸に沿った変位において、第一弾性支持部123Aと124AはY軸に対して対称的に配置され、第二弾性支持部123Bと124BはX軸に対して対称的に配置されているため、可動部121はXY平面内で回転動作することなく直線変位する。また第三弾性支持部126は平行ばねとして作用するため、可動部121は、上面がXY平面に対して傾斜することなく、すなわち上面とXY平面の平行を保ったまま、水平に移動する。
さらに、X方向移動用アクチュエーター130AとY方向移動用アクチュエーター130Bの中心軸が可動部121の重心を通るため、可動部121が高速で移動された場合も、慣性力による回転モーメントが発生しにくい。このため、可動部121は回転動作なく高精度に変位する。
X方向移動用アクチュエーター130AとY方向移動用アクチュエーター130Bの伸びは、第一弾性支持部123Aと124Aと第二弾性支持部123Bと124Bをそれぞれ変形させ、その結果、それらの変形の反作用は、X方向移動用アクチュエーター130AとY方向移動用アクチュエーター130Bがそれぞれ固定されている固定ベース110の部位にそれぞれ働く。固定ベース110の材質のヤング率はXYステージ120の材質のヤング率よりも高いので、固定ベース110に引き起こされる変形が小さいため、X方向移動用アクチュエーター130AとY方向移動用アクチュエーター130Bの伸びすなわち変位はそれぞれ押圧部125Aと125Bに効率良く伝えられる。
Z走査の際には、Z方向移動用圧電素子141がZ軸に沿って伸縮される。Z方向移動用圧電素子141の下端は絶縁性基板142に固定されているため、Z方向移動用圧電素子141の伸縮はZ方向移動用圧電素子141の自由端のZ軸に沿った変位に反映される。従って、Z方向移動用圧電素子141の自由端に取り付けられた移動対象物は、Z方向移動用圧電素子141の伸縮すなわち自由端の±Z方向への変位に応じて±Z方向に移動される。
Z方向移動用圧電素子141の中心軸が可動部121の重心を通り、さらに、第三弾性支持部126は可動部121の重心を通りZ軸に平行な直線に対して対称的に配置されているため、Z方向移動用圧電素子141が高速で駆動された場合も、可動部121の上面はほとんど傾くことがない。これにより、高精度な動作が可能となる。
Z方向移動用圧電素子141の走査速度を評価する方法のひとつとして、Z方向移動用圧電素子141に印加する信号の周波数と変位の関係を調べる方法がある。Z方向移動用圧電素子141に印加する信号の周波数を上げていくと変位が極大となる周波数が存在する。この周波数が共振周波数である。一般的に共振周波数が高いほど高速走査に対応可能である。共振周波数はZ方向移動用圧電素子141の大きさや重さなどに依存するが、Z方向移動用圧電素子141が固定されている絶縁性基板142のヤング率にも依存する。絶縁性基板142のヤング率が低いほど共振周波数は低下する。
図5は、印加信号の周波数と積層型圧電素子の変位の関係を示すグラフである。グラフの横軸は印加信号の周波数を示し、縦軸は積層型圧電素子の変位を示している。図5のグラフにおいて、破線は、絶縁性基板142が樹脂などのようにヤング率の低い材料で構成された場合の積層型圧電素子の変位特性を示している。また実線は、絶縁性基板142がアルミナをはじめとするセラミックのようにヤング率の高い材料で構成された場合の積層型圧電素子の変位特性を示している。両者を比較して分かるように、絶縁性基板142がヤング率の高い材料で構成されている方が、積層型圧電素子の共振周波数が高く、従って高速な走査が可能である。
具体的には、絶縁性基板142は、ヤング率が7×10Paより大きい材料、例えばセラミックで構成されているとよい。
一般に、積層型圧電素子への電圧印加のための配線は、はんだ付けによって積層型圧電素子の側面の中央部に接続されている。このため配線は積層型圧電素子の近くでは空間中に延びている。従って積層型圧電素子は、はんだの自重による負荷と、はんだから空間中に延びている配線の自重による負荷とを受ける。これらの負荷は、大きい積層型圧電素子にとっては無視できる大きさであるが、一辺が2mm程度の非常に小さい積層型圧電素子にとっては、無視できないほど大きく、変位特性を劣化させるおそれがある。
本実施形態では、Z方向移動用圧電素子141の下端すなわち固定端に設けられている電気的接続部144は絶縁性基板142に接しているため、自重による負荷をZ方向移動用圧電素子141に与えない。また配線146は、導電パターン143に接続されており、Z方向移動用圧電素子141には接続されていないため、自重による負荷をZ方向移動用圧電素子141に与えない。従って、Z方向移動用圧電素子141は、電気的接続部144や配線146の自重による負荷に起因する変位特性の劣化を受けない。
また、はんだ付けは作業の際に接続対象物を高温に加熱してしまう。非常に小さい積層型圧電素子は熱容量も小さい。このため、非常に小さい積層型圧電素子に対するはんだ付け作業による積層型圧電素子の加熱は、積層型圧電素子の圧電体を分極させ、変位特性を劣化させるおそれがある。
これに対して本実施形態では、電気的接続部144を、低温で溶融するはんだで形成するため、またボンディングワイヤーなどの極細ワイヤーで形成するため、Z方向移動用圧電素子141の加熱が抑えられ、従ってZ方向移動用圧電素子141は加熱に起因する変位特性の劣化を受けにくい。より好ましくは、電気的接続部144を、導電性ペーストや導電性接着剤など、加熱を必要としないで加工できる材料で形成するため、Z方向移動用圧電素子141は加熱されず、従ってZ方向移動用圧電素子141は加熱に起因する変位特性の劣化を受けない。
さらに、積層型圧電素子の側面に設けられたはんだは積層型圧電素子を拘束する。はんだによる拘束は積層型圧電素子の変位特性を劣化させるおそれがある。
これに対して本実施形態では、Z方向移動用圧電素子141の下端すなわち固定端に設けられている電気的接続部144は、絶縁性基板142に接しているため、Z方向移動用圧電素子141との接触面積が比較的小さい。従って、電気的接続部144によるZ方向移動用圧電素子141の拘束が少なく、従ってZ方向移動用圧電素子141は拘束に起因する変位特性の劣化が少なく抑えられる。
一般に圧電素子は両端に変位発生に寄与しない部分を有している。電気的接続部144は、望ましくは、Z方向移動用圧電素子141の変位発生に寄与しない下端部分だけに接触しているとよい。
しかし、通常は、加工精度の問題ではあるが、電気的接続部144は、変位発生に寄与しない下端部分を超えて、圧電素子と接触することが少なくない。この場合には、電気的接続部144が圧電素子を拘束してしまい、圧電素子の出力変位を劣化させることがある。電気的接続部144のヤング率や接触状態を考慮する必要がある。
一般に変位拘束がない場合の圧電素子の発生力と変位との間には図6中の実線で示される関係がある。電気的接続部144が変位拘束体として作用した場合、電気的接続部144はZ方向移動用圧電素子141の変位に伴い図中破線のような拘束力を生じる。このため、Z方向移動用圧電素子141の最大出力変位は実線と破線の交点まで低下する。一般に高速に動作する圧電素子であるほど出力変位は小さくなる。このため、電気的接続部144による出力変位減少分は10%以下に抑えることが望ましい。このためには、電気的接続部144の変位拘束力は、Z方向移動用圧電素子141の発生力の10%以下となるように設計されている必要がある。
例えば図7に示すように、Z方向移動用圧電素子141の側面に直方体にモデル化された電気的接続部144が形成されている場合の拘束力の概略計算をしてみる。Z方向移動用圧電素子141の変位によって電気的接続部144がXだけ変位したとすれば、電気的接続部144によって生じる拘束力fは以下の式で概略算出される。
Figure 2006126145
この拘束力fがZ方向移動用圧電素子141の発生力の10%以下に収まるようにヤング率や各部寸法を決めれば、変位の減少を小さく抑えることができる。
例えば、導電性ペーストやボンディングワイヤーは、ヤング率が低く、電気的接続部144として好適である。
本実施形態ではZ方向移動用圧電素子141が積層型圧電素子で構成されているが、本発明はZ方向移動用圧電素子141が円筒型圧電素子で構成されている場合にも同様に適用できる。
第二実施形態
本実施形態は、別の走査機構に向けられている。以下、図8〜図11を参照しながら本実施形態について説明する。
図8は、本発明の第二実施形態の走査機構の上面図である。図9は、図8に示されたIX−IX線に沿った走査機構の断面図である。図8と図9において、図1や図2に示された部材と同一の参照符号で指示された部材は同様の部材であり、その詳しい説明は省略する。
図8と図9に示されるように、本実施形態の走査機構200は、第一実施形態のZステージ140に代えて、別のZステージ240を有している。それ以外の構成は第一実施形態と同様である。
図10は、図8と図9に示されたZステージの上面図である。図11は、図10に示されたXI−XI線に沿ったZステージの断面図である。
図10と図11に示されるように、Zステージ240は、可動部121の貫通穴の大径部分内に収まる楕円形の絶縁性基板242と、Z方向移動用アクチュエーターを構成するZ方向移動用圧電素子241と、絶縁性基板242に設けられた一対の導電パターン243と、導電パターン243に電気的に接続された配線236と、Z方向移動用圧電素子241と導電パターン243をそれぞれ電気的に接続している電気的接続部244とを有している。
Z方向移動用圧電素子241は、絶縁性基板242の上面に接着剤などにより機械的に固定されており、絶縁性基板242からZ軸に沿って上側に延びている。Z方向移動用圧電素子241の自由端に移動対象物が取り付けられる。移動対象物は例えば観察試料であり、別の例ではカンチレバーである。Z方向移動用圧電素子241は重さが1[g]以下となることもある。Z方向移動用圧電素子241は例えば積層型圧電素子で構成されており、電圧印加に応じてZ軸に沿って伸縮する。Z方向移動用圧電素子241の中心軸は可動部121の重心を通っている。
絶縁性基板242はZ方向移動用圧電素子241の両側に形成された貫通穴245を有している。導電パターン243は、それぞれ、貫通穴245の中を延び、絶縁性基板242の上面と下面の貫通穴245の周辺に広がっている。
電気的接続部144は、Z方向移動用圧電素子241の下端すなわち固定端に設けられており、Z方向移動用圧電素子241と導電パターン243に接している。電気的接続部244は、例えば、導電性ペーストや導電性接着剤、ボンディングワイヤーなどの極細ワイヤー、低温で溶融するはんだなどであってよい。また、電気的接続部244は、黒鉛を塗布して形成されてもよい。
配線246は絶縁性基板242の下面側において導電パターン243に接続されている。配線246は、電気的接続部244の形成前に、通常のはんだ付けによって導電パターン243に接続されてよい。従って、Z方向移動用圧電素子241は、電気的接続部244と導電パターン243を介して、配線246と電気的に接続されている。
電気的接続部244を導電性ペーストや導電性接着剤で形成する場合、導電性ペーストや導電性接着剤を貫通穴245に充てんすることにより配線246を導電パターン243に接続してもよい。この場合、Z方向移動用圧電素子241は、電気的接続部244を介して、配線246と電気的に接続される。
電気的接続部244は、漏電や感電を避けるため、その表面が絶縁被覆されているとよい。
本実施形態は、第一実施形態の利点に加え、導電パターン243の絶縁被覆が不要であるという利点を有している。
第三実施形態
本実施形態は、別の走査機構に向けられている。以下、図12〜図15を参照しながら本実施形態について説明する。
図12は、本発明の第三実施形態の走査機構の上面図である。図13は、図12に示されたXIII−XIII線に沿った走査機構の断面図である。図12と図13において、図1や図2に示された部材と同一の参照符号で指示された部材は同様の部材であり、その詳しい説明は省略する。
図12と図13に示されるように、本実施形態の走査機構300は、第一実施形態のZステージ140に代えて、別のZステージ340を有している。それ以外の構成は第一実施形態と同様である。
図14は、図12と図13に示されたZステージの上面図である。図15は、図14に示されたXIV−XIV線に沿ったZステージの断面図である。
図14と図15に示されるように、Zステージ340は、可動部121の貫通穴の大径部分内に収まる楕円形の絶縁性基板342と、Z方向移動用アクチュエーターを構成する一対のZ方向移動用圧電素子341Aと341Bと、絶縁性基板342に設けられた一対の導電パターン343と、導電パターン343にそれぞれ電気的に接続された配線446と、Z方向移動用圧電素子341Aと341Bと導電パターン343をそれぞれ電気的に接続している電気的接続部344Aと344Bとを有している。
二つのZ方向移動用圧電素子341Aと341Bは、それぞれ、絶縁性基板342の上下面に接着剤などにより機械的に固定され、絶縁性基板342からZ軸に沿って反対側に同軸に延びている。Z方向移動用圧電素子341Aと341Bは、例えば、積層型圧電素子で構成され、電圧印加に応じてZ軸に沿って伸縮する。Z方向移動用圧電素子341Aと341Bの中心軸は可動部121の重心を通っている。
絶縁性基板342は楕円の長軸に沿った両側に形成された一対の切り欠き345を有している。導電パターン343は、それぞれ、絶縁性基板342の上面をZ方向移動用圧電素子341Aの固定端の近くから楕円の長軸に沿って外側に向かって延び、切り欠き345を通って絶縁性基板342の上面から下面に回り込み、絶縁性基板342の下面を楕円の長軸に沿ってZ方向移動用圧電素子341Bの固定端の近くまで延びている。
電気的接続部344Aは、Z方向移動用圧電素子341Aの下端すなわち固定端に設けられており、Z方向移動用圧電素子341Aと導電パターン343に接している。また電気的接続部344Bは、Z方向移動用圧電素子341Bの上端すなわち固定端に設けられており、Z方向移動用圧電素子341Bと導電パターン343に接している。電気的接続部344Aと344Bは、例えば、導電性ペーストや導電性接着剤、ボンディングワイヤーなどの極細ワイヤー、低温で溶融するはんだなどであってよい。また、電気的接続部344Aと344Bは、黒鉛を塗布して形成されてもよい。
配線346は電気的接続部344Bを介して導電パターン343に接続されている。従って、Z方向移動用圧電素子341Aは、電気的接続部344Aと導電パターン343を介して、配線346と電気的に接続されている。またZ方向移動用圧電素子341Bは、電気的接続部344Bを介して、配線346と電気的に接続されている。
移動対象物は、上側のZ方向移動用圧電素子341Aの自由端に取り付けられる。移動対象物は例えば観察試料であり、別の例ではカンチレバーである。移動対象物の質量が大きい場合、好ましくは、下側のZ方向移動用圧電素子341Bの自由端に移動対象物と同等の質量を持つ部材が取り付けられるとよい。
Z走査の際、Z方向移動用圧電素子341Aと341BがZ軸に沿って同じ量だけ逆向きに伸縮される。このため、Z方向移動用圧電素子341Aの伸縮が可動部121に与える力とZ方向移動用圧電素子341Bの伸縮が可動部121に与える力とは、大きさは等しく、向きは逆である。
Z方向移動用圧電素子341Aの伸縮は可動部121にZ方向の力を与え、可動部121を振動させようとする。しかし、可動部121がZ方向移動用圧電素子341Aの伸縮によって受けるZ方向の力は、Z方向移動用圧電素子341Bの伸縮によって打ち消される。その結果、可動部121はほとんど振動しない。
さらに、Z方向移動用圧電素子341Aと341Bの中心軸が可動部121の重心を通り、第三弾性支持部126は可動部121の重心を通りZ軸に平行な直線に対して対称的に配置されているため、Z方向移動用圧電素子341Aと341Bが高速で駆動された場合も、可動部121の上面はほとんど傾くことがない。これにより、高精度な動作が可能となる。
本実施形態の走査機構300は、第一実施形態の利点に加えて、振動の発生が少ないという利点を有している。
第四実施形態
本実施形態は、例えば第一実施形態のZステージに代えて適用可能な別のZステージに向けられている。以下、図16〜図18を参照しながら本実施形態について説明する。
図16は、本実施形態のZステージの上面図である。図17は、図16に示されたXVII−XVII線に沿ったZステージの断面図である。図18は、図16に示されたXVIII−XVIII線に沿ったZステージの断面図である。
図16〜図18に示されるように、Zステージ440は、可動部121の貫通穴の大径部分内に収まる楕円形の絶縁性基板442と、Z方向移動用アクチュエーターを構成するZ方向移動用圧電素子441と、絶縁性基板442に設けられた一対の電気的接続部444と、電気的接続部444に電気的に接続された配線446とを有している。
Z方向移動用圧電素子441は、絶縁性基板442の上面に接着剤などにより機械的に固定され、絶縁性基板442からZ軸に沿って延びている。Z方向移動用圧電素子441の自由端に移動対象物が取り付けられる。移動対象物は例えば観察試料であり、別の例ではカンチレバーである。Z方向移動用圧電素子441は、例えば、積層型圧電素子で構成され、電圧印加に応じてZ軸に沿って伸縮する。Z方向移動用圧電素子441の中心軸は可動部121の重心を通っている。
電気的接続部444は、絶縁性基板442に形成された楕円の長軸に沿って延びる一対の溝447に設けられている。溝447は、Z方向移動用圧電素子441の固定端から切り欠き445の近くまで延びている。電気的接続部444はZ方向移動用圧電素子441の下端すなわち固定端と接触しており、Z方向移動用圧電素子441の電極と導通している。また電気的接続部444には配線446が電気的に接続されている。従ってZ方向移動用圧電素子441は、電気的接続部444を介して、配線446と電気的に接続されている。配線446は絶縁性基板442の両側に形成された切り欠き445を通って下方に延びている。
電気的接続部444は、例えば、導電性ペーストや導電性接着剤を絶縁性基板442に形成された溝447内に滴下して硬化させることによって形成される。溝447に滴下された導電性ペーストや導電性接着剤は溝447に沿って容易に広がるため、Z方向移動用圧電素子441に少ない面積で接触する電気的接続部444を容易に形成することができる。
本実施形態の走査機構400は、Z方向移動用圧電素子441と電気的接続部444の接触面積が少ないため、電気的接続部444によるZ方向移動用圧電素子441の拘束が少ない。従って、第一実施形態の利点に加えて、Z方向移動用圧電素子441が拘束されることによる変位特性の劣化が少ないという利点を有している。
第五実施形態
本実施形態は、別の走査機構に向けられている。以下、図19〜図21を参照しながら本実施形態について説明する。
図19は、本発明の第五実施形態の走査機構の上面図である。図20は、図19に示されたXX−XX線に沿った走査機構の断面図である。図19と図20において、図1や図2に示された部材と同一の参照符号で指示された部材は同様の部材であり、その詳しい説明は省略する。
図19と図20に示されるように、本実施形態の走査機構500は、第一実施形態の構成に加えて、X方向移動用アクチュエーター130Aが固定された固定台550AとY方向移動用アクチュエーター130Bが固定された固定台550Bとを有している。すなわち、X方向移動用アクチュエーター130Aは、固定ベース110に固定された固定台550Aに固定されており、Y方向移動用アクチュエーター130Bも同様に、固定ベース110に固定された固定台550Bに固定されている。それ以外の構成は第一実施形態と同様である。
固定台550Aと550Bは同じ構成をしており、以下では代表的に550Aについて説明する。図21は、図19と図20に示されたX方向移動用アクチュエーターとその固定台との側面図である。
図21に示されるように、固定台550Aは絶縁体で構成されている。固定台550Aには配線552が接着剤553によって固定されている。配線552の線材552aは、電気的接続部551によってX方向移動用アクチュエーター130Aと電気的に接続されている。配線552が固定台550A固定されているため、X方向移動用アクチュエーター130Aは配線552による負荷を受けない。
Y方向移動用アクチュエーター130Bに関してもまったく同様である。
また、図20に示されるように、固定ベース110にはその下面にコネクター560が固定されている。X方向移動用アクチュエーター130AとY方向移動用アクチュエーター130BとZ方向移動用圧電素子141にそれぞれ電気的に接続されている配線は共に、固定部122と固定ベース110に形成された貫通穴を通って、固定ベース110に固定されたコネクター560に接続されている。コネクター560は、例えば、外部電源などの外部装置と電気的に接続される。つまり、X方向移動用アクチュエーター130AとY方向移動用アクチュエーター130BとZ方向移動用圧電素子141は、コネクター560を介して外部装置と電気的に接続される。
本実施形態の走査機構500は、コネクター560の部分において、外部装置から容易に切り離すことができる。このため、もしX方向移動用アクチュエーター130AとY方向移動用アクチュエーター130BとZ方向移動用圧電素子141のいずれかが何らかの理由で故障した場合、動作が保証された別の走査機構500に容易に交換することが可能である。
これまで、図面を参照しながら本発明の実施形態を述べたが、本発明は、これらの実施形態に限定されるものではなく、その要旨を逸脱しない範囲において様々な変形や変更が施されてもよい。
本発明の第一実施形態の走査機構の上面図である。 図1に示されたII−II線に沿った走査機構の断面図である。 図1と図2に示されたZステージの上面図である。 図3に示されたIV−IV線に沿ったZステージの断面図である。 印加信号の周波数と積層型圧電素子の変位の関係を示すグラフである。 変位拘束がない場合の圧電素子の発生力と変位の関係を示すグラフである。 Z方向移動用圧電素子の側面に直方体の電気的接続部が形成されているモデルを示している。 本発明の第二実施形態の走査機構の上面図である。 図8に示されたIX−IX線に沿った走査機構の断面図である。 図8と図9に示されたZステージの上面図である。 図10に示されたXI−XI線に沿ったZステージの断面図である。 本発明の第三実施形態の走査機構の上面図である。 図12に示されたXIII−XIII線に沿った走査機構の断面図である。 図12と図13に示されたZステージの上面図である。 図14に示されたXIV−XIV線に沿ったZステージの断面図である。 本実施形態のZステージの上面図である。 図16に示されたXVII−XVII線に沿ったZステージの断面図である。 図16に示されたXVIII−XVIII線に沿ったZステージの断面図である。 本発明の第五実施形態の走査機構の上面図である。 図19に示されたXX−XX線に沿った走査機構の断面図である。 図19と図20に示されたX方向移動用アクチュエーターとその固定台との側面図である。
符号の説明
100…走査機構、110…固定ベース、120…XYステージ、121…可動部、122…固定部、123A…第一弾性支持部、123B…第二弾性支持部、124A…第一弾性支持部、124B…第二弾性支持部、125A…押圧部、125B…押圧部、126…第三弾性支持部、130A…X方向移動用アクチュエーター、130B…Y方向移動用アクチュエーター、140…Zステージ、141…Z方向移動用圧電素子、142…絶縁性基板、143…導電パターン、144…電気的接続部、145…切り欠き、146…配線、200…走査機構、236…配線、240…Zステージ、241…Z方向移動用圧電素子、242…絶縁性基板、243…導電パターン、244…電気的接続部、245…貫通穴、246…配線、300…走査機構、340…Zステージ、341A…Z方向移動用圧電素子、341B…Z方向移動用圧電素子、342…絶縁性基板、343…導電パターン、344A…電気的接続部、344B…電気的接続部、345…切り欠き、346…配線、400…走査機構、436…配線、440…Zステージ、441…Z方向移動用圧電素子、442…絶縁性基板、444…電気的接続部、445…切り欠き、446…配線、447…溝、500…走査機構、550A…固定台、550B…固定台、551…電気的接続部、552…配線、552a…線材、553…接着剤、560…コネクター。

Claims (16)

  1. 移動対象物を互いに直交するX軸とY軸とZ軸に沿って移動させるための走査型プローブ顕微鏡用走査機構であり、
    移動対象物をZ軸に沿って移動させるためのZステージを備えており、Zステージは、絶縁性基板と、絶縁性基板に固定されたZ方向移動用アクチュエーターと、Z方向移動用アクチュエーターへの電圧印加のための配線と、Z方向移動用アクチュエーターに配線を電気的に接続するための電気的接続部とを有しており、Z方向移動用アクチュエーターはZ軸に沿って伸縮可能な圧電素子を有し、移動対象物は圧電素子の自由端に取り付けられ、電気的接続部は圧電素子の固定端に設けられている、走査型プローブ顕微鏡用走査機構。
  2. 請求項1において、走査型プローブ顕微鏡用走査機構はさらに、
    固定ベースと、
    固定ベースに収容されたXYステージと、
    XYステージと固定ベースの間にX軸に沿って延びているX方向移動用アクチュエーターと、
    XYステージと固定ベースの間にY軸に沿って延びているY方向移動用アクチュエーターとを備えており、
    XYステージは、X軸とY軸に沿って移動される可動部と、可動部の周囲に位置する固定部と、可動部のX軸に沿った両側に位置し、可動部と固定部を接続している一対の第一弾性支持部と、可動部のY軸に沿った両側に位置し、可動部と固定部を接続している一対の第二弾性支持部と、可動部のZ軸に沿った片側に位置し、可動部と固定部を接続している第三弾性支持部とを有しており、X方向移動用アクチュエーターは、第一弾性支持部と固定ベースに接して延びており、X軸に沿って伸縮可能であり、Y方向移動用アクチュエーターは、第二弾性支持部と固定ベースに接して延びており、Y軸に沿って伸縮可能であり、
    Zステージの絶縁性基板は、XYステージの可動部に保持されている、走査型プローブ顕微鏡用走査機構。
  3. 請求項1において、Zステージはさらに、絶縁性基板に設けられた導電パターンを有し、配線は導電パターンに接続されており、圧電素子は電気的接続部と導電パターンを介して配線と電気的に接続されている、走査型プローブ顕微鏡用走査機構。
  4. 請求項1において、配線が電気的接続部にじかに接続されている、走査型プローブ顕微鏡用走査機構。
  5. 請求項3または請求項4において、電気的接続部が導電性ペーストで構成されている、走査型プローブ顕微鏡用走査機構。
  6. 請求項3または請求項4において、電気的接続部が導電性接着剤で構成されている、走査型プローブ顕微鏡用走査機構。
  7. 請求項3において、電気的接続部が低温で溶融するはんだで構成されている、走査型プローブ顕微鏡用走査機構。
  8. 請求項3において、電気的接続部がボンディングワイヤーで構成されている、走査型プローブ顕微鏡用走査機構。
  9. 請求項1において、電気的接続部と圧電素子の接触面積は、電気的接続部と接触している圧電素子の面の面積の1/2以下である、走査型プローブ顕微鏡用走査機構。
  10. 請求項1において、絶縁性基板は、ヤング率が7×10Paより大きい材料で構成されている、走査型プローブ顕微鏡用走査機構。
  11. 請求項10において、絶縁性基板は、セラミックで構成されている、走査型プローブ顕微鏡用走査機構。
  12. 請求項1〜請求項11のいずれか一つにおいて、圧電素子は質量が1[g]以下である、走査型プローブ顕微鏡用走査機構。
  13. 請求項1〜請求項11のいずれか一つにおいて、Z方向移動用アクチュエーターはZ軸に沿って伸縮可能な二つの圧電素子を有し、二つの圧電素子は同軸に位置し、それぞれ絶縁性基板からZ軸に沿って反対側に延びている、走査型プローブ顕微鏡用走査機構。
  14. 請求項1〜請求項11のいずれか一つにおいて、移動対象物が観察試料である、走査型プローブ顕微鏡用走査機構。
  15. 請求項1〜請求項11のいずれか一つにおいて、移動対象物がカンチレバーである、走査型プローブ顕微鏡用走査機構。
  16. 請求項1〜請求項11のいずれか一つに記載の走査機構を有する走査型プローブ顕微鏡。
JP2004318352A 2004-11-01 2004-11-01 走査型プローブ顕微鏡用走査機構および走査型プローブ顕微鏡 Pending JP2006126145A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004318352A JP2006126145A (ja) 2004-11-01 2004-11-01 走査型プローブ顕微鏡用走査機構および走査型プローブ顕微鏡
DE102005051581A DE102005051581A1 (de) 2004-11-01 2005-10-27 Abtastmechanismus für ein Rastersondenmikroskop, sowie Rastersondenmikroskop hiermit
US11/262,537 US7348571B2 (en) 2004-11-01 2005-10-28 Scanning mechanism for scanning probe microscope and scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004318352A JP2006126145A (ja) 2004-11-01 2004-11-01 走査型プローブ顕微鏡用走査機構および走査型プローブ顕微鏡

Publications (1)

Publication Number Publication Date
JP2006126145A true JP2006126145A (ja) 2006-05-18

Family

ID=36460109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004318352A Pending JP2006126145A (ja) 2004-11-01 2004-11-01 走査型プローブ顕微鏡用走査機構および走査型プローブ顕微鏡

Country Status (3)

Country Link
US (1) US7348571B2 (ja)
JP (1) JP2006126145A (ja)
DE (1) DE102005051581A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107863130A (zh) * 2017-09-20 2018-03-30 宁波大学 一种平动两自由度并联柔性结构压电微动平台

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005334985A (ja) * 2004-05-24 2005-12-08 Sii Nanotechnology Inc 原子間力顕微鏡を用いた垂直断面加工方法
JP4448099B2 (ja) * 2006-02-01 2010-04-07 キヤノン株式会社 走査型プローブ装置
US20080112885A1 (en) 2006-09-06 2008-05-15 Innurvation, Inc. System and Method for Acoustic Data Transmission
DE102007005293A1 (de) 2007-01-29 2008-08-07 Technische Universität Ilmenau Vorrichtung und Verfahren zum mikromechanischen Positionieren und Manipulieren eines Objektes
JP2008215940A (ja) * 2007-03-01 2008-09-18 Canon Inc 異物検査装置及びこれを用いた異物検査方法
US8529441B2 (en) 2008-02-12 2013-09-10 Innurvation, Inc. Ingestible endoscopic optical scanning device
US20100016662A1 (en) * 2008-02-21 2010-01-21 Innurvation, Inc. Radial Scanner Imaging System
US8617058B2 (en) 2008-07-09 2013-12-31 Innurvation, Inc. Displaying image data from a scanner capsule
DE102008049647B4 (de) * 2008-09-30 2011-11-24 Technische Universität Dresden Mikromechanisches Element und Verfahren zum Betreiben eines mikromechanischen Elements
US9684159B2 (en) * 2008-12-15 2017-06-20 Koninklijke Philips N.V. Scanning microscope
JP5355334B2 (ja) * 2009-10-05 2013-11-27 オリンパス株式会社 慣性駆動アクチュエータのキャリブレーション方法及び慣性駆動アクチュエータ装置
US8647259B2 (en) 2010-03-26 2014-02-11 Innurvation, Inc. Ultrasound scanning capsule endoscope (USCE)
JP5610520B2 (ja) * 2010-07-07 2014-10-22 日本結晶光学株式会社 放射線検出装置
CN104412193B (zh) * 2012-06-26 2017-03-08 株式会社日立高新技术 载物台装置以及试样观察装置
CN107833594B (zh) * 2017-09-13 2020-02-21 南京航空航天大学 一种用于高精度定位和测量的二维三自由度微动平台结构

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346710B1 (en) * 1998-08-31 2002-02-12 Olympus Optical Co., Ltd. Stage apparatus including displacement amplifying mechanism
JP4797150B2 (ja) * 2000-03-14 2011-10-19 オリンパス株式会社 走査機構およびこれを用いた機械走査型顕微鏡
US6590208B2 (en) 2001-01-19 2003-07-08 Veeco Instruments Inc. Balanced momentum probe holder
JP2006308322A (ja) * 2005-04-26 2006-11-09 Olympus Corp 走査型プローブ顕微鏡用走査ステージ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107863130A (zh) * 2017-09-20 2018-03-30 宁波大学 一种平动两自由度并联柔性结构压电微动平台

Also Published As

Publication number Publication date
US20060108523A1 (en) 2006-05-25
US7348571B2 (en) 2008-03-25
DE102005051581A1 (de) 2006-06-14

Similar Documents

Publication Publication Date Title
US7348571B2 (en) Scanning mechanism for scanning probe microscope and scanning probe microscope
US6617761B2 (en) Scanning unit and scanning microscope having the same
US7690047B2 (en) Scanning probe apparatus
US7466474B2 (en) Micromechanical device with tilted electrodes
US7596989B2 (en) Probe for an atomic force microscope
EP1726049B1 (en) Wide frequency range electromechanical actuator
JP4842354B2 (ja) クランプ機構及びこれを具備したワイヤボンディング装置
Maroufi et al. MEMS for nanopositioning: Design and applications
JPH0212381B2 (ja)
JP5605227B2 (ja) 平面位置決め装置およびこれを備えた検査装置
JP2006284362A (ja) コンタクトプローブ
EP1256962A1 (en) Actuating and sensing device for scanning probe microscopes
US7765606B2 (en) Scanning probe apparatus
JP5179347B2 (ja) 導電性接触子ユニット
JP2007139712A (ja) プローブホルダおよびプローブユニット
JP5268008B2 (ja) 走査型プローブ顕微鏡用のスキャナ装置
JP2006308363A (ja) 走査機構
JP2007515148A (ja) 電気機械モータ及びその組立方法
JP5195619B2 (ja) 半導体基板
JP2009053017A (ja) 走査プローブ顕微鏡及びこれを用いた局所的電気特性測定方法
KR100269547B1 (ko) 미세 위치 결정 장치용 틸팅 포지셔너
JP4276890B2 (ja) 走査機構およびこれを用いた走査型プローブ顕微鏡
Edeler Simulation and experimental evaluation of laser-structured actuators for a mobile microrobot
JP3809623B2 (ja) レバー変位拡大機構
JPH11166824A (ja) 原子間力顕微鏡用振動体及び原子間力顕微鏡

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090728