JP5711018B2 - エンジンシステム - Google Patents

エンジンシステム Download PDF

Info

Publication number
JP5711018B2
JP5711018B2 JP2011064884A JP2011064884A JP5711018B2 JP 5711018 B2 JP5711018 B2 JP 5711018B2 JP 2011064884 A JP2011064884 A JP 2011064884A JP 2011064884 A JP2011064884 A JP 2011064884A JP 5711018 B2 JP5711018 B2 JP 5711018B2
Authority
JP
Japan
Prior art keywords
ignition
spark plug
crank angle
deterioration
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011064884A
Other languages
English (en)
Other versions
JP2012202233A (ja
Inventor
孝弘 佐古
孝弘 佐古
和伸 小林
和伸 小林
中園 徹
徹 中園
大坪 弘幸
弘幸 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Yanmar Co Ltd
Original Assignee
Osaka Gas Co Ltd
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Yanmar Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2011064884A priority Critical patent/JP5711018B2/ja
Publication of JP2012202233A publication Critical patent/JP2012202233A/ja
Application granted granted Critical
Publication of JP5711018B2 publication Critical patent/JP5711018B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3076Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、エンジンの燃焼室に点火プラグを備え、燃焼室において予混合気を圧縮して自己着火させる予混合圧縮自着火運転を行う予混合圧縮自着火運転モードと、燃焼室において圧縮された予混合気を点火プラグにより点火させる火花点火運転を行う火花点火運転モードとに、エンジンの運転モードを切り替え自在な運転モード切替手段を備えたエンジンシステムに関する。
予混合圧縮自着火エンジン(HCCI:Homogeneous Charge Compression Ignition)は、その燃焼方式を、空気と燃料とを予め混合した混合気をシリンダ内の燃焼室に供給し、その予混合気を圧縮することによって自着火させる燃焼方式とするエンジンであり、火花点火式のエンジンと比較して、高い圧縮比で運転可能なため高い熱効率を得ることができ、さらに、希薄混合気の燃焼が可能であるので燃焼温度を低くしてNOxの生成を抑制することができる。そして、そのような経済的側面および環境的側面における優位性より、例えば、予混合圧縮自着火エンジンは長時間連続で運転することが必要となるコージェネレーションシステムの動力源として利用される。しかしながら、予混合気を圧縮することで自着火させる燃焼方式であるため、火花点火式のエンジンと比較して、着火時期の制御に困難を伴うことがあった。
それに対して、特許文献1には、点火プラグを備えた予混合圧縮自着火エンジンが開示されており、燃焼室に流入した予混合気の空燃比や、予混合気の温度および圧縮比などの条件が、圧縮自着火による着火が困難な条件である場合でも、点火プラグによる火花点火により圧縮自着火を誘発することによって、燃焼室内の予混合気の着火時期を適切に制御することができる技術が開示されている。このように構成されることで、予混合圧縮自着火エンジンにおいて安定した着火を実現しつつ運転可能な予混合気の空燃比や、予混合気の温度および圧縮比などの範囲を拡大することができるとされている。
しかしながら、上述の点火プラグを備えた予混合圧縮自着火エンジンのように、希薄混合気を高い圧縮比において着火させるためには、点火プラグは火花点火のための電圧を増加させることが必要となり、通常の火花点火方式のエンジンに使用される点火プラグより点火プラグの劣化が速く進行することとなる。そして、点火プラグの劣化が進行すると、点火プラグによって予混合気の着火を誘発するのに十分な火花を形成することができず、燃焼状態が不安定となってエンジンの運転継続が不可能となる。従って、上述の点火プラグを備えたエンジンシステムが、コージェネレーションシステムの発電装置に使用されている場合において、点火プラグが劣化した際には、コージェネレーションシステムの運転を中止してエンジンの点火プラグの交換を行なうことが必要であった。
特開2008−57407号公報
しかしながら、工場や家庭において利用されるコージェネレーションシステムでは、コージェネレーションシステムに接続されている電力機器に継続して給電することが必要であるため、エンジン(特に点火プラグ)のトラブルにより、その運転が中止されることは好ましくない。従って、点火プラグの劣化時においても運転を中止することなく、例えば、次回に予定されているコージェネレーションシステムの休止時期までの一定期間においてエンジン運転を継続することができるようなエンジンシステムとすることが必要である。
本発明は、かかる事情に鑑みてなされたものであり、その目的は、火花点火による運転と圧縮自着火による運転との両方が可能なエンジンシステムにおいて、点火プラグが劣化してもエンジンの運転を継続することができるエンジンシステムを提供することにある。
上記目的を達成するための本発明に係るエンジンシステムは、
エンジンの燃焼室に点火プラグを備え、
前記燃焼室において予混合気を圧縮して自己着火させる予混合圧縮自着火運転を行う予混合圧縮自着火運転モードと、前記燃焼室において圧縮された予混合気を前記点火プラグにより点火させる火花点火運転を行う火花点火運転モードとに、前記エンジンの運転モードを切り替え自在な運転モード切替手段を備えたエンジンシステムであって、
その特徴構成は、前記点火プラグの劣化を検出する点火プラグ劣化検出手段と、
前記燃焼室での予混合気の圧縮自着火を補助可能な圧縮自着火補助状態に前記燃焼室での予混合気の状態を変更する圧縮自着火補助手段と、
前記燃焼室の圧力を検出する圧力検出手段と、
前記圧力検出手段により検出された燃焼室内圧力から求められる燃焼解析値が所定の燃焼解析値となる時のクランク角度を算出する燃焼解析手段と、
前記燃焼解析手段にて算出されたクランク角度が目標クランク角度になるように前記点火プラグの点火時期を制御する点火時期制御手段とを備え、
前記点火プラグ劣化検出手段は、前記点火時期制御手段によって、前記目標クランク角度を変更し、前記燃焼解析手段にて算出されたクランク角度がその変更された目標クランク角度になるように前記点火プラグの点火時期を制御するとともに、前記燃焼解析手段にて算出されたクランク角度が前記変更後の目標クランク角度から規定される許容範囲から逸脱した場合に、前記点火プラグの劣化を検出するものであり、
前記点火プラグ劣化検出手段により前記点火プラグの劣化が検出された場合に、前記運転モード切替手段にて前記エンジンの運転モードを前記予混合圧縮自着火運転モードに切り替えるとともに、前記圧縮自着火補助手段にて前記燃焼室での予混合気の圧縮自着火を補助する運転継続処置を実施する運転継続処置実施手段とを備えた点にある。
上記特徴構成によれば、点火プラグ劣化検出手段によって点火プラグの劣化を検出することができる。また、圧縮自着火補助手段によって、燃焼室での予混合気の状態を圧縮自着火運転に適した圧縮自着火補助状態に変更することができる。そして、点火プラグ劣化検出手段により点火プラグの劣化が検出された場合に、運転モード切替手段にてエンジンの運転モードを予混合圧縮自着火運転モードに切り替えられるので、点火プラグが劣化した場合においても、エンジンの運転モードを、点火プラグによる点火を必要としない予混合圧縮自着火運転を行う予混合圧縮自着火運転モードに切り替えることができる。
結果、単に予混合圧縮自着火運転モードに切り替えるだけではなく、圧縮自着火補助状態にて予混合気の圧縮自着火を補助するので、燃焼室での予混合気の圧縮自着火を適正に行なうことができる。また、予混合圧縮自着火運転モードに切り替えられた際には、圧縮自着火補助手段によって、燃焼室での予混合気の状態を、圧縮自着火を補助する圧縮自着火補助状態に変更する運転継続処置が実施される。これにより、予混合圧縮自着火運転に切り替えられたエンジンの運転状態を、運転継続可能な状態にすることができる。
そして、圧力検出手段により検出された燃焼室内圧力に基づいて迅速かつ正確に所定の燃焼解析値となる時のクランク角度を算出することができる。また、燃焼解析手段にて算出されたクランク角度が目標クランク角度になるように点火プラグの点火時期を制御する点火時期制御手段を備えており、この点火時期制御手段は、目標クランク角度を変更すると、燃焼解析手段にて算出されたクランク角度が変更された目標クランク角度となるように点火時期を制御する。目標クランク角度を変更すると、その変更に対応するために点火プラグの点火時期も変更されるので、点火プラグが劣化していない場合には、その点火時期の変更を適正に行うことができるが、点火プラグが劣化している場合には、その点火時期の変更を適正に行うことできなくなる。そこで、点火プラグ劣化検出手段は、目標クランク角度を変更した点火時期制御手段の制御を行った上での燃焼解析手段にて算出されたクランク角度が許容範囲から逸脱した場合に、点火プラグの劣化を検出している。このように、目標クランク角度を変更して点火プラグの点火時期を変更させることで、劣化の検出対象である点火プラグの状態を変更させ、点火プラグが劣化しているか否かを判別し易い状態としている。したがって、点火プラグの劣化を精度良く検出することができる。
本発明に係るエンジンシステムの更なる特徴構成は、前記運転継続処置実施手段による前記運転継続処置の実施後に、前記燃焼室の燃焼状態が運転継続可能な運転継続可能状態となっているか否かを確認する運転状態確認手段と、
前記運転状態確認手段により確認された燃焼状態が、前記運転継続可能状態となっていない場合に、再度前記運転継続処置を実施する前記運転継続処置実施手段を備えた点にある。
上記特徴構成によれば、運転継続処置の実施後に、運転状態確認手段により確認された燃焼状態が運転継続可能状態となっていない場合には、運転継続処置実施手段によって再度運転継続処置が実施される。これにより、運転継続処置の実施後に、エンジンの燃焼状態が、予混合圧縮自着火運転による運転継続が可能な状態となっていない場合には、運転継続が可能になる燃焼状態となるまで運転継続処置が繰り返して実施されるので、結果的に、エンジンの燃焼状態を運転継続が可能な状態とすることができる。また、このように運転継続処置を繰り返して実施できるので、運転継続処置を段階的に実施することもでき、一度の運転継続処置により運転継続可能状態とするために変化させる燃焼室内の予混合気の状態の変化量を小さくすることで、燃焼室内の予混合気の状態の急激な変化を回避して、エンジンの運転状態を不安定にすることなく、段階的に燃焼状態を運転継続可能な状態に近づけることができる。
本発明に係るエンジンシステムの更なる特徴構成は、前記燃焼室の圧力を検出する圧力検出手段と、
前記圧力検出手段により検出された燃焼室内圧力から求められる燃焼解析値が所定の燃焼解析値となる時のクランク角度を算出する燃焼解析手段と、
前記燃焼解析手段にて算出されたクランク角度が目標クランク角度になるように前記点火プラグの点火時期を制御する点火時期制御手段とを備え、
前記点火プラグ劣化検出手段は、前記燃焼解析手段にて算出されたクランク角度が前記目標クランク角度から規定される許容範囲から逸脱した場合に、前記点火プラグの劣化を検出する点にある。
ここで、目標クランク角度は、点火プラグを働かせて火花点火運転モードで運転を行う場合に、点火時期として好ましいクランク角度で、その時期に点火時期を制御するクランク角度である。
上記特徴構成によれば、圧力検出手段により検出された燃焼室内圧力から燃焼解析値が求められるので、燃焼室内の燃焼状態を迅速かつ正確に反映する燃焼室内圧力に基づいて所定の燃焼解析値となる時のクランク角度を算出することができる。ここで、燃焼解析値としては、例えば、燃焼室内圧力から算出された熱発生率や燃焼質量割合などを意味する。また、算出される所定の燃焼解析値となる時のクランク角度とは、例えば、熱発生率が最大となるクランク角度や燃焼質量割合が50%となるクランク角度などのことである。
また、燃焼解析手段にて算出されたクランク角度が目標クランク角度になるように点火プラグの点火時期を制御する点火時期制御手段を備えるので、燃焼室の燃焼状態を適切な燃焼状態とすることができる。点火プラグが劣化していない場合には、点火時期制御手段が点火時期の制御を行うことで、燃焼解析手段にて算出されたクランク角度が目標クランク角度から規定される許容範囲とできる。それに対して、点火プラグが劣化している場合には、点火時期制御手段による点火時期の制御を行っても、燃焼解析手段にて算出されたクランク角度が目標クランク角度から外れてしまい、燃焼解析手段にて算出されたクランク角度が許容範囲から逸脱する。そこで、点火プラグ劣化検出手段は、点火時期制御手段による点火時期の制御を行った上での燃焼解析手段にて算出されたクランク角度が許容範囲から逸脱した場合に、点火プラグの劣化を検出している。したがって、点火時期制御手段による点火時期の制御を行うことで、燃焼室の燃焼状態を適切な燃焼状態としながら、点火プラグの劣化を適切に検出することができる。
本発明に係るエンジンシステムの更なる特徴構成は、前記点火プラグにおいて点火火花が発生する電圧値である要求電圧値を測定する要求電圧値測定手段を備え、
前記点火プラグ劣化検出手段は、前記要求電圧値が点火プラグ劣化検出電圧値を上回った場合に、前記点火プラグの劣化を検出する点にある。
上記特徴構成によれば、点火プラグが劣化している場合には、要求電圧値が上昇するので、点火プラグを劣化している場合の点火プラグ劣化検出電力値を実験等により求めておき、点火プラグ劣化検出手段は、その要求電圧値が点火プラグ劣化検出電力値を上回った場合に、点火プラグの劣化を検出することができる。このように、点火プラグ劣化検出手段は、要求電力値と点火プラグ劣化検出電力値との大小関係を比較するという容易な処理を行うだけでよく、簡易な構成によって点火プラグの劣化を適切に検出することができる。
本発明に係るエンジンシステムの更なる特徴構成は、前記運転継続処置として、前記燃焼室に吸入される予混合気の吸入温度または前記エンジンの圧縮比の少なくとも一方を上昇させる点にある。
上記特徴構成によれば、運転継続処置として、燃焼室に吸入される予混合気の吸入温度またはエンジンの圧縮比の少なくとも一方を上昇させる。このように、予混合気の吸入温度またはエンジンの圧縮比を上昇させることで圧縮自着火運転による自着火燃焼が補助されて燃焼状態を安定させることができる。また、この予混合気の吸入温度およびエンジンの圧縮比の上昇はエンジン運転を継続させた状態において可能であるため、エンジンを停止させずに圧縮自着火運転に適した運転状態にすることができる。なお、予混合気の吸入温度とエンジンの圧縮比の両方を同時に上昇させることもでき、これによって、より迅速かつ効果的に自着火燃焼の燃焼状態を安定させることができる。
本発明に係るエンジンシステムの更なる特徴構成は、内燃機関式発電装置に係るエンジンシステムを上記の特徴構成のいずれかに記載のエンジンシステムとしたコージェネレーションシステムとした点にある。
内燃機関式発電装置を有するコージェネレーションシステムでは、コージェネレーションシステムに接続されている電力機器に安定して給電することが必要であるため、コージェネレーションシステムの動力源であるエンジンのトラブルによりやむを得ずその運転が中止されることは好ましくない。上記特徴構成によれば、コージェネレーションシステムの内燃機関式発電装置に係るエンジンの点火プラグが劣化した場合においても、エンジンを停止することなくその運転を継続させることができる。従って、発電装置において発電を継続することができ、コージェネレーションシステムに接続されている電力機器への電力供給を継続することができる。
本実施形態に係るコージェネレーションシステムの概略図 圧縮比可変手段におけるコントロールシャフトの斜視図 クランク角度と燃焼質量割合の関係を示す図 点火プラグの劣化検出時以降の制御手順を示すフローチャート 点火プラグの劣化検出時におけるクランク角度の変動値(a)、要求電圧値(b)、圧縮比(c)および吸気温度(d)の変化の一例を示す図
本発明に係るコージェネレーションシステムSの実施形態を、図面に基づいて説明する。図1に示すように、本実施形態についてのコージェネレーションシステムSは、エンジン100の排気路7において排ガスEの排熱を回収して熱負荷44に供給する排熱回収手段Jと、エンジン100の軸動力により発電して電力負荷45に供給する電力を発生する発電手段K(内燃機関式発電装置に相当)とを備えている。
排熱回収手段Jは、エンジン100の燃焼室3から排出された排ガスEにて貯湯タンク49の水を加熱する排ガス熱交換器41とを備えている。排熱回収手段Jは、循環ポンプ42を作動させて貯湯タンク49の水を循環路43にて循環させ、排ガス熱交換器41によって、燃焼室3から排気路7に排出された排ガスEの排熱を回収自在に構成されている。排熱回収手段Jは、回収した排ガスEの排熱により加熱した水を貯湯タンク49に貯留させ、その貯湯タンク49に貯留させた水を給湯利用箇所や暖房機器等の熱負荷44に供給自在に構成されている。ここで、排熱回収手段Jは、エンジン100を冷却した後のエンジン冷却水にて貯湯タンク49の水を加熱する冷却水熱交換器を備える構成としてもよい。また、発電手段Kは、エンジン100によって駆動される発電機46を備え、インバータ47を介して商用電力系統48と連系して発電した電力を電気機器等の電力負荷45に供給するように構成されている。
また、コージェネレーションシステムSには、コンピュータからなる制御装置Uが備えられ、排熱回収手段Jや発電手段Kの制御が行なわれる。制御装置Uは、何れも図示されないCPU、ROM、RAM、入出力ポート、および記憶装置等を有している。
エンジン100には、シリンダ1の内面とピストン2の頂面とで規定される燃焼室3と、燃焼室3に吸気弁4を介して接続された吸気路5と、燃焼室3に排気弁6を介して接続された排気路7とが設けられている。また、制御装置U内には、エンジン・コントロール・ユニット(以下、ECUと呼ぶ)30が設けられている。ECU30には、何れも図示されないCPU、ROM、RAM、入出力ポート、および記憶装置等を有している。そして、ECU30は、エンジン100の起動運転制御等の各種制御行うように構成されている。
ピストン2はクランクシャフト8にリンク機構で接続されたアッパリンク83とロアリンク81によって連結されている。そして、ロアリンク81はさらにコントロールリンク86に回転可能に接続されている。また、アクチュエータユニット87により回転位置が変更・保持されるコントロールシャフト84と有し、このコントロールシャフト84がコントロールリンク86に接続されている。このような機構により、コントロールシャフト84の回転位置に応じてピストン2の上下動する移動量が変化するように構成され、これによって、圧縮比εが調整できるように構成される。
吸気路5を流通する空気Aは、適宜過給機(図示せず)等により過給された後に、ミキサ10において天然ガス系都市ガスの燃料Gが供給されて混合気M(予混合気に相当)となり、混合気加熱部11を通過し、燃焼室3に供給される。また、ミキサ10に供給される燃料Gは、燃料流量調整弁13により流量調整可能に構成されている。そして、ECU30は、例えば、排気路7に設けられ、排ガスEの酸素濃度を検出可能な酸素センサ14の検出結果に基づいて、燃料Gの供給量を調整して、燃焼室3における混合気Mの当量比を所定の目標当量比となるように燃焼状態を制御することができる。
そして、燃焼室3に供給された混合気Mを、ピストン2の上昇により圧縮して発火点まで昇温させることで、混合気Mが自己着火して燃焼する予混合圧縮自着火運転を行うことが可能に構成されている。
また、エンジン100には、燃焼室3に吸気された混合気Mの火花点火を可能にする点火手段Iが設けられる。点火手段Iは、クランク角センサ15、点火プラグ20、イグナイタ21、イグニッションコイル22で構成されている。これにより、点火プラグ20により混合気Mが着火されて燃焼する火花点火運転を行うことが可能となる。また、点火手段Iの制御はECU30に備えられる点火時期制御手段IAによって行なわれる。つまり、点火時期制御手段IAからイグナイタ21に点火信号を送るように構成され、イグナイタ21は、点火時期制御手段IAからの信号を受けてイグニッションコイル22の一次側電流をオンオフさせ、同コイルの二次側に高電圧を発生させ、この二次側電圧によって点火プラグ20の点火が行われるようになっている。これにより、点火時期制御手段IAからイグナイタ21に点火信号を送るタイミングを調整することで、点火プラグ20による点火時期の調整を可能としている。
点火時期制御手段IAは、燃焼解析手段Fにて算出されたクランク角度が目標クランク角度になるように点火プラグ20の点火時期を制御している。このようにして、点火時期制御手段IAによる点火時期の制御を行うことで、燃焼室3での燃焼状態を適切な燃焼状態としている。燃焼解析手段Fは、圧力検出手段Lにより検出された燃焼室内圧力(以下「筒内圧」と呼ぶ)から燃焼解析値を求め、その求めた燃焼解析値が所定の燃焼解析値となる時のクランク角度を求めている。ここで、燃焼解析値とは、例えば、筒内圧P、熱発生率、燃焼質量割合(Mass Fraction of Burned fuel、以下、この燃焼質量割合を「MFB」と呼ぶ)を意味している。
燃焼解析手段Fが燃焼解析値を求めるための圧力検出手段Lについて説明する。圧力検出手段Lは、クランク角センサ15、筒内圧センサ25、図示されないA/D変換器等およびECU30によって筒内圧Pの検出を可能に構成されている。筒内圧センサ25は、半導体素子、圧電素子あるいは光ファイバ検出素子等から構成され、燃焼室3内に圧力計測部が臨むようにシリンダヘッドに配設されており、図示されないA/D変換器等を介してECU30に電気的に接続されている。また、筒内圧センサ25によって検出された検出信号は、微小時間おきにECU30に入力され、その検出信号に基づいて燃焼解析手段Fによって燃焼室3内の圧力値が算出される。
燃焼解析手段Fについて説明する。燃焼解析手段Fは、筒内圧センサ25の検出信号に基づいて算出された筒内圧Pより、熱発生率dQ/dθを次式により算出する。
dQ/dθ=(V・dP/dθ+κ・P・dV/dθ)/(κ−1)
ここで、Vは燃焼室内容積を、κは比熱比を示している。通常、この熱発生率は燃焼室3の壁面からの冷却損失熱量を考慮して算出される。
燃焼解析手段Fは、このように算出された熱発生率に基づいて、MFBを算出しており、MFBが50%(所定の燃焼解析値に相当する)となるクランク角度を検出する。具体的には、燃焼サイクルにおいて、燃焼が開始してからの熱発生率を積算することで、例えば、図3に示されたMFB線図B、B2F、B2Lが求められる。MFBは、シリンダ内に供給する1サイクルあたりの燃料Gの質量のうち、それぞれのクランク角度までにおいて燃焼した質量の比として表される。これにより、求めたMFB線図B、B2F、B2Lを用いて、MFBが50%となるクランク角度を算出することができる。
ここで、図3では、基準となる基準MFB線図Bを実線にて示しており、このときのMFBが50%(所定の燃焼解析値に相当する)となるクランク角度はTBとなっている。基準MFB線図Bに対してクランク角度が進角側にずれたMFB線図B2Fを点線にて示しており、このときのMFBが50%(所定の燃焼解析値に相当する)となるクランク角度はTB1となっている。基準MFB線図Bに対してクランク角度が遅角側にずれたMFB線図B2Lを一点鎖線にて示しており、このときのMFBが50%(所定の燃焼解析値に相当する)となるクランク角度はTB2となっている。
燃焼解析手段Fが、MFBが50%となるクランク角度を求めるので、点火時期制御手段IAは、燃焼解析手段Fにて求められたMFBが50%となるクランク角度と目標クランク角度とを比較して、燃焼解析手段Fにて求められたクランク角度が目標クランク角度よりも大きければ点火時期が遅すぎるとして、そのクランク角度と目標クランク角度との差に応じて次の燃焼サイクル以降における点火時期を進角させる。逆に、点火時期制御手段IAは、燃焼解析手段Fにて求められたクランク角度が目標クランク角度よりも小さければ点火時期が早すぎるとして、そのクランク角度と目標クランク角度との差に応じて次の燃焼サイクル以降における点火時期を遅角させる。このようにして、点火時期制御手段IAは、燃焼解析手段Fにて求められたMFBが50%となるクランク角度が目標クランク角度となるように点火時期を制御している。目標クランク角度については、実験的或いは経験的に求められており、例えば、図3に示す基準MFB線図Bにより、MFBが50%(所定の燃焼解析値に相当する)となるクランク角度TBを目標クランク角度とすることができ、目標クランク角度を圧縮上死点後12 °(ATDC12°CA)とすることができる。
本実施形態におけるエンジン100は、ピストン2の上昇により圧縮して発火点まで昇温させることで、混合気Mが自己着火して燃焼する予混合圧縮自着火運転を行うことができるとともに、点火プラグ20により混合気Mが着火されて燃焼する火花点火運転をも行うことができる。そこで、ECU30には、予混合圧縮自着火運転を行う予混合圧縮自着火運転モードと火花点火運転を行う火花点火運転モードとにエンジン100の運転モードを切り替え自在な運転モード切替手段Xが備えられる。エンジン100の運転モードの切り替えについては、例えば、エンジン100の負荷に応じて切り替えることができる。エンジン100の負荷が高負荷領域である場合には、運転モード切替手段Xが火花点火運転モードに切り替え、エンジン100の負荷が低負荷領域である場合には、運転モード切替手段Xが予混合圧縮自着火運転モードに切り替える。
このように、エンジン100の運転モードについては、各種の条件に応じて切替が可能であるが、点火プラグ20が劣化すると、点火プラグ20にて適正に火花点火することができなくなり、火花点火運転モードに切り替えた状態でのエンジン100の運転を継続することができなくなる。そこで、本実施形態においては、エンジン100の運転モードを、火花点火運転モードに切り替えている場合において、点火プラグ20の劣化を検出する点火プラグ劣化検出手段Dを備えるとともに、その点火プラグ劣化検出手段Dにて点火プラグ20の劣化が検出された場合には、エンジン100の運転を継続させるための運転継続処置CMを行う運転継続処置実施手段Cを備えている。
点火プラグ劣化検出手段Dは、第1から第3の判断手法の夫々によって点火プラグ20の劣化を検出している。点火プラグ劣化検出手段Dは、少なくとも第2の判断手法により点火プラグ20の劣化の検出が可能に構成されている。
第1の判断手法では、上述の点火時期制御手段IAによる点火時期の制御を行った上で、燃焼解析手段Fにて求めたクランク角度が許容範囲から逸脱しているか否かによって、点火プラグ20が劣化しているか否かを検出している。許容範囲については、点火時期制御手段IAによる点火時期の制御を行う際に、クランク角度の目標となる目標クランク角度を基準に規定されている。例えば、図3に示すように、基準MFB線図BによりMFBが50%(所定の燃焼解析値に相当する)となるクランク角度TBを目標クランク角度としている。そこで、基準MFB線図Bに対してクランク角度が進角側にずれたMFB線図B2FによりMFBが50%(所定の燃焼解析値に相当する)となるクランク角度TB1を進角側の限界値とし、基準MFB線図Bに対してクランク角度が遅角側にずれたMFB線図B2LによりMFBが50%(所定の燃焼解析値に相当する)となるクランク角度TB2を遅角側の限界値として、TBを基準とするTB1〜TB2の範囲TBPを許容範囲としている。例えば、TBがATDC12°CAとされる場合では、ATDC12°CA±1.8°CAの範囲が許容範囲となっており、点火プラグ劣化検出手段Dは、燃焼解析手段Fにて求めたクランク角度がその許容範囲から逸脱した場合に、点火プラグ20の劣化を検出している。
第2の判断手法では、点火時期制御手段IAによる点火時期の制御を、目標クランク角度を変更させた状態で行った上で、燃焼解析手段Fにて求めたクランク角度が許容範囲から逸脱しているか否かによって、点火プラグ20が劣化しているか否かを検出している。許容範囲については、目標クランク角度を変更させた状態で点火時期制御手段IAによる点火時期の制御を行っているので、その変更後の目標クランク角度を基準に規定されている。例えば、点火時期制御手段IAが、目標クランク角度をATDC12°CAからATDC20°CAに変更して、燃焼解析手段Fにて求めたクランク角度がその変更後の目標クランク角度になるように点火時期の制御を行う。この点火時期の制御を行った後、点火プラグ劣化検出手段Dは、燃焼解析手段Fにて求めたクランク角度が許容範囲(例えば、ATDC17°CA〜23°ATDC17°CA)から逸脱した場合に、点火プラグ20の劣化を検出している。ここで、目標クランク角度を変更させた状態での点火時期制御手段IAによる点火時期の制御は、1分間に1燃焼サイクルになどの間隔で、その1燃焼サイクルに限って行っている。これにより、最適なエンジン100の運転状態を維持しつつ、点火プラグ20の劣化検出が可能となる。
第3の判断手法では、点火プラグ20において点火火花が発生する電圧値である要求電圧値RVを測定する要求電圧値測定手段Rを備え、その要求電圧値測定手段Rにて測定された要求電圧値RVが点火プラグ劣化検出電圧値RVDを上回った場合に、点火プラグ20の劣化を検出している。イグニッションコイル22の二次側電圧値は、高電圧プローブ23によってECU30に設けられた要求電圧値測定手段Rに読み込まれ、これによって、点火プラグ20において火花を発生させるのに必要な電圧値である要求電圧値RVが測定される。点火プラグ20の要求電圧値RVを測定すると、点火プラグ20が劣化していない場合は、10〜16kV程度であるが、点火プラグ20の劣化が進むと要求電圧値RVが高くなり、32kV程度でおいて点火プラグ20が破損する可能性がある。そこで、例えば、点火プラグ劣化検出電圧値RVDを32kVとして、測定している要求電圧値RVが32kV以上となった時に点火プラグ20の劣化を検出している。
運転継続処置実施手段Cは、エンジン100の運転を継続させるための運転継続処置CMとして、運転モード切替手段Xにてエンジン100の運転モードを予混合圧縮自着火運転モードに切り替えるとともに、圧縮自着火補助手段Zにて燃焼室3での混合気Mの圧縮自着火を補助する処置を行っている。圧縮自着火補助手段Zは、燃焼室3での混合気Mの圧縮自着火を補助可能な圧縮自着火補助状態に燃焼室3での混合気Mの状態を変更するように構成されている。
本実施形態では、圧縮自着火補助手段Zとして、燃焼室3に吸入される混合気Mの吸入温度MTを調節自在な温度調節手段Hが備えられている。この温度調節手段Hは、燃焼室3に導入される混合気Mを吸気路5に備えられた混合気加熱部11によって加熱することで、吸入温度MTを調整するように構成されている。温度調節手段Hは、ECU30、混合気加熱部11、電気ヒータ11a、温度センサ12によって構成されている。混合気加熱部11の熱源は電気ヒータ11aによって構成され、温度調節手段Hは、吸気路5の吸気弁4近傍に設けられた温度センサ12の検出結果に基づいて、電気ヒータ11aの発熱量を制御することで、燃焼室3に吸気される混合気Mの吸入温度MTが目標温度となるように制御する。
また、混合気加熱部11は、シリンダ1等を冷却して高温となった冷却水、又は、燃焼室3から排出された高温の排ガスE等の熱媒体との熱交換により、混合気Mを加熱可能に構成されていてもよい。その場合、温度調節手段Hによって制御される熱媒体量調整弁(図示せず)が、混合気加熱部11への熱媒体の供給量を調整して、吸気路5を流通する混合気Mの温度を調整し、燃焼室3に吸気される混合気Mの温度を調整可能としてもよい。
本実施形態では、圧縮自着火補助手段Zとして、温度調節手段Hに加えて、エンジンの圧縮比εを調節自在な圧縮比可変手段Wが備えられている。この圧縮比可変手段Wの構成については、既に公知の構成(例えば、特開2010−112279号公報)であるので、以下、簡単に説明する。
圧縮比可変手段Wは、図1に示すように、クランクピン80に相対回転可能に取り付けられるロアリンク81と、このロアリンク81とピストンピン82とを連結するアッパリンク83と、クランクシャフト8と平行に延びるコントロールシャフト84と、このコントロールシャフト84に偏心して設けられた外周円形の偏心軸部85と、この偏心軸部85とロアリンク81とを連結するコントロールリンク86と、コントロールシャフト84を所定の制御範囲内で回転駆動する駆動部としての電動モータ(図示せず)を含むアクチュエータユニット87とを備えている。
ロッド状をなすアッパリンク83の上端部はピストン2のピストンピン82に相対回転可能に取付けられており、下端部は第1連結ピン89を介してロアリンク81に相対回転可能に連結されている。コントロールリンク86の一端はロアリンク81に第2連結ピン90を介して相対回転可能に連結されており、コントロールリンク86の他端は偏心軸部85の円筒面をなす外周に相対回転可能に取り付けられている。また、クランクシャフト8にはカウンターウエイト88が備えられる。
図2にコントロールシャフト84の回転機構を示す。コントロールシャフト84は、シリンダブロック(図示せず)の下部に回転可能に支持される主軸91を有している。また、主軸91の回転中心に対して偏心軸部85の回転中心は所定量偏心している。
また、アクチュエータユニット87内において、ECU30によって制御される電動モータにより発生した駆動トルクは、回転歯車92を介して軸方向に往復動・摺動可能に支えられたアクチュエータシャフト93に伝えられる。そして、コントロールシャフト84がアクチュエータシャフト93にピン94によって回転可能に係合されている。このように、電動モータにより発生した駆動トルクは、回転歯車92およびアクチュエータシャフト93を介してコントロールシャフト84へ伝達されて、コントロールシャフト84が回転可能に構成されている。
そして、アクチュエータユニット87によりコントロールシャフト84を回動することにより、偏心軸部85に外嵌するコントロールリンク86の揺動支点の位置が変化し、ロアリンク81及びアッパリンク83の姿勢が変化して、ピストン2の上方に形成される燃焼室3の圧縮比εが可変制御される。そして、例えばコントロールシャフト84を右回りに回転させることで、圧縮比εを上昇させることができる。このような圧縮比可変手段Wにより、圧縮比εをエンジン100の運転中においても連続的に変更することができる。
以下、図4及び図5に基づいて、点火プラグ20の劣化検出、及び、運転継続処置実施手段Cによる処置の制御手順について説明する。図4は、制御手順を示すフローチャートであり、図5は、点火プラグ20の劣化検出、及び、運転継続処置実施手段Cによる処置を行う場合に、点火時期制御手段IAによる点火時期の制御における目標クランク角度と燃焼解析手段Fにて求めたクランク角度との差である変動値TB3、点火プラグ20の要求電圧値RV、圧縮比ε、及び、吸入温度MTの夫々について時間経過に伴う変化を示したものである。
まず、点火プラグ劣化検出手段Dにより点火プラグ20の劣化が検出されたか否かが判断される(#01)。この点火プラグ劣化検出手段Dによる点火プラグ20の劣化検出は、上述の第1から第3の判断手法の夫々にて行っている。
図5(a)に示すように、点火時期制御手段IAによる点火時期の制御における目標クランク角度と燃焼解析手段Fにて求めたクランク角度との差である変動値TB3は、点火プラグ20の劣化度合いが進んでくるに伴って上昇している。そこで、第1の判断手段の如く、点火プラグ劣化検出手段Dは、点火時期制御手段IAによる点火時期の制御における目標クランク角度と燃焼解析手段Fにて求めたクランク角度との差である変動値TB3を監視しておき、その変動値TB3が設定値TB3Dを越えると、燃焼解析手段Fにて求めたクランク角度が許容範囲から逸脱しているとして、点火プラグ20の劣化を検出している。
また、点火プラグ劣化検出手段Dは、第2の判断手法の如く、目標クランク角度を変更させた状態で点火時期制御手段IAによる点火時期の制御を行った上で、燃焼解析手段Fにて求めたクランク角度が許容範囲から逸脱している場合に、点火プラグ20の劣化を検出している。
さらに、図5(b)に示すように、要求電圧値RVについても、点火プラグ20の劣化度合いが進んでくるに伴って上昇しているので、第3の判断手段の如く、点火プラグ劣化検出手段Dは、要求電圧値測定手段Rにて測定された要求電圧値RVが点火プラグ劣化検出電圧値RVDを上回った場合に、点火プラグ20の劣化を検出している。
このように、点火プラグ20の劣化検出については、第1から第3の判断手法の夫々にて行っており、第1から第3の判断手段のどれか1つでも点火プラグ20の劣化を検出すると、点火プラグ20の劣化が検出されているとしている(#01のYESの場合)。点火プラグ20の劣化が検出されると、点火プラグ劣化検出手段Dは点火プラグ20への劣化が検出されたことについての警報を発令する(#02)。また、運転継続処置実施手段Cは、次に、予め決定されている運転計画等を参照して、エンジン100が停止されるまでの時間RTが運転継続可能時間ST以下であるか否かを判断する(#03)。そして、時間RTが運転継続可能時間ST以下である場合、点火手段Iによって電圧印加を中止して(#04)、運転継続処置CMを行なうことでエンジン100の運転を継続させる。一方で、RTが運転継続可能時間STより長くなる場合には、プラグ交換作業に備えてエンジン100を停止する(#05)。
そして、エンジン100の運転を継続させる場合、運転継続処置実施手段Cが運転モード切替手段Xを制御して、エンジン100の運転モードを火花点火運転モードから予混合圧縮自着火運転モードに切り替えるとともに、圧縮自着火補助手段Zを制御することで運転継続処置CMが行なわれる(#06)。圧縮自着火補助手段Zは、運転継続処置CMとして、温度調節手段Hにて吸入温度MTを上昇させる処置、または、圧縮比可変手段Wにてエンジンの圧縮比εを上昇させる処置を行う。
図5(c)では、圧縮比可変手段Wにてエンジンの圧縮比εを上昇させる処置を行った場合を示している。例えば、燃焼解析手段Fにて求めたクランク角度が許容範囲になるようにエンジンの圧縮比εを上昇させている。圧縮比εの調整については、圧縮比εが高くなりすぎると混合気Mが上死点前に着火して急激な燃焼となってノッキングを起こすので、圧縮比εの調整はあらかじめ設定された圧縮比調整量εBだけ上昇させている。
図5(d)では、温度調節手段Hにて吸入温度MTを上昇させる処置を行った場合を示している。例えば、燃焼解析手段Fにて求めたクランク角度が許容範囲になるように混合気Mの吸入温度MTを上昇させている。吸入温度MTの調整については、吸入温度MTが高すぎると混合気Mが上死点前に着火して急激な燃焼となってノッキングを起こすので、吸入温度MTの調整はあらかじめ設定された吸気温度調整量MTBだけ上昇させている。
ここで、圧縮自着火補助手段Zは、運転継続処置CMとして、温度調節手段Hにて吸入温度MTを上昇させる処置、または、圧縮比可変手段Wにてエンジンの圧縮比εを上昇させる処置の何れかの処置を行うのではなく、温度調節手段Hにて吸入温度MTを上昇させる処置、及び、圧縮比可変手段Wにてエンジンの圧縮比εを上昇させる処置の両方の処置を行うこともできる。
本実施形態にかかるエンジン100では、点火プラグ20の劣化を検出した場合に、運転継続処置実施手段Cが運転継続処置CMを行なうことで、エンジン100の運転の継続することができる。しかしながら、運転継続処置実施手段Cが1回運転継続処置CMを行うだけでは、燃焼室3の燃焼状態が不安定となっていることもある。そこで、本発明に係るエンジン100では、運転継続処置実施手段Cによる運転継続処置CMの実施後に、燃焼室3の燃焼状態が運転継続可能な運転継続可能状態となっているか否かを確認する運転状態確認手段Nを備えており、運転継続処置実施手段Cは、その運転状態確認手段Nにより確認された燃焼状態が運転継続可能状態となっていない場合に、再度、運転継続処置CMを実施している。
運転状態確認手段Nは、点火プラグ20の劣化検出における第1の判断手法と同様に、点火時期制御手段IAによる点火時期の制御における目標クランク角度と燃焼解析手段Fにて求めたクランク角度との差である変動値TB3を監視しておき、その変動値TB3が設定値TB3D以下であれば、燃焼室3の燃焼状態が運転継続可能な運転継続可能状態となっているとしている(#07のYESの場合)。それに対して、変動値TB3が設定値TB3Dよりも大きいと、燃焼室3の燃焼状態が運転継続可能な運転継続可能状態となっていないとして、再度、運転継続処置CMを実施している(#07のNOの場合)。このようにして、運転状態確認手段Nによって燃焼室3の燃焼状態が運転継続可能な運転継続可能状態となっているかを確認しながら、運転継続処置実施手段Cは運転継続処置CMを繰り返し行うようにしている。ここで、再度、運転継続処置CMを実施する場合には、あらかじめ設定された圧縮比調整量εBだけ圧縮比εを上昇させる処置、または、あらかじめ設定された吸気温度調整量MTBだけ吸入温度MTを上昇させる処置が行われる。
〔別実施形態〕
(A)上記実施形態において、点火プラグ劣化検出手段Dが、第1〜第3の判断手段の夫々にて点火プラグ20の劣化を検出しているが、このときの閾値については適宜変更が可能である。例えば、第1の判断手法であれば、図5(a)に示すように、点火時期制御手段IAによる点火時期の制御における目標クランク角度と燃焼解析手段Fにて求めたクランク角度との差である変動値TB3を監視しておき、その変動値TB3が設定値TB3Dを越えると、燃焼解析手段Fにて求めたクランク角度が許容範囲から逸脱しているとして、点火プラグ20の劣化を検出しているが、変動値TB3が設定値TB3Dよりも設定量だけ小さな値を超えると、燃焼解析手段Fにて求めたクランク角度が許容範囲から逸脱しているとして、点火プラグ20の劣化を検出することもできる。また、第3の判断手法であれば、図5(b)に示すように、要求電圧値測定手段Rにて測定された要求電圧値RVが点火プラグ劣化検出電圧値RVDよりも設定量だけ小さな値を上回った場合に、点火プラグ20の劣化を検出することもできる。これにより、点火プラグ20の劣化をより早期に検出することができ、その点火プラグ20の劣化に対して、運転継続処置実施手段Cによる運転継続処置CMの実施をいち早く行うこともできる。
(B)上記実施形態においては、点火プラグ劣化検出手段Dにおいて、第1〜第3の判断手法により点火プラグ20の劣化が判断されたが、点火プラグ劣化検出手段Dが第2の判断手法により点火プラグ20の劣化を判断する構成を備えていれば、第1〜第3の判断手法のうち、いずれか1つの判断手法により判断してもよいし、いずれか2つの判断手法により判断してもよい。また、第1〜第3の判断手法の3つとも備える場合でも、図4の#01において、第1〜第3の判断手法の何れか1つ又は2つにて点火プラグ20の劣化を検出すると、点火プラグ20の劣化が検出されたとして、警報発令を行うようにしてもよい(#01のYESの場合)。
(C)上記実施形態においては、点火プラグ劣化検出手段Dにおいて、MFBが50%となるクランク角度を目標クランク角度として点火プラグ20の劣化が検出されるように構成されたが、これに限らず、目標クランク角度を最大熱発生時期のクランク角度または熱発生率の重心時期に係る目標クランク角度として点火プラグ20の劣化が検出されるように構成されてもよい。
(D)上記実施形態においては、運転状態確認手段Nにおいて、MFBが50%となるクランク角度を目標クランク角度として燃焼室3の燃焼状態が運転継続可能状態となっているかが判断されるように構成されたが、これに限らず、目標クランク角度を最大熱発生時期のクランク角度または熱発生率の重心時期に係る目標クランク角度として燃焼室3の燃焼状態が運転継続可能状態となっているかが判断されるように構成されてもよい。
(E)上記実施形態においては、点火プラグ劣化検出手段Dにより点火プラグ20の劣化が検出されると、運転継続処置実施手段Cは、エンジン100が停止されるまでの時間RTが運転継続可能時間ST以下であるか否かが判断され、エンジン100が停止されるまでの時間RTが運転継続可能時間ST以下である場合には、運転継続処置CMが行なわれる構成としたが、これに限らず、エンジン100が、通常一日一回起動停止する運転(DSS運転)を行うコージェネレーションシステムSで使用されている場合などにおいては、点火プラグ20の劣化が検出されると、常に運転継続処置CMを行なうように構成されてもよい。
(F)上記実施形態においては、点火プラグ劣化検出手段Dにより点火プラグ20の劣化が検出されると、点火プラグ劣化検出手段Dにより点火プラグ20への劣化が検出されたことについての警報が発令されるように構成されたが、これに限らず、警報が発令されないように構成されていてもよい。
(G)上記実施形態においては、運転継続処置実施手段Cによって行なわれる運転継続処置CMとして、圧縮比εまたは吸入温度MTを上昇させる処置としたが、これに限らず、EGR率、冷却水温度、過給圧を上昇させる処置としてもよい。例えば、EGR率の上昇は、EGR装置として吸気バルブ4上流の吸気路5に排気路7から排ガスEを還流する還流路を設けることで、新たに燃焼室3に吸入される混合気Mと一緒に排ガスEを吸入する装置(外部EGR装置)を設け、その排ガスEの還流量を増加させることで可能となる。
以上説明したように、点火プラグを備えた予混合圧縮自着火エンジンにおいて、点火プラグの劣化が検出された際にもエンジン運転を継続することができるエンジンシステムを提供することができる。
20 点火プラグ
100 エンジン
C 運転継続処置実施手段
CM 運転継続処置
D 点火プラグ劣化検出手段
F 燃焼解析手段
IA 点火時期制御手段
K 発電手段(発電装置)
L 圧力検出手段
M 混合気(予混合気)
MT 吸入温度
N 運転状態確認手段
P 筒内圧(圧力)
R 要求電圧値測定手段
RV 要求電圧値
RVD 点火プラグ劣化検出電圧値
S コージェネレーションシステム
X 運転モード切替手段
Z 圧縮自着火補助手段
ε 圧縮比

Claims (6)

  1. エンジンの燃焼室に点火プラグを備え、
    前記燃焼室において予混合気を圧縮して自己着火させる予混合圧縮自着火運転を行う予混合圧縮自着火運転モードと、前記燃焼室において圧縮された予混合気を前記点火プラグにより点火させる火花点火運転を行う火花点火運転モードとに、前記エンジンの運転モードを切り替え自在な運転モード切替手段を備えたエンジンシステムであって、
    前記点火プラグの劣化を検出する点火プラグ劣化検出手段と、
    前記燃焼室での予混合気の圧縮自着火を補助可能な圧縮自着火補助状態に前記燃焼室での予混合気の状態を変更する圧縮自着火補助手段と、
    前記燃焼室の圧力を検出する圧力検出手段と、
    前記圧力検出手段により検出された燃焼室内圧力から求められる燃焼解析値が所定の燃焼解析値となる時のクランク角度を算出する燃焼解析手段と、
    前記燃焼解析手段にて算出されたクランク角度が目標クランク角度になるように前記点火プラグの点火時期を制御する点火時期制御手段とを備え、
    前記点火プラグ劣化検出手段は、前記点火時期制御手段によって、前記目標クランク角度を変更し、前記燃焼解析手段にて算出されたクランク角度がその変更された目標クランク角度になるように前記点火プラグの点火時期を制御するとともに、前記燃焼解析手段にて算出されたクランク角度が前記変更後の目標クランク角度から規定される許容範囲から逸脱した場合に、前記点火プラグの劣化を検出するものであり、
    前記点火プラグ劣化検出手段により前記点火プラグの劣化が検出された場合に、前記運転モード切替手段にて前記エンジンの運転モードを前記予混合圧縮自着火運転モードに切り替えるとともに、前記圧縮自着火補助手段にて前記燃焼室での予混合気の圧縮自着火を補助する運転継続処置を実施する運転継続処置実施手段とを備えたエンジンシステム。
  2. 前記運転継続処置実施手段による前記運転継続処置の実施後に、前記燃焼室の燃焼状態が運転継続可能な運転継続可能状態となっているか否かを確認する運転状態確認手段と、
    前記運転状態確認手段により確認された燃焼状態が、前記運転継続可能状態となっていない場合に、再度前記運転継続処置を実施する前記運転継続処置実施手段を備えた請求項1に記載のエンジンシステム。
  3. 記点火プラグ劣化検出手段は、前記燃焼解析手段にて算出されたクランク角度が前記目標クランク角度から規定される許容範囲から逸脱した場合に、前記点火プラグの劣化を検出する請求項1または2に記載のエンジンシステム。
  4. 前記点火プラグにおいて点火火花が発生する電圧値である要求電圧値を測定する要求電圧値測定手段を備え、
    前記点火プラグ劣化検出手段は、前記要求電圧値が点火プラグ劣化検出電圧値を上回った場合に、前記点火プラグの劣化を検出する請求項1〜3のいずれか一項に記載のエンジンシステム。
  5. 前記運転継続処置として、前記燃焼室に吸入される予混合気の吸入温度または前記エンジンの圧縮比の少なくとも一方を上昇させる請求項1〜4のいずれか一項に記載のエンジンシステム。
  6. 内燃機関式発電装置に係るエンジンシステムを請求項1〜5のいずれか一項に記載のエンジンシステムとしたコージェネレーションシステム。
JP2011064884A 2011-03-23 2011-03-23 エンジンシステム Expired - Fee Related JP5711018B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011064884A JP5711018B2 (ja) 2011-03-23 2011-03-23 エンジンシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011064884A JP5711018B2 (ja) 2011-03-23 2011-03-23 エンジンシステム

Publications (2)

Publication Number Publication Date
JP2012202233A JP2012202233A (ja) 2012-10-22
JP5711018B2 true JP5711018B2 (ja) 2015-04-30

Family

ID=47183508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011064884A Expired - Fee Related JP5711018B2 (ja) 2011-03-23 2011-03-23 エンジンシステム

Country Status (1)

Country Link
JP (1) JP5711018B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015071984A (ja) * 2013-10-03 2015-04-16 大阪瓦斯株式会社 予混合圧縮着火式エンジン及びその運転制御方法
JP2015074983A (ja) * 2013-10-04 2015-04-20 大阪瓦斯株式会社 予混合圧縮着火式エンジン及びその運転制御方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09250435A (ja) * 1995-10-02 1997-09-22 Yamaha Motor Co Ltd エンジンの制御方法及びその制御装置
JPH10189213A (ja) * 1996-12-24 1998-07-21 Tokyo Gas Co Ltd ガスエンジンの点火プラグ監視装置
JP3927395B2 (ja) * 2001-09-28 2007-06-06 株式会社日立製作所 圧縮着火エンジンの制御装置
JP3861049B2 (ja) * 2002-12-17 2006-12-20 三菱重工業株式会社 ガスエンジンの燃焼制御装置
JP4225809B2 (ja) * 2003-03-18 2009-02-18 大阪瓦斯株式会社 エンジン及びその運転方法
JP4833786B2 (ja) * 2006-10-02 2011-12-07 東邦瓦斯株式会社 予混合圧縮自着火エンジンの制御装置及び制御方法
JP5257777B2 (ja) * 2009-01-28 2013-08-07 トヨタ自動車株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
JP2012202233A (ja) 2012-10-22

Similar Documents

Publication Publication Date Title
JP5858971B2 (ja) 内燃機関の制御装置およびその方法
JP4741987B2 (ja) 圧縮自己着火内燃機関の制御方法
WO2012144187A1 (ja) ガスエンジン、ガスエンジンの制御装置及び制御方法
JP2005307759A (ja) 予混合圧縮自着火機関の運転方法及び予混合圧縮自着火機関
JP6536541B2 (ja) 内燃機関の制御装置
JP6414152B2 (ja) 内燃機関の制御装置
WO2018059485A1 (zh) 汽油发动机过量空气系数燃烧控制方法及燃烧控制系统
JP5711018B2 (ja) エンジンシステム
JP2018040263A (ja) 内燃機関の制御装置
JP2018040264A (ja) 内燃機関の制御装置
JP6416410B2 (ja) エンジンシステムとその制御方法
BRPI0615641A2 (pt) motor de dois ciclos
JPH10196424A (ja) 混合気の圧縮着火式燃焼方法および混合気の圧縮着火式ピストン内燃機関
JP4109588B2 (ja) 予混合圧縮自着火式ガスエンジン
JP2013185466A (ja) エンジン及びその制御方法
JP4225805B2 (ja) 予混合圧縮着火エンジンの起動運転方法及び予混合圧縮着火エンジン
JP2018080636A (ja) 内燃機関の制御装置
JP4418273B2 (ja) 予混合燃焼機関による発電装置
JP4225809B2 (ja) エンジン及びその運転方法
JP4738426B2 (ja) ガスエンジンの制御方法及び装置
JP4553809B2 (ja) 予混合圧縮着火エンジンの起動運転方法
JP2004332659A (ja) 内燃機関の点火時期制御装置
JP2008050954A (ja) ガス燃料内燃機関
JP4010822B2 (ja) 予混合圧縮自着火エンジン及びその起動運転方法
JP2004316593A (ja) 予混合圧縮自着火式内燃機関

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150305

R150 Certificate of patent or registration of utility model

Ref document number: 5711018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees