JP5708033B2 - Iii族窒化物半導体素子、及びiii族窒化物半導体素子を作製する方法 - Google Patents

Iii族窒化物半導体素子、及びiii族窒化物半導体素子を作製する方法 Download PDF

Info

Publication number
JP5708033B2
JP5708033B2 JP2011042531A JP2011042531A JP5708033B2 JP 5708033 B2 JP5708033 B2 JP 5708033B2 JP 2011042531 A JP2011042531 A JP 2011042531A JP 2011042531 A JP2011042531 A JP 2011042531A JP 5708033 B2 JP5708033 B2 JP 5708033B2
Authority
JP
Japan
Prior art keywords
group iii
iii nitride
nitride semiconductor
degrees
gallium nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011042531A
Other languages
English (en)
Other versions
JP2012182203A (ja
Inventor
晋 吉本
晋 吉本
史典 三橋
史典 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011042531A priority Critical patent/JP5708033B2/ja
Publication of JP2012182203A publication Critical patent/JP2012182203A/ja
Application granted granted Critical
Publication of JP5708033B2 publication Critical patent/JP5708033B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

本発明は、III族窒化物半導体素子、及びIII族窒化物半導体素子を作製する方法に関する。
特許文献1には、III族窒化物半導体光素子が記載されている。このIII族窒化物半導体光素子では、活性層と、活性層を挟む2つのGaN系半導体領域とを備える。GaN系半導体領域のGaN系半導体層は例えばn型GaN系半導体からなり、n型GaN系半導体にはシリコンが添加されている。
非特許文献1には、MBE法でGaNを成長することが記載されている。プラズマアシスト分子ビームエピタキシによって(0001)及び(000−1)GaN膜を成長する。
特開2010−21249号公報
A. J. Ptak, L. J. Holbert, L. Ting, C. H. Swartz, M. Moldovan, N. C. Giles, and T. H. Myersa, P. Van Lierde, C. Tian, R. A. Hockett, and S. Mitha, A. E. Wickenden, D. D. Koleske, and R. L. Henry "Controlled oxygen doping of GaN using plasma assisted molecular-beam epitaxy," APPLIED PHYSICS LETTERS, VOL.79, No17, 22 OCTOBER 2001
非特許文献1は、(0001)及び(000−1)GaN膜を開示するけれども、(0001)及び(000−1)GaN膜の表面は無極性及び半極性を有しない。
特許文献1では、GaN系半導体領域のGaN系半導体層の酸素濃度が5×1016cm−3以上であるとき、GaN系半導体層の主面上に引き続き成長される活性層の結晶品質が良好になる。5×1016cm−3以上の酸素を意図的に添加する条件を採用することによって、エピ表面の平坦性を得ている。しかしながら、酸素は窒化物半導体中においてn型不純物として働く。これ故に、n型導電性と異なる導電性の半導体では、酸素不純物は、その半導体の導電性に係る特性を低下させる。
本発明は、このような事情を鑑みて為されたものであり、極性面と異なる半導体面への電極の接触に良好なコンタクト特性を提供できるIII族窒化物半導体素子を提供することを目的とする。また、本発明は、このIII族窒化物半導体素子を作製する方法を提供することを目的とする。
本発明の一側面に係るIII族窒化物半導体素子は、(a)III族窒化物半導体からなる主面を有する基板と、(b)前記基板の前記主面の上に設けられた第1の窒化ガリウム系半導体領域と,(c)前記第1の窒化ガリウム系半導体領域の主面に接触を成す電極とを備える。前記第1の窒化ガリウム系半導体領域は不純物として酸素を含み、前記第1の窒化ガリウム系半導体領域の酸素濃度は、5×1016cm−3より小さく、前記基板の前記主面は、該III族窒化物半導体のc軸の方向に延びる基準軸に直交する基準平面を基準にしてゼロより大きい角度を成し、前記基板の前記主面は半極性及び無極性のいずれか一方を有する。
このIII族窒化物半導体素子によれば、酸素の取り込みによって平坦性が向上する半極性及び無極性の基板を用いる半導体素子において、窒化ガリウム系半導体領域が酸素を含み且つその酸素濃度が5×1016cm−3より小さいので、平坦度を損なうことなく高純度のエピタキシャル膜を電気的接触のために利用できる。電極は、平坦でかつ低酸素濃度の上記領域に接触を成すので、この接触の電気的特性を良好にできる。
本発明の一側面に係るIII族窒化物半導体素子では、前記第1の窒化ガリウム系半導体領域にはp型ドーパントが添加されて、前記第1の窒化ガリウム系半導体領域はp型導電性を有することが好ましい。
このIII族窒化物半導体素子によれば、酸素濃度が5×1016cm−3より小さいので、p型窒化ガリウム系半導体領域への良好な電気的接触を提供できるp型ドーパント濃度を低減できる。電極に接しているp型窒化ガリウム系半導体層における酸素濃度の低減は駆動電圧低減に有効である。
本発明の一側面に係るIII族窒化物半導体素子は、(d)窒化ガリウム系半導体からなり前記基板の前記主面の上に設けられた第2の窒化ガリウム系半導体領域を更に備えることができる。前記第2の窒化ガリウム系半導体領域は前記第1の窒化ガリウム系半導体領域の前記酸素濃度より大きい酸素濃度を有し、前記第2の窒化ガリウム系半導体領域は、前記基板の前記III族窒化物半導体のc軸方向に延びる基準軸に直交する基準平面を基準にしてゼロより大きい角度をなす上面を有し、前記第2の窒化ガリウム系半導体領域にはp型ドーパントが添加されて、前記第2の窒化ガリウム系半導体領域はp型導電性を有し、前記第2の窒化ガリウム系半導体領域の前記上面は半極性及び無極性のいずれか一方を有する。
このIII族窒化物半導体素子によれば、第2の窒化ガリウム系半導体領域は第1の窒化ガリウム系半導体領域の酸素濃度より大きい酸素濃度を有するので、第1の窒化ガリウム系半導体領域の平坦性をより良好にできる。第1の窒化ガリウム系半導体領域の表面の平坦性を向上できるので、平坦性及び酸素濃度の観点から半極性又は無極性の半導体面が良好な電気的接触を提供できる。
本発明の一側面に係るIII族窒化物半導体素子では、前記基板の前記主面の法線と前記III族窒化物半導体の前記基準軸となす角度は10度以上170度以下であることが好ましい。このIII族窒化物半導体素子によれば、半極性又は無極性といった非極性面による寄与、例えばピエゾ電界の低減を利用できる。
本発明の一側面に係るIII族窒化物半導体素子では、前記基板の前記主面の法線と前記III族窒化物半導体の前記基準軸となす角度は10度以上80度以下又は100度以上170度以下の範囲にあることが好ましい。このIII族窒化物半導体素子によれば、半極性面による寄与、例えばピエゾ電界の低減を有効に利用できる。
本発明の一側面に係るIII族窒化物半導体素子は、前記基板の前記主面上に設けられた活性層を更に備えることができる。前記活性層は、前記第1の窒化ガリウム系半導体領域と前記基板との間に設けられる。このIII族窒化物半導体素子によれば、電極に接しているp型窒化ガリウム系半導体層における酸素濃度の低減は、発光素子における駆動電圧低減に有効である。
本発明の一側面に係るIII族窒化物半導体素子では、前記活性層は量子井戸構造を有する。このIII族窒化物半導体素子によれば、量子井戸構造を有する活性層は高い発光効率を可能し、電極に接しているp型窒化ガリウム系半導体層における酸素濃度の低減は、発光素子における駆動電圧低減に有効である。
本発明の一側面に係るIII族窒化物半導体素子では、前記活性層はInGaN層を含むことが好ましい。このIII族窒化物半導体素子によれば、InGaN系活性層を利用することによって、高い発光効率を実現できる。
本発明の一側面に係るIII族窒化物半導体素子では、前記基板の前記主面の法線と前記III族窒化物半導体の前記基準軸となす角度は43度以上80度以下又は100度以上137度以下の範囲にあることが好ましい。このIII族窒化物半導体素子によれば、上記の角度範囲は、顕著に高い酸素取り込みを示すので、酸素濃度の低減が有効に作用する。
本発明の一側面に係るIII族窒化物半導体素子では、前記III族窒化物半導体の前記c軸は該III族窒化物半導体のm軸の方向に傾斜しており、前記基板の前記主面の法線と前記基準軸とのなす角度は63度以上80度以下又は100度以上117度以下の範囲にあることが好ましい。このIII族窒化物半導体素子によれば、良好なインジウム取り込みが提供される。
本発明の一側面に係るIII族窒化物半導体素子では、前記基板の前記主面の法線と前記基準軸とのなす角度は63度以上80度以下の範囲にあることが好ましい。このIII族窒化物半導体素子によれば、(0001)Ga面から傾斜した半導体面を利用できる。
本発明の一側面に係るIII族窒化物半導体素子では、前記基板の前記主面の法線と前記基準軸とのなす角度は100度以上117度以下の範囲にあることが好ましい。このIII族窒化物半導体素子によれば、(000−1)N面から傾斜した半導体面を利用できる。
本発明の別の側面は、III族窒化物半導体素子を作製する方法に係る。この方法は、(a)第1のエピ生産物を第1の成膜装置から取り出した後に第2の成膜装置に配置する工程と、(b)前記第2の成膜装置において第1の窒化ガリウム系半導体領域を前記第1のエピ生産物の主面上に成長して第2のエピ生産物を形成する工程と、(c)前記第2のエピ生産物の前記第1の窒化ガリウム系半導体領域の主面に接触を成す電極を形成する工程とを備えることができる。前記第1の窒化ガリウム系半導体領域は、5×1016cm−3より小さい酸素濃度を有し、前記第1のエピ生産物は、III族窒化物半導体からなる主面を有する基板を含み、前記第1の窒化ガリウム系半導体領域は該基板の前記主面の上に設けられ、前記基板の前記主面は、該III族窒化物半導体のc軸方向に延びる基準軸に直交する基準平面を基準にしてゼロより大きい角度を成し、前記基板の前記主面及び前記第1のエピ生産物の前記主面は半極性及び無極性のいずれか一方を有する。
この作製方法によれば、酸素の取り込みによって平坦性が向上する半極性及び無極性の基板を用いる半導体素子の作製において、窒化ガリウム系半導体領域の酸素濃度を5×1016cm−3より小さくすることによって,平坦度を損なうことなく、高純度のエピタキシャル膜を提供できる。また、平坦でかつ低酸素濃度の上記領域上に電極を形成できる。
本発明の別の側面に係る作製方法では、前記第1の窒化ガリウム系半導体領域はp型ドーパントを添加しながら成長されて、前記第1の窒化ガリウム系半導体領域はp型導電性を有することが好ましい。
この作製方法によれば、酸素濃度が5×1016cm−3より小さいので、p型窒化ガリウム系半導体領域への良好な電気的接触を提供できるp型ドーパント濃度を低減できる。電極に接しているp型窒化ガリウム系半導体における酸素濃度の低減は駆動電圧低減に有効である。
本発明の別の側面に係る作製方法は、前記第2の成膜装置に配置するに先だって、前記第1の成膜装置において第2の窒化ガリウム系半導体領域を前記基板の前記主面上に成長して前記第1のエピ生産物を形成する工程と、前記第2の窒化ガリウム系半導体領域を成長した後に、前記第1の成膜装置から前記第1のエピ生産物を取り出す工程とを更に備えることができる。前記第2の窒化ガリウム系半導体領域は、窒化ガリウム系半導体からなり、該窒化ガリウム系半導体の前記c軸方向に延びる基準軸に直交する基準平面を基準にしてゼロより大きな角度をなす上面を有し、前記第2の窒化ガリウム系半導体領域は前記第1の窒化ガリウム系半導体領域の前記酸素濃度より大きく、前記第2の窒化ガリウム系半導体領域は、前記第1の窒化ガリウム系半導体領域と前記基板の前記主面との間に設けられ、前記第2の窒化ガリウム系半導体領域はp型ドーパントを添加しながら成長されて、前記第2の窒化ガリウム系半導体領域はp型導電性を有し、前記第2の窒化ガリウム系半導体領域の前記上面は半極性及び無極性のいずれか一方を有することが好ましい。
この作製方法によれば、第2の窒化ガリウム系半導体領域は第1の窒化ガリウム系半導体領域の酸素濃度より大きい酸素濃度を有し、第1の窒化ガリウム系半導体領域が第2の窒化ガリウム系半導体領域の平坦な主面上に成長される。これ故に、第1の窒化ガリウム系半導体領域の平坦性をさらに良好にでき、第1の窒化ガリウム系半導体領域の平坦性及び酸素濃度の観点から半極性又は無極性の半導体において良好な電気的接触を提供できる。
本発明の別の側面に係る作製方法では前記基板の前記主面の法線と前記III族窒化物半導体の前記基準軸となす角度は10度以上170度以下であることが好ましい。この作製方法によれば、半極性や無極性といった非極性面による寄与、例えばピエゾ電界の低減を有効に利用できる。
本発明の別の側面に係る作製方法は、前記第1のエピ生産物を前記第1の成膜装置から取り出した後であって前記第1のエピ生産物を前記第2の成膜装置を配置するに先立って、前記第1のエピ生産物を洗浄する工程を更に備えることができる。この作製方法によれば、成膜装置から取り出した際に、エピ生産物の表面が大気中にさらされると、その表面が汚染されてしまう。特に酸素がエピ生産物の表面に吸着される。酸素に係る不純物を低減するには洗浄が有効である。
本発明の別の側面に係る作製方法は、前記第1の窒化ガリウム系半導体領域を成長した後に、前記第2の成膜装置において、前記第1のエピ生産物の主面のクリーニングを行う工程を更に備えることができる。前記クリーニングは、前記第2の成膜装置の真空チャンバ内において前記第1のエピ生産物の前記主面にガリウムフラックスを照射することによって行われることが好ましい。
この作製方法によれば、加熱しながらガリウムフラックスの照射によって、ガリウム酸化物の組成が変わって、エピ生産物の表面における酸素不純物を低減できる。
本発明の別の側面に係る作製方法では、前記基板の前記主面の法線と前記III族窒化物半導体の前記基準軸となす角度は10度以上80度以下又は100度以上170度以下の範囲にあることができる。この作製方法によれば、半極性面による寄与、例えばピエゾ電界の低減を有効に利用できる。
本発明の別の側面に係る作製方法は、前記第1の成膜装置において前記基板の前記主面上に活性層を成長する工程を更に備えることができる。前記活性層は前記第1の窒化ガリウム系半導体領域に先だって前記基板の上に成長される。この作製方法によれば、低い駆動電圧を示す発光素子を作製できる。或いは、本発明の別の側面に係る作製方法では、前記活性層は、量子井戸構造を有する活性層を含み、前記量子井戸構造は前記第1の窒化ガリウム系半導体領域の前に前記基板の上に成長されることができる。この作製方法によれば、量子井戸構造の利用により高い発光効率の発光素子を作製できる。
また、本発明の別の側面に係る作製方法では、前記活性層はInGaN層を含むことが好ましい。この作製方法によれば、良好な結晶品質をInGaN層に提供できる。
本発明の別の側面に係る作製方法では、前記第1の成膜装置において前記第2の窒化ガリウム系半導体領域を有機金属気相成長法を用いて成膜し、前記第2の成膜装置において前記第1の窒化ガリウム系半導体領域を分子ビームエピタキシ法を用いて行われることが好ましい。
この作製方法によれば、5×1016cm−3より小さい酸素濃度を有する低酸素濃度であるため、窒化ガリウム系半導体層(第1の窒化ガリウム系半導体領域)を分子ビームエピタキシ法を用いて成長することが好適である。電極が接触を成す窒化ガリウム系半導体層の下地の半導体積層は、有機金属気相成長法を用いて成長されることが好ましい。有機金属気相成長法を用いた成長により、半導体積層は、第1の窒化ガリウム系半導体領域より大きな酸素を含むことになり、良好な平坦性及び良好な結晶品質が得られやすい。
本発明の別の側面に係る作製方法では、前記基板の前記主面の法線と前記III族窒化物半導体の前記基準軸となす角度は43度以上80度以下又は100度以上137度以下の範囲にあることが好ましい。上記の角度範囲では、酸素濃度の取り込みが顕著に高まるので、この作製方法によれば、酸素濃度の低減が有効に作用する。
本発明の別の側面に係る作製方法では、前記III族窒化物半導体の前記c軸は該III族窒化物半導体のm軸の方向に傾斜しており、前記主面の法線と前記基準軸とのなす角度は63度以上80度以下又は100度以上117度以下の範囲にあることができる。この作製方法によれば、良好なインジウム取り込みが提供される。
以上説明したように、本発明の一側面によれば、極性面と異なる半導体面への電極の接触に良好なコンタクト特性を提供できるIII族窒化物半導体素子が提供される。また、本発明の別の側面によれば、このIII族窒化物半導体素子を作製する方法が提供される。
図1は、本実施の形態に係るIII族窒化物半導体発光素子を製造する方法における主要な工程を模式的に示す図面である。 図2は、本実施の形態に係るIII族窒化物半導体発光素子を製造する方法における主要な工程を模式的に示す図面である。 図3は、本実施の形態に係るIII族窒化物半導体発光素子を製造する方法における主要な工程を模式的に示す図面である。 図4は、本実施の形態に係るIII族窒化物半導体発光素子を製造する方法における主要な工程を模式的に示す図面である。 図5は、エピ生産物A及びCからそれぞれ作製した窒化物半導体レーザDA及びDCの構造を模式的に示す図面である。 図6は、酸素のSIMS分析結果を示す図面である。
本発明の知見は、例示として示された添付図面を参照して以下の詳細な記述を考慮することによって容易に理解できる。引き続いて、添付図面を参照しながら、本発明のIII族窒化物半導体素子及びエピタキシャル基板、並びにエピタキシャル基板及びIII族窒化物半導体素子を作製する方法に係る実施の形態を説明する。可能な場合には、同一の部分には同一の符号を付する。
図1〜図4は、本実施の形態に係るIII族窒化物半導体発光素子を製造する方法における主要な工程を模式的に示す図面である。図1の(a)部に示されるように、工程S101では基板11が準備される。この基板11は、III族窒化物半導体からなる。また、基板11は主面11aを有しており、この主面11aは、III族窒化物半導体のc軸の方向に延在する基準軸(ベクトルVCによって示される)に直交する平面を基準にしてゼロより大きい角度で傾斜し、これ故に、半極性を示すことができ、或いは無極性を示すことができる。半極性及び無極性を有する半導体面へのIII族窒化物の成長では、酸素の取り込みによってそのIII族窒化物膜の平坦性が向上する。基板11のIII族窒化物半導体は、例えばGaN等からなることができる。
図1の(b)部に示されるように、工程S102(S102−1)では、半導体発光素子のための半導体積層12を成膜装置10aで基板11上に成長する。引き続き一実施例を説明する。基板11を成膜装置10aに配置した後に、成膜装置10aにアンモニア及び水素を供給して基板11の主面11aのサーマルクリーニングを行う。この後に、成膜装置10aにおいて、基板11の主面11a上に、一又は複数のIII族窒化物半導体層を順に成長する。この成長は、分子ビームエピタキシ法と異なる成長法で行われ、成膜装置10aで行われる成長法としては、例えば有機金属気相成長法を使用できる。
半導体積層12は、n型III族窒化物半導体領域15といった第1導電型のIII族窒化物半導体層、活性層17及び電子ブロック層27を含む。半導体積層12の形成工程では、上記半導体層15、17、27の成長工程を行う、n型III族窒化物半導体領域15は、例えばGaN、AlGaN、InAlGaN、等からなることができる。活性層17は、III族構成元素としてインジウムを含む窒化ガリウム系半導体層を含み、活性層17は例えば480nm以上560nm以下の波長範囲にピーク発光波長を有するように設けられる。好適な実施例では、活性層17は例えば500nm以上540nm以下の波長範囲にピーク発光波長を有するように設けられる。活性層17は例えば量子井戸構造21を有しており、量子井戸構造21は、交互に配列された障壁層23及び井戸層25を含むことができる。障壁層23のバンドギャップは井戸層25のバンドギャップより大きい。障壁層23は例えばGaN、InGaN、InAlGaN等からなることができ、井戸層25は例えばGaN、InGaN、InAlGaN等からなることができる。
図1の(c)部に示されるように、工程S102(S102−2)では、半導体積層12上に、p型III族窒化物半導体層29といった第2導電型のIII族窒化物半導体層を成長して、半導体積層13を形成する。本実施例では、活性層17上にp型III族窒化物半導体領域19が形成される。p型III族窒化物半導体領域19は電子ブロック層27及びp型クラッド層29を含むことができる。p型III族窒化物半導体領域19は、例えばGaN、AlGaN、InAlGaN、等からなることができる。
電子ブロック層27は、障壁層23のバンドギャップより大きなバンドギャップを有する。p型クラッド層29は活性層17の屈折率より小さい屈折率を有し、また障壁層23のバンドギャップより大きなバンドギャップを有する。半導体積層12の形成における最後の工程では、p型III族窒化物半導体が成長される。本実施例では、このp型III族窒化物半導体は、例えばp型III族窒化物半導体層29であることができる。
工程S102において基板11の主面11aの上に半導体積層13を成長して第1のエピ生産物E1を形成することにおいて、基板11の主面11aは、該III族窒化物半導体のc軸に沿って延びる基準軸Cxに直交する面から10度以上170度以下の範囲の角度で傾斜することが好ましい。この傾斜角が10度以上170度以下の範囲であるとき、半極性又は無極性といった非極性面による寄与、例えばピエゾ電界の低減を利用できる。
また、第1のエピ基板E1の主面は、基準軸Cxに直交する面から10度以上80度以下、又は100度以上170度以下の範囲の角度で傾斜することが好ましい。また、基板11の主面11aは、該III族窒化物半導体のc軸に沿って延びる基準軸Cxに直交する面から10度以上80度以下、又は100度以上170度以下の範囲の角度で傾斜することが好ましい。窒化ガリウム系半導体の半極性面が酸素との結合性に富むので、オーミック電極の形成の際に、酸素の低減が重要である。この角度範囲では、半極性面による寄与、例えばピエゾ電界の低減を有効に利用できる。
さらに、第1のエピ基板E1の主面は、基準軸Cxに直交する面から43度以上80度以下又は100度以上137度以下の範囲の傾斜角であることが好ましい。上記の角度範囲では、成膜中における酸素の取り込みが顕著に高まるので、この作製方法によれば、酸素濃度の低減が有効に作用する。
さらにまた、基板11のIII族窒化物半導体のc軸は該III族窒化物半導体のm軸の方向に傾斜するとき、第1のエピ生産物E1の主面における傾斜角は、該III族窒化物半導体のc軸に沿って延びる基準軸に直交する面から63度以上80度以下又は100度以上117度以下の範囲の角度で傾斜することが好適である。この作製方法によれば、良好なインジウム取り込みが提供される。
図2の(a)部に示されるように、工程S103では、エピ生産物E1を成膜装置10aから取り出すと、酸素を含む雰囲気にエピ生産物基板E1がさらされる。この結果、第1のエピ生産物E1の表面に露出された窒化ガリウム系半導体面に自然酸化物(例えば酸化ガリウム)14が形成される。
工程S104では、成膜装置10aから第1のエピ生産物E1を取り出した後に、次の成膜に先だって処理装置10bに第1のエピ生産物E1を配置する。第1のエピ生産物E1を成膜装置10aから取り出した後であって第1のエピ生産物E1を次の成膜装置を配置するに先立って、図2の(b)部に示されるように、第1のエピ生産物E1を洗浄することができる。成膜装置10aから取り出した際に、エピ生産物E1の表面が大気中にさらされると、その表面が汚染されてしまう。特に酸素がエピ生産物の表面に吸着される。酸素に係る不純物を低減するには洗浄が有効である。洗浄の方法として例えば弗酸,塩酸,硫酸,塩酸過水,硫酸過水,バッファード弗酸等を用いることができる。
図2の(c)に示されるように、窒化ガリウム系半導体層29を成長した後に、工程S105では、成膜装置11cにおいて第1のエピ生産物E1の主面のクリーニングを行うことができる。このクリーニングは、成膜装置10cの真空チャンバ内に、クリーニング用の雰囲気を形成することによって行われる。クリーニング用の雰囲気は、例えばガリウム、又は窒素ラジカルのいずれか一方を含むことができる。このクリーニング用の雰囲気の形成は、例えば、成膜装置10cの真空チャンバ内において第1のエピ生産物E1の主面にガリウムフラックス又は窒素ラジカルフラックスを照射することによって行われることが好ましい。この方法によれば、基板加熱しながらフラックスを照射することによって、エピ生産物E1の表面におけるガリウム酸化物に係る酸素不純物を低減できる。
工程S105では、処理装置10cで第1のエピ生産物E1を加熱する。加熱の条件の一例では、加熱温度は例えば摂氏750度であり、熱処理時間は30分であり、熱処理の雰囲気は例えばGa雰囲気である。この温度範囲は例えば摂氏720度以上であることができ、この温度以下である場合,表面に金属ガリウムが生成してしまうからである。また、この温度範囲は例えば摂氏900度以下であることができ、これは活性層17へのダメージを避けるためである。真空度の範囲は、例えば1×10-10パスカル以上1パスカル以下であることがよい。このようなクリーニングの後に、第1のエピ生産物E1上に引き続く成膜を行う。なお、このクリーニング工程のための基板温度は、エピ生産物E1の形成における成膜温度のうちの最低温度以下であることが好ましい。この工程における改質処理により生じる可能性のある活性層への熱ストレスを低減できる。活性層はInGaN層を含むとき、エピ生産物E1の基板温度は、例えば、活性層のInGaN井戸層の成長温度以下であることが好ましい。活性層17のInGaN層の品質が上記の熱処理により低下することを避けることができる。
これまでの工程では、エピ生産物E1を成膜装置10cの真空チャンバ内に配置した後に、クリーニングによる改質処理を行ってきた。これらにより、エピ生産物E1に付着して成膜装置10cのチャンバ内に持ち込まれる酸素不純物をエピ生産物E1から除き、エピ生産物E1自体が主要な酸素供給源となることを低減できる。この後に、図3の(a)部に示されるように、工程S106では、真空を破ることなく、成膜装置10cの真空チャンバにおいて、活性層17を含む半導体積層13の上に窒化ガリウム系半導体層33を成長して、新たなエピ生産物E2を形成することができる。窒化ガリウム系半導体層33は、例えばGaN、InGaN、AlGaN、InAlGaN、等からなることができる。窒化ガリウム系半導体層33の厚さは例えば2nm以上300nm以下であることができる。成膜はp型ドーパントを供給しながら行われる。成膜装置10cでは、分子ビームエピタキシ法を用いて行われる成膜が可能である。この成膜を例えば分子ビームエピタキシ法を用いて行うことによって、5×1016cm−3より小さい酸素濃度の範囲を有する低酸素濃度を達成可能である。また、この方法では、窒化ガリウム系半導体層33は、改質により酸素濃度を低めた下地半導体表面上に成長されるので、低酸素の成長が可能である分子ビームエピタキシ法の特徴を生かすことができる。この成膜によって成長されたIII族窒化物半導体の酸素濃度を低減できる。半導体積層13上に窒化ガリウム系半導体層33を成長して、基板11の主面11a上に、半導体積層16を形成する。
電極が接触を成す窒化ガリウム系半導体層33の下地となる半導体積層12は、有機金属気相成長法を用いて成長されることが好ましい。有機金属気相成長法を用いた成長により、その半導体積層は、第1の窒化ガリウム系半導体領域より大きな酸素を含むことになり、良好な平坦性及び良好な結晶品質が得られやすい。
半導体積層13の窒化ガリウム系半導体層29は、その上に成長される窒化ガリウム系半導体層33の酸素濃度より大きい酸素濃度を有することができる。窒化ガリウム系半導体層33は、基板11のIII族窒化物半導体のc軸方向に延びる基準軸に直交する基準平面を基準にしてゼロより大きい角度(既に説明された様々な角度範囲における技術寄与を提供する角度)をなす上面を有する。窒化ガリウム系半導体層33にはp型ドーパントが添加されて、この窒化ガリウム系半導体層33は、酸素不純物による補償に打ち勝ってp型導電性を有する。窒化ガリウム系半導体層33の上面は、基板11の主面11aを引き継いで半極性及び無極性のいずれか一方を有する。窒化ガリウム系半導体層33が窒化ガリウム系半導体領域19の酸素濃度より大きい酸素濃度を有するので、窒化ガリウム系半導体領域19の平坦性が良好にあり、平坦性及び酸素濃度に基づく寄与により半極性又は無極性の半導体面に良好な電気的接触が提供される。
窒化ガリウム系半導体層33は、引き続く工程でこの層上に電極が形成されるとき、コンタクト層として働く。また、好適な実施例では、このコンタクト層はp導電性を有することができる。この実施例では、窒化ガリウム系半導体層33上には、後の工程おいて電極のための金属が堆積されるので、窒化ガリウム系半導体層33には所望の導電型のドーパント、例えばマグネシウム、亜鉛といったp型ドーパントを添加することが好ましい。p型ドーパント濃度は例えば1×1019cm−3以上1×1021cm−3以下であることができる。この製造方法によれば、p型窒化ガリウム系半導体層33にオーミック接触を成す電極を形成できる。また、酸素濃度が5×1016cm−3より小さいので、p型窒化ガリウム系半導体領域への良好な電気的接触を提供できるp型ドーパント濃度を低減できる。電極に接しているp型窒化ガリウム系半導体層における酸素濃度の低減は駆動電圧低減に有効である。
次いで、エピ生産物E2を成膜装置10cから取り出して成膜装置10dに配置した後に、図3の(b)部に示されるように、工程S107では、処理装置10dの真空チャンバにおいて第2のエピ生産物E2の主面に表面保護のための絶縁膜35を成膜して、基板生産物SP1を形成する。絶縁膜は例えばシリコン酸化物からなることができる。なお、必要な場合には、基板生産物SP1の形成に先立って、リッジ構造等の素子構造を有するような加工をエピ生産物E2に行うことができる。
この後に、図3の(c)部に示されるように、工程S108では、成膜装置10eの真空チャンバにおいて基板生産物SP1の主面に電極膜37を形成して、基板生産物SP2を形成する。導電膜37を成膜した後に、電極を形成する。電極の形成は例えばリフトオフ法を用いることができる。リフトオフ法を用いるときは、導電膜37の成長前に、電極の形状を規定するマスクを基板生産物SP2上に形成する。
次いで、図4の(a)部に示されるように、工程S109では、リフトオフを用いて導電膜37にパターン形成されて、p型窒化ガリウム系半導体層33に接触を成す電極38を形成する。基板生産物SP3では、絶縁層35aに設けられた電気的接続のための開口を介して、電極38が、p型窒化ガリウム系半導体層33にオーミック接触を成す。また、必要に応じて裏面研磨した後に、基板生産物SP2の裏面には電極39が形成される。これによって、基板生産物SP3が形成される。好適な実施例では、p型窒化ガリウム系半導体層33はp型GaNからなり、電極38はパラジウム(Pd)からなることができる。
この作製方法によれば、窒化ガリウム系半導体層33は不純物として酸素を含み、窒化ガリウム系半導体領域33の酸素濃度は、5×1016cm−3より小さい。酸素の取り込みによって平坦性が向上する半極性及び無極性の基板11を用いる半導体素子において、窒化ガリウム系半導体領域の酸素濃度を5×1016cm−3より小さくすることによって、平坦度を損なうことなく、高純度のエピタキシャル膜を利用できる。電極38は、平坦でかつ低酸素濃度の上記領域に接触を成すので、この接触の電気的特性は良好にできる。なお、当該方法は、例えば導電膜37を成膜した後に電極38のためのアロイを行わないようにしてもよい。電極38のためのアロイを行わないことにより、加熱による電極劣化や電極と半導体の界面異常を防ぐという利点がある。
次の工程では、基板生産物SP3の分離を行って、III族窒化物半導体発光素子41を得る。図4の(b)部を参照すると、III族窒化物半導体発光素子41は、第1導電型III族窒化物半導体層43と、第1導電型III族窒化物半導体層43の主面の上に設けられた活性層45と、活性層45の主面の上に設けられた第1のIII族窒化物半導体層49と、第1のIII族窒化物半導体層49の主面の上に設けられる第2のIII族窒化物半導体層51と、第2のIII族窒化物半導体層51の主面51aの上に設けられる電極53とを備える。第2のIII族窒化物半導体層51は第1のIII族窒化物半導体層49に第1の接合J1を成す。電極53と、第2のIII族窒化物半導体層51と第2の接合J2を成す。図4の(b)部に示される実施例では、c軸はm軸の方向に傾斜している。端面57a及び57bは光共振器のために設けられる。
第1及び第2の接合J1、J2は、第1導電型III族窒化物半導体層43のc軸VC43に直交する基準面に対して傾斜する。活性層45の主面は、第1導電型III族窒化物半導体層43のc軸VC43に直交する基準面に対して傾斜する。活性層45を構成する井戸層45b及び障壁層45aは、第1導電型III族窒化物半導体層43のc軸VC43に直交する基準面に対して傾斜する平面に沿って延在する。第1及び第2のIII族窒化物半導体層49、51は第2導電型を有する。
このIII族窒化物半導体発光素子41によれば、第2の接合J2がc軸VC43に直交する基準面に対して傾斜しているので、電極53は。絶縁層50の開口50aを介して第2のIII族窒化物半導体層51の半極性面に接合する。この半極性面51aに電極53が接合を成すので、第2の接合J2は良好なオーミック特性を示す。第1及び第2の接合J1、J2は、主面55aに対して実質的に平行であり、第1及び第2の接合J1、J2は、基準軸に直交する面を基準にして、既に説明した角度範囲で傾斜することが好ましい。
III族窒化物半導体発光素子41は、支持基体55を更に備えることができ、支持基体55はIII族窒化物半導体からなる主面55aを有する。支持基体55の主面55aは、該III族窒化物半導体のc軸VC55(c軸VC43と実質的に同じ向き)に沿って延びる基準軸に直交する面から10度以上80度以下の範囲の角度で傾斜する。III族窒化物半導体層43、活性層45、III族窒化物半導体層49、及びIII族窒化物半導体層51は、支持基体55の主面55aの法線Nxの方向に配列される。支持基体55の主面55aは、既に説明したように、該III族窒化物半導体のc軸に沿って延びる基準軸に直交する面から63度以上80度以下の範囲の角度で傾斜することが好適である。
III族窒化物半導体層51における酸素濃度は5×1016cm−3以下であることが好ましく、これによって良好なオーミック性を得ることができる。活性層45は、III族構成元素としてインジウムを含む窒化ガリウム系半導体層を含み、活性層45は例えば500nm以上540nm以下の波長範囲にピーク発光波長を有するように設けられる。
III族窒化物半導体層51にはp型ドーパントが添加されて、III族窒化物半導体層51はp型導電性を有する。このIII族窒化物半導体素子41によれば、III族窒化物半導体層51の酸素濃度が5×1016cm−3より小さい範囲であるので、p型窒化ガリウム系半導体領域への良好な電気的接触を提供できるp型ドーパント濃度を低減できる。電極53に接しているp型窒化ガリウム系半導体における酸素濃度の低減は、駆動電圧低減に有効である。
III族窒化物半導体層49にはp型ドーパントが添加されて、III族窒化物半導体層49はp型導電性を有する。III族窒化物半導体層49はIII族窒化物半導体層51の酸素濃度より大きい酸素濃度を有する。III族窒化物半導体層49の主面49aは支持基体55のIII族窒化物半導体のc軸方向に延びる基準軸に直交する基準平面を基準にしてゼロより大きい角度をなす。III族窒化物半導体層49の最表面は半極性及び無極性のいずれか一方を有する。III族窒化物半導体発光素子41によれば、III族窒化物半導体層49はIII族窒化物半導体層51の酸素濃度より大きい酸素濃度を有するので、III族窒化物半導体層51の表面モフォロジをより良好にできる。III族窒化物半導体層51の表面モフォロジを向上できるので、平坦性及び酸素濃度の観点から半極性又は無極性の半導体面が良好な電気的接触を提供できる。
(実施例1)
この実施例では、{20−21}面上に窒化物半導体レーザを作製する。まず、有機金属気相成長法(MOCVD)法によるエピ生産物を作製する工程を行う。{20−21}GaN基板を用意する。このGaN基板をMOCVD装置のチャンバ内にセットする。原料として,トリメチルガリウム(TMG)、トリメチルアルミニウム(TMA)、トリメチルインジウム(TMI)、シクロペンタジエニルマグネシウム(CpMg)、モノシラン(SiH)、アンモニア(NH)を使用する。基板温度を摂氏1050度に保持し、アンモニア及び水素を成長炉に供給して、サーマルクリーニングを行う。次いで、以下の半導体積層を成長する。n型Al0.04Ga0.96Nクラッド層を摂氏1050度で成長する。摂氏840度の基板温度に下げた後に、n側のIn0.03Ga0.97N光ガイド層を成長する。InGaN/InGaN量子井戸活性層を成長する。InGaN井戸層の成長温度は摂氏790度であり、InGaN障壁層の成長温度は摂氏840度である。InGaN井戸層の厚さは3nmであり、InGaN障壁層の厚さは15nmである。摂氏840度の基板温度に下げた後に、p側のIn0.03Ga0.97N光ガイド層を成長する。摂氏1000度の基板温度で、厚さ20nmのAl0.12Ga0.88N電子ブロック層及び厚さ400nmのp型Al0.06Ga0.94Nクラッド層を成長する。p型クラッド層の酸素濃度範囲は例えば3×1016cm−3以下である。
基板温度を室温に下げた後に、エピ生産物を成長炉から取り出す。次いで、p型GaNコンタクト層をMBE装置で成長する。MBE装置に配置する前に、硫酸過水で2分間で洗浄する。この成長では、以下原料として,ガリウムフラックス(K−セル)、マグネシウムフラックス(K−セル)、窒素ラジカル(RF−プラズマ)を用いる。このエピ生産物をMBE装置にセットした後に、750度まで基板温度を上げ、ガリウムフラックス(例えば、フラックス量:1.5×10-6Torr)をあてながら30分間保持する。この処置の後に、基板温度を摂氏720度に下げた後に、p型GaN膜を成長して、エピ生産物を形成する。基板温度を室温まで下げた後に、エピ生産物をMBE装置から取り出す。図5の(a)部に示されるように、このエピ生産物を「A」と呼ぶ。
別のデバイスを作製するために、Al0.06Ga0.94Nクラッド層を成長した後に、続けてMOCVD装置でコンタクト層を形成して、別のエピ生産物を形成する。図5の(b)部に示されるように、このエピ生産物を「C」と呼ぶ。
これらのエピ生産物A、Cを用いてデバイスを形成する。エピ生産物上にレジストをスピンコータを用いて均一に塗布する。フォトマスクとアライナを用いて、露光・現像により幅2μmのストライプ状のパターンを形成してレジスト膜マスクを形成する。全面にパラジウム電極膜を蒸着する。レジストを有機溶剤で除去して、その上のパラジウム(Pd)膜ごとリフトオフ(剥離)する。これによって、ストライプ状のPd電極が形成される。基板の裏面を研磨した後に、裏面電極を形成する。これらの電極工程により作製された基板生産物を幅600μmで分離して、レーザーバーを形成する。
図5は、エピ生産物A及びCからそれぞれ作製した窒化物半導体レーザDA及びDCの構造を模式的に示す図面である。エピ生産物Aから作製した窒化物半導体レーザDAに100mAの電流を印加するとき、波長530nmの波長でレーザ発振を行う。このときの駆動電圧は8.4ボルトである。また、エピ生産物Cから作製した窒化物半導体レーザDCに100mAの電流を印加するとき、波長530nmの波長でレーザ発振を行う。このときの駆動電圧は9.3ボルトである。
(実施例2)
この実施例では、エピ生産物の{20−21}面上の半導体積層の酸素濃度を測定する。まず、有機金属気相成長法(MOCVD)法によるエピ生産物を作製する工程を行う。{20−21}GaN基板を用意する。このGaN基板をMOCVD装置のチャンバ内にセットする。原料として,トリメチルガリウム(TMG)、トリメチルアルミニウム(TMA)、トリメチルインジウム(TMI)、シクロペンタジエニルマグネシウム(CpMg)、モノシラン(SiH)、アンモニア(NH)を使用する。基板温度を摂氏1050度に保持し、アンモニア及び水素を成長炉に供給して、サーマルクリーニングを行う。次いで、以下の半導体積層を成長する。n型GaN層を摂氏1050度で成長する。摂氏1000度の基板温度に下げた後に、p型GaN層を成長する。
基板温度を室温に下げた後に、エピ生産物を成長炉から取り出す。次いで、p型GaNコンタクト層をMBE装置で成長する。この成長では、以下原料として,ガリウムフラックス(K−セル)、マグネシウムフラックス(K−セル)、窒素ラジカル(RF−プラズマ)を用いる。基板温度を摂氏720度にあげて、p型GaN膜を成長して、エピ生産物を形成する。本実施例では、このp型GaN層は、5×1016cm−3より小さい酸素濃度を達成可能な成膜条件(ガリウムフラックス量1.4×10-6Torr、窒素プラズマ(窒素流量1.3cc、250Wでプラズマ化)、基板温度720度)を用いて成膜される。基板温度を室温まで下げた後に、pn接合ダイオードを含むエピ生産物をMBE装置から取り出す。このエピ生産物を「B」と呼ぶ。
このエピ生産物Bを二次イオン質量分析(SIMS)法で酸素の分析を行う。図6は、酸素のSIMS分析結果を示す図面である。MOCVD法で成長した半導体層では、n型層及びp型層においても酸素濃度が6×1017cm−3程度と高いのに対して,MBE法で成長した半導体層では、その酸素濃度が、測定限界に相当する2×1016cm−3程度まで低い。この層をコンタクト層として利用することは、駆動電圧低減に有利であるといえる。ここで,MOCVD法のGaN膜とMBE法のGaN膜との界面IFで酸素のパイルアップが観察されるけれども、このパイルアップは、MOCVD装置からMBE装置への移動の際に適当な洗浄工程またはMBE装置内でのサーマルクリーニング工程などを行うことによって更に下げることが可能である。MBE装置に配置する前に、エピ生産物を例えば硫酸過水で洗浄することができる。また、エピ生産物をMBE装置にセットした後に、例えばサーマルクリーニングのために基板を昇温した後にガリウムフラックス照射を行うことができる。
半極性又は無極性を示す主面を有する窒化物基板上では、例えば5×1016cm−3以上の酸素を含有するとき、表面モフォロジが非常に平坦になる。しかしながら、酸素は窒化ガリウム中においてn型不純物として作用するので、高抵抗層やp型半導体領域を作製するには不向きである。また、エピタキシャル成長で主流であるMOCVD法を結晶成長に用いるとき、超高真空にして脱酸素処理を行わないので、成長炉中の部材、原料、や成膜雰囲気に酸素が残留することになる。これ故に、MOCVD法では、酸素濃度5×1016cm−3より小さいエピタキシャル膜を作製すること容易ではない。一方、分子ビームエピタキシ法では、背圧が超高真空(1×1011Torr以下)であるので、成長炉中の部材、原料、や成膜雰囲気を非常に低酸素に保つことができ、エピタキシャル成長の工程内において成長炉の切り替えを行うけれども、5×1016cm−3以下の酸素濃度の窒化ガリウムエピタキシャル層の成長が可能となる。そこで、III族窒化物半導体素子における半導体層の一部分、例えばコンタクト層(例えば厚さ50nm程度)だけをMBE法で作製する。このとき、非常に低い酸素濃度を有するp型半導体層の形成が、酸素を含むことにより平坦性を失うことなく可能となり、良好な特性のIII族窒化物半導体素子を作製できる。例えば、(20−21)面上に窒化物半導体系緑色レーザを、MOCVD法を用いてp型クラッド層まで作製した後に、続いてp型コンタクト層をMBE法で作製する。このとき、MBE法で成長されたp型コンタクト層の酸素濃度が低いので、キャリア補償の影響をほとんど受けることが無く、またその上に形成した電極(例えばPd)と良好なオーミック特性を示す。
好適な実施の形態において本発明の原理を図示し説明してきたが、本発明は、そのような原理から逸脱することなく配置および詳細において変更され得ることは、当業者によって認識される。本発明は、本実施の形態に開示された特定の構成に限定されるものではない。したがって、特許請求の範囲およびその精神の範囲から来る全ての修正および変更に権利を請求する。
以上説明したように、本発明の実施形態によれば、極性面と異なる半導体面への電極の接触に良好なコンタクト特性を提供できるIII族窒化物半導体素子が提供される。また、本実施形態によれば、このIII族窒化物半導体素子を作製する方法が提供される。
10a、10c…成長炉、10b…処理装置、11…基板、12…半導体積層、13…半導体積層、13a…半導体積層の表面、14…自然酸化物、E1、E2…エピタキシャル基板、15…n型III族窒化物半導体領域、17…活性層、19…p型III族窒化物半導体領域、21…量子井戸構造、23…障壁層、25…井戸層、27…電子ブロック層、29…p型クラッド層、33…窒化ガリウム系半導体層、37…導電膜、41…III族窒化物半導体発光素子、43…第1導電型III族窒化物半導体層、45…第1導電型III族窒化物半導体層、47…活性層、49…第1のIII族窒化物半導体層、51…第2のIII族窒化物半導体層、53…電極、J1、J2…接合、55…支持基体。

Claims (23)

  1. III族窒化物半導体素子であって、
    III族窒化物半導体からなる主面を有する基板と、
    前記基板の前記主面の上に設けられた第1の窒化ガリウム系半導体領域と、
    前記第1の窒化ガリウム系半導体領域の主面に接触を成す電極と、
    窒化ガリウム系半導体からなり、前記基板の前記主面の上に設けられた第2の窒化ガリウム系半導体領域と、
    を備え、
    前記第1の窒化ガリウム系半導体領域は不純物として酸素を含み、前記第1の窒化ガリウム系半導体領域の酸素濃度は、5×1016cm−3より小さく、
    前記基板の前記主面は、該III族窒化物半導体のc軸の方向に延びる基準軸に直交する基準平面を基準にしてゼロより大きい角度を成し、前記基板の前記主面は半極性及び無極性のいずれか一方を有し、
    前記第2の窒化ガリウム系半導体領域は前記第1の窒化ガリウム系半導体領域の前記酸素濃度より大きい酸素濃度を有し、
    前記第2の窒化ガリウム系半導体領域は、前記基板の前記III族窒化物半導体の前記c軸の方向に延びる基準軸に直交する基準平面を基準にしてゼロより大きい角度をなす上面を有し、
    前記第2の窒化ガリウム系半導体領域にはp型ドーパントが添加されて、前記第2の窒化ガリウム系半導体領域はp型導電性を有し、
    前記第2の窒化ガリウム系半導体領域の前記上面は半極性及び無極性のいずれか一方を有する、III族窒化物半導体素子。
  2. 前記第1の窒化ガリウム系半導体領域にはp型ドーパントが添加されて、前記第1の窒化ガリウム系半導体領域はp型導電性を有する、請求項1に記載されたIII族窒化物半導体素子。
  3. 前記基板の前記主面の法線と前記III族窒化物半導体の前記基準軸となす角度は10度以上170度以下である、請求項1又は請求項2に記載されたIII族窒化物半導体素子。
  4. 前記基板の前記主面の法線と前記III族窒化物半導体の前記基準軸となす角度は10度以上80度以下又は100度以上170度以下の範囲にある、請求項1〜請求項3のいずれか一項に記載されたIII族窒化物半導体素子。
  5. 前記基板の前記主面の上に設けられた活性層を更に備え、
    前記活性層は、前記第1の窒化ガリウム系半導体領域と前記基板との間に設けられる、請求項1〜請求項4のいずれか一項に記載されたIII族窒化物半導体素子。
  6. 前記基板の前記主面の上に設けられ量子井戸構造を有する活性層を更に備え、
    前記活性層は前記第1の窒化ガリウム系半導体領域と前記基板との間に設けられる、請求項1〜請求項4のいずれか一項に記載されたIII族窒化物半導体素子。
  7. 前記活性層はInGaN層を含む、請求項5又は請求項6に記載されたIII族窒化物半導体素子。
  8. 前記基板の前記主面の法線と前記III族窒化物半導体の前記基準軸となす角度は43度以上80度以下又は100度以上137度以下の範囲にある、請求項1〜請求項7のいずれか一項に記載されたIII族窒化物半導体素子。
  9. 前記III族窒化物半導体の前記c軸は該III族窒化物半導体のm軸の方向に傾斜しており、
    前記基板の前記主面の法線と該III族窒化物半導体の前記基準軸とのなす角度は63度以上80度以下又は100度以上117度以下の範囲にある、請求項1〜請求項8のいずれか一項に記載されたIII族窒化物半導体素子。
  10. 前記基板の前記主面の法線と該III族窒化物半導体の前記基準軸とのなす角度は63度以上80度以下の範囲にある、請求項1〜請求項9のいずれか一項に記載されたIII族窒化物半導体素子。
  11. 前記基板の前記主面の法線と該III族窒化物半導体の前記基準軸とのなす角度は100度以上117度以下の範囲にある、請求項1〜請求項9のいずれか一項に記載されたIII族窒化物半導体素子。
  12. III族窒化物半導体素子を作製する方法であって、
    第1の成膜装置において第2の窒化ガリウム系半導体領域を基板の主面の上に成長して第1のエピ生産物を形成する工程と、
    前記第2の窒化ガリウム系半導体領域を成長した後に、前記第1の成膜装置から前記第1のエピ生産物を取り出す工程と、
    前記第1のエピ生産物を前記第1の成膜装置から取り出した後に前記第1のエピ生産物を第2の成膜装置に配置する工程と、
    前記第2の成膜装置において第1の窒化ガリウム系半導体領域を前記第1のエピ生産物の主面の上に成長して第2のエピ生産物を形成する工程と、
    前記第2のエピ生産物の前記第1の窒化ガリウム系半導体領域の主面に接触を成す電極を形成する工程と、
    を備え、
    前記第1の窒化ガリウム系半導体領域は、5×1016cm−3より小さい酸素濃度を有し、
    前記第1のエピ生産物の前記基板の前記主面は、III族窒化物半導体からなり、前記第1の窒化ガリウム系半導体領域は該基板の前記主面の上に設けられ、
    前記基板の前記主面は、該III族窒化物半導体のc軸の方向に延びる基準軸に直交する基準平面を基準にしてゼロより大きい角度を成し、前記基板の前記主面及び前記第1のエピ生産物の前記主面は半極性及び無極性のいずれか一方を有し、
    前記第2の窒化ガリウム系半導体領域は、窒化ガリウム系半導体からなり、該窒化ガリウム系半導体の前記c軸の方向に延びる基準軸に直交する基準平面を基準にしてゼロより大きい角度をなす上面を有し、
    前記第2の窒化ガリウム系半導体領域の酸素濃度は前記第1の窒化ガリウム系半導体領域の前記酸素濃度より大きく、
    前記第2の窒化ガリウム系半導体領域はp型ドーパントを添加しながら成長されて、前記第2の窒化ガリウム系半導体領域はp型導電性を有し、
    前記第2の窒化ガリウム系半導体領域の前記上面は半極性及び無極性のいずれか一方を有する、III族窒化物半導体素子を作製する方法。
  13. 前記第1の窒化ガリウム系半導体領域はp型ドーパントを添加しながら成長されて、前記第1の窒化ガリウム系半導体領域はp型導電性を有する、請求項12に記載されたIII族窒化物半導体素子を作製する方法。
  14. 前記基板の前記主面の法線と前記III族窒化物半導体の前記基準軸となす角度は10度以上170度以下である、請求項12又は請求項13に記載されたIII族窒化物半導体素子を作製する方法。
  15. 前記第1のエピ生産物を前記第1の成膜装置から取り出した後であって前記第1のエピ生産物を前記第2の成膜装置を配置するに先立って、前記第1のエピ生産物を洗浄する工程を更に備える、請求項12請求項14のいずれか一項に記載されたIII族窒化物半導体素子を作製する方法。
  16. 前記第1の窒化ガリウム系半導体領域を成長した後に、前記第2の成膜装置において前記第1のエピ生産物の主面のクリーニングを行う工程を更に備え、
    前記クリーニングは、前記第2の成膜装置の真空チャンバ内において前記第1のエピ生産物の前記主面にガリウムフラックスを照射することによって行われる、請求項12請求項15のいずれか一項に記載されたIII族窒化物半導体素子を作製する方法。
  17. 前記基板の前記主面の上に活性層を前記第1の成膜装置において成長する工程を更に備え、
    前記活性層は前記第1の窒化ガリウム系半導体領域と前記基板との間に設けられる、請求項12請求項16のいずれか一項に記載されたIII族窒化物半導体素子を作製する方法。
  18. 前記活性層は、量子井戸構造を有する活性層を含む、請求項17に記載されたIII族窒化物半導体素子を作製する方法。
  19. 前記活性層はInGaN層を含む、請求項17又は請求項18に記載されたIII族窒化物半導体素子を作製する方法。
  20. 前記第1の成膜装置において前記第2の窒化ガリウム系半導体領域を有機金属気相成長法を用いて成膜し、
    前記第2の成膜装置において前記第1の窒化ガリウム系半導体領域を分子ビームエピタキシ法を用いて成膜する請求項12請求項19のいずれか一項に記載されたIII族窒化物半導体素子を作製する方法。
  21. 前記基板の前記主面の法線と前記III族窒化物半導体の前記基準軸となす角度は10度以上80度以下又は100度以上170度以下の範囲にある、請求項12請求項20のいずれか一項に記載されたIII族窒化物半導体素子を作製する方法。
  22. 前記基板の前記主面の法線と前記III族窒化物半導体の前記基準軸となす角度は43度以上80度以下又は100度以上137度以下の範囲にある、請求項12請求項21のいずれか一項に記載されたIII族窒化物半導体素子を作製する方法。
  23. 前記III族窒化物半導体の前記c軸は該III族窒化物半導体のm軸の方向に傾斜しており、
    前記基板の前記主面の法線と前記基準軸とのなす角度は63度以上80度以下又は100度以上117度以下の範囲にある、請求項12請求項22のいずれか一項に記載されたIII族窒化物半導体素子を作製する方法。
JP2011042531A 2011-02-28 2011-02-28 Iii族窒化物半導体素子、及びiii族窒化物半導体素子を作製する方法 Active JP5708033B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011042531A JP5708033B2 (ja) 2011-02-28 2011-02-28 Iii族窒化物半導体素子、及びiii族窒化物半導体素子を作製する方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011042531A JP5708033B2 (ja) 2011-02-28 2011-02-28 Iii族窒化物半導体素子、及びiii族窒化物半導体素子を作製する方法

Publications (2)

Publication Number Publication Date
JP2012182203A JP2012182203A (ja) 2012-09-20
JP5708033B2 true JP5708033B2 (ja) 2015-04-30

Family

ID=47013183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011042531A Active JP5708033B2 (ja) 2011-02-28 2011-02-28 Iii族窒化物半導体素子、及びiii族窒化物半導体素子を作製する方法

Country Status (1)

Country Link
JP (1) JP5708033B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5403024B2 (ja) * 2011-09-12 2014-01-29 住友電気工業株式会社 窒化物半導体発光素子を作製する方法
JP5403023B2 (ja) * 2011-09-12 2014-01-29 住友電気工業株式会社 窒化物半導体発光素子を作製する方法
US9595398B2 (en) 2013-08-30 2017-03-14 Corning Incorporated Low resistance ultracapacitor electrode and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235579A (ja) * 1985-08-08 1987-02-16 Fujitsu Ltd 半導体装置の製造方法
JPS6258613A (ja) * 1985-09-09 1987-03-14 Sumitomo Electric Ind Ltd 薄膜成長方法
JP3688843B2 (ja) * 1996-09-06 2005-08-31 株式会社東芝 窒化物系半導体素子の製造方法
JP3898798B2 (ja) * 1997-05-27 2007-03-28 シャープ株式会社 窒化ガリウム系化合物半導体発光素子の製造方法
JP4940670B2 (ja) * 2006-01-25 2012-05-30 住友電気工業株式会社 窒化物半導体発光素子を作製する方法
JP2007281387A (ja) * 2006-04-12 2007-10-25 Mitsubishi Electric Corp 半導体発光素子及びその製造方法
JP5333133B2 (ja) * 2009-06-19 2013-11-06 住友電気工業株式会社 Iii族窒化物半導体レーザダイオード
JP4978667B2 (ja) * 2009-07-15 2012-07-18 住友電気工業株式会社 窒化ガリウム系半導体レーザダイオード

Also Published As

Publication number Publication date
JP2012182203A (ja) 2012-09-20

Similar Documents

Publication Publication Date Title
US6455877B1 (en) III-N compound semiconductor device
US7749785B2 (en) Manufacturing method of group III nitride semiconductor light-emitting device
JP5491065B2 (ja) ウエハ生産物を作製する方法、及び窒化ガリウム系半導体光素子を作製する方法
JP5641506B2 (ja) 窒化物半導体の結晶成長方法および半導体装置の製造方法
US20110212560A1 (en) Method for fabricating nitride semiconductor light emitting device and method for fabricating epitaxial wafer
JP2008109066A (ja) 発光素子
US20110177678A1 (en) Method for manufacturing nitride semiconductor device
JP2008091470A (ja) Iii族窒化物化合物半導体積層構造体の成膜方法
JP2013232524A (ja) 窒化ガリウム系半導体を作製する方法、iii族窒化物半導体デバイスを作製する方法、及びiii族窒化物半導体デバイス
JP4647723B2 (ja) 窒化物半導体の結晶成長方法および半導体装置の製造方法
JP3898798B2 (ja) 窒化ガリウム系化合物半導体発光素子の製造方法
JP5644996B2 (ja) 窒化物光半導体素子
JP2010199236A (ja) 発光素子の製造方法および発光素子
JP5708033B2 (ja) Iii族窒化物半導体素子、及びiii族窒化物半導体素子を作製する方法
KR100742986B1 (ko) 컴플라이언트 기판을 갖는 질화갈륨계 화합물 반도체 소자의 제조 방법
JP2010272593A (ja) 窒化物半導体発光素子及びその製造方法
JP4103309B2 (ja) p型窒化物半導体の製造方法
JP2014207328A (ja) 半導体発光素子
JP3646502B2 (ja) 3族窒化物半導体素子の製造方法
JP4720519B2 (ja) p型窒化物半導体の製造方法
JP3763701B2 (ja) 窒化ガリウム系半導体発光素子
JP2000022283A (ja) 半導体素子、半導体素子の製造方法及び半導体基板の製造方法
JP2009212343A (ja) 窒化物半導体素子および窒化物半導体素子の製造方法
JP5732952B2 (ja) Iii族窒化物半導体素子を作製する方法
TW201528547A (zh) 氮化物半導體發光元件及其製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150216

R150 Certificate of patent or registration of utility model

Ref document number: 5708033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250