JP5696401B2 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
JP5696401B2
JP5696401B2 JP2010193400A JP2010193400A JP5696401B2 JP 5696401 B2 JP5696401 B2 JP 5696401B2 JP 2010193400 A JP2010193400 A JP 2010193400A JP 2010193400 A JP2010193400 A JP 2010193400A JP 5696401 B2 JP5696401 B2 JP 5696401B2
Authority
JP
Japan
Prior art keywords
magnetic pole
signal
psmp
interval time
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010193400A
Other languages
English (en)
Other versions
JP2011087454A (ja
Inventor
和浩 井本
和浩 井本
正裕 松浦
正裕 松浦
洋章 新野
洋章 新野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advics Co Ltd
Original Assignee
Advics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advics Co Ltd filed Critical Advics Co Ltd
Priority to JP2010193400A priority Critical patent/JP5696401B2/ja
Priority to US12/882,887 priority patent/US8564229B2/en
Publication of JP2011087454A publication Critical patent/JP2011087454A/ja
Application granted granted Critical
Publication of JP5696401B2 publication Critical patent/JP5696401B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

本発明は、ブラシレスモータを制御するモータ制御装置に関する。
一般に、ブラシレスモータには、複数相(例えば3相)の励磁電流(U相電流、V相電流、W相電流)に対して個別対応する複数(例えば3つ)の磁極センサ(磁極信号出力手段)が設けられている。そして、モータ制御装置は、各磁極センサから出力される磁極信号に含まれる立ち上がりエッジ及び立ち下がりエッジの発生タイミングに基づきブラシレスモータを制御する。
ところで、各磁極センサのうち少なくとも一つの磁極センサに故障などの異常が発生した場合、該異常の発生した磁極センサからモータ制御装置に入力される磁極信号(異常磁極信号)には、立ち上がりエッジや立ち下がりエッジが含まれない。そのため、モータ制御装置は、ブラシレスモータを適切に制御できなくなるおそれがある。そこで、近年では、各磁極センサのうち何れか一つのセンサが故障した場合でもブラシレスモータを好適に制御可能なモータ制御装置として、例えば特許文献1に記載の装置が提案されている。
上記モータ制御装置は、各磁極センサのうち何れか一つのセンサ(例えば、U相用の磁極センサ)の故障を検出した場合、ブラシレスモータの制御を一旦停止する。すると、ブラシレスモータの回転子は、所謂フリーラン状態で回転することになる。この間に、モータ制御装置では、正常な2つの磁極センサからの磁極信号(正常磁極信号)に基づき疑似信号が生成される。具体的には、疑似信号は、正常な2つの磁極センサからの各磁極信号に含まれる立ち上がりエッジの中間タイミングで立ち上がりエッジが発生すると共に、各正常磁極信号に含まれる立ち下がりエッジの中間タイミングで立ち立ち下がりエッジが発生するように生成される。そして、1つの磁極センサが故障した場合には、このように生成された疑似信号及び2つの正常磁極信号からの各磁極信号に基づき、ブラシレスモータが制御されていた。
特開2007−151266号公報
ところで、全ての磁極センサが正常である場合においてブラシレスモータの回転速度が一定であるときには、U相の磁極信号の立ち上がりエッジは他の相の各磁極信号の立ち上がりエッジの中間タイミングで発生すると共に、U相の磁極信号の立ち下がりエッジは他の相の各磁極信号の立ち下がりエッジの中間タイミングで発生する。すなわち、ブラシレスモータの回転速度が一定である場合、疑似信号は、本来のU相の磁極信号とほぼ一致する。その結果、1つの磁極センサが故障してもブラシレスモータを好適に制御できる。
しかしながら、ブラシレスモータの加減速時におけるU相の磁極信号の立ち上がりエッジ及び立ち下がりエッジは、他の相の各磁極信号の立ち上がりエッジ及び立ち下がりエッジの中間タイミングとは異なるタイミングでそれぞれ発生する。すなわち、ブラシレスモータの加減速時には、特許文献1に記載される方法で生成した疑似信号と、本来のU相の磁極信号とでは大きく乖離する。したがって、ブラシレスモータの加減速時には、疑似信号を用いてもブラシレスモータを適切に制御できない問題があった。
本発明は、このような事情に鑑みてなされたものであり、その目的は、複数の磁極センサのうち一部の磁極センサから出力される磁極信号に異常がある場合でも、ブラシレスモータを適切に制御できるモータ制御装置を提供することにある。
上記目的を達成するために、モータ制御装置にかかる請求項1に記載の発明は、相を有するブラシレスモータ(29)を、前記各相に個別対応する複数の磁極信号出力手段(SEu,SEv,SEw)から出力される各磁極信号(Smpu,Smpv,Smpw)に基づき制御するモータ制御装置において、前記各磁極信号出力手段(SEu,SEv,SEw)から出力される各磁極信号(Smpu,Smpv,Smpw)が異常であるか否かを個別に判定する異常判定手段(51)と、前記異常判定手段(51)によって前記各磁極信号(Smpu,Smpv,Smpw)のうち一部の磁極信号が異常であると判定された場合には、異常であると判定された異常磁極信号以外の正常磁極信号及び前記ブラシレスモータ(29)の回転状態に基づき、前記異常磁極信号に代わる疑似信号(PSmp)を生成する信号生成手段(52)と、前記信号生成手段(52)によって疑似信号(PSmp)が生成された場合には、該疑似信号(PSmp)及び前記正常磁極信号に基づき前記ブラシレスモータ(29)を制御するモータ制御手段(47,48,49,50)と、前記各磁極信号(Smpu,Smpv,Smpw)の立ち上がりエッジ及び立ち下がりエッジを個別に検出するエッジ検出手段(51)と、を備え、前記信号生成手段(52)は、前記ブラシレスモータ(29)の加速時において、前記異常判定手段(51)によって前記各磁極信号(Smpu,Smpv,Smpw)の何れか一つの磁極信号が異常であると判定された場合に、前記疑似信号(PSmp)の立ち上がりエッジを、前記正常磁極信号のうち第1の磁極信号の立ち上がりエッジが発生してから前記正常磁極信号のうち残りの第2の磁極信号の立ち下がりエッジが発生するまでの第1間隔時間(ΔT1)よりも、当該第2の磁極信号の立ち下がりエッジが発生してから前記疑似信号(PSmp)の立ち上がりエッジが発生するまでの立ち上がり間隔時間(ΔT7)が短くなるタイミングで発生させると共に、前記疑似信号(PSmp)の立ち下がりエッジを、前記第1の磁極信号の立ち下がりエッジが発生してから前記第2の磁極信号の立ち上がりエッジが発生するまでの第2間隔時間(ΔT2)よりも、当該第2の磁極信号の立ち上がりエッジが発生してから前記疑似信号(PSmp)の立ち下がりエッジが発生するまでの立ち下がり間隔時間(ΔT8)が短くなるタイミングで発生させ、前記異常判定手段(51)によって前記各磁極信号(Smpu,Smpv,Smpw)の何れか一つの磁極信号が異常であると判定された場合に、前記疑似信号(PSmp)の前回の立ち下がりエッジが発生してから前記第1の磁極信号の立ち上がりエッジが発生するまでの第3間隔時間(ΔT3)と前記第1間隔時間(ΔT1)との差に基づき、立ち上がり間隔時間(ΔT7)を設定する立ち上がり設定手段(52)をさらに備え、前記信号生成手段(52)は、前記立ち上がり設定手段(52)によって設定された立ち上がり間隔時間(ΔT7)に基づいたタイミングで疑似信号(PSmp)に立ち上がりエッジを発生させることを要旨とする。
上記構成によれば、疑似信号は、正常磁極信号及びブラシレスモータの回転状態(即ち、定速状態、加速状態又は減速状態)に応じて生成される。そのため、ブラシレスモータの回転状態を考慮せず、一律的に疑似信号を生成する従来の場合に比して、疑似信号を、本来(磁極信号出力手段等が正常である場合)の磁極信号に近づけることが可能となる。したがって、複数の磁極センサのうち一部の磁極センサから出力される磁極信号に異常がある場合でも、ブラシレスモータを適切に制御できる。
一般に、ブラシレスモータが加速状態である場合、各磁極信号に含まれる各エッジの間隔は、次第に短くなる。そこで、本発明では、ブラシレスモータを加速させる場合には、疑似信号の立ち上がり間隔時間を第1間隔時間よりも短く設定すると共に、疑似信号の立ち下がり間隔時間を第2間隔時間よりも短く設定している。これにより、ブラシレスモータの加速時において磁極信号の何れか一つが異常であったとしても、該異常磁極信号に代わる疑似信号及び正常磁極信号のエッジ間隔が次第に短くなるため、ブラシレスモータを適切に制御することが可能となる。
また、疑似信号の立ち上がり間隔時間は、疑似信号の立ち上がりエッジが発生する以前の疑似信号の立ち下がりエッジと正常磁極信号のエッジとの間隔の狭まる傾向又は広がる傾向に応じた時間に設定される。そのため、疑似信号の立ち上がりエッジを、本来の磁極信号の立ち上がりエッジにより近いタイミングで発生させることが可能となる。
モータ制御装置にかかる請求項に記載の発明は、3相を有するブラシレスモータ(29)を、前記各相に個別対応する複数の磁極信号出力手段(SEu,SEv,SEw)から出力される各磁極信号(Smpu,Smpv,Smpw)に基づき制御するモータ制御装置において、前記各磁極信号出力手段(SEu,SEv,SEw)から出力される各磁極信号(Smpu,Smpv,Smpw)が異常であるか否かを個別に判定する異常判定手段(51)と、前記異常判定手段(51)によって前記各磁極信号(Smpu,Smpv,Smpw)のうち一部の磁極信号が異常であると判定された場合には、異常であると判定された異常磁極信号以外の正常磁極信号及び前記ブラシレスモータ(29)の回転状態に基づき、前記異常磁極信号に代わる疑似信号(PSmp)を生成する信号生成手段(52)と、前記信号生成手段(52)によって疑似信号(PSmp)が生成された場合には、該疑似信号(PSmp)及び前記正常磁極信号に基づき前記ブラシレスモータ(29)を制御するモータ制御手段(47,48,49,50)と、前記各磁極信号(Smpu,Smpv,Smpw)の立ち上がりエッジ及び立ち下がりエッジを個別に検出するエッジ検出手段(51)と、を備え、前記信号生成手段(52)は、前記ブラシレスモータ(29)の減速時において、前記異常判定手段(51)によって前記各磁極信号(Smpu,Smpv,Smpw)の何れか一つの磁極信号が異常であると判定された場合に、前記疑似信号(PSmp)の立ち上がりエッジを、前記正常磁極信号のうち第1の磁極信号の立ち上がりエッジが発生してから前記正常磁極信号のうち第2の磁極信号の立ち下がりエッジが発生するまでの第1間隔時間(ΔT1)よりも、当該第2の磁極信号の立ち下がりエッジが発生してから前記疑似信号(PSmp)の立ち上がりエッジが発生するまでの立ち上がり間隔時間(ΔT7)が長くなるタイミングで発生させると共に、前記疑似信号(PSmp)の立ち下がりエッジを、前記第1の磁極信号の立ち下がりエッジが発生してから前記第2の磁極信号の立ち上がりエッジが発生するまでの第2間隔時間(ΔT2)よりも、当該第2の磁極信号の立ち上がりエッジが発生してから前記疑似信号(PSmp)の立ち下がりエッジが発生するまでの立ち下がり間隔時間(ΔT8)が長くなるタイミングで発生させ、前記異常判定手段(51)によって前記各磁極信号(Smpu,Smpv,Smpw)の何れか一つの磁極信号が異常であると判定された場合に、前記疑似信号(PSmp)の前回の立ち下がりエッジが発生してから前記第1の磁極信号の立ち上がりエッジが発生するまでの第3間隔時間(ΔT3)と前記第1間隔時間(ΔT1)との差に基づき、立ち上がり間隔時間(ΔT7)を設定する立ち上がり設定手段(52)をさらに備え、前記信号生成手段(52)は、前記立ち上がり設定手段(52)によって設定された立ち上がり間隔時間(ΔT7)に基づいたタイミングで疑似信号(PSmp)に立ち上がりエッジを発生させることを要旨とする。
上記構成によれば、疑似信号は、正常磁極信号及びブラシレスモータの回転状態(即ち、定速状態、加速状態又は減速状態)に応じて生成される。そのため、ブラシレスモータの回転状態を考慮せず、一律的に疑似信号を生成する従来の場合に比して、疑似信号を、本来(磁極信号出力手段等が正常である場合)の磁極信号に近づけることが可能となる。したがって、複数の磁極センサのうち一部の磁極センサから出力される磁極信号に異常がある場合でも、ブラシレスモータを適切に制御できる。
一般に、ブラシレスモータが減速状態である場合、各磁極信号に含まれる各エッジの間隔は、次第に長くなる。そこで、本発明では、ブラシレスモータを減速させる場合には、疑似信号の立ち上がり間隔時間を第1間隔時間よりも長く設定すると共に、疑似信号の立ち下がり間隔時間を第2間隔時間よりも長く設定している。これにより、ブラシレスモータの減速時において磁極信号の何れか一つが異常であったとしても、該異常磁極信号に代わる疑似信号及び正常磁極信号のエッジ間隔が次第に長くなるため、ブラシレスモータを適切に制御することが可能となる。
上記構成によれば、疑似信号の立ち上がり間隔時間は、疑似信号の立ち上がりエッジが発生する以前の疑似信号の立ち下がりエッジと正常磁極信号のエッジとの間隔の狭まる傾向又は広がる傾向に応じた時間に設定される。そのため、疑似信号の立ち上がりエッジを、本来の磁極信号の立ち上がりエッジにより近いタイミングで発生させることが可能となる。
請求項に記載の発明は、請求項1又は請求項2に記載のモータ制御装置において、前記立ち上がり設定手段(52)は、前記第2の磁極信号の立ち上がりエッジのうち前記疑似信号(PSmp)の前回の立ち下がりエッジの前に発生した立ち上がりエッジと、前記第1の磁極信号の立ち上がりエッジのうち前記疑似信号(PSmp)の前回の立ち下がりエッジの後に発生する立ち上がりエッジとの間の第4間隔時間(ΔT4)に基づき前記第3間隔時間(ΔT3)を推定することを要旨とする。
上記構成によれば、第3間隔時間を、疑似信号の立ち下がりエッジを用いずに、正常な第2の磁極信号の立ち上がりエッジに基づいて推定するため、疑似信号の立ち上がりエッジを、本来の磁極信号の立ち上がりエッジにより近いタイミングで発生させることが可能となる。
請求項に記載の発明は、請求項1〜請求項3のうち何れか一項に記載のモータ制御装置において、前記立ち上がり設定手段(52)は、前記第1間隔時間(ΔT1)に基づく周波数(F1)から前記第3間隔時間(ΔT3)に基づく周波数(F3)を減算し、該減算結果(ΔF1)に前記第1間隔時間(ΔT1)に基づく周波数(F1)を加算し、該加算結果(F7)に基づき立ち上がり間隔時間(ΔT7)を設定することを要旨とする。
上記構成によれば、磁極信号のエッジ間隔の狭まる傾向又は広がる傾向を、第1間隔時間及び第3間隔時間に基づく周波数領域の演算により、正確に演算することが可能である。そのため、正確なエッジ間隔の狭まる傾向又は広がる傾向に基づいて、正確な立ち上がり間隔時間を算出可能となる。
モータ制御装置にかかる請求項に記載の発明は、3相を有するブラシレスモータ(29)を、前記各相に個別対応する複数の磁極信号出力手段(SEu,SEv,SEw)から出力される各磁極信号(Smpu,Smpv,Smpw)に基づき制御するモータ制御装置において、前記各磁極信号出力手段(SEu,SEv,SEw)から出力される各磁極信号(Smpu,Smpv,Smpw)が異常であるか否かを個別に判定する異常判定手段(51)と、前記異常判定手段(51)によって前記各磁極信号(Smpu,Smpv,Smpw)のうち一部の磁極信号が異常であると判定された場合には、異常であると判定された異常磁極信号以外の正常磁極信号及び前記ブラシレスモータ(29)の回転状態に基づき、前記異常磁極信号に代わる疑似信号(PSmp)を生成する信号生成手段(52)と、前記信号生成手段(52)によって疑似信号(PSmp)が生成された場合には、該疑似信号(PSmp)及び前記正常磁極信号に基づき前記ブラシレスモータ(29)を制御するモータ制御手段(47,48,49,50)と、前記各磁極信号(Smpu,Smpv,Smpw)の立ち上がりエッジ及び立ち下がりエッジを個別に検出するエッジ検出手段(51)と、を備え、前記信号生成手段(52)は、前記ブラシレスモータ(29)の加速時において、前記異常判定手段(51)によって前記各磁極信号(Smpu,Smpv,Smpw)の何れか一つの磁極信号が異常であると判定された場合に、前記疑似信号(PSmp)の立ち上がりエッジを、前記正常磁極信号のうち第1の磁極信号の立ち上がりエッジが発生してから前記正常磁極信号のうち残りの第2の磁極信号の立ち下がりエッジが発生するまでの第1間隔時間(ΔT1)よりも、当該第2の磁極信号の立ち下がりエッジが発生してから前記疑似信号(PSmp)の立ち上がりエッジが発生するまでの立ち上がり間隔時間(ΔT7)が短くなるタイミングで発生させると共に、前記疑似信号(PSmp)の立ち下がりエッジを、前記第1の磁極信号の立ち下がりエッジが発生してから前記第2の磁極信号の立ち上がりエッジが発生するまでの第2間隔時間(ΔT2)よりも、当該第2の磁極信号の立ち上がりエッジが発生してから前記疑似信号(PSmp)の立ち下がりエッジが発生するまでの立ち下がり間隔時間(ΔT8)が短くなるタイミングで発生させ、前記異常判定手段(51)によって前記各磁極信号(Smpu,Smpv,Smpw)の何れか一つの磁極信号が異常であると判定された場合に、前記疑似信号(PSmp)の前回の立ち上がりエッジが発生してから前記第1の磁極信号の立ち下がりエッジが発生するまでの第5間隔時間(ΔT5)と前記第2間隔時間(ΔT2)との差に基づき、立ち下がり間隔時間(ΔT8)を設定する立ち下がり設定手段(52)をさらに備え、前記信号生成手段(52)は、前記立ち下がり設定手段(52)によって設定された立ち下がり間隔時間(ΔT8)に基づいたタイミングで疑似信号(PSmp)に立ち下がりエッジを発生させることを要旨とする。
上記構成によれば、疑似信号は、正常磁極信号及びブラシレスモータの回転状態(即ち、定速状態、加速状態又は減速状態)に応じて生成される。そのため、ブラシレスモータの回転状態を考慮せず、一律的に疑似信号を生成する従来の場合に比して、疑似信号を、本来(磁極信号出力手段等が正常である場合)の磁極信号に近づけることが可能となる。したがって、複数の磁極センサのうち一部の磁極センサから出力される磁極信号に異常がある場合でも、ブラシレスモータを適切に制御できる。
一般に、ブラシレスモータが加速状態である場合、各磁極信号に含まれる各エッジの間隔は、次第に短くなる。そこで、本発明では、ブラシレスモータを加速させる場合には、疑似信号の立ち上がり間隔時間を第1間隔時間よりも短く設定すると共に、疑似信号の立ち下がり間隔時間を第2間隔時間よりも短く設定している。これにより、ブラシレスモータの加速時において磁極信号の何れか一つが異常であったとしても、該異常磁極信号に代わる疑似信号及び正常磁極信号のエッジ間隔が次第に短くなるため、ブラシレスモータを適切に制御することが可能となる。
モータ制御装置にかかる請求項6に記載の発明は、3相を有するブラシレスモータ(29)を、前記各相に個別対応する複数の磁極信号出力手段(SEu,SEv,SEw)から出力される各磁極信号(Smpu,Smpv,Smpw)に基づき制御するモータ制御装置において、前記各磁極信号出力手段(SEu,SEv,SEw)から出力される各磁極信号(Smpu,Smpv,Smpw)が異常であるか否かを個別に判定する異常判定手段(51)と、前記異常判定手段(51)によって前記各磁極信号(Smpu,Smpv,Smpw)のうち一部の磁極信号が異常であると判定された場合には、異常であると判定された異常磁極信号以外の正常磁極信号及び前記ブラシレスモータ(29)の回転状態に基づき、前記異常磁極信号に代わる疑似信号(PSmp)を生成する信号生成手段(52)と、前記信号生成手段(52)によって疑似信号(PSmp)が生成された場合には、該疑似信号(PSmp)及び前記正常磁極信号に基づき前記ブラシレスモータ(29)を制御するモータ制御手段(47,48,49,50)と、前記各磁極信号(Smpu,Smpv,Smpw)の立ち上がりエッジ及び立ち下がりエッジを個別に検出するエッジ検出手段(51)と、を備え、前記信号生成手段(52)は、前記ブラシレスモータ(29)の減速時において、前記異常判定手段(51)によって前記各磁極信号(Smpu,Smpv,Smpw)の何れか一つの磁極信号が異常であると判定された場合に、前記疑似信号(PSmp)の立ち上がりエッジを、前記正常磁極信号のうち第1の磁極信号の立ち上がりエッジが発生してから前記正常磁極信号のうち第2の磁極信号の立ち下がりエッジが発生するまでの第1間隔時間(ΔT1)よりも、当該第2の磁極信号の立ち下がりエッジが発生してから前記疑似信号(PSmp)の立ち上がりエッジが発生するまでの立ち上がり間隔時間(ΔT7)が長くなるタイミングで発生させると共に、前記疑似信号(PSmp)の立ち下がりエッジを、前記第1の磁極信号の立ち下がりエッジが発生してから前記第2の磁極信号の立ち上がりエッジが発生するまでの第2間隔時間(ΔT2)よりも、当該第2の磁極信号の立ち上がりエッジが発生してから前記疑似信号(PSmp)の立ち下がりエッジが発生するまでの立ち下がり間隔時間(ΔT8)が長くなるタイミングで発生させ、前記異常判定手段(51)によって前記各磁極信号(Smpu,Smpv,Smpw)の何れか一つの磁極信号が異常であると判定された場合に、前記疑似信号(PSmp)の前回の立ち上がりエッジが発生してから前記第1の磁極信号の立ち下がりエッジが発生するまでの第5間隔時間(ΔT5)と前記第2間隔時間(ΔT2)との差に基づき、立ち下がり間隔時間(ΔT8)を設定する立ち下がり設定手段(52)をさらに備え、前記信号生成手段(52)は、前記立ち下がり設定手段(52)によって設定された立ち下がり間隔時間(ΔT8)に基づいたタイミングで疑似信号(PSmp)に立ち下がりエッジを発生させることを要旨とする。
上記構成によれば、疑似信号は、正常磁極信号及びブラシレスモータの回転状態(即ち、定速状態、加速状態又は減速状態)に応じて生成される。そのため、ブラシレスモータの回転状態を考慮せず、一律的に疑似信号を生成する従来の場合に比して、疑似信号を、本来(磁極信号出力手段等が正常である場合)の磁極信号に近づけることが可能となる。したがって、複数の磁極センサのうち一部の磁極センサから出力される磁極信号に異常がある場合でも、ブラシレスモータを適切に制御できる。
一般に、ブラシレスモータが減速状態である場合、各磁極信号に含まれる各エッジの間隔は、次第に長くなる。そこで、本発明では、ブラシレスモータを減速させる場合には、疑似信号の立ち上がり間隔時間を第1間隔時間よりも長く設定すると共に、疑似信号の立ち下がり間隔時間を第2間隔時間よりも長く設定している。これにより、ブラシレスモータの減速時において磁極信号の何れか一つが異常であったとしても、該異常磁極信号に代わる疑似信号及び正常磁極信号のエッジ間隔が次第に長くなるため、ブラシレスモータを適切に制御することが可能となる。
上記請求項5及び請求項6に記載の発明の構成によれば、疑似信号の立ち下がり間隔時間は、疑似信号の立ち下がりエッジが発生する以前の疑似信号の立ち上がりエッジと正常磁極信号のエッジとの間隔の狭まる傾向又は広がる傾向に応じた時間に設定される。そのため、疑似信号の立ち下がりエッジを、本来の磁極信号の立ち下がりエッジにより近いタイミングで発生させることが可能となる。
請求項に記載の発明は、請求項5又は請求項6に記載のモータ制御装置において、前記立ち下がり設定手段(52)は、前記第2の磁極信号の立ち下がりエッジのうち前記疑似信号(PSmp)の前回の立ち上がりエッジの前に発生した立ち下がりエッジと、前記第1の磁極信号の立ち上がりエッジのうち前記疑似信号(PSmp)の前回の立ち上がりエッジの後に発生する立ち下がりエッジとの間の第6間隔時間(ΔT6)に基づき第5間隔時間(ΔT5)を推定することを要旨とする。
上記構成によれば、第5間隔時間を、疑似信号の立ち上がりエッジを用いずに、正常な第2の磁極信号の立ち上がりエッジに基づいて推定するため、疑似信号の立ち下がりエッジを、本来の磁極信号の立ち下がりエッジにより近いタイミングで発生させることが可能となる。
請求項に記載の発明は、請求項5〜請求項7のうち何れか一項に記載のモータ制御装置において、前記立ち下がり設定手段(52)は、前記第2間隔時間(ΔT2)に基づく周波数(F2)から前記第5間隔時間(ΔT5)に基づく周波数(F5)を減算し、該減算結果(ΔF2)に前記第2間隔時間(ΔT2)に基づく周波数(F2)を加算し、該加算結果(F8)に基づき立ち下がり間隔時間(ΔT8)を設定することを要旨とする。
上記構成によれば、磁極信号のエッジ間隔の狭まる傾向又は広がる傾向を、第2間隔時間及び第5間隔時間に基づく周波数領域の演算により、正確に演算することが可能である。そのため、正確なエッジ間隔の狭まる傾向又は広がる傾向に基づいて、正確な立ち下がり間隔時間を算出可能となる。
請求項に記載の発明は、請求項1〜請求項のうち何れか一項に記載のモータ制御装置において、前記ブラシレスモータ(29)の回転状態を判定する回転状態判定手段(52)をさらに備え、前記信号生成手段(52)は、前記回転状態判定手段(52)によって前記ブラシレスモータ(29)が加速状態又は減速状態であると判定された場合に、前記正常磁極信号及び前記ブラシレスモータ(29)の回転状態に基づき疑似信号(PSmp)を生成することを要旨とする。
上記構成によれば、疑似信号は、ブラシレスモータが加速状態又は減速状態である場合にはブラシレスモータの回転状態を加味して生成される一方で、ブラシレスモータが加速状態及び減速状態でない場合にはブラシレスモータの回転状態を加味することなく生成される。そのため、常にブラシレスモータの回転状態を加味して疑似信号を生成する場合に比して、制御負荷を減少させることが可能となる。
本実施形態における車両の制動装置の一部を示すブロック図。 本実施形態における電子制御装置のブロック図。 (a)(b)(c)(d)はブラシレスモータが加速する場合におけるモータ回転速度、各磁極信号、発生間隔時間及びエッジ周波数の変化を示すグラフ。 モータ制御処理ルーチンを説明するフローチャート。 V相エッジ検出割り込み処理ルーチンを説明するフローチャート。 W相疑似信号生成処理ルーチンを説明するフローチャート。 ブラシレスモータの加速時における各磁極信号及び疑似信号の変化を説明するためのタイミングチャート。 ブラシレスモータの減速時における各磁極信号及び疑似信号の変化を説明するためのタイミングチャート。 ブラシレスモータが定速状態である場合における各磁極信号及び疑似信号の変化を説明するためのタイミングチャート。
以下、本発明を具体化した一実施形態を図1〜図9に従って説明する。なお、以下における本明細書中の説明においては、車両の進行方向(前進方向)を前方(車両前方)として説明する。また、特に説明がない限り、以下の記載における左右方向は、車両進行方向における左右方向と一致するものとする。
本実施形態の車両は、右前輪、左前輪、右後輪及び左後輪を有する自動四輪車両であって、運転手による図示しないアクセルペダルの踏込み操作に基づいた駆動力が駆動輪(例えば後輪)に伝達されることにより走行する。こうした車両には、図1に示すように、各車輪に制動力を付与するための制動装置11が搭載されている。
この制動装置11は、マスタシリンダ12、ブースタ13及びリザーバ14を有する液圧発生装置15と、2つの液圧回路16,17を有するブレーキアクチュエータ18(図1では二点鎖線で示す。)と、該ブレーキアクチュエータ18を制御するための電子制御装置(以下、「ECU」ともいう。)19(図2参照)とを備えている。各液圧回路16,17は、液圧発生装置15のマスタシリンダ12にそれぞれ接続されている。また、第1液圧回路16には、左前輪FL用のホイールシリンダ20FL及び右後輪RR用のホイールシリンダ20RRが接続されると共に、第2液圧回路17には、右前輪用のホイールシリンダ(図示略)及び左後輪用のホイールシリンダ(図示略)が接続されている。
液圧発生装置15には、ブレーキペダル21が設けられており、該ブレーキペダル21が車両の運転者によって操作された場合には、マスタシリンダ12及びブースタ13がそれぞれ作動する。そして、マスタシリンダ12からは、液圧回路16,17を介してホイールシリンダ内にブレーキ液がそれぞれ供給され、各車輪には、ホイールシリンダ内のホイールシリンダ圧に応じた制動力がそれぞれ付与される。
次に、ブレーキアクチュエータ18について説明する。なお、各液圧回路16,17は略同一構成であるため、図1では、明細書の説明理解の便宜上、第1液圧回路16のみを図示し、第2液圧回路17の図示を省略するものとする。
第1液圧回路16は、連結経路22を介してマスタシリンダ12に接続されており、該連結経路22には、常開型のリニア電磁弁23aが設けられている。また、第1液圧回路16には、ホイールシリンダ20FLに接続される左前輪用経路25aと、ホイールシリンダ20RRに接続される右後輪用経路25bとが形成されている。そして、これら各経路25a,25bには、ホイールシリンダ20FL,20RR内のホイールシリンダ圧の増圧を規制する際に作動する常開型の電磁弁である増圧弁26a,26bと、ホイールシリンダ20FL,20RR内のホイールシリンダ圧を減圧させる際に作動する常閉型の電磁弁である減圧弁27a,27bとが設けられている。
また、第1液圧回路16には、各ホイールシリンダ20FL,20RRから減圧弁27a,27bを介して流出したブレーキ液を一時貯留するためのリザーバ28と、複数相(本実施形態では、U相、V相及びW相の3相)を有するブラシレスモータ29の回転に基づき作動するポンプ30aとが接続されている。このポンプ30aは、吸入用流路31を介してリザーバ28に接続されると共に、供給用流路32を介して第1液圧回路16における増圧弁26a,26bとリニア電磁弁23aとの間の接続部位33に接続されている。また、吸入用流路31には、マスタシリンダ12側に向けて分岐された分岐液圧路34が形成されている。そして、ポンプ30aは、ブラシレスモータ29が回転した場合に、リザーバ28及びマスタシリンダ12側から吸入用流路31及び分岐液圧路34を介してブレーキ液を吸引し、該ブレーキ液を供給用流路32内に吐出する。
なお、第2液圧回路17側には、第1液圧回路16側と同様に、リニア電磁弁23b、各増圧弁26c,26d、各減圧弁27c,27d、図示しないリザーバ及びポンプ30bが設けられている(図2参照)。
次に、ECU19の構成について、図2に基づき説明する。
図2に示すように、ECU19には、各弁23a,23b,26a〜26d,27a〜27d及びブラシレスモータ29が電気的に接続されている。また、ECU19には、ブラシレスモータ29の相毎に設けられた複数(本実施形態では3つ)の磁極センサ(磁極信号出力手段)SEu,SEv,SEwが電気的に接続されており、該各磁極センサSEu,SEv,SEwからは、互いに異なる位相を有する磁極信号Smpu,Smpv,Smpwがそれぞれ出力される。そして、ECU19は、図示しない車輪速度センサなどの各種センサからの検出信号に基づき、各弁23a,23b,26a〜26d,27a〜27d及びブラシレスモータ29(即ち、各ポンプ30a,30b)の作動を個別に制御する。
また、ECU19は、CPU、ROM及びRAMなどを有するデジタルコンピュータ及び各種ドライバ回路などから構築される機能部分として、主制御部41、メモリ42、増圧弁制御部43、減圧弁制御部44、リニア弁制御部45、及びモータ制御装置としてのモータ制御部(図2では破線で囲まれた部分)46を備えている。
主制御部41は、CPUなどにより構築されている。こうした主制御部41は、アンチロックブレーキ制御などの各種制動制御処理を実行する際に、増圧弁制御部43、減圧弁制御部44、リニア弁制御部45及びモータ制御部46に制御指令を個別に出力する。メモリ42は、ROM及びRAMなどにより構築されている。こうしたメモリ42には、主制御部41が実行する各種制御処理などが予め記憶されている。
増圧弁制御部43は、ドライバ回路などのハードウエアから構築されており、主制御部41からの制御指令に基づき各増圧弁26a〜26dの作動を個別に制御する。また、減圧弁制御部44は、ドライバ回路などのハードウエアから構築されており、主制御部41からの制御指令に基づき各減圧弁27a〜27dの作動を個別に制御する。また、リニア弁制御部45は、ドライバ回路などのハードウエアから構築されており、主制御部41からの制御指令に基づき各リニア電磁弁23a,23bの作動を個別に制御する。すなわち、各制御部43〜45は、主制御部41からの制御指令に応じたDuty比の電圧をそれぞれ生成し、該電圧を各弁26a〜26d,27a〜27d及びブラシレスモータ29に対して個別に印加する。
次に、モータ制御部46について説明する。
モータ制御部46は、CPU及びハードウエアから構築されている。こうしたモータ制御部46は、主制御部41からの制御指令が入力される制御演算部47と、該制御演算部47からの相毎の信号が入力される相切替出力部48と、該相切替出力部48からの信号が入力されるプリドライバ49と、該プリドライバ49からの信号が入力されるフルブリッジ回路50とを有している。また、モータ制御部46は、各磁極センサSEu,SEv,SEwから出力される磁極信号Smpu,Smpv,Smpwの異常を検出するための異常検出部51と、該異常検出部51で異常とされた磁極信号(異常磁極信号)に対応する疑似信号PSmpを生成する異常処理部52とを有している。さらに、モータ制御部46は、各磁極信号Smpu,Smpv,Smpwに基づきブラシレスモータ29の回転位置(「回転角度」ともいう。)を検出する位置検出部53を有している。
制御演算部47には、位置検出部53で検出されたブラシレスモータ29の回転位置に基づき相毎の駆動信号を生成し、該駆動信号を相切替出力部48に出力する。相切替出力部48は、ブラシレスモータ29の回転位置に応じて電圧を印加する相を切り替えさせるための切替信号をプリドライバ49に出力する。
プリドライバ49及びフルブリッジ回路50は、相切替出力部48からの切替信号に応じた適切な出力信号(「出力電流」ともいう。)を相毎に設定し、該出力信号をブラシレスモータ29に出力する。フルブリッジ回路50は、一例として6つのMOS−FET(Metal Oxide Semiconductor Field Effect Transistor )を有しており、各MOS−FETは、相切替出力部48からの切替信号に基づき個別に作動する。したがって、本実施形態では、制御演算部47、相切替出力部48、プリドライバ49及びフルブリッジ回路50によって、ブラシレスモータ29の回転を制御するモータ制御手段が構成される。
異常検出部51には、各磁極センサSEu,SEv,SEwから各磁極信号Smpu,Smpv,Smpwが入力される。そして、異常検出部51は、詳しくは後述するが、磁極信号Smpu,Smpv,Smpwに含まれるエッジ(立ち上がりエッジ及び立ち下がりエッジ)の有無などに基づき異常のある磁極信号Smpu,Smpv,Smpw(即ち、磁極センサSEu,SEv,SEw)を特定する。また、異常検出部51は、各磁極信号Smpu,Smpv,Smpwが全て正常である場合、各磁極センサSEu,SEv,SEwが全て正常であると判断する。したがって、本実施形態では、異常検出部51が、エッジ検出手段及び異常判定手段として機能する。
異常処理部52は、各磁極信号Smpu,Smpv,Smpwの何れか一つの磁極信号(例えばW相用の磁極信号Smpw)が異常である旨の異常検出信号が異常検出部51から入力された場合、異常と判断されたW相用の磁極信号Smpwに代わる疑似信号PSmpを生成し、該疑似信号PSmpを位置検出部53に出力する。また、異常処理部52は、各磁極信号Smpu,Smpv,Smpwのうち少なくとも2つの磁極信号が異常である旨の異常検出信号が入力された場合、ブラシレスモータ29の制御が不能である旨の信号を主制御部41に出力する。したがって、本実施形態では、異常処理部52が、信号生成手段として機能する。
位置検出部53には、各磁極センサSEu,SEv,SEwから磁極信号Smpu,Smpv,Smpwが入力される。そして、位置検出部53は、各磁極信号Smpu,Smpv,Smpwに基づきブラシレスモータ29の回転位置を算出し、該算出結果を制御演算部47に出力する。また、位置検出部53には、各磁極信号Smpu,Smpv,Smpwの何れか一つの磁極信号が異常である場合には、該異常と判定された異常磁極信号に代わる疑似信号PSmpが入力される。そして、位置検出部53は、疑似信号PSmpに基づき異常磁極信号を補正し、補正後の異常磁極信号及び正常な磁極信号(正常磁極信号)に基づき、ブラシレスモータ29の回転位置を算出し、該算出結果を制御演算部47に出力する。
次に、本実施形態のブラシレスモータ29の回転態様と該回転態様に応じた各磁極信号Smpu,Smpv,Smpwとの関係について、図3に基づき説明する。なお、図3では、ブラシレスモータ29が加速する場合が図示されている。
各磁極信号Smpu,Smpv,Smpwに含まれるエッジの発生間隔時間ΔTsは、ブラシレスモータ29の回転状態に応じて変化する。例えば、図3(a)(b)(c)(d)に示すように、ブラシレスモータ29の加速時では、発生間隔時間ΔTsが徐々に短くなると共に、発生間隔時間ΔTsに基づくエッジ周波数Fs(=1/ΔTs)が徐々に高周波になる。すなわち、V相の磁極信号Smpvの立ち下がりエッジが発生する第1タイミングt11から該エッジの直後に発生するエッジ(この場合、U相の磁極信号Smpuの立ち下がりエッジ)が発生する第2タイミングt12との間の第1発生間隔時間ΔTs1は、第2タイミングt12から、U相の磁極信号Smpuの立ち下がりエッジの直後に発生するエッジ(この場合、W相の磁極信号Smpwの立ち上がりエッジ)が発生する第3タイミングt13との間の第2発生間隔時間ΔTs2よりも長い。
また、ブラシレスモータ29の減速時では、加速時とは逆に、発生間隔時間ΔTsが徐々に長くなると共に、発生間隔時間ΔTsに基づくエッジ周波数Fsが徐々に低周波になる。さらに、ブラシレスモータ29の定速時では、発生間隔時間ΔTs及びエッジ周波数Fsがほぼ一定である。
次に、モータ制御部46が実行するモータ制御処理ルーチンについて、図4に示すフローチャートに基づき説明する。
さて、モータ制御処理ルーチンは、主制御部41から制御演算部47にブラシレスモータ29(即ち、ポンプ30a,30b)を作動させる旨の制御指令が入力される間、予め設定された所定周期(例えば数msec. )毎に実行される。そして、ステップS10において、異常検出部51は、各磁極センサSEu,SEv,SEwからの磁極信号Smpu,Smpv,Smpwの中に異常な信号があるか否かを検出するための信号異常検出処理を実行する。すなわち、全ての磁極信号Smpu,Smpv,Smpwが正常である状態でブラシレスモータ29が回転する場合、各磁極信号Smpu,Smpv,Smpwには、立ち上がりエッジ及び立ち下がりエッジがそれぞれ含まれる(図3(b)参照)。例えば、W相の磁極信号Smpwの立ち上がりエッジは、U相の磁極信号Smpuの立ち下がりエッジとV相の磁極信号Smpvの立ち上がりエッジとの間のタイミングで発生する。また、W相の磁極信号Smpwの立ち下がりエッジは、U相の磁極信号Smpuの立ち上がりエッジとV相の磁極信号Smpvの立ち下がりエッジとの間のタイミングで発生する。
ここで、W相用の磁極センサSEwの故障や短絡などが発生した場合、W相の磁極信号Smpwに立ち上がりエッジや立ち下がりエッジが含まれなくなる。そこで、異常検出部51は、一部の磁極信号(例えばW相の磁極信号Smpw)からエッジを検出できない状態であっても、他の2つの磁極信号(この場合、U相及びV相の磁極信号Smpu,Smpv)からエッジを検出できる場合には、一部の磁極信号が異常磁極信号であると判定する。
続いて、ステップS11において、異常処理部52は、3つの磁極信号Smpu,Smpv,Smpwのうち2つ以上の磁極信号が異常であるか否かを判定する。そして、ステップS11の判定結果が肯定判定である場合、異常処理部52は、ブラシレスモータ29の制御が不能である旨の信号を主制御部41に出力し、ブラシレスモータ29の制御を停止させる(ステップS12)。その後、モータ制御処理ルーチンは、一旦終了される。
一方、ステップS12の判定結果が否定判定である場合、ブラシレスモータ29の単位時間あたりの実際の回転数(以下、「実回転数」ともいう。)Aが演算される(ステップS13)。すなわち、位置検出部53は、各磁極信号Smpu,Smpv,Smpwのうち少なくとも一つの磁極信号に基づきブラシレスモータ29の回転位置を演算し、該演算結果に相当する位置信号を制御演算部47に出力する。そして、制御演算部47は、位置検出部53から入力された位置信号に基づき、該ブラシレスモータ29の実回転数Aを演算する。続いて、ステップS14において、制御演算部47は、主制御部41からの制御指令に基づき、ブラシレスモータ29の単位時間あたりの目標回転数(以下、単に「目標回転数」ともいう。)Bを演算する。そして、ステップS15において、制御演算部47は、ブラシレスモータ29の実回転数AをステップS14で演算された目標回転数Bに近づけるための駆動信号を生成し、該駆動信号に基づきブラシレスモータ29の回転状態を制御する。その後、モータ制御処理ルーチンは、一旦終了される。
次に、V相の磁極信号Smpvに含まれるエッジ(立ち上がりエッジ及び立ち下がりエッジ)が入力された場合に、モータ制御部46が実行するV相エッジ検出割り込み処理ルーチンについて、図5及び図6に示すフローチャートに基づき説明する。
さて、V相エッジ検出割り込み処理ルーチンは、V相の磁極信号Smpvに含まれるエッジがモータ制御部46に入力されたことを契機に実行される。本実施形態においてV相エッジ検出割り込み処理ルーチンは、V相用の磁極センサSEvから出力される磁極信号Smpvが異常である場合、疑似信号PSmpに含まれるエッジ(以下、「仮想エッジ」ともいう。)に基づき実行される。そして、ステップS20において、異常検出部51は、V相用の磁極センサSEvから出力される磁極信号Smpvが異常であるか否かを判定する。この判定結果が否定判定である場合には、V相の磁極信号Smpvが正常磁極信号である(即ち、異常磁極信号ではない)と判断され、その処理が後述するステップS22に移行される。
一方、ステップS20の判定結果が肯定判定である場合、位置検出部53は、異常磁極信号であるV相の磁極信号Smpvのレベルを、異常処理部52で生成された疑似信号PSmpのレベルの切り替えに基づき強制的に切り替えさせる。すなわち、V相の磁極信号Smpvが「Hi」である場合、位置検出部53は、V相の磁極信号Smpvを強制的に「Low」に強制的に切り替えさせ、立ち下がりエッジを発生させる。また、V相の磁極信号Smpvが「Low」である場合、位置検出部53は、V相の磁極信号Smpvを強制的に「Hi」に強制的に切り替えさせ、立ち上がりエッジを発生させる。
ステップS22において、制御演算部47は、ブラシレスモータ29の各相の出力切替を行う、即ち該ブラシレスモータ29の駆動処理を行なう。そして、ステップS23において、制御演算部47は、今回のV相エッジ検出割り込み処理ルーチンが開始された時点の割り込み時刻を記憶させる。続いて、ステップS24において、異常検出部51は、W相用の磁極センサSEwから出力される磁極信号Smpwが異常であるか否かを判定する。この判定結果が否定判定である場合、即ち磁極信号Smpwが正常磁極信号である場合、V相エッジ検出割り込み処理ルーチンが終了される。一方、ステップS24の判定結果が肯定判定である場合、異常処理部52は、W相用疑似信号生成処理を実行する(ステップS25)。その後、V相エッジ検出割り込み処理ルーチンが終了される。
次に、上記ステップS25のW相用疑似信号生成処理ルーチン(W相用疑似信号生成処理)について、図6に示すフローチャートと、図7〜図9に示すタイミングチャートに基づき説明する。なお、図7〜図9に示すタイミングチャートは、W相の磁極信号Smpwが異常である場合のタイミングチャートである。
さて、W相用疑似信号生成処理ルーチンにおいて、異常処理部52は、仮想エッジの発生タイミング演算処理を行なう(ステップS30)。第1に、W相用の疑似信号PSmpの立ち上がりエッジを発生させるタイミングを演算する場合について説明する。この場合、W相用疑似信号生成処理ルーチンが実行される時刻は、V相の磁極信号Smpvの立ち下がりエッジが発生した時刻、即ち後述する第4発生時刻t24(図7及び図8参照)である。
具体的には、異常処理部52は、図7及び図8に示すように、前回のV相エッジ検出割り込み処理ルーチンの実行契機となったタイミング、即ち第2の磁極信号に相当するV相(異常が発生したW相の前相)の磁極信号Smpvに含まれる立ち上がりエッジの発生時刻(以下、「第1発生時刻」ともいう。)t21を取得する。また、異常処理部52は、第1発生時刻t21よりも後のタイミングであって、且つ第1の磁極信号に相当するU相(異常が発生したW相の前々相)の磁極信号Smpuに含まれる立ち上がりエッジの発生時刻(以下、「第3発生時刻」ともいう。)t23を取得する。さらに、異常処理部52は、第3発生時刻t23よりも後のタイミングであって且つV相の磁極信号Smpvの立ち下がりエッジの発生時刻(以下、「第4発生時刻」ともいう。)t24を取得する。
そして、異常処理部52は、第1発生時刻t21と第3発生時刻t23との時刻差(第4間隔時間)ΔT4、及び第3発生時刻t23と第4発生時刻t24との時刻差(第1間隔時間)ΔT1を以下に示す関係式(式1)(式2)に基づき演算する。続いて、異常処理部52は、疑似信号PSmpに含まれる前回の立ち下がりエッジの発生時刻(以下、「第2発生時刻」ともいう。)t22と第3発生時刻t23との時刻差(第3間隔時間)ΔT3を、以下に示す関係式(式3)に基づき推定する。なお、以降の記載では、「時刻差ΔT4」のことを「第4時刻差」というと共に、「時刻差ΔT1」のことを第1時刻差といい、さらに、「時刻差ΔT3」のことを「第3時刻差」ともいうものとする。
Figure 0005696401

そして、異常処理部52は、第1時刻差ΔT1に基づく第1周波数F1及び第3時刻差ΔT3に基づく第3周波数F3を以下に示す関係式(式4)(式5)に基づき演算すると共に、各周波数F1,F3の差周波数ΔF1を以下に示す関係式(式6)に基づき演算する。差周波数ΔF1は、ブラシレスモータ29が加速時には正の値になる一方、減速時には負の値になる。続いて、異常処理部52は、第4発生時刻t24と疑似信号PSmpの立ち上がりエッジの発生時刻(以下、「第5発生時刻」ともいう。)t25との間に相当する周波数F7を以下に示す関係式(式7)に基づき演算すると共に、第4発生時刻t24と第5発生時刻t25との時刻差(立ち上がり間隔時間)ΔT7を以下に示す関係式(式8)に基づき演算する。したがって、本実施形態では、異常処理部52が、立ち上がり設定手段としても機能する。なお、以降の記載において、「時刻差ΔT7」のことを「第7時刻差」ともいう。
Figure 0005696401

第2に、W相用の疑似信号PSmpの立ち下がりエッジを発生させるタイミングを演算する場合について説明する。この場合、W相用疑似信号生成処理ルーチンが実行される時刻は、V相の磁極信号Smpvの立ち上がりエッジが発生した時刻、即ち後述する第7発生時刻t27である。
具体的には、異常処理部52は、前回のV相エッジ検出割り込み処理ルーチンの実行契機となったタイミング、即ちV相の磁極信号Smpvに含まれる立ち下がりエッジの発生時刻(第4発生時刻t24)を取得する。また、異常処理部52は、第4発生時刻t24よりも後のタイミングであって、且つU相の磁極信号Smpuに含まれる立ち下がりエッジの発生時刻(以下、「第6発生時刻」ともいう。)t26を取得する。さらに、異常処理部52は、第6発生時刻t26よりも後のタイミングであって且つV相の磁極信号Smpvの立ち上がりエッジの発生時刻(以下、「第7発生時刻」ともいう。)t27を取得する。
そして、異常処理部52は、第4発生時刻t24と第6発生時刻t26との時刻差(第6間隔時間)ΔT6、及び第6発生時刻t26と第7発生時刻t27との時刻差(第2間隔時間)ΔT2を以下に示す関係式(式9)(式10)に基づき演算する。続いて、異常処理部52は、疑似信号PSmpに含まれる前回の立ち上がりエッジの発生時刻(以下、「第5発生時刻」ともいう。)t25と第6発生時刻t26との時刻差(第5間隔時間)ΔT5を、以下に示す関係式(式11)に基づき推定する。なお、以降の記載では、「時刻差ΔT6」のことを「第6時刻差」というと共に、「時刻差ΔT2」のことを第2時刻差といい、さらに、「時刻差ΔT5」のことを「第5時刻差」ともいうものとする。
Figure 0005696401

そして、異常処理部52は、第2時刻差ΔT2に基づく第2周波数F2及び第5時刻差ΔT5に基づく第5周波数F5を以下に示す関係式(式12)(式13)に基づき演算すると共に、各周波数F2,F5の差周波数ΔF2を以下に示す関係式(式14)に基づき演算する。続いて、異常処理部52は、第7発生時刻t27と疑似信号PSmpの立ち下がりエッジの発生時刻(以下、「第8発生時刻」ともいう。)t28との間に相当する周波数F8を以下に示す関係式(式15)に基づき演算すると共に、第7発生時刻t27と第8発生時刻t28との時刻差(立ち下がり間隔時間)ΔT8を以下に示す関係式(式16)に基づき演算する。したがって、本実施形態では、異常処理部52が、立ち下がり設定手段としても機能する。なお、以降の記載において、「時刻差ΔT8」のことを「第8時刻差」ともいう。
Figure 0005696401

そして、異常処理部52は、上記ステップS13で演算したブラシレスモータ29の実回転数Aを取得し(ステップS31)、上記ステップS14で演算したブラシレスモータ29の目標回転数Bを取得する(ステップS32)。続いて、異常処理部52は、実回転数Aから目標回転数Bを減算した値の絶対値が予め設定された回転数閾値KS以下であるか否かを判定する(ステップS33)。この回転数閾値KSは、ブラシレスモータ29がほぼ一定速度で回転する定速状態であるか否かを判断するための基準値であって、実験やシミュレーションなどによって予め設定される。したがって、本実施形態では、異常処理部52が、回転状態判定手段としても機能する。
ステップS33の判定結果が肯定判定(A−Bの絶対値≦KS)である場合、異常処理部52は、ブラシレスモータ29が定速状態であると判断し、エッジの発生間隔時間ΔTsを第1時刻差ΔT1又は第2時刻差ΔT2と設定し(ステップS34)、その処理を後述するステップS36に移行する。なお、ブラシレスモータ29が定速状態である場合、第1時刻差ΔT1及び第2時刻差ΔT2は略同等となる。
一方、ステップS33の判定結果が否定判定(A−Bの絶対値>KS)である場合、異常処理部52は、ブラシレスモータ29が加速状態又は減速状態であると判断する。そして、異常処理部52は、疑似信号PSmpの立ち上がりエッジを発生させる場合にはエッジの発生間隔時間ΔTsを第7時刻差ΔT7とする一方、疑似信号PSmpの立ち下がりエッジを発生させる場合にはエッジの発生間隔時間ΔTsを第8時刻差ΔT8とする(ステップS35)。その後、異常処理部52は、その処理を次のステップS36に移行する。
ステップS36において、異常処理部52は、今回のV相エッジ検出割り込み処理ルーチンが開始された時点の割り込み時刻から上記ステップS34又はステップS35で設定されたエッジの発生間隔時間ΔTsが経過した時点で仮想エッジを発生させる。すなわち、異常処理部52は、疑似信号PSmpのレベルが「Hi」である場合には立ち下がりエッジを発生させる一方、疑似信号PSmpのレベルが「Low」である場合には立ち上がりエッジを発生させる。その後、異常処理部52は、W相用疑似信号生成処理ルーチンを終了する。
すなわち、ブラシレスモータ29が加速状態である場合、図7に示すように、各磁極信号Smpu,Smpv,Smpwに含まれるエッジの発生タイミングは、徐々に短くなる。ここで、ブラシレスモータ29の加速時に従来の方法で疑似信号(以下、「従来疑似信号PSmp1」という。)を生成した場合、該従来疑似信号PSmp1に含まれる仮想の立ち上がりエッジは、第4発生時刻t24から第3時刻差ΔT3に相当する時間が経過した後に発生される。そのため、本来のW相の磁極信号Smpwに含まれるはずの立ち上がりエッジの発生時刻である第5発生時刻t25よりも遅いタイミングで、仮想の立ち上がりエッジが発生する。また、該従来疑似信号PSmp1に含まれる仮想の立ち下がりエッジは、第7発生時刻t27から第5時刻差ΔT5に相当する時間が経過した後に発生される。そのため、本来のW相の磁極信号Smpwに含まれるはずの立ち下がりエッジの発生時刻である第8発生時刻t28よりも遅いタイミングで、仮想の立ち下がりエッジが発生する。こうした従来疑似信号PSmp1に基づき、異常と判定されたW相の磁極信号Smpwに強制的にエッジを発生させたとしても、この磁極信号は、本来のW相の磁極信号Smpwとは大きく異なる信号となる。こうした相違は、ブラシレスモータ29の加速度が大きくなるほど顕著に発生する。したがって、従来疑似信号PSmp1に基づき強制的に補正されたW相の磁極信号Smpwと、他の正常な磁極信号Smpu,Smpvとに基づきブラシレスモータ29を加速制御したとしても、該ブラシレスモータ29を適切に加速制御することができない。
また、ブラシレスモータ29が減速状態である場合、図8に示すように、従来疑似信号PSmp1に含まれる仮想の立ち上がりエッジ及び立ち下がりエッジは、本来のW相の磁極信号Smpwに含まれるはずの立ち上がりエッジ及び立ち下がりエッジに比して、早いタイミングで発生する。そのため、こうした従来疑似信号PSmp1に基づき、異常と判定されたW相の磁極信号Smpwに強制的にエッジを発生させたとしても、この磁極信号は、本来のW相の磁極信号Smpwとは大きく異なる信号となる。こうした相違は、ブラシレスモータ29の減速度が大きくなるほど顕著に発生する。したがって、従来疑似信号PSmp1に基づき強制的に補正されたW相の磁極信号Smpwと、他の正常な磁極信号Smpu,Smpvとに基づきブラシレスモータ29を減速制御したとしても、該ブラシレスモータ29を適切に減速制御することができない。
この点、本実施形態では、ブラシレスモータ29が加速状態又は減速状態である場合、疑似信号PSmpに含まれる仮想の立ち上がりエッジは、従来の場合に比して、本来のW相の磁極信号Smpwに含まれるはずの立ち上がりエッジの発生タイミングに限りなく近いタイミングで発生される。また、疑似信号PSmpに含まれる仮想の立ち下がりエッジは、従来の場合に比して、本来のW相の磁極信号Smpwに含まれるはずの立ち下がりエッジの発生タイミングに限りなく近いタイミングで発生される。そのため、こうした疑似信号PSmpに基づき、異常と判定されたW相の磁極信号Smpwに強制的にエッジを発生させると、この磁極信号は、本来のW相の磁極信号Smpwに非常に近い信号となる。したがって、疑似信号PSmpに基づき強制的に補正されたW相の磁極信号Smpwと、他の正常な磁極信号Smpu,Smpvとに基づきブラシレスモータ29を加速又は減速制御すると、一つの磁極信号に異常があったとしても該ブラシレスモータ29を適切に加速又は減速制御することが可能となる。
本実施形態のモータ制御部46は、U相の磁極信号Smpuに含まれる立ち上がりエッジ及び立ち下がりエッジが入力された場合には、V相エッジ検出割り込み処理ルーチンに相当するU相エッジ検出割り込み処理ルーチンを実行する。このとき、各磁極信号Smpu,Smpv,SmpwのうちV相の磁極信号Smpvのみが異常である場合、異常処理部52は、W相用疑似信号生成処理ルーチンに相当するV相用疑似信号生成処理ルーチンを実行する。その結果、ブラシレスモータ29の回転状態(加速状態、減速状態又は定速状態)に応じた疑似信号PSmpが生成される。そして、この疑似信号に基づき強制的に補正されたV相の磁極信号Smpvと、他の正常な磁極信号Smpu,Smpwとに基づき、ブラシレスモータ29が制御される。したがって、V相の磁極信号Smpvのみが異常であっても、ブラシレスモータ29は、モータ制御部46によって適切に加速又は減速制御される。なお、V相の磁極信号Smpvのみが異常である場合、W相の磁極信号Smpwが第1の磁極信号に相当し、U相の磁極信号Smpuが第2の磁極信号に相当する。
また、モータ制御部46は、W相の磁極信号Smpwに含まれる立ち上がりエッジ及び立ち下がりエッジが入力された場合には、V相エッジ検出割り込み処理ルーチンに相当するW相エッジ検出割り込み処理ルーチンを実行する。このとき、各磁極信号Smpu,Smpv,SmpwのうちU相の磁極信号Smpuのみが異常である場合、異常処理部52は、W相用疑似信号生成処理ルーチンに相当するU相用疑似信号生成処理ルーチンを実行する。その結果、ブラシレスモータ29の回転状態に応じた疑似信号PSmpが生成される。そして、この疑似信号に基づき強制的に補正されたU相の磁極信号Smpuと、他の正常な磁極信号Smpv,Smpwとに基づき、ブラシレスモータ29が制御される。したがって、U相の磁極信号Smpuのみが異常であっても、ブラシレスモータ29は、モータ制御部46によって適切に加速又は減速制御される。なお、U相の磁極信号Smpuのみが異常である場合、V相の磁極信号Smpvが第1の磁極信号に相当し、W相の磁極信号Smpwが第2の磁極信号に相当する。
したがって、本実施形態では、以下に示す効果を得ることができる。
(1)疑似信号PSmpは、正常磁極信号(例えば、U相及びV相の磁極信号Smpu,Smpv)及びブラシレスモータ29の回転状態(即ち、定速状態、加速状態又は減速状態)に応じて生成される。そのため、ブラシレスモータ29の回転状態を考慮せず、一律的に疑似信号(即ち、従来疑似信号PSmp1)を生成する従来の場合に比して、疑似信号PSmpを、本来の磁極信号(例えば、W相の磁極信号Smpw)に近づけることができる。したがって、複数の磁極センサSEu,SEv,SEwのうち一部の磁極センサ(例えば、W相用の磁極センサSEw)から出力される磁極信号が異常磁極信号である場合でも、疑似信号PSmpを適切に生成することによりブラシレスモータ29を適切に制御できる。
(2)一般に、ブラシレスモータ29が加速状態である場合、各磁極信号Smpu,Smpv,Smpwに含まれる各エッジの発生タイミングは、次第に短くなる、即ち各エッジの間隔は狭まる傾向となる。そこで、本実施形態では、疑似信号PSmpは、該疑似信号PSmp及び正常磁極信号(例えば、U相及びV相の磁極信号Smpu,Smpv)に含まれる各エッジの間隔が次第に短くなるように生成される。そのため、疑似信号PSmpを、本来の磁極信号(例えば、W相の磁極信号Smpw)に近づけることができ、ひいてはブラシレスモータ29の加速制御をより正確に行なうことができる。
(3)また、ブラシレスモータ29が減速状態である場合、各磁極信号Smpu,Smpv,Smpwに含まれる各エッジの発生タイミングは、次第に長くなる、即ち各エッジの間隔は広がる傾向となる。そこで、本実施形態では、疑似信号PSmpは、該疑似信号PSmp及び正常磁極信号(例えば、U相及びV相の磁極信号Smpu,Smpv)に含まれる各エッジの間隔が長くなるように生成される。そのため、疑似信号PSmpを、本来の磁極信号(例えば、W相の磁極信号Smpw)に近づけることができ、ひいてはブラシレスモータ29の減速制御をより正確に行なうことができる。
(4)ブラシレスモータ29が加速状態である場合、第1時刻差ΔT1は、第3時刻差ΔT3よりも短くなる。一方、ブラシレスモータ29が減速状態である場合、第1時刻差ΔT1は、第3時刻差ΔT3よりも長くなる。そこで、第1の磁極信号の立ち下がりエッジが発生してから疑似信号PSmpの仮想の立ち上がりエッジが発生するまでの時刻差である第7時刻差ΔT7は、第1時刻差ΔT1と第3時刻差ΔT3との差に応じて設定される。したがって、疑似信号PSmpの立ち上がりエッジを、本来の磁極信号の立ち上がりエッジにより近いタイミングで発生させることができる。
(5)また、第3時刻差ΔT3は、上記関係式(式3)に基づき演算される。そのため、第2発生時刻t22では、一つの磁極信号(例えば、W相の磁極信号Smpw)が異常であると判定される前であり、疑似信号PSmpが未だ生成されていなかったとしても、第3時刻差ΔT3を、正常磁極信号(例えば、U相及びV相の磁極信号Smpu,Smpv)に基づき好適に推定できる。
(6)ブラシレスモータ29が加速状態である場合、第2時刻差ΔT2は、第5時刻差ΔT5よりも短くなる。一方、ブラシレスモータ29が減速状態である場合、第2時刻差ΔT2は、第5時刻差ΔT5よりも長くなる。そこで、第1の磁極信号の立ち上がりエッジが発生してから疑似信号PSmpの仮想の立ち下がりエッジが発生するまでの時刻差である第8時刻差ΔT8は、第2時刻差ΔT2と第5時刻差ΔT5との差に応じて設定される。したがって、疑似信号PSmpの立ち下がりエッジを、本来の磁極信号の立ち下がりエッジにより近いタイミングで発生させることができる。
(7)また、第5時刻差ΔT5は、上記関係式(式11)に基づき演算される。そのため、第5発生時刻t25では、一つの磁極信号(例えば、W相の磁極信号Smpw)が異常であると判定される前であり、疑似信号PSmpが未だ生成されていなかったとしても、第5時刻差ΔT5を、正常磁極信号(例えば、U相及びV相の磁極信号Smpu,Smpv)に基づき好適に推定できる。
(8)本実施形態では、ブラシレスモータ29が加速状態又は減速状態である場合、疑似信号PSmpは、ブラシレスモータ29の回転状態を加味して生成される。一方、ブラシレスモータ29が定速状態である場合、疑似信号PSmpは、ブラシレスモータ29の回転状態を加味することなく、従来の方法で生成される。そのため、ブラシレスモータ29が定速状態である場合には、疑似信号PSmpの仮想の立ち上がりエッジを、正常磁極信号の立ち上がりエッジの中間タイミングで発生させることができる。同様に、疑似信号PSmpの仮想の立ち下がりエッジを、正常磁極信号の立ち下がりエッジの中間タイミングで発生させることができる。したがって、ブラシレスモータ29が定速状態である場合には、より簡単な演算方法で疑似信号PSmpを生成することができる。
(9)また、ブレーキアクチュエータ18に搭載されるブラシレスモータ29は、そのときに実行される制動制御(例えば、アンチロックブレーキ制御)中であっても、その回転速度が適宜調整されることがある。すなわち、ブラシレスモータ29が加速状態や減速状態であることが多い。そのため、一つの磁極信号が異常であったとしても、上述した方法で疑似信号を生成することにより、ブレーキアクチュエータ18のブラシレスモータ29の加速制御及び減速制御を好適に行なうことができる。
なお、実施形態は以下のような別の実施形態に変更してもよい。
・W相用疑似信号生成処理、V相用疑似信号生成処理及びU相用疑似信号生成処理において、ステップS33,S34及び該ステップS33,S34に相当する処理を省略してもよい。すなわち、ブラシレスモータ29が定速状態である場合であっても、発生間隔時間ΔTsを、疑似信号PSmpの立ち上がりエッジを発生させる場合には第7時刻差ΔT7とする一方、疑似信号PSmpの立ち下がりエッジを発生させる場合には第8時刻差ΔT8としてもよい。このように構成しても、第7時刻差ΔT7及び第8時刻差ΔT8はブラシレスモータ29の回転状態を加味した値であるため、定速状態時における疑似信号PSmpを正確に生成することができる。
・実施形態において、各磁極信号Smpu,Smpv,Smpwに異常があるか否かを、任意のタイミングで判定してもよい。例えば、車両の図示しないイグニッションスイッチがオンになった直後に、ブラシレスモータ29を初期動作として回転させ、そのときに各磁極センサSEu,SEv,SEwからの磁極信号Smpu,Smpv,Smpwに基づき、異常な磁極信号があるか否かを判定してもよい。また、車両の走行中にブラシレスモータ29を回転させる制動制御を実行させる際に、各磁極センサSEu,SEv,SEwからの磁極信号Smpu,Smpv,Smpwに基づき、異常な磁極信号があるか否かを判定してもよい。また、車両走行中において運転手によるブレーキ操作及び制動制御が実行されていないタイミングで、ブラシレスモータ29を回転させ、このときに各磁極センサSEu,SEv,SEwから出力される磁極信号Smpu,Smpv,Smpwに基づき、異常な磁極信号があるか否かを判定してもよい。
・実施形態において、各周波数F1,F3,F2,F5を算出する場合には、上記関係式(式4)(式5)(式12)(式13)の演算結果に対し、ブラシレスモータ29の回転状態に応じたゲインを乗算してもよい。
・実施形態において、ブラシレスモータ29の加速度や減速度を算出し、該加速度や減速度に応じた時間を第1時刻差ΔT1から減算し、該減算結果を第7時刻差ΔT7としてもよい。同様に、ブラシレスモータ29の加速度に応じた時間を第2時刻差ΔT2から減算し、該減算結果を第8時刻差ΔT8としてもよい。
・上記実施形態では、2つの磁極信号に異常がある場合、ブラシレスモータ29の制御ができないとしているが、異常と判定された2つの磁極信号に相当する疑似信号を、残り一つの正常な磁極信号に基づき生成してもよい。すなわち、一つの磁極信号が正常であるならば、ブラシレスモータ29の回転状態を検出することができる。また、加速状態である場合には加速度を検出できる一方、減速状態である場合には減速度を検出できる。こうしたブラシレスモータ29の回転状態を加味して2つの疑似信号を生成することにより、2つの磁極信号に異常がある場合であっても、ブラシレスモータ29を好適に制御することができる。
・本発明のモータ制御装置を、3相以外の複数相(例えば6相)を有するブラシレスモータの制御装置に具体化してもよい。すなわち、6相のうち一部の相の磁極信号に異常がある場合、該一部の相の磁極信号に相当する疑似信号を、他の正常な磁極信号に基づき生成してもよい。
・本発明のモータ制御装置を、車両に搭載される各ブラシレスモータのうちブレーキアクチュエータのブラシレスモータ以外の他の任意のブラシレスモータ(例えば、ワイパの駆動源として用いられるブラシレスモータ)の制御装置に具体化してもよい。また、モータ制御装置を、車両以外の他の任意の電気機器(例えば、洗濯機)の駆動源として用いられるブラシレスモータの制御装置として具体化してもよい。
次に、上記実施形態及び別の実施形態から把握できる技術的思想を以下に追記する。
(イ)ブラシレスモータ(29)の回転時に、該ブラシレスモータ(29)の相毎に設けられた複数の磁極信号出力手段(SEu,SEv,SEw)から出力される各磁極信号(Smpu,Smpv,Smpw)に基づき、前記ブラシレスモータ(29)を回転させるモータ制御方法であって、前記各磁極信号出力手段(SEu,SEv,SEw)から出力される各磁極信号(Smpu,Smpv,Smpw)が異常であるか否かを個別に判定させる異常判定ステップ(S10)と、前記異常判定ステップ(S10)で前記各磁極信号(Smpu,Smpv,Smpw)のうち一部の磁極信号が異常であると判定した場合に、異常であると判定された異常磁極信号以外の正常磁極信号及び前記ブラシレスモータ(29)の回転状態に基づき、前記異常磁極信号に代わる疑似信号(PSmp)を生成させる信号生成ステップ(S25)と、前記信号生成ステップ(S25)で疑似信号(PSmp)を生成した場合に、該疑似信号(PSmp)及び前記正常磁極信号に基づき前記ブラシレスモータ(29)を回転させる制御ステップ(S15)と、を有することを特徴とするモータ制御方法。
29…ブラシレスモータ、46…モータ制御装置としてのモータ制御部、47…モータ制御手段を構成する制御演算部、48…モータ制御手段を構成する相切替出力部、49…モータ制御手段を構成するプリドライバ、50…モータ制御手段を構成するフルブリッジ回路、51…異常判定手段、エッジ検出手段としての異常検出部、52…信号生成手段、立ち上がり設定手段、立ち下がり設定手段、回転状態判定手段としての異常処理部、SEu,SEv,SEw…磁極信号出力手段としての磁極センサ、PSmp…疑似信号、Smpu,Smpv,Smpw…磁極信号、ΔT1…第1間隔時間としての第1時刻差、ΔT2…第2間隔時間としての第2時刻差、ΔT3…第3間隔時間としての第3時刻差、ΔT4…第4間隔時間としての第4時刻差、ΔT5…第5間隔時間としての第5時刻差、ΔT6…第6間隔時間としての第6時刻差、ΔT7…立ち上がり間隔時間としての第7時刻差、ΔT8…立ち下がり間隔時間としての第8時刻差。

Claims (9)

  1. 相を有するブラシレスモータ(29)を、前記各相に個別対応する複数の磁極信号出力手段(SEu,SEv,SEw)から出力される各磁極信号(Smpu,Smpv,Smpw)に基づき制御するモータ制御装置において、
    前記各磁極信号出力手段(SEu,SEv,SEw)から出力される各磁極信号(Smpu,Smpv,Smpw)が異常であるか否かを個別に判定する異常判定手段(51)と、
    前記異常判定手段(51)によって前記各磁極信号(Smpu,Smpv,Smpw)のうち一部の磁極信号が異常であると判定された場合には、異常であると判定された異常磁極信号以外の正常磁極信号及び前記ブラシレスモータ(29)の回転状態に基づき、前記異常磁極信号に代わる疑似信号(PSmp)を生成する信号生成手段(52)と、
    前記信号生成手段(52)によって疑似信号(PSmp)が生成された場合には、該疑似信号(PSmp)及び前記正常磁極信号に基づき前記ブラシレスモータ(29)を制御するモータ制御手段(47,48,49,50)と、
    前記各磁極信号(Smpu,Smpv,Smpw)の立ち上がりエッジ及び立ち下がりエッジを個別に検出するエッジ検出手段(51)と、を備え
    前記信号生成手段(52)は、
    前記ブラシレスモータ(29)の加速時において、前記異常判定手段(51)によって前記各磁極信号(Smpu,Smpv,Smpw)の何れか一つの磁極信号が異常であると判定された場合に、
    前記疑似信号(PSmp)の立ち上がりエッジを、前記正常磁極信号のうち第1の磁極信号の立ち上がりエッジが発生してから前記正常磁極信号のうち残りの第2の磁極信号の立ち下がりエッジが発生するまでの第1間隔時間(ΔT1)よりも、当該第2の磁極信号の立ち下がりエッジが発生してから前記疑似信号(PSmp)の立ち上がりエッジが発生するまでの立ち上がり間隔時間(ΔT7)が短くなるタイミングで発生させると共に、
    前記疑似信号(PSmp)の立ち下がりエッジを、前記第1の磁極信号の立ち下がりエッジが発生してから前記第2の磁極信号の立ち上がりエッジが発生するまでの第2間隔時間(ΔT2)よりも、当該第2の磁極信号の立ち上がりエッジが発生してから前記疑似信号(PSmp)の立ち下がりエッジが発生するまでの立ち下がり間隔時間(ΔT8)が短くなるタイミングで発生させ、
    前記異常判定手段(51)によって前記各磁極信号(Smpu,Smpv,Smpw)の何れか一つの磁極信号が異常であると判定された場合に、前記疑似信号(PSmp)の前回の立ち下がりエッジが発生してから前記第1の磁極信号の立ち上がりエッジが発生するまでの第3間隔時間(ΔT3)と前記第1間隔時間(ΔT1)との差に基づき、立ち上がり間隔時間(ΔT7)を設定する立ち上がり設定手段(52)をさらに備え、
    前記信号生成手段(52)は、前記立ち上がり設定手段(52)によって設定された立ち上がり間隔時間(ΔT7)に基づいたタイミングで疑似信号(PSmp)に立ち上がりエッジを発生させることを特徴とするモータ制御装置。
  2. 3相を有するブラシレスモータ(29)を、前記各相に個別対応する複数の磁極信号出力手段(SEu,SEv,SEw)から出力される各磁極信号(Smpu,Smpv,Smpw)に基づき制御するモータ制御装置において、
    前記各磁極信号出力手段(SEu,SEv,SEw)から出力される各磁極信号(Smpu,Smpv,Smpw)が異常であるか否かを個別に判定する異常判定手段(51)と、
    前記異常判定手段(51)によって前記各磁極信号(Smpu,Smpv,Smpw)のうち一部の磁極信号が異常であると判定された場合には、異常であると判定された異常磁極信号以外の正常磁極信号及び前記ブラシレスモータ(29)の回転状態に基づき、前記異常磁極信号に代わる疑似信号(PSmp)を生成する信号生成手段(52)と、
    前記信号生成手段(52)によって疑似信号(PSmp)が生成された場合には、該疑似信号(PSmp)及び前記正常磁極信号に基づき前記ブラシレスモータ(29)を制御するモータ制御手段(47,48,49,50)と、
    前記各磁極信号(Smpu,Smpv,Smpw)の立ち上がりエッジ及び立ち下がりエッジを個別に検出するエッジ検出手段(51)と、を備え、
    前記信号生成手段(52)は、
    前記ブラシレスモータ(29)の減速時において、前記異常判定手段(51)によって前記各磁極信号(Smpu,Smpv,Smpw)の何れか一つの磁極信号が異常であると判定された場合に、
    前記疑似信号(PSmp)の立ち上がりエッジを、前記正常磁極信号のうち第1の磁極信号の立ち上がりエッジが発生してから前記正常磁極信号のうち第2の磁極信号の立ち下がりエッジが発生するまでの第1間隔時間(ΔT1)よりも、当該第2の磁極信号の立ち下がりエッジが発生してから前記疑似信号(PSmp)の立ち上がりエッジが発生するまでの立ち上がり間隔時間(ΔT7)が長くなるタイミングで発生させると共に、
    前記疑似信号(PSmp)の立ち下がりエッジを、前記第1の磁極信号の立ち下がりエッジが発生してから前記第2の磁極信号の立ち上がりエッジが発生するまでの第2間隔時間(ΔT2)よりも、当該第2の磁極信号の立ち上がりエッジが発生してから前記疑似信号(PSmp)の立ち下がりエッジが発生するまでの立ち下がり間隔時間(ΔT8)が長くなるタイミングで発生させ
    前記異常判定手段(51)によって前記各磁極信号(Smpu,Smpv,Smpw)の何れか一つの磁極信号が異常であると判定された場合に、前記疑似信号(PSmp)の前回の立ち下がりエッジが発生してから前記第1の磁極信号の立ち上がりエッジが発生するまでの第3間隔時間(ΔT3)と前記第1間隔時間(ΔT1)との差に基づき、立ち上がり間隔時間(ΔT7)を設定する立ち上がり設定手段(52)をさらに備え、
    前記信号生成手段(52)は、前記立ち上がり設定手段(52)によって設定された立ち上がり間隔時間(ΔT7)に基づいたタイミングで疑似信号(PSmp)に立ち上がりエッジを発生させることを特徴とするモータ制御装置。
  3. 前記立ち上がり設定手段(52)は、前記第2の磁極信号の立ち上がりエッジのうち前記疑似信号(PSmp)の前回の立ち下がりエッジの前に発生した立ち上がりエッジと、前記第1の磁極信号の立ち上がりエッジのうち前記疑似信号(PSmp)の前回の立ち下がりエッジの後に発生する立ち上がりエッジとの間の第4間隔時間(ΔT4)に基づき前記第3間隔時間(ΔT3)を推定することを特徴とする請求項1又は請求項2に記載のモータ制御装置。
  4. 前記立ち上がり設定手段(52)は、前記第1間隔時間(ΔT1)に基づく周波数(F1)から前記第3間隔時間(ΔT3)に基づく周波数(F3)を減算し、該減算結果(ΔF1)に前記第1間隔時間(ΔT1)に基づく周波数(F1)を加算し、該加算結果(F7)に基づき立ち上がり間隔時間(ΔT7)を設定することを特徴とする請求項1〜請求項3のうち何れか一項に記載のモータ制御装置。
  5. 3相を有するブラシレスモータ(29)を、前記各相に個別対応する複数の磁極信号出力手段(SEu,SEv,SEw)から出力される各磁極信号(Smpu,Smpv,Smpw)に基づき制御するモータ制御装置において、
    前記各磁極信号出力手段(SEu,SEv,SEw)から出力される各磁極信号(Smpu,Smpv,Smpw)が異常であるか否かを個別に判定する異常判定手段(51)と、
    前記異常判定手段(51)によって前記各磁極信号(Smpu,Smpv,Smpw)のうち一部の磁極信号が異常であると判定された場合には、異常であると判定された異常磁極信号以外の正常磁極信号及び前記ブラシレスモータ(29)の回転状態に基づき、前記異常磁極信号に代わる疑似信号(PSmp)を生成する信号生成手段(52)と、
    前記信号生成手段(52)によって疑似信号(PSmp)が生成された場合には、該疑似信号(PSmp)及び前記正常磁極信号に基づき前記ブラシレスモータ(29)を制御するモータ制御手段(47,48,49,50)と、
    前記各磁極信号(Smpu,Smpv,Smpw)の立ち上がりエッジ及び立ち下がりエッジを個別に検出するエッジ検出手段(51)と、を備え、
    前記信号生成手段(52)は、
    前記ブラシレスモータ(29)の加速時において、前記異常判定手段(51)によって前記各磁極信号(Smpu,Smpv,Smpw)の何れか一つの磁極信号が異常であると判定された場合に、
    前記疑似信号(PSmp)の立ち上がりエッジを、前記正常磁極信号のうち第1の磁極信号の立ち上がりエッジが発生してから前記正常磁極信号のうち残りの第2の磁極信号の立ち下がりエッジが発生するまでの第1間隔時間(ΔT1)よりも、当該第2の磁極信号の立ち下がりエッジが発生してから前記疑似信号(PSmp)の立ち上がりエッジが発生するまでの立ち上がり間隔時間(ΔT7)が短くなるタイミングで発生させると共に、
    前記疑似信号(PSmp)の立ち下がりエッジを、前記第1の磁極信号の立ち下がりエッジが発生してから前記第2の磁極信号の立ち上がりエッジが発生するまでの第2間隔時間(ΔT2)よりも、当該第2の磁極信号の立ち上がりエッジが発生してから前記疑似信号(PSmp)の立ち下がりエッジが発生するまでの立ち下がり間隔時間(ΔT8)が短くなるタイミングで発生させ、
    前記異常判定手段(51)によって前記各磁極信号(Smpu,Smpv,Smpw)の何れか一つの磁極信号が異常であると判定された場合に、前記疑似信号(PSmp)の前回の立ち上がりエッジが発生してから前記第1の磁極信号の立ち下がりエッジが発生するまでの第5間隔時間(ΔT5)と前記第2間隔時間(ΔT2)との差に基づき、立ち下がり間隔時間(ΔT8)を設定する立ち下がり設定手段(52)をさらに備え、
    前記信号生成手段(52)は、前記立ち下がり設定手段(52)によって設定された立ち下がり間隔時間(ΔT8)に基づいたタイミングで疑似信号(PSmp)に立ち下がりエッジを発生させることを特徴とするモータ制御装置。
  6. 3相を有するブラシレスモータ(29)を、前記各相に個別対応する複数の磁極信号出力手段(SEu,SEv,SEw)から出力される各磁極信号(Smpu,Smpv,Smpw)に基づき制御するモータ制御装置において、
    前記各磁極信号出力手段(SEu,SEv,SEw)から出力される各磁極信号(Smpu,Smpv,Smpw)が異常であるか否かを個別に判定する異常判定手段(51)と、
    前記異常判定手段(51)によって前記各磁極信号(Smpu,Smpv,Smpw)のうち一部の磁極信号が異常であると判定された場合には、異常であると判定された異常磁極信号以外の正常磁極信号及び前記ブラシレスモータ(29)の回転状態に基づき、前記異常磁極信号に代わる疑似信号(PSmp)を生成する信号生成手段(52)と、
    前記信号生成手段(52)によって疑似信号(PSmp)が生成された場合には、該疑似信号(PSmp)及び前記正常磁極信号に基づき前記ブラシレスモータ(29)を制御するモータ制御手段(47,48,49,50)と、
    前記各磁極信号(Smpu,Smpv,Smpw)の立ち上がりエッジ及び立ち下がりエッジを個別に検出するエッジ検出手段(51)と、を備え、
    前記信号生成手段(52)は、
    前記ブラシレスモータ(29)の減速時において、前記異常判定手段(51)によって前記各磁極信号(Smpu,Smpv,Smpw)の何れか一つの磁極信号が異常であると判定された場合に、
    前記疑似信号(PSmp)の立ち上がりエッジを、前記正常磁極信号のうち第1の磁極信号の立ち上がりエッジが発生してから前記正常磁極信号のうち第2の磁極信号の立ち下がりエッジが発生するまでの第1間隔時間(ΔT1)よりも、当該第2の磁極信号の立ち下がりエッジが発生してから前記疑似信号(PSmp)の立ち上がりエッジが発生するまでの立ち上がり間隔時間(ΔT7)が長くなるタイミングで発生させると共に、
    前記疑似信号(PSmp)の立ち下がりエッジを、前記第1の磁極信号の立ち下がりエッジが発生してから前記第2の磁極信号の立ち上がりエッジが発生するまでの第2間隔時間(ΔT2)よりも、当該第2の磁極信号の立ち上がりエッジが発生してから前記疑似信号(PSmp)の立ち下がりエッジが発生するまでの立ち下がり間隔時間(ΔT8)が長くなるタイミングで発生させ、
    前記異常判定手段(51)によって前記各磁極信号(Smpu,Smpv,Smpw)の何れか一つの磁極信号が異常であると判定された場合に、前記疑似信号(PSmp)の前回の立ち上がりエッジが発生してから前記第1の磁極信号の立ち下がりエッジが発生するまでの第5間隔時間(ΔT5)と前記第2間隔時間(ΔT2)との差に基づき、立ち下がり間隔時間(ΔT8)を設定する立ち下がり設定手段(52)をさらに備え、
    前記信号生成手段(52)は、前記立ち下がり設定手段(52)によって設定された立ち下がり間隔時間(ΔT8)に基づいたタイミングで疑似信号(PSmp)に立ち下がりエッジを発生させることを特徴とするモータ制御装置。
  7. 前記立ち下がり設定手段(52)は、前記第2の磁極信号の立ち下がりエッジのうち前記疑似信号(PSmp)の前回の立ち上がりエッジの前に発生した立ち下がりエッジと、前記第1の磁極信号の立ち上がりエッジのうち前記疑似信号(PSmp)の前回の立ち上がりエッジの後に発生する立ち下がりエッジとの間の第6間隔時間(ΔT6)に基づき第5間隔時間(ΔT5)を推定することを特徴とする請求項5又は請求項6に記載のモータ制御装置。
  8. 前記立ち下がり設定手段(52)は、前記第2間隔時間(ΔT2)に基づく周波数(F2)から前記第5間隔時間(ΔT5)に基づく周波数(F5)を減算し、該減算結果(ΔF2)に前記第2間隔時間(ΔT2)に基づく周波数(F2)を加算し、該加算結果(F8)に基づき立ち下がり間隔時間(ΔT8)を設定することを特徴とする請求項5〜請求項7のうち何れか一項に記載のモータ制御装置。
  9. 前記ブラシレスモータ(29)の回転状態を判定する回転状態判定手段(52)をさらに備え、
    前記信号生成手段(52)は、前記回転状態判定手段(52)によって前記ブラシレスモータ(29)が加速状態又は減速状態であると判定された場合に、前記正常磁極信号及び前記ブラシレスモータ(29)の回転状態に基づき疑似信号(PSmp)を生成することを特徴とする請求項1〜請求項のうち何れか一項に記載のモータ制御装置。
JP2010193400A 2009-09-17 2010-08-31 モータ制御装置 Expired - Fee Related JP5696401B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010193400A JP5696401B2 (ja) 2009-09-17 2010-08-31 モータ制御装置
US12/882,887 US8564229B2 (en) 2009-09-17 2010-09-15 Device and method for controlling motor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009215774 2009-09-17
JP2009215774 2009-09-17
JP2010193400A JP5696401B2 (ja) 2009-09-17 2010-08-31 モータ制御装置

Publications (2)

Publication Number Publication Date
JP2011087454A JP2011087454A (ja) 2011-04-28
JP5696401B2 true JP5696401B2 (ja) 2015-04-08

Family

ID=43729838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010193400A Expired - Fee Related JP5696401B2 (ja) 2009-09-17 2010-08-31 モータ制御装置

Country Status (2)

Country Link
US (1) US8564229B2 (ja)
JP (1) JP5696401B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270581A (ja) * 1999-03-19 2000-09-29 Unisia Jecs Corp モータの位置検出装置
JP3661572B2 (ja) * 2000-07-18 2005-06-15 日産自動車株式会社 インバーターの電流センサー診断装置
JP4652066B2 (ja) * 2005-01-21 2011-03-16 パナソニック株式会社 モータ駆動装置及びモータ駆動方法
JP2007151266A (ja) * 2005-11-25 2007-06-14 Mitsuba Corp ブラシレスモータ用駆動装置及びその駆動方法
JP4404160B2 (ja) * 2008-01-21 2010-01-27 ダイキン工業株式会社 モータ駆動制御装置

Also Published As

Publication number Publication date
US8564229B2 (en) 2013-10-22
US20110062906A1 (en) 2011-03-17
JP2011087454A (ja) 2011-04-28

Similar Documents

Publication Publication Date Title
JP5381954B2 (ja) 車両駆動力制御装置
JP4835471B2 (ja) 車両の制動装置
JP5895916B2 (ja) 車両の制動制御装置
US9346448B2 (en) Vehicle brake hydraulic pressure control apparatus with pump motor malfunction detection
JP6676411B2 (ja) 車両のブレーキ装置
JP2016088507A (ja) 車両用回生制動システムの制御方法
JP2014124972A (ja) 車両の制動制御装置
JP2007276684A (ja) 車両用ブレーキ制御装置
US11572049B2 (en) Brake control device
JP5590309B2 (ja) 車両用制動装置
JP5696401B2 (ja) モータ制御装置
JP2007276655A (ja) 車両用ブレーキ制御装置
JP2007276683A (ja) 車両用ブレーキ制御装置
US8392086B2 (en) Brake fluid pressure controlling device
CN109789855B (zh) 制动器控制装置
JP2020006921A (ja) 車両の制御システム、及び車両
CN108883750B (zh) 车辆的制动控制装置
JP5454062B2 (ja) 車両の制動制御装置
EP4349670A1 (en) Braking/driving force control method and braking/driving force control device
CN110099827B (zh) 用于运行车辆的制动系统的机电的制动力放大器的控制装置和方法
KR20170120008A (ko) 브레이크 제어 장치 및 브레이크 제어 장치의 모터 보정 방법
JP2006001402A (ja) ブレーキ制御装置
US11155251B2 (en) Motor control device and brake fluid pressure control device for vehicle
JP2011068182A (ja) 車両の制動制御装置
KR20170050339A (ko) 브레이크 제어 장치 및 브레이크 제어 장치의 모터 초기 검증 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150126

R150 Certificate of patent or registration of utility model

Ref document number: 5696401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees