JP5689717B2 - Aluminum corrugated tube for automobile cooling water piping and manufacturing method thereof - Google Patents
Aluminum corrugated tube for automobile cooling water piping and manufacturing method thereof Download PDFInfo
- Publication number
- JP5689717B2 JP5689717B2 JP2011055369A JP2011055369A JP5689717B2 JP 5689717 B2 JP5689717 B2 JP 5689717B2 JP 2011055369 A JP2011055369 A JP 2011055369A JP 2011055369 A JP2011055369 A JP 2011055369A JP 5689717 B2 JP5689717 B2 JP 5689717B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- less
- corrugated tube
- core material
- comparative example
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Rigid Pipes And Flexible Pipes (AREA)
- Prevention Of Electric Corrosion (AREA)
Description
本発明は耐食性及び屈曲性に優れた自動車冷却水配管用アルミニウムコルゲートチューブと、その製造方法に関する。 The present invention relates to an aluminum corrugated tube for automobile cooling water piping excellent in corrosion resistance and flexibility, and a manufacturing method thereof.
現在の自動車において、ラジエータとエンジンとを結ぶ冷却水用配管にはゴムホースが用いられることが一般的ではあるが、ゴムホースでは配管の配置によりゴムホースがつぶれてしまい効率的に冷却水の循環が行えない場合があり、また、高出力のエンジンに使用される場合、エンジンルームが高温になるため、ゴムホースの劣化が問題となる場合もあり、ゴムホースに替えてアルミ製ホースが用いられることがある。 In current automobiles, rubber hoses are generally used for cooling water pipes that connect the radiator and engine. However, rubber hoses are crushed by the piping arrangement, and cooling water cannot be circulated efficiently. In some cases, and when used for a high-power engine, the engine room becomes hot, so deterioration of the rubber hose may be a problem, and an aluminum hose may be used instead of the rubber hose.
この様なアルミ製ホースとして、特許文献1のような犠牲防食層を配置したクラッド管を用いることが一般的であったが、屈曲性を有していないため、エンジンルーム内の形状に合わせ配管を曲げ加工した後、ラジエータとエンジンとを接続せねばならず生産性が低かった。 As such an aluminum hose, it was common to use a clad pipe having a sacrificial anticorrosive layer as disclosed in Patent Document 1, but since it does not have flexibility, it is piped according to the shape in the engine room. After bending, the radiator and engine had to be connected, resulting in low productivity.
屈曲性を有するアルミ製ホースとしては、特許文献2のような、コルゲート状の配管構造を有するものが知られているが耐食性を有しておらず、冷却水を循環させる用途には利用できなかった。 As an aluminum hose having flexibility, one having a corrugated pipe structure as in Patent Document 2 is known, but it does not have corrosion resistance and cannot be used for the purpose of circulating cooling water. It was.
本発明は、上記問題に鑑みてなされたものであり、屈曲性と耐食性とを両立させた自動車冷却水配管用アルミニウムコルゲートチューブ及びその製造方法を提供することを目的とする。 This invention is made | formed in view of the said problem, and it aims at providing the aluminum corrugated tube for automotive cooling water piping which made the flexibility and corrosion resistance compatible, and its manufacturing method.
上記目的を達成するため、本発明の第1の観点にかかる自動車冷却水配管用アルミニウムコルゲートチューブは、
Siを0.05mass%以上、0.9mass%以下、Feを0.2mass%以上、0.5mass%以下、Cuを0.1mass%以上、0.7mass%以下、Mnを0.5mass%以上、1.8mass%以下、Tiを0.05mass%以上、0.2mass%以下含有し、残部がAl及び不可避不純物よりなるアルミニウム合金の心材層と、心材層の一方の片面にZnを0.2mass%以上、5mass%以下、Feを0.2mass%以上、0.5mass%以下を含有し、残部がAl及び不可避不純物よりなる犠牲材層の2層からなり、
最小直径と最大直径の比率が0.5〜0.9であることを特徴とする。
In order to achieve the above object, an aluminum corrugated tube for automobile cooling water piping according to the first aspect of the present invention,
0.05 mass % or more, 0.9 mass % or less, Fe 0.2 mass % or more, 0.5 mass % or less, Cu 0.1 mass % or more, 0.7 mass % or less, Mn 0.5 mass % or more, 1.8 mass % or less, Ti 0.05 mass % or more and 0.2 mass % or less of aluminum alloy core material layer with Al and inevitable impurities remaining, Zn on one side of the core material layer is 0.2 mass % or more, 5 mass % or less, Fe 0.2 mass It consists of two layers of sacrificial material layers containing Al and 0.5 mass % or less, the balance being Al and inevitable impurities,
The ratio between the minimum diameter and the maximum diameter is 0.5 to 0.9.
コルゲートチューブ材の厚みが0.2mm以上で1.0mm以下であり、犠牲材の厚みが全体の厚みの3〜30%であることが好ましい。 Co Le thickness of the gate tube material is at 1.0mm or less 0.2mm or more, it is preferable that the thickness of the sacrificial material is 3 to 30% of the total thickness.
本発明の第2の観点にかかる自動車冷却水配管用アルミニウムコルゲートチューブの製造方法は、
Siを0.05mass%以上、0.9mass%以下、Feを0.2mass%以上、0.5mass%以下、Cuを0.1mass%以上、0.7mass%以下、Mnを0.5mass%以上、1.8mass%以下、Tiを0.05mass%以上、0.2mass%以下含有し、残部がAl及び不可避不純物よりなるアルミニウム合金の心材層と、心材層の一方の片面にZnを0.2mass%以上、5mass%以下、Feを0.2mass%以上、0.5mass%以下を含有し、残部がAl及び不可避不純物よりなる犠牲材層の2層からなり、最小直径と最大直径の比率が0.5〜0.9であり、
全板厚が0.2mm以上で1.0mm以下であるアルミニウム合金クラッド板材を、円筒形状に折り曲げて成型したのち、その両端部を融接し、コルゲート加工により長手方向へ螺旋状の突条を形成したことを特徴とする。
The manufacturing method of the aluminum corrugated tube for automobile cooling water piping according to the second aspect of the present invention,
0.05 mass % or more, 0.9 mass % or less, Fe 0.2 mass % or more, 0.5 mass % or less, Cu 0.1 mass % or more, 0.7 mass % or less, Mn 0.5 mass % or more, 1.8 mass % or less, Ti 0.05 mass % or more and 0.2 mass % or less of aluminum alloy core material layer with Al and inevitable impurities remaining, Zn on one side of the core material layer is 0.2 mass % or more, 5 mass % or less, Fe 0.2 mass % or more, contained 0.5 mass% or less, and the balance of two layers of sacrificial material layer made of Al and unavoidable impurities, the ratio between the smallest and largest diameter is 0.5 to 0.9,
An aluminum alloy clad plate with a total thickness of 0.2 mm or more and 1.0 mm or less was bent and molded into a cylindrical shape, then both ends were fused and corrugated to form a spiral ridge in the longitudinal direction. It is characterized by.
本発明によれば、屈曲性を有することにより、予め配管形状を決めることなく、取り付け時にエンジンルーム内の形状に合わせて形状を決めることができ、かつ、高い耐食性を有する自動車冷却水配管用アルミニウムコルゲートチューブ及びその製造方法を提供することができる。 According to the present invention, aluminum for automobile cooling water piping that has flexibility and can determine the shape according to the shape in the engine room at the time of installation without determining the piping shape in advance, and has high corrosion resistance. A corrugated tube and a manufacturing method thereof can be provided.
以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明の自動車冷却水配管用アルミニウムコルゲートチューブは、心材(層)と、心材の一方の片面の犠牲材(層)との2層からなる。 The aluminum corrugated tube for automobile cooling water piping according to the present invention comprises two layers of a core material (layer) and a sacrificial material (layer) on one side of the core material.
(犠牲材)
犠牲材において、Znは0.2mass%以上、5.0mass%以下添加される。Znが添加されることで、心材よりも犠牲陽極材の自然電位を下げる働きを持ち、犠牲防食効果によりクラッド材の耐食性が向上する。Znが0.2mass%未満では、犠牲防食効果が機能しにくくなり、耐食性が低下する。一方、Znが5.0mass%を超えると、犠牲材の自己耐食性が低下するために耐食性が低下し、アルミニウムコルゲートチューブの融接部でのZnの濃縮が顕著となり、優先腐食が発生する。
(Sacrificial material)
In the sacrificial material, Zn is added in an amount of 0.2 mass % to 5.0 mass %. By adding Zn, it acts to lower the natural potential of the sacrificial anode material than the core material, and the corrosion resistance of the clad material is improved by the sacrificial anticorrosive effect. If Zn is less than 0.2 mass %, the sacrificial anticorrosive effect becomes difficult to function, and the corrosion resistance decreases. On the other hand, if the Zn content exceeds 5.0 mass %, the self-corrosion resistance of the sacrificial material is lowered, so that the corrosion resistance is lowered, Zn concentration becomes remarkable at the welded portion of the aluminum corrugated tube, and preferential corrosion occurs.
犠牲材において、Feは0.2mass%以上、0.5mass%以下添加される。Feは、Al-Fe系化合物やAl-Fe-Si系化合物として存在し、強度を向上させる効果がある。Feが0.2mass%未満では、これらの化合物が少ないために、強度が不足する。一方、Feが0.5mass%を超えると、これらの化合物が多くなるために、カソードサイトが増加し、自己耐食性が低下する。強度と耐食性の観点から、Feは0.2mass%以上、0.5%mass以下であることが好ましい。 In the sacrificial material, Fe is added 0.2 mass% or more, 0.5 mass% or less. Fe exists as an Al—Fe based compound or an Al—Fe—Si based compound, and has an effect of improving strength. If Fe is less than 0.2 mass %, the strength is insufficient because these compounds are few. On the other hand, if Fe exceeds 0.5 mass%, in order for these compounds is increased, the cathode sites is increased, the self-corrosion resistance decreases. From the viewpoint of strength and corrosion resistance, Fe is preferably 0.2 mass % or more and 0.5% mass or less.
(心材)
心材において、Siは0.05mass%以上、0.9mass%以下添加される。心材のSi量は、0.05mass%未満であると強度向上の面では効果がなく、0.9mass%を越えると単体Siによる深い孔食を引き起こすおそれがある。より好ましくはSiを0.3〜0.6mass%とするのがよい。
(Heartwood)
In the core material, Si is added to 0.05 mass % or more and 0.9 mass % or less. If the Si content of the core material is less than 0.05 mass %, there is no effect in terms of strength improvement, and if it exceeds 0.9 mass %, deep pitting corrosion may occur due to single Si. More preferably, Si is 0.3 to 0.6 mass %.
心材において、Feは0.2mass%以上、0.5mass%以下添加される。Feは、心材に添加することで、Al-Fe系化合物やAl-Fe-Si系化合物として存在し、強度を向上させる効果がある。Feが0.2mass%未満では、これらの化合物が少ないために、強度が不足する。また、Feが0.5mass%を超えると、これらの化合物が多くなるために、カソードサイトが増加し、心材の耐食性が低下する。強度と耐食性の観点から、Feは、0.1mass%以上、0.5mass%以下であることがより好ましい。 In the core material, 0.2 mass % or more and 0.5 mass % or less of Fe is added. When Fe is added to the core, it exists as an Al—Fe compound or Al—Fe—Si compound, and has the effect of improving strength. If Fe is less than 0.2 mass %, the strength is insufficient because these compounds are few. On the other hand, when Fe exceeds 0.5 mass %, the amount of these compounds increases, so that the cathode site increases and the corrosion resistance of the core material decreases. From the viewpoint of strength and corrosion resistance, Fe is more preferably 0.1 mass % or more and 0.5 mass % or less.
心材において、Cuは0.1mass%以上、0.7mass%以下添加される。Cuは、心材の強度を向上させる元素であり、0.1mass%未満では、心材の強度を向上させることができない。また、0.7mass%を超えると粒界腐食感受性が増加し、耐食性を低下させる。 In the core material, Cu is added by 0.1 mass % or more and 0.7 mass % or less. Cu is an element that improves the strength of the core material. If it is less than 0.1 mass %, the strength of the core material cannot be improved. Moreover, when it exceeds 0.7 mass %, intergranular corrosion sensitivity will increase and corrosion resistance will fall.
心材において、Mnは0.5mass%以上、1.8mass%以下添加される。Mnは心材の強度を向上させる元素である。Mnが0.5mass%未満では、心材の強度を向上させることができない。また、Mnが1.8mass%を超えると、粗大金属間化合物が生成されるために、加工性と耐食性が低下する。 In the core material, Mn is added in an amount of 0.5 mass % to 1.8 mass %. Mn is an element that improves the strength of the core material. If Mn is less than 0.5 mass %, the strength of the core material cannot be improved. On the other hand, when Mn exceeds 1.8 mass %, a coarse intermetallic compound is generated, and thus workability and corrosion resistance are deteriorated.
心材において、Tiは、0.05mass%以上、0.2mass%以下添加される。Tiは心材の耐食性を向上させる元素であり、心材にTiが含有されていると、心材中へ層状に析出して、孔食が深さ方向に進行するのを抑制する効果がある。Tiが0.05mass%未満では、耐食性向上に影響を与えない。また、Tiが0.2mass%を超えると、粗大な金属間化合物が生成するために、加工性と耐食性が低下してしまう。 In the core material, Ti is added to 0.05 mass % or more and 0.2 mass % or less. Ti is an element that improves the corrosion resistance of the core material. When Ti is contained in the core material, it has an effect of preventing the pitting corrosion from proceeding in the depth direction by depositing into the core material in layers. If Ti is less than 0.05 mass %, the corrosion resistance is not affected. On the other hand, when Ti exceeds 0.2 mass %, a coarse intermetallic compound is generated, and thus workability and corrosion resistance are deteriorated.
犠牲材の厚さは、3%以上、30%以下でクラッドされる。犠牲材の厚さが3%未満では、心材との厚み差が極端に大きいため圧延後のクラッドが困難となる。一方、犠牲材の厚さが30%を越えると、犠牲材自体が強度が低いため、内側の犠牲材比率が高まることで、コルゲートチューブ材自体の強下を招き、屈曲させた際に割れ、破壊しやすくなる。 The sacrificial material is clad with a thickness of 3% or more and 30% or less. If the thickness of the sacrificial material is less than 3%, the thickness difference from the core material is extremely large, so that clad after rolling becomes difficult. On the other hand, if the thickness of the sacrificial material exceeds 30%, the sacrificial material itself is low in strength, so the inner sacrificial material ratio increases, causing the corrugated tube material itself to be weakened and cracked when bent, It becomes easy to destroy.
コルゲートチューブの厚みは、0.2mm以上で1.0mm以下が適正である。コルゲートチューブの厚みが0.2mm未満では、成型したコルゲートチューブ材を曲げた時に、曲げ部でのチューブ断面が極端に変形する。一方、コルゲートチューブの厚みが1.0mmを超えると、曲げ変形しにくくなり、現場での施工が困難となる。 The appropriate corrugated tube thickness is 0.2 mm or more and 1.0 mm or less. If the thickness of the corrugated tube is less than 0.2 mm, when the molded corrugated tube material is bent, the tube cross section at the bent portion is extremely deformed. On the other hand, when the thickness of the corrugated tube exceeds 1.0 mm, it becomes difficult to bend and deform and it becomes difficult to perform construction on site.
また、本コルゲートチューブは、コネクターなど他部材との接合のために、外表にろう材層をクラッドすることは、なんら実用上問題がなく、本発明の機能を損なうことはない。ろう付けを行う場合は、主にフッ化物系のフラックスを使用するろう付けに適用されるものである。コネクターとの接合では、トーチろう付けでの施工も対象となる。 Further, in the corrugated tube, clad with a brazing material layer on the outer surface for joining with other members such as a connector has no practical problem and does not impair the function of the present invention. When brazing is performed, it is mainly applied to brazing using a fluoride-based flux. For joining with connectors, construction by torch brazing is also an object.
犠牲材、心材の鋳塊は、DC鋳造法、連続鋳造法等により鋳造される。犠牲材、ろう材の鋳塊においては、面削後に所定の板厚に熱間圧延を実施する。心材用鋳塊は、均質化処理、面削を実施し後に、犠牲材板とろう材板を合わせて、常法により製造することができる。 The ingot of the sacrificial material and the core material is cast by a DC casting method, a continuous casting method, or the like. In the ingot of the sacrificial material and the brazing material, hot rolling is performed to a predetermined thickness after chamfering. The ingot for the core material can be manufactured by a conventional method by combining the sacrificial material plate and the brazing material plate after performing homogenization treatment and chamfering.
圧延加工後に所定の板厚になった板材を、円筒形状に曲げ成形を行い、その曲げ成型した突合せ板端部を、図2に示すように、長手方向に溶接また電縫加工にて接合する。接合された連続円筒材を断面直径が一定の間隔で波型に屈曲した形状に転造加工にて作成することにより、図1に示すような自動車冷却水配管用アルミニウムコルゲートチューブが製造される。この転造加工に成型される波型の屈曲した形状は、最大直径と最小直径の比率が0.5から0.9が適正である。0.5未満では成型したコルゲートチューブ材を曲げた時にその変形が波型形状の限られた谷部変形が集中し、大きな応力が蓄積して破壊しやすくなる。0.9を超えると曲げた時にチューブ断面がつぶれる形で変形し、チューブ断面形状を確保しにくい。 The plate material having a predetermined thickness after rolling is bent into a cylindrical shape, and the bent butt plate ends are joined in the longitudinal direction by welding or electro-sewing as shown in FIG. . An aluminum corrugated tube for automobile cooling water piping as shown in FIG. 1 is manufactured by forming the joined continuous cylindrical material into a shape in which the cross-sectional diameter is bent into a corrugated shape at regular intervals. The corrugated bent shape molded in this rolling process has an appropriate ratio of the maximum diameter to the minimum diameter of 0.5 to 0.9. If it is less than 0.5, when the molded corrugated tube material is bent, the deformation is concentrated in the trough deformation having a limited corrugated shape, and a large stress accumulates and is easily broken. If it exceeds 0.9, the tube cross-section will be deformed when bent, making it difficult to secure the tube cross-section.
以下に、この発明の実施例を比較例と対比して説明する。 Hereinafter, examples of the present invention will be described in comparison with comparative examples.
(実施例)
表1の合金符号A1〜A10に示すこの発明の成分組成範囲内の犠牲陽極材、表2の合金符号B1〜B13に示すこの発明の成分組成範囲内の心材について、それぞれDC鋳造を行い鋳塊を作製した。
(Example)
DC casting was performed on each of the sacrificial anode material within the component composition range of the present invention shown in alloy codes A1 to A10 in Table 1 and the core material within the component composition range of the present invention shown in alloy codes B1 to B13 of Table 2, respectively. Was made.
犠牲材については、面削を実施後に、500℃にて熱間圧延により所定の板厚に圧延して板形状にした。心材用鋳塊は、520℃で6時間の均質化処理を行い、厚さ40mmに面削をした。それぞれ、犠牲材板、心材用鋳塊をこの順に表5〜表11に示す組合せで重ねて、480℃で熱間圧延を施して厚さ3.5mmの2層クラッド材とし、これを0.6mmまで冷間圧延を行い、次いで360℃で3時間の焼鈍を施した後に、所定の板厚まで冷間圧延を実施し、クラッド材とした。 The sacrificial material was subjected to chamfering and then rolled into a plate shape by hot rolling at 500 ° C. The ingot for core material was homogenized for 6 hours at 520 ° C. and faced to a thickness of 40 mm. The sacrificial material plate and the core material ingot are stacked in this order in the combinations shown in Tables 5 to 11 and hot-rolled at 480 ° C. to form a two-layer clad material having a thickness of 3.5 mm. After cold rolling to 6 mm and then annealing at 360 ° C. for 3 hours, cold rolling was performed to a predetermined plate thickness to obtain a clad material.
このクラッド材を、円筒形状に曲げ成形を行い、その曲げ成型した突合せ板端部を長手方向にTIG溶接にて接合した。接合された連続円筒材を表5〜11に示す寸法比率で、断面直径が一定の間隔で波型に屈曲した形状に転造加工を行い、評価コルゲートチューブ材を作製した。 The clad material was bent into a cylindrical shape, and the bent butt plate ends were joined in the longitudinal direction by TIG welding. The joined continuous cylindrical material was rolled into a corrugated shape having a cross-sectional diameter at regular intervals at the dimensional ratios shown in Tables 5 to 11, and an evaluation corrugated tube material was produced.
(比較例)
表1の合金符号A11〜A17に示す犠牲材、表2の合金符号B14〜B23に示す心材、実施例と同様にして表12〜15に示す組合せのクラッド材を作製した。
(Comparative example)
Sacrificial materials shown in alloy codes A11 to A17 in Table 1, core materials shown in alloy codes B14 to B23 in Table 2, and clad materials having combinations shown in Tables 12 to 15 were produced in the same manner as in the examples.
また、表3の合金符号C1に示す犠牲材、表4の合金符号D1に示す心材を溶解し、鋳造して心材合金の円筒状心材中空ビレット(外径400mm、内径90mm、長さ990mm)内面を切削加工して常温で150mmφとした心材中空ビレットを得、犠牲材合金の押出し管(常温:外径150mm、内径所定クラッド構成に設定、長さ990mm)を犠牲材中空ビレットとして得た。心材中空ビレットを500℃に加熱後、常温の犠牲材中空ビレットを心材中空ビレットの内径部に挿入し、冷却することによって焼嵌めを行った。焼嵌めされた2層クラッドの中空ビレットを450℃で間接押出し、外径47mm、肉厚3.5mmの押出し管とし、この押出し管に引抜き加工を繰返し施して、外径10.05mm、肉厚を所定の厚みした2層クラッド管を得、表15の組み合わせとした。 Also, the sacrificial material shown in alloy code C1 in Table 3 and the core material shown in alloy code D1 in Table 4 are melted and cast to form a cylindrical core material hollow billet (outer diameter 400 mm, inner diameter 90 mm, length 990 mm) of the core material alloy Was cut to obtain a core billet hollow billet of 150 mmφ at room temperature, and a sacrificial alloy extruded tube (room temperature: outer diameter 150 mm, inner diameter set to a predetermined clad configuration, length 990 mm) was obtained as a sacrificial material hollow billet. After the core material hollow billet was heated to 500 ° C., the sacrificial material hollow billet at room temperature was inserted into the inner diameter portion of the core material hollow billet and cooled to perform shrink fitting. The hollow billet of the two-layer clad that has been shrink-fitted is indirectly extruded at 450 ° C. to obtain an extruded tube having an outer diameter of 47 mm and a wall thickness of 3.5 mm. Was obtained as a combination shown in Table 15.
なお、ここで表1、2、3、4に示す各成分組成値は発光分光分析装置によって、鋳造後の犠牲材、心材より測定された値である。 In addition, each component composition value shown to Table 1, 2, 3, 4 here is the value measured from the sacrificial material and core material after casting with the emission spectroscopic analyzer.
(評価)
得られた各々のアルミニウムコルゲートチューブ材について、製造性、引張強度、曲げ加工性、耐食性について、次のように評価した。その結果を表5〜15に示す。
(Evaluation)
About each obtained aluminum corrugated tube material, productivity, tensile strength, bending workability, and corrosion resistance were evaluated as follows. The results are shown in Tables 5-15.
(製造性評価)
犠牲陽極材、心材を重ね合せてクラッド材を製造した際に、健全なクラッド材ができた場合を◎とし、クラッド率の制御ができなかった場合を×とした。
(Manufacturability evaluation)
When the clad material was produced by superposing the sacrificial anode material and the core material, the case where a sound clad material was produced was marked with ◎, and the case where the clad rate could not be controlled was marked with x.
(引張強度測定)
各アルミニウムコルゲートチューブ材を図3に示す様態で、引張試験を行ない、引張強度を調べた。そして引張強度が170MPa以上を◎、170MPa以下を×とした。
(Tensile strength measurement)
Each aluminum corrugated tube material was subjected to a tensile test in the manner shown in FIG. 3 to examine the tensile strength. The tensile strength of 170 MPa or more was rated as ◎, and 170 MPa or less was rated as x.
(曲げ加工性評価)
図4に示すような様態で、曲げ加工を行い、曲げ部外側と内側でクラックの発生しなかった場合を◎とし、発生した場合は×とした。また、チューブ断面が大きく変形しなかった場合を◎とし、変形した場合を×とした。
(Bending workability evaluation)
When bending was performed in the manner shown in FIG. 4 and cracks did not occur on the outside and inside of the bent portion, ◎ was indicated, and when it was generated, ×. In addition, the case where the tube cross section was not greatly deformed was marked with ◎, and the case where the tube cross section was deformed was marked with ×.
(耐食性評価)
チューブ材内側に、Cu2+イオンを10ppm加えた市水を腐食液として、室温で16hrと80℃で8hrのサイクル循環試験を行い、3ヶ月での内面クラッド層の孔食深さを測定した。腐食液の流速は10l/minとした。最大孔食深さが、60μm未満を◎、80μm未満を○、100μm以上を×とした。
(Corrosion resistance evaluation)
The inner tube member, the city water was added 10ppm of Cu 2 + ions as etchant, performs cycle circulation test 8hr at 16hr and 80 ° C. at room temperature, was measured pit depth of the inner surface cladding layer at 3 months . The flow rate of the corrosive liquid was 10 l / min. When the maximum pitting depth was less than 60 μm, ◎, less than 80 μm, and 100 μm or more were evaluated as x.
表5〜表15に示すように、各種試験の結果、この発明の実施例1〜95では、いずれも製造性、引張強度曲げ加工性、耐食性について、この発明のアルミニウムコルゲートチューブ材が適用される用途および環境に適していることが確認されたが、比較例96〜132では、次に述べるように、この発明のアルミニウムコルゲートチューブ材が使用される用途、環境において、不当な結果となることが判明した。 As shown in Tables 5 to 15, as a result of various tests, in Examples 1 to 95 of the present invention, the aluminum corrugated tube material of the present invention is applied for manufacturability, tensile strength bending workability, and corrosion resistance. Although it was confirmed that it was suitable for use and environment, in Comparative Examples 96 to 132, as described below, an unreasonable result may be obtained in the use and environment in which the aluminum corrugated tube material of the present invention is used. found.
すなわち、
比較例96の場合は、アルミニウムコルゲートチューブ材の最小直径/最大直径比率が小さかったため曲げ加工性が低下した。
比較例97の場合は、アルミニウムコルゲートチューブ材の最小直径/最大直径比率が小さかったため曲げ加工性が低下した。
比較例98の場合は、犠牲材のZn量が少ないため、耐食性が低下した。
比較例99の場合は、犠牲材のZn量が多いため、耐食性が低下した。
比較例100の場合は、犠牲材のFe量が少ないため、強度が低下した。
比較例101の場合は、犠牲材のFe量が多いため、耐食性が低下した。
比較例102の場合は、アルミニウムコルゲートチューブ材の最小直径/最大直径比率が小さかったため曲げ加工性が低下した。
比較例103の場合は、犠牲材の厚さが小さいため、健全なクラッド材が製造できなかった。
比較例104の場合は、犠牲材の厚さが大きいため、健全なクラッド材が製造できなかった。
比較例105の場合は、心材のSi量が少ないため、強度が低下した。
比較例106の場合は、心材のSi量が多いため、耐食性が低下した。
比較例107の場合は、心材のFe量が少ないため、強度が低下した。
比較例108の場合は、心材のFe量が多いため、耐食性が低下した。
比較例109の場合は、心材のMn量が少ないため、強度が低下した。
比較例110の場合は、心材のMn量が多いため、製造できなかった。
That is,
In the case of the comparative example 96, since the minimum diameter / maximum diameter ratio of the aluminum corrugated tube material was small, bending workability was lowered.
In the case of the comparative example 97, since the minimum diameter / maximum diameter ratio of the aluminum corrugated tube material was small, bending workability was lowered.
In the case of Comparative Example 98, the corrosion resistance was reduced because the amount of Zn in the sacrificial material was small.
In the case of Comparative Example 99, the corrosion resistance decreased because the amount of Zn in the sacrificial material was large.
In the case of Comparative Example 100, the strength was reduced because the amount of Fe in the sacrificial material was small.
In the case of Comparative Example 101, the corrosion resistance decreased because the amount of Fe in the sacrificial material was large.
In the case of the comparative example 102, since the minimum diameter / maximum diameter ratio of the aluminum corrugated tube material was small, bending workability was lowered.
In the case of Comparative Example 103, since the thickness of the sacrificial material was small, a sound clad material could not be manufactured.
In the case of the comparative example 104, since the thickness of the sacrificial material was large, a sound clad material could not be manufactured.
In the case of Comparative Example 105, the strength decreased because the amount of Si in the core material was small.
In the case of Comparative Example 106, the corrosion resistance decreased because the amount of Si in the core material was large.
In the case of Comparative Example 107, the strength decreased because the amount of Fe in the core material was small.
In the case of Comparative Example 108, the corrosion resistance decreased because the amount of Fe in the core material was large.
In the case of Comparative Example 109, the strength decreased because the amount of Mn in the core material was small.
In the case of Comparative Example 110, since the amount of Mn in the core material was large, it could not be produced.
比較例96−110は、アルミニウムコルゲートチューブ材の最小直径/最大直径比率が小さかったため曲げ加工性が低下した。
比較例111の場合は、アルミニウムコルゲートチューブ材の最小直径/最大直径比率が大きかったため曲げ加工性が低下した。
比較例112の場合は、アルミニウムコルゲートチューブ材の最小直径/最大直径比率が大きかったため曲げ加工性が低下した。
比較例113の場合は、犠牲材のZn量が少ないため、耐食性が低下した。
比較例114の場合は、犠牲材のZn量が多いため、耐食性が低下した。
比較例115の場合は、犠牲材のFe量が少ないため、強度が低下した。
比較例116の場合は、犠牲材のFe量が多いため、耐食性が低下した。
比較例117の場合は、アルミニウムコルゲートチューブ材の最小直径/最大直径比率が小さかったため曲げ加工性が低下した。
比較例118の場合は、犠牲材の厚さが小さいため、健全なクラッド材が製造できなかった。
比較例119の場合は、犠牲材の厚さが大きいため、健全なクラッド材が製造できなかった。
比較例120の場合は、心材のSi量が少ないため、強度が低下した。
比較例121の場合は、心材のSi量が多いため、耐食性が低下した。
比較例122の場合は、心材のFe量が少ないため、強度が低下した。
比較例123の場合は、心材のFe量が多いため、耐食性が低下した。
比較例124の場合は、心材のMn量が少ないため、強度が低下した。
比較例125の場合は、心材のMn量が多いため、製造できなかった。
In Comparative Examples 96-110, since the minimum diameter / maximum diameter ratio of the aluminum corrugated tube material was small, bending workability was lowered.
In the case of Comparative Example 111, since the minimum diameter / maximum diameter ratio of the aluminum corrugated tube material was large, bending workability was lowered.
In the case of the comparative example 112, since the minimum diameter / maximum diameter ratio of the aluminum corrugated tube material was large, bending workability was lowered.
In the case of Comparative Example 113, the corrosion resistance decreased because the amount of Zn in the sacrificial material was small.
In the case of Comparative Example 114, the corrosion resistance decreased because the amount of Zn in the sacrificial material was large.
In the case of Comparative Example 115, the strength decreased because the amount of Fe in the sacrificial material was small.
In the case of Comparative Example 116, the corrosion resistance decreased because the amount of Fe in the sacrificial material was large.
In the case of Comparative Example 117, bending workability deteriorated because the minimum diameter / maximum diameter ratio of the aluminum corrugated tube material was small.
In the case of Comparative Example 118, since the thickness of the sacrificial material was small, a sound clad material could not be manufactured.
In the case of Comparative Example 119, since the thickness of the sacrificial material was large, a sound clad material could not be manufactured.
In the case of Comparative Example 120, the strength decreased because the amount of Si in the core material was small.
In the case of Comparative Example 121, the corrosion resistance decreased because the amount of Si in the core material was large.
In the case of Comparative Example 122, the strength decreased because the Fe material contained in the core material was small.
In the case of Comparative Example 123, the corrosion resistance decreased because the amount of Fe in the core material was large.
In the case of Comparative Example 124, the strength decreased because the amount of Mn in the core material was small.
In the case of Comparative Example 125, since the Mn content of the core material was large, it could not be produced.
比較例111−125は、アルミニウムコルゲートチューブ材の最小直径/最大直径比率が大きかったため曲げ加工性が低下した。
比較例126の場合は、心材のCu量が少ないため、強度が低下した。
比較例127の場合は、心材のCu量が多いため、耐食性が低下した。
比較例128の場合は、心材のTi量が少ないため、耐食性が低下した。
比較例129の場合は、心材のTi量が多いため、製造できなかった。
比較例130の場合は、アルミニウムコルゲートチューブ材の全板厚が、薄かったので曲げ加工性が低下した。
比較例131の場合は、アルミニウムコルゲートチューブ材の全板厚が、厚かったので曲げ加工性が低下した。
比較例132の場合は、押出し材の最小直径/最大直径比率が1であったため、曲げ加工性が低下した。
Since Comparative Example 111-125 had a large minimum diameter / maximum diameter ratio of the aluminum corrugated tube material, bending workability was lowered.
In the case of Comparative Example 126, the strength decreased because the amount of Cu in the core material was small.
In the case of Comparative Example 127, the corrosion resistance decreased because the amount of Cu in the core material was large.
In the case of Comparative Example 128, the corrosion resistance decreased because the amount of Ti in the core material was small.
In the case of Comparative Example 129, since the amount of Ti in the core material was large, it could not be produced.
In the case of the comparative example 130, since the total plate thickness of the aluminum corrugated tube material was thin, bending workability was lowered.
In the case of the comparative example 131, since the total plate thickness of the aluminum corrugated tube material was thick, the bending workability was lowered.
In the case of Comparative Example 132, since the minimum diameter / maximum diameter ratio of the extruded material was 1, bending workability was lowered.
Claims (3)
最小直径と最大直径の比率が0.5〜0.9であることを特徴とする自動車冷却水配管用アルミニウムコルゲートチューブ。 0.05 mass % or more, 0.9 mass % or less, Fe 0.2 mass % or more, 0.5 mass % or less, Cu 0.1 mass % or more, 0.7 mass % or less, Mn 0.5 mass % or more, 1.8 mass % or less, Ti 0.05 mass % or more and 0.2 mass % or less of aluminum alloy core material layer with Al and inevitable impurities remaining, Zn on one side of the core material layer is 0.2 mass % or more, 5 mass % or less, Fe 0.2 mass It consists of two layers of sacrificial material layers containing Al and 0.5 mass % or less, the balance being Al and inevitable impurities,
An aluminum corrugated tube for automobile cooling water piping, wherein the ratio of the minimum diameter to the maximum diameter is 0.5 to 0.9.
全板厚が0.2mm以上で1.0mm以下であるアルミニウム合金クラッド板材を、円筒形状に折り曲げて成型したのち、その両端部を融接し、コルゲート加工により長手方向へ螺旋状の突条を形成したことを特徴とする自動車冷却水配管用アルミニウムコルゲートチューブの製造方法。 0.05 mass % or more, 0.9 mass % or less, Fe 0.2 mass % or more, 0.5 mass % or less, Cu 0.1 mass % or more, 0.7 mass % or less, Mn 0.5 mass % or more, 1.8 mass % or less, Ti 0.05 mass % or more and 0.2 mass % or less of aluminum alloy core material layer with Al and inevitable impurities remaining, Zn on one side of the core material layer is 0.2 mass % or more, 5 mass % or less, Fe 0.2 mass % or more, contained 0.5 mass% or less, and the balance of two layers of sacrificial material layer made of Al and unavoidable impurities, the ratio between the smallest and largest diameter is 0.5 to 0.9,
An aluminum alloy clad plate with a total thickness of 0.2 mm or more and 1.0 mm or less was bent and molded into a cylindrical shape, then both ends were fused and corrugated to form a spiral ridge in the longitudinal direction. A method for producing an aluminum corrugated tube for automobile cooling water piping.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011055369A JP5689717B2 (en) | 2011-03-14 | 2011-03-14 | Aluminum corrugated tube for automobile cooling water piping and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011055369A JP5689717B2 (en) | 2011-03-14 | 2011-03-14 | Aluminum corrugated tube for automobile cooling water piping and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012188723A JP2012188723A (en) | 2012-10-04 |
JP5689717B2 true JP5689717B2 (en) | 2015-03-25 |
Family
ID=47082203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011055369A Active JP5689717B2 (en) | 2011-03-14 | 2011-03-14 | Aluminum corrugated tube for automobile cooling water piping and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5689717B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012022023B4 (en) * | 2012-11-12 | 2022-05-05 | Sew-Eurodrive Gmbh & Co Kg | Transmission with housing part |
CN112725661A (en) * | 2020-12-24 | 2021-04-30 | 亚太轻合金(南通)科技有限公司 | Aluminum alloy with strong corrosion resistance and preparation method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08145259A (en) * | 1994-11-25 | 1996-06-07 | Nichirin:Kk | Damping tube for transporting refrigerant and connecting method therefor |
JP3908847B2 (en) * | 1998-02-10 | 2007-04-25 | 古河スカイ株式会社 | Aluminum alloy sacrificial anode material for heat exchanger and highly corrosion resistant aluminum alloy composite for heat exchanger |
JP3772017B2 (en) * | 1998-04-07 | 2006-05-10 | 住友軽金属工業株式会社 | High strength and high corrosion resistance aluminum alloy clad material for heat exchanger |
JP3858254B2 (en) * | 1998-09-08 | 2006-12-13 | カルソニックカンセイ株式会社 | Aluminum alloy clad material for heat exchangers with excellent corrosion resistance |
JP5159709B2 (en) * | 2009-06-18 | 2013-03-13 | 古河スカイ株式会社 | Aluminum alloy clad material for heat exchanger tube and heat exchanger core using the same |
-
2011
- 2011-03-14 JP JP2011055369A patent/JP5689717B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012188723A (en) | 2012-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20160298914A1 (en) | Aluminum Alloy Heat Exchanger | |
JP6452626B2 (en) | Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same | |
JP6452627B2 (en) | Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same | |
JP5893450B2 (en) | Aluminum alloy brazing sheet for header of heat exchanger, method for producing the same, and method for producing heat exchanger | |
JP4993440B2 (en) | High strength aluminum alloy clad material for heat exchangers with excellent brazeability | |
JP6132330B2 (en) | Aluminum alloy clad material and heat exchanger assembled with a tube formed from the clad material | |
JP5985973B2 (en) | Aluminum alloy brazing sheet and method for producing the same, and heat exchanger using the aluminum alloy brazing sheet | |
JP6286335B2 (en) | Aluminum alloy brazing sheet | |
JP5836695B2 (en) | Aluminum alloy fin material for heat exchangers with excellent strength and corrosion resistance after brazing | |
JP5977640B2 (en) | Aluminum pipe joint | |
JP2011068933A (en) | Aluminum alloy clad material for heat exchanger | |
JP6351206B2 (en) | High corrosion resistance aluminum alloy brazing sheet and flow path forming part for automotive heat exchanger | |
JP5689717B2 (en) | Aluminum corrugated tube for automobile cooling water piping and manufacturing method thereof | |
JP5498213B2 (en) | Aluminum alloy clad material for high-strength heat exchangers with excellent brazeability | |
JP2006015376A (en) | Aluminum alloy brazing sheet for heat exchanger | |
JP5084490B2 (en) | Aluminum alloy clad material | |
JP5632175B2 (en) | Aluminum alloy clad material and heat exchanger for high-strength heat exchangers with excellent brazing properties | |
JP5599131B2 (en) | Aluminum alloy brazing material and method for producing aluminum alloy brazing sheet | |
JP2011036915A (en) | Aluminum alloy brazing sheet | |
JP5416439B2 (en) | Aluminum alloy brazed body, heat treatment method thereof, and heat exchanger | |
JP2010240696A (en) | Joining method of tube material, and heat exchanger formed by joining tube material joined by joining method and fin material | |
JP2009167509A (en) | Aluminum alloy clad material | |
JP4440550B2 (en) | Aluminum heat exchanger | |
WO2021200638A1 (en) | Member to be brazed made of aluminum, and method for manufacturing brazed body | |
WO2021200639A1 (en) | Aluminum member to be brazed and method for producing brazing body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140310 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20141009 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141028 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141107 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150120 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150129 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5689717 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |