JP2010240696A - Joining method of tube material, and heat exchanger formed by joining tube material joined by joining method and fin material - Google Patents

Joining method of tube material, and heat exchanger formed by joining tube material joined by joining method and fin material Download PDF

Info

Publication number
JP2010240696A
JP2010240696A JP2009092962A JP2009092962A JP2010240696A JP 2010240696 A JP2010240696 A JP 2010240696A JP 2009092962 A JP2009092962 A JP 2009092962A JP 2009092962 A JP2009092962 A JP 2009092962A JP 2010240696 A JP2010240696 A JP 2010240696A
Authority
JP
Japan
Prior art keywords
brazing
tube
torch
layer
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009092962A
Other languages
Japanese (ja)
Other versions
JP5731106B2 (en
Inventor
Tokinori Onda
恩田時伯
Yoichi Kojima
兒島洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP2009092962A priority Critical patent/JP5731106B2/en
Publication of JP2010240696A publication Critical patent/JP2010240696A/en
Application granted granted Critical
Publication of JP5731106B2 publication Critical patent/JP5731106B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Prevention Of Electric Corrosion (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joining method by which penetration leakage is not caused in an early stage by preventing the preferred corrosion of a torch brazed part. <P>SOLUTION: In the joining method by which two tube materials each formed by providing a clad layer of pure Al having ≥99.5 wt.% purity and ≤0.5% impurities having ≤0.25 wt.% Si, ≤0.40 wt.% Fe and the rest of inevitable impurities on an outer surface of a core material made of an Al alloy are prepared, an end part of one tube material is expanded and the other tube material is inserted in the expanded tube part to join the both tube materials by torch brazing, a brazing material used for torch brazing is an Al alloy having 11.0 to 13.0 wt.% Si, 1.0 to 2.0 wt.% Zn and the rest of inevitable impurities and torch brazing is retained for 3 to 8 sec after reaching 600°C. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、トーチろう付けにより接合された部分のろう付け性及び耐食性を向上させた接合方法、ならびに、当該接合方法により接合した管材とフィン材とを接合した熱交換器に関する。   The present invention relates to a joining method in which brazing properties and corrosion resistance of parts joined by torch brazing are improved, and a heat exchanger in which a pipe material and a fin material joined by the joining method are joined.

家庭用エアコンの熱交換器は、従来は銅製の管材とアルミニウムフィン材を機械的拡管により接合している。図6に示すように、この方法は、管材1の端より拡管用の治具7を管材内部に押し込み、管材を広げフィン材6と接合する方式である。この工程後、空いた端同士をU字の部品で繋ぎ、トーチろう付けにより接合して熱交換器を作製する。   Conventionally, heat exchangers for home air conditioners have joined copper pipes and aluminum fins by mechanical expansion. As shown in FIG. 6, this method is a system in which a tube expansion jig 7 is pushed into the tube material from the end of the tube material 1, and the tube material is expanded and joined to the fin material 6. After this step, the vacant ends are connected with U-shaped parts and joined by torch brazing to produce a heat exchanger.

近年、エアコンのリサイクルの観点から銅製の管材をアルミニウム合金製に換えることが提案されている。管材をアルミニウム合金にした場合でも同様に、フィン材と管材を機械的に拡管しトーチろう付けによって接合して熱交換器が作製される。   In recent years, it has been proposed to replace copper pipes with aluminum alloys from the viewpoint of recycling air conditioners. Similarly, when the tube material is an aluminum alloy, the fin material and the tube material are mechanically expanded and joined by torch brazing to produce a heat exchanger.

管材をアルミニウム合金製にした熱交換器では、従来の銅製の管材を用いた場合に比較して、フィン材と接していないRベンド部及びUベンド部に貫通腐食が発生してしまう問題を抱えていた。そこで、押し出し管の表面にAl−1wt%Zn合金をクラッドした管材、Znを溶射した管材が用いられる。これにより、これらの管の表面に被覆されたAl−1wt%%Zn合金や純Znが犠牲陽極材として作用し、フィン材と接していないRベンド部やUベンド部の貫通腐食が防止できることがわかった。   In heat exchangers made of aluminum alloy tubes, there is a problem that penetration corrosion occurs in the R bend and U bends that are not in contact with the fin material, compared to the case of using conventional copper tubes. It was. Therefore, a tube material in which an Al-1 wt% Zn alloy is clad on the surface of the extruded tube and a tube material in which Zn is sprayed are used. As a result, Al-1 wt% Zn alloy or pure Zn coated on the surface of these tubes acts as a sacrificial anode material, and it is possible to prevent penetration corrosion of the R bend part and U bend part not in contact with the fin material. all right.

しかしながら、これらのクラッド管やZn溶射管を用い、4047合金のろう材を用いてトーチろう付けを行った場合、管のトーチろう付け部の接合部において貫通腐食漏れが発生してしまう問題が生じた。図7に示すように、Rベンド部及びUベンド部において犠牲陽極材として作用するAl−Zn層を備える管材では、通常、4047合金のろう材を用いてトーチろう付けすると、接合部においてクラッド層がろう材層より電位的に卑になり、そのためろう材層より優先的に腐食する。また、Zn溶射管の場合には、ろう材フィレット部にZn濃化層が形成されることによって貫通腐食が生じるものである。図7において、1は端部が拡管された管材、2は管材1に挿入される管材、3はろう付け部において優先的に腐食した犠牲陽極材、5はろう材をそれぞれ示す。   However, when these clad pipes and Zn sprayed pipes are used and torch brazing is performed using 4047 alloy brazing material, there is a problem that penetration corrosion leakage occurs at the joint of the torch brazing part of the pipe. It was. As shown in FIG. 7, in a pipe material having an Al—Zn layer that acts as a sacrificial anode material in the R bend portion and the U bend portion, when a torch brazing is usually performed using a brazing material of 4047 alloy, a cladding layer is formed at the joint portion. However, it is lower in potential than the brazing material layer, and therefore corrodes preferentially over the brazing material layer. In the case of a Zn spray tube, penetration corrosion occurs due to the formation of a Zn-enriched layer in the brazing filler fillet. In FIG. 7, reference numeral 1 denotes a pipe material whose end is expanded, 2 denotes a pipe material inserted into the pipe material 1, 3 denotes a sacrificial anode material preferentially corroded in the brazing part, and 5 denotes a brazing material.

このような接合部の腐食を防止する手段として、特許文献1に記載のように、アルミニウム管体の接合部を、内側にろう材層又ははんだ層を設けたスリーブによって囲繞した後に加熱接合することが考えられる。この方法では接合部分の長さが長くなることで貫通漏れまでの時間を延ばすことができるが、犠牲材の優先腐食を完全に防止することはできない。またこの方法を用いると、接合部分にスリーブを接続するため、部品点数及び工数の増加につながりコストが増加する問題がある。   As a means for preventing such corrosion of the joint portion, as described in Patent Document 1, the joint portion of the aluminum tube body is surrounded by a sleeve provided with a brazing filler metal layer or a solder layer and then heat-joined. Can be considered. In this method, the length of the joint portion is increased, so that the time until leakage through can be extended, but the preferential corrosion of the sacrificial material cannot be completely prevented. In addition, when this method is used, the sleeve is connected to the joint portion, which leads to an increase in the number of parts and the number of man-hours, resulting in an increase in cost.

特開昭58−163572号公報JP 58-163572 A

一方、家庭用熱交換器に用いるフィン材にはJISA1200合金等が用いられるが、このフィン材と管材の電位構成が適当でない場合、つまりフィン材より管材表面の電位が大幅に卑になると、管材が犠牲材となってフィン材を防食する構成になり、フィン材と管材が接合した部分において管材が腐食して隙間腐食を発生させ、この管材部分において早期貫通腐食を生じてしまう問題もあった。   On the other hand, JISA1200 alloy or the like is used as a fin material used for a home heat exchanger. However, if the potential configuration of the fin material and the pipe material is not appropriate, that is, if the potential on the surface of the pipe material is significantly lower than that of the fin material, Is a sacrificial material that prevents corrosion of the fin material, and the pipe material corrodes at the part where the fin material and the pipe material are joined, causing crevice corrosion, and there is also a problem that early penetration corrosion occurs at this tube material part. .

本発明は以上の従来技術における問題に鑑み、接合部であるトーチろう付け部における良好なろう付け性及び耐優先腐食性を備え、かつ、非接合部であるRベンド及びUベンド部における耐食性を備えた接合管材を提供し、かつ、これら管材とフィン材を接合した熱交換器であって管材/フィン材の接合部での隙間腐食を防止した熱交換器を提供することを目的とする。   In view of the above problems in the prior art, the present invention has good brazeability and preferential corrosion resistance in a torch brazing portion that is a joint portion, and has corrosion resistance in R and U bend portions that are non-joint portions. It is an object of the present invention to provide a joined pipe material, and to provide a heat exchanger in which the pipe material and the fin material are joined and which prevents crevice corrosion at the joint of the pipe material / fin material.

本発明はこのような問題を解決するために、請求項1において、Al合金からなる芯材の外面に、純度99.5wt%以上で0.5wt%以下の不純物を含有し、当該不純物がSiとして0.25wt%以下、Feとして0.40wt%以下で残部不回避不純物からなる純Alのクラッド層を設けた管材を2本用意し、一方の管材の端部を拡管し、当該拡管部に他方の管材を挿入してトーチろう付けによって両管材を接合する方法において、トーチろう付けに用いるろう材が、Si11.0wt%〜13.0wt%、Zn1.0wt%〜2.0wt%で残部不回避不純物からなるAl合金であり、トーチろう付けが600℃に到達してから3〜8秒保持されることを特徴とする管材の接合方法とした。また、請求項2では、請求項1に記載の接合方法により接合した管材と、フィン材とを接合した熱交換器とした。   In order to solve such a problem, the present invention according to claim 1, the outer surface of the core material made of an Al alloy contains impurities having a purity of 99.5 wt% or more and 0.5 wt% or less, and the impurities are Si Prepare two pipes with a pure Al cladding layer made of the remaining unavoidable impurities at 0.25 wt% or less, Fe as 0.40 wt% or less, and expand the end of one tube, In the method in which the other pipe material is inserted and both pipe materials are joined by torch brazing, the brazing material used for torch brazing is Si 11.0 wt% to 13.0 wt%, Zn 1.0 wt% to 2.0 wt%, and the balance is not left. It was an Al alloy composed of an avoidance impurity, and a method of joining pipe materials characterized in that the torch brazing was held for 3 to 8 seconds after reaching 600 ° C. Moreover, in Claim 2, it was set as the heat exchanger which joined the pipe material joined by the joining method of Claim 1, and the fin material.

本発明によれば、トーチろう付けによる接合部の良好なろう付け性と耐優先腐食性、ならびに、非接合部での耐腐食性を防止した接合管材を提供でき、更に、管材/フィン材の隙間腐食を防止して早期に貫通孔食を発生させるようなことがない熱交換器を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the joining pipe material which prevented the favorable brazing property and the preferential corrosion resistance of the junction part by torch brazing, and the corrosion resistance in a non-joining part can be provided, Furthermore, pipe | tube / fin material It is possible to provide a heat exchanger that prevents crevice corrosion and does not generate through-hole corrosion at an early stage.

本発明に係る接合方法を示す断面図である。It is sectional drawing which shows the joining method which concerns on this invention. クラッド管における接合部の電位状態を説明する断面図である。It is sectional drawing explaining the electric potential state of the junction part in a clad tube. クラッド管における腐食進行を模式的に示す断面図である。It is sectional drawing which shows typically the corrosion progress in a clad tube. Zn溶射管における接合部の電位状態を説明する断面図である。It is sectional drawing explaining the electric potential state of the junction part in a Zn spray tube. Zn溶射管における腐食進行を模式的に示す断面図である。It is sectional drawing which shows typically the corrosion progress in a Zn spray tube. 管材とフィン材との接合を説明する断面図である。It is sectional drawing explaining joining of a pipe material and a fin material. 管材の優先腐食を示す断面図である。It is sectional drawing which shows the preferential corrosion of a pipe material. 熱交換器ミニコアの接合部と非接合部を示す平面図である。It is a top view which shows the junction part and non-joint part of a heat exchanger minicore. 熱交換器ミニコアの接合部と非接合部を示す正面図である。It is a front view which shows the junction part and non-joint part of a heat exchanger minicore.

A.貫通漏れ現象のメカニズム
本発明者らは、Al−1wt%Znをクラッドしたクラッド管材をトーチろう付けによって接合した場合に、接合部においてクラッド管材の犠牲材が優先腐食して貫通漏れに至る現象や、Zn溶射管材をトーチろう付けによって接合した場合に、接合部のろう材フィレット部に発生するZn濃化層が優先腐食して貫通漏れに至る現象についてメカニズムを検討した。具体的には図1に示すように、一端を拡管した管材1の拡管部に管材2を挿入して、トーチろう材5を用いてトーチろう付けによって両管材1、2を接合する場合について検討した。ここで、管材1、2の芯材4の外面に形成された層3は、クラッド層であるAl−Zn層又はZn溶射層を表す。
A. Mechanism of Through Leakage Phenomenon When the clad pipe material clad with Al-1 wt% Zn is joined by torch brazing, the sacrificial material of the clad pipe material is preferentially corroded at the joint and leads to through leakage. When Zn sprayed tube material was joined by torch brazing, the mechanism of the phenomenon in which the Zn concentrated layer generated in the brazing filler fillet portion of the joint portion preferentially corroded and caused through leakage was studied. Specifically, as shown in FIG. 1, a case is considered in which the pipe material 2 is inserted into the expanded portion of the pipe material 1 having one end expanded, and both the pipe materials 1 and 2 are joined by torch brazing using the torch brazing material 5. did. Here, the layer 3 formed on the outer surface of the core material 4 of the tube materials 1 and 2 represents an Al—Zn layer or a Zn sprayed layer which is a cladding layer.

クラッド管材において貫通漏れに至る現象は、図2に示すように、接合部においてクラッド層であるAl−Zn層3の腐食電位が、トーチろう材5及び管材の芯材4より卑であることに起因する。図2において、グラフの縦軸は、管材2の軸中心から半径方向への任意距離を示し、腐食電位は、各部位の相対的な電位を示す。そして、図3に模式的に示すように、腐食が進行した腐食中期では、管材2における接合部以外のAl−Zn層31が消失する。更に腐食が進行した腐食後期では、トーチろう材5とAl−Zn層3の腐食電位差の作用によって、管材2の接合部におけるAl−Zn層32が優先的に腐食することが判明した。   As shown in FIG. 2, the phenomenon that leads to penetration leakage in the clad pipe material is that the corrosion potential of the Al—Zn layer 3, which is the clad layer, is lower than the torch brazing material 5 and the core material 4 of the pipe material. to cause. In FIG. 2, the vertical axis of the graph indicates an arbitrary distance in the radial direction from the axial center of the tube material 2, and the corrosion potential indicates a relative potential of each part. Then, as schematically shown in FIG. 3, the Al—Zn layer 31 other than the joint portion in the pipe material 2 disappears in the middle stage of corrosion in which corrosion has progressed. Further, it was found that the Al—Zn layer 32 at the joint portion of the pipe material 2 is preferentially corroded by the action of the corrosion potential difference between the torch brazing material 5 and the Al—Zn layer 3 in the late stage of corrosion.

Zn溶射管材において貫通漏れに至る現象は、図4に示すように、接合部のろう材フィレット部に発生したZn濃化層51の腐食電位が、トーチろう材5及び管材の芯材4より卑になっていることに起因する。図4において、グラフの縦軸は、管材2の軸中心から半径方向への任意距離を示し、腐食電位は、各部位の相対的な電位を示す。そして、図5に模式的に示すように、腐食が進行した腐食中期では、管材2における接合部以外のZn溶射層31が消失する。更に腐食が進行した腐食後期では、管材2における接合部以外のZn溶射部が消失するだけでなく、トーチろう材5とZn濃化層51の腐食電位差の作用によって、Zn濃化層51が優先的に腐食することが判明した。図5において、52は腐食したZn濃化層部分を表す。   As shown in FIG. 4, the phenomenon that leads to penetration leakage in the Zn sprayed tube material is such that the corrosion potential of the Zn concentrated layer 51 generated in the brazing filler fillet portion of the joint is lower than that of the torch brazing material 5 and the core material 4 of the tube material. This is due to the fact that In FIG. 4, the vertical axis of the graph indicates an arbitrary distance in the radial direction from the axial center of the tube material 2, and the corrosion potential indicates a relative potential of each part. Then, as schematically shown in FIG. 5, the Zn sprayed layer 31 other than the joint portion in the pipe material 2 disappears in the middle stage of corrosion in which the corrosion has progressed. Further, in the later stage of corrosion in which corrosion has progressed, not only the Zn sprayed portion other than the joint in the pipe material 2 disappears but also the Zn concentrated layer 51 has priority due to the effect of the corrosion potential difference between the torch brazing material 5 and the Zn concentrated layer 51. Was found to corrode. In FIG. 5, 52 represents a corroded Zn concentrated layer portion.

本発明者らは、鋭意研究の結果、この優先腐食を防止する根本的対策として、クラッド管材における貫通漏れに対しては、接合部にAl−Zn層を存在させないことが有効であることを見出した。具体的には、トーチろう付け時において、溶解したろう材によってAl−Zn材を侵食させ、ろう材とAl−Zn材を一体化させるものである。
一方、Zn溶射管材における貫通漏れに対しては、接合部のろう材層にZn濃化層を存在させないことが有効であることを見出した。具体的には、トーチろう付けの前段階において、管材表面のZn溶射層に熱拡散を加えて表層のZn濃度を予め低濃度にしておくものである。
As a result of intensive studies, the present inventors have found that, as a fundamental measure for preventing this preferential corrosion, it is effective to prevent the Al—Zn layer from being present in the joint portion for the penetration leakage in the clad pipe material. It was. Specifically, at the time of torch brazing, the Al—Zn material is eroded by the molten brazing material, and the brazing material and the Al—Zn material are integrated.
On the other hand, it has been found that it is effective to prevent a Zn-enriched layer from being present in the brazing filler metal layer at the joint portion against penetration leakage in the Zn sprayed tube material. Specifically, in the pre-stage of torch brazing, thermal diffusion is applied to the Zn sprayed layer on the surface of the tube material so that the Zn concentration in the surface layer is previously reduced.

クラッド管材及びZn溶射管材の何れの場合においても、トーチろう材には4047のろう材にZnを1.0〜2.0wt%添加することが必要であった。これにより、クラッド管材ではトーチろう材によるクラッド層の侵食が発生してクラッド層が消滅し、Zn溶射管材では接合部のZn濃度が低濃度で均一になった。その結果、いずれの場合も管材接合部での優先腐食を防止できることが判明した。   In any case of the clad tube material and the Zn sprayed tube material, it was necessary to add 1.0 to 2.0 wt% of Zn to the 4047 brazing material in the torch brazing material. As a result, in the clad tube material, the clad layer was eroded by the torch brazing material, and the clad layer disappeared. In the Zn sprayed tube material, the Zn concentration in the joint became low and uniform. As a result, it was found that in any case, preferential corrosion at the pipe joint can be prevented.

しかしながら、このような管材接合部での優先腐食を防止しても熱交換器として耐食性を評価すると他の問題が生じた。家庭用エアコンの熱交換器コアのフィン材には、通常JISA1200合金が強度と熱伝導性の点から用いられている。Al−Znクラッド層やZn溶射層を備える管材では、その表層とフィン材との電位の関係が、管材が犠牲層となりフィン材を防食する構成になっているため、管材とフィン材とが接合した部分において管材が腐食して隙間腐食を発生させ、この部分において管材に早期腐食貫通が発生する場合があることが判明した。本発明者らは、この隙間腐食を防止する根本的対策として、管材表面の電位をAl−Zn層やZn溶射層よりも貴にすることが有効であることを見出した。具体的には、純度99.5wt%以上の純Alをクラッド層とした管材を使用することが有効であることが判明した。   However, even if such preferential corrosion at the pipe joint is prevented, another problem arises when the corrosion resistance is evaluated as a heat exchanger. As a fin material of a heat exchanger core of a home air conditioner, JISA1200 alloy is usually used from the viewpoint of strength and thermal conductivity. In a pipe material provided with an Al-Zn cladding layer or a Zn sprayed layer, the potential relationship between the surface layer and the fin material is such that the pipe material serves as a sacrificial layer to prevent corrosion of the fin material. It has been found that the pipe material corrodes in this part and crevice corrosion occurs, and early corrosion penetration may occur in the pipe material in this part. The present inventors have found that it is effective to make the potential on the surface of the pipe material nobler than the Al—Zn layer or the Zn sprayed layer as a fundamental measure for preventing this crevice corrosion. Specifically, it has been proved that it is effective to use a pipe material in which pure Al having a purity of 99.5 wt% or more is used as a cladding layer.

B.管材
本発明に係る管材は、Al合金からなる芯材の外面に純度99.5wt%以上の純Alのクラッド層を設けたものが用いられる。
図1に示すように、端部を拡管した管材1及びその拡管部に挿入される管材2とはいずれも、心材4とその外側にクラッドされたクラッド層3から構成される。クラッド層にはいずれも、純度99.5wt%以上の純Alが用いられる。また、管材1と2とは、通常、芯材及びクラッド層の金属組成、芯材及びクラッド層の厚さ、管材全体の外径及び内径が同じ、すなわち、同じ管材が用いられる。しかしながら、芯材及びクラッド層の金属組成、芯材及びクラッド層の厚さ、管材全体の外径及び内径の少なくともいずれかが異なるものを用いても良い。
B. Tube according to the tube present invention are those having a clad layer of a purity 99.5 wt% or more pure Al on the outer surface of the core material made of Al alloy.
As shown in FIG. 1, the tube material 1 whose end is expanded and the tube material 2 inserted into the expanded portion are each composed of a core material 4 and a cladding layer 3 clad on the outside thereof. In any of the cladding layers, pure Al having a purity of 99.5 wt% or more is used. The pipe materials 1 and 2 are usually the same pipe material in which the metal composition of the core material and the clad layer, the thickness of the core material and the clad layer, the outer diameter and the inner diameter of the entire pipe material are the same. However, it is also possible to use those in which at least one of the metal composition of the core material and the clad layer, the thickness of the core material and the clad layer, and the outer diameter and the inner diameter of the entire pipe material are different.

B−1.芯材
本発明において管材の芯材成分については特に限定されるものではないが、後述する純Al層が犠牲防食可能な電位を示す合金であって、ろう付け時に溶融しない合金が用いられる。クラッド管に大きな強度が要求されない場合にはJIS3003合金が用いられ、大きな強度が要求される場合にはCuの添加量が比較的多いJIS3105合金又はAl−1%Mn−0.5%Cu合金等が好適に用いられる。芯材の成分としては、Si0.6wt%以下、Fe0.7wt%以下、Mn0.8〜1.5wt%、Cu0.05〜0.5wt%とするのが好ましい。
B-1. Core Material In the present invention, the core material component of the tube material is not particularly limited, but an alloy that exhibits a potential at which a pure Al layer described later can be sacrificial and corrosion-proof and does not melt during brazing is used. When high strength is not required for the clad tube, JIS3003 alloy is used. When high strength is required, JIS3105 alloy or Al-1% Mn-0.5% Cu alloy with a relatively large amount of Cu added, etc. Are preferably used. As a component of the core material, Si is preferably 0.6 wt% or less, Fe 0.7 wt% or less, Mn 0.8 to 1.5 wt%, Cu 0.05 to 0.5 wt%.

Siは不純物として含有されるが、この添加量が0.6wt%を超えると芯材の耐食性が劣る場合があるので、Siの添加量は0.6wt%以下とするのが好ましい。Feも不純物として含有されるが、この添加量が0.7wt%を超えると芯材の耐食性が劣る場合があるので、Feの添加量は0.7wt%以下とするのが好ましい。Mnの添加量が0.8wt%未満であると管材の強度が劣る場合があり、1.5wt%を越えると管材の押し出しが困難になる場合がある。従ってMnの添加量は0.8wt%〜1.5wt%とするのが好ましい。Cuの添加量が0.05wt%未満であると芯材とクラッド層である純Al層との電位差が小さくなり、純Al層の犠牲効果が発揮されない場合がある。また、0.5wt%を超えると粒界腐食が発生してしまう場合がある。従ってCuの添加量は0.05wt%〜0.5wt%とするのが好ましい。   Si is contained as an impurity, but if this amount exceeds 0.6 wt%, the corrosion resistance of the core material may be inferior, so the amount of Si added is preferably 0.6 wt% or less. Fe is also contained as an impurity. However, if this addition amount exceeds 0.7 wt%, the corrosion resistance of the core material may be inferior, so the addition amount of Fe is preferably 0.7 wt% or less. If the amount of Mn added is less than 0.8 wt%, the strength of the tube may be inferior, and if it exceeds 1.5 wt%, it may be difficult to extrude the tube. Therefore, the amount of Mn added is preferably 0.8 wt% to 1.5 wt%. If the added amount of Cu is less than 0.05 wt%, the potential difference between the core material and the pure Al layer as the cladding layer becomes small, and the sacrifice effect of the pure Al layer may not be exhibited. Moreover, when it exceeds 0.5 wt%, intergranular corrosion may occur. Accordingly, the amount of Cu added is preferably 0.05 wt% to 0.5 wt%.

B−2.クラッド層
芯材の外側に形成されるクラッド層は、純度99.5%以上の純Al層である。Alに含有される不純物であるSiやFeの含有量が、Siで0.25wt%、Feで0.40wt%を超えると純Al層の電位が貴になり、犠牲防食効果が損なわれる場合がある。その結果、管材が腐食環境に曝されるRベンド部やUベンド部の耐食性が劣ってしまう。従って本発明においては、クラッド管材の表面に純度99.5%以上の純Alを被覆することにした。不純物には不回避的な元素も含まれる。Al純度が99.5%以上とするには、Si、Fe及び不回避的元素から成る不純物の総量は、0.5wt%以下に規定される。したがって、不純物総量が0.5wt%以下の前提のもとに、Siが最大0.25wt%まで、Feが最大0.40wt%まで、ならびに、不回避的元素が含有されるものである。
B-2. The clad layer formed outside the clad layer core material is a pure Al layer having a purity of 99.5% or more. If the content of Si or Fe, which is an impurity contained in Al, exceeds 0.25 wt% for Si and 0.40 wt% for Fe, the potential of the pure Al layer becomes noble and the sacrificial anticorrosive effect may be impaired. is there. As a result, the corrosion resistance of the R bend part and the U bend part where the pipe material is exposed to the corrosive environment is deteriorated. Therefore, in the present invention, the surface of the clad pipe material is coated with pure Al having a purity of 99.5% or more. Impurities include unavoidable elements. In order to make the Al purity 99.5% or more, the total amount of impurities composed of Si, Fe and unavoidable elements is specified to be 0.5 wt% or less. Therefore, on the assumption that the total amount of impurities is 0.5 wt% or less, Si is up to 0.25 wt%, Fe is up to 0.40 wt%, and unavoidable elements are contained.

クラッド層厚さは、50μm〜100μmとするのが好ましい。クラッド層厚さが50μm未満であると、Rベンド部やUベンド部においてクラッド層の犠牲防食効果が十分に発揮されず貫通寿命が短くなる場合がある。一方、100μmを超えるとRベンド部やUベンド部の耐食性は確保されるが、トーチろう付け部において、ろう付けによりクラッド層がトーチろう材により侵食しきれなくなるため、クラッド層の優先腐食が発生する場合がある。   The cladding layer thickness is preferably 50 μm to 100 μm. If the clad layer thickness is less than 50 μm, the sacrificial anticorrosive effect of the clad layer may not be sufficiently exhibited in the R bend part or U bend part, and the penetrating life may be shortened. On the other hand, if it exceeds 100 μm, the corrosion resistance of the R bend part and U bend part is secured, but in the torch brazing part, the clad layer cannot be eroded by the torch brazing material by brazing, so preferential corrosion of the clad layer occurs. There is a case.

B−3.管材の作製
管材は以下のようにして作製される。まず、円筒状の芯材の外面にクラッド層となる皮材スリーブを被せて、組み合わせビレットを作製する。所望のクラッド層厚さになるように、皮材スリーブの厚さを選定する。次いで、組み合わせビレットを加熱炉で350℃〜600℃に均熱する。次いで、組み合わせビレットをダイスとラムノーズ間に狭持してコンテナ内に挿入し、ダイスとラムノーズを固定した状態で芯材内径より大きな外径をもつマンドレルを圧入し、芯材の内径を拡管して芯材と皮材間の空気を追い出す。更に、マンドレルを所定の位置に固定して、ホローシステムを前進させダイスを通して組み合わせビレットを押し出し、継ぎ目無しの中空管材とするものである。最後に、抽伸工程を経て所定の外径と内径を有するクラッド管を作製する。
これに代わって、押し出し成形によって芯材管を作製し、その外面にクラッド層を溶射によって形成してもよい。
B-3. Production of tube material A tube material is produced as follows. First, a combination billet is manufactured by covering the outer surface of a cylindrical core material with a skin sleeve serving as a cladding layer. The thickness of the skin sleeve is selected so as to obtain a desired cladding layer thickness. Next, the combined billet is soaked at 350 ° C. to 600 ° C. in a heating furnace. Next, sandwich the combination billet between the die and the ramnose and insert it into the container. With the die and the ramnose fixed, press-fit a mandrel with an outer diameter larger than the inner diameter of the core, and expand the inner diameter of the core Expel the air between the core and skin. Further, the mandrel is fixed at a predetermined position, the hollow system is advanced, the combination billet is pushed out through a die, and a seamless hollow tube material is obtained. Finally, a clad tube having a predetermined outer diameter and inner diameter is produced through a drawing process.
Alternatively, a core tube may be produced by extrusion and a cladding layer may be formed on the outer surface by thermal spraying.

C.トーチろう材
トーチろう材の成分は、Si11.0wt%〜13.0wt%、Zn1.0wt%〜2.0wt%のAl−Si−Zn合金が用いられる。Si含有量が11.0wt%未満のものは、ろう材の共晶組成から外れるために、ろう付け時において液相量が不足する。その結果、トーチろう付け性が劣る。一方、含有量が13.0wt%を超えると、ろう材が過共晶組成になるためろう材中に大きなSi粒の初晶が析出してろうの流動性を阻害する。その結果、トーチろう付け性が劣る。従ってSi量を11.0wt%〜13.0wt%と規定した。
C. Components of the torch brazing material torch brazing material, Si11.0wt% ~13.0wt%, is Zn1.0wt% ~2.0wt% of Al-Si-Zn alloy is used. When the Si content is less than 11.0 wt%, the liquid phase amount is insufficient at the time of brazing because it deviates from the eutectic composition of the brazing material. As a result, the torch brazability is poor. On the other hand, when the content exceeds 13.0 wt%, since the brazing material has a hypereutectic composition, primary crystals of large Si grains are precipitated in the brazing material, thereby inhibiting the flowability of the brazing. As a result, the torch brazability is poor. Therefore, the amount of Si is defined as 11.0 wt% to 13.0 wt%.

ろう材中のZn含有量が1.0wt%未満のものは、純Alクラッド層とろう材との電位差が大きくなるため、接合部において純Alクラッド層の優先腐食が発生する。含有量が2.0wt%を超えると、ろう付け温度における液相量は十分でクラッド層を侵食できるが、ろう付け後に形成されるろう材層中のZn含有量が多くなるため、ろう材層自身の腐食溶解量が多くなる。その結果、ろう材層が腐食溶解して接合部において貫通腐食が生じてしまう。従ってトーチろう材に含有されるZn量を1.0wt%〜2.0wt%と規定した。   When the Zn content in the brazing material is less than 1.0 wt%, the potential difference between the pure Al cladding layer and the brazing material becomes large, so that the preferential corrosion of the pure Al cladding layer occurs at the joint. When the content exceeds 2.0 wt%, the liquid phase amount at the brazing temperature is sufficient and the clad layer can be eroded. However, since the Zn content in the brazing material layer formed after brazing increases, the brazing material layer The amount of its own corrosion dissolution increases. As a result, the brazing filler metal layer is corroded and dissolved, and penetration corrosion occurs at the joint. Therefore, the amount of Zn contained in the torch brazing material was defined as 1.0 wt% to 2.0 wt%.

また、本発明においては、トーチろう材としてワイヤー状のものを用いるのが好ましい。ワイヤーろう材は、所定成分に鋳造したものを400℃に加熱してダイスを通して丸棒状に押し出し成型し、これをダイスに通して抽伸し所定径の線材を作製する。   In the present invention, it is preferable to use a wire-shaped torch brazing material. A wire brazing material cast to a predetermined component is heated to 400 ° C., extruded into a round bar shape through a die, and drawn through a die to produce a wire having a predetermined diameter.

D.トーチろう付け
図1に示すように、一端を拡管した管材1の拡管部に、接合部にフラックスを塗布した管材2を挿入する。次いで、接合部にトーチろう材5を配置し、プロパン・エアー・トーチ等のトーチを用いたトーチろう付けによって両管材1、2をろう付け接合する。フラックスには、フッ化物系フラックス、セシウム系フラックスを用いることができる。このように、トーチろう付け方法は、一般的な方法を用いることができる。
D. Torch Brazing As shown in FIG. 1, a tube material 2 with a flux applied to a joint portion is inserted into a tube expansion portion of a tube material 1 having one end expanded. Next, the torch brazing material 5 is disposed at the joint, and both the pipe materials 1 and 2 are brazed and joined by torch brazing using a torch such as propane, air, and torch. As the flux, a fluoride-based flux or a cesium-based flux can be used. Thus, a general method can be used for the torch brazing method.

トーチろう付けの条件は、600℃に到達してから3〜8秒保持される。ろう付け時の温度が600℃で3秒未満の場合には、トーチろう付け部に均一に熱がいきわたらないため、ろう材が犠牲材を完全に侵食できない。一方、8秒を超えるとろうの侵食が激しくなり円滑な接合面が形成できなくなり、ろう付け性が劣る。また、ろう付け温度が600℃未満であると、ろうの溶解が不十分でろう付けが不完全となる。従ってろう付け条件は、600℃に到達してから3〜8秒保持と規定した。   The torch brazing conditions are held for 3-8 seconds after reaching 600 ° C. When the brazing temperature is 600 ° C. for less than 3 seconds, heat does not flow uniformly to the torch brazing portion, and the brazing material cannot completely erode the sacrificial material. On the other hand, if it exceeds 8 seconds, the erosion of the brazing will become severe, and a smooth joint surface cannot be formed, resulting in poor brazing. On the other hand, if the brazing temperature is less than 600 ° C., the brazing is not sufficiently dissolved and brazing becomes incomplete. Therefore, the brazing condition was defined as holding for 3 to 8 seconds after reaching 600 ° C.

E.熱交換器の作製
本発明に係る熱交換器は、上述の管材とフィン材とを接合することによって得られる。フィン材としては、JISA1200合金やJISA1100合金等が用いられる。これらの合金を用いることで管材を入れるフィン穴の形状(バーリング形状)を、フィンと管を密着させる形状に成型できる。これら管材とフィン材と組み合わせて、拡管用の治具を管材内部に押し込み、管材を広げフィン穴と密着させ接合する。この後に、拡管用の治具を入れた管同士を、拡管した同構成のU字管の部品でつなぎ、接合部にワイヤーろうを配置してトーチろう付けすることによって熱交換器が製造される。
E. Production of Heat Exchanger A heat exchanger according to the present invention can be obtained by joining the above-described tube material and fin material. As the fin material, JISA1200 alloy, JISA1100 alloy or the like is used. By using these alloys, the shape of the fin hole (burring shape) into which the pipe material is inserted can be formed into a shape in which the fin and the tube are brought into close contact with each other. In combination with these tube material and fin material, a tube expansion jig is pushed into the tube material, and the tube material is expanded and brought into close contact with the fin hole. After this, the tubes containing the expansion jigs are connected with the expanded U-tube components of the same structure, and a heat exchanger is manufactured by placing a wire solder at the joint and brazing the torch. .

以下に、本発明例と比較例に基づいて本発明の実施の形態を具体的に説明する。   Embodiments of the present invention will be specifically described below based on the present invention examples and comparative examples.

本発明例No.1〜9及び比較例No.10〜18
表1に、ワイヤーろう材の成分、純Alクラッド層の不純物含有量、ならびに、ろう付け条件(温度と時間)を示す。ワイヤーろう材は、所定成分に鋳造した後に、丸棒に押し出し、次いでダイスを通して抽伸を行い1.4〜2.2mm径の線材として作製した。
管材は以下のようにして作成した。芯材としてJIS3003の円筒を用い、その外面に不純物としてSiとFeを含有する純Al合金の皮材スリーブを被せ、組み合わせビレットを作製した。次いで、組み合わせビレットを加熱炉で350℃〜600℃に均熱した。更に、組み合わせビレットをダイスとラムノーズ間に狭持してコンテナ内に挿入し、ダイスとラムノーズを固定した状態で芯材内径より大きな外径をもつマンドレルを圧入し、芯材の内径を拡管して芯材と皮材間の空気を追い出した。マンドレルを所定の位置に固定して、ホローシステムを前進させダイスを通して組み合わせビレットを押し出し、継ぎ目無しの中空管材を作製した。次いで、抽伸工程を経て外径φ8mm、内径φ7mmのクラッド管を2本作製した。これらの管を用い、実際の熱交換器の接合部分と同じように、管材1を拡管し、その拡管部分に管材2を挿入した。次いで、接合部分にフッ化物系フラックスを塗布し、ワイヤーろう材を用いてトーチろう付けを行い接合試験片を得た。
Invention Example No. 1-9 and Comparative Example No. 10-18
Table 1 shows the components of the wire brazing material, the impurity content of the pure Al cladding layer, and the brazing conditions (temperature and time). The wire brazing material was cast as a predetermined component, extruded onto a round bar, and then drawn through a die to produce a wire material having a diameter of 1.4 to 2.2 mm.
The tube material was prepared as follows. A cylinder of JIS3003 was used as a core material, and a skin sleeve of a pure Al alloy containing Si and Fe as impurities was placed on the outer surface thereof to produce a combined billet. Next, the combined billet was soaked at 350 to 600 ° C. in a heating furnace. Further, sandwich the combination billet between the die and the ram nose and insert it into the container. With the die and the ram nose fixed, press-fit a mandrel having an outer diameter larger than the inner diameter of the core, and expand the inner diameter of the core. The air between the core and skin was expelled. The mandrel was fixed in place, the hollow system was advanced and the combined billet was extruded through a die to produce a seamless hollow tube material. Subsequently, two clad tubes having an outer diameter of φ8 mm and an inner diameter of φ7 mm were produced through a drawing process. Using these pipes, the pipe material 1 was expanded in the same manner as the joining portion of the actual heat exchanger, and the pipe material 2 was inserted into the expanded pipe portion. Next, a fluoride-based flux was applied to the joining portion, and torch brazing was performed using a wire brazing material to obtain a joining test piece.

Figure 2010240696
Figure 2010240696

上述のようにして作製した接合試験片を用いて以下の評価を行なった。
(1)管材同士の接合部におけるろう付け性評価
接合試験片の断面を切断し樹脂埋め研磨した後に、10mm以上にわたって接合痕が存在していたものを○とし、接合痕が5mm以上10mm以下未満のものを△とし、5mm未満のものを×とした。○と△を合格とし、×を不合格とした。
The following evaluation was performed using the joining test piece produced as described above.
(1) Brazing evaluation at joints between pipe materials After cutting the cross-section of the joint specimen and polishing with resin filling, the mark where the joint mark was present over 10 mm or more was marked with ◯, and the joint mark was 5 mm or more and less than 10 mm or less Those having a thickness of less than 5 mm were evaluated as “x”. ○ and Δ were accepted and x was rejected.

次に、上述のようにして作製した接合試験片とJISA1200合金からなるフィン材を成型加工し、管材試験片を液圧拡管し実際の熱交換器に似せたミニコアを成型し(図8、図9)、以下の評価を行なった。図8、図9において、1、2、6は他の図面と同じ部材であり、Aは管材1と2の接合部、BはRベンド部、CはUベンド部、Dはフィン下部である。   Next, the joining test piece produced as described above and a fin material made of JISA1200 alloy are molded, and the tube test piece is hydraulically expanded to form a mini-core that resembles an actual heat exchanger (FIGS. 8 and 8). 9) The following evaluation was performed. In FIGS. 8 and 9, reference numerals 1, 2 and 6 are the same members as in the other drawings, A is the joint between the pipes 1 and 2, B is the R bend, C is the U bend, and D is the lower fin. .

(2)腐食試験
上述のようにして作製した熱交換器ミニコアを用い、JISH8601に準じるCASS試験を2000h行なった。試験後、コアのフィン材を除去し、管材に付いた腐食生成物を濃硝酸とリン酸−クロム酸混液で除去した。次いで、図8、9に示す接合部における内側管材である管材2の腐食深さ、ならびに、非接合部であるRベンド部、Uベンド部及びフィン下部の管材の腐食深さを焦点深度法にて測定した。結果を表1に示す。未貫通のものを合格とし、貫通したものを不合格とした。
(2) Corrosion test Using the heat exchanger mini-core produced as described above, a CASS test according to JISH8601 was performed for 2000 h. After the test, the core fin material was removed, and the corrosion products attached to the pipe material were removed with concentrated nitric acid and phosphoric acid-chromic acid mixed solution. Next, the depth of corrosion of the pipe material 2 which is the inner pipe material in the joint portion shown in FIGS. 8 and 9 and the corrosion depth of the pipe material under the R bend portion, U bend portion and fins which are non-joint portions are used as the depth of focus method. Measured. The results are shown in Table 1. Those that did not penetrate were accepted, and those that penetrated were rejected.

比較例19
芯材としてJIS3003の円筒を用い、その外面にAl−1%Zn合金の皮材スリーブを被せ、組み合わせビレットを作製した。次いで、組み合わせビレットを加熱炉で350℃〜600℃に均熱した。更に、組み合わせビレットをダイスとラムノーズ間に狭持してコンテナ内に挿入し、ダイスとラムノーズを固定した状態で芯材内径より大きな外径をもつマンドレルを圧入し、芯材の内径を拡管して芯材と皮材間の空気を追い出した。マンドレルを所定の位置に固定して、ホローシステムを前進させダイスを通して組み合わせビレットを押し出し、継ぎ目無しの中空管材を作製した。次いで、抽伸工程を経て外径φ8mm、内径φ7mmのクラッド管を2本作製した。これらの管を用い、実際の熱交換器の接合部分と同じように、管材1を拡管し、その拡管部分に管材2を挿入した。次いで、接合部分にフッ化物系フラックスを塗布し、ワイヤーろう材を用いて600℃、3秒保持のトーチろう付けを行い接合試験片を得た。
Comparative Example 19
A cylinder according to JIS3003 was used as a core material, and a skin sleeve made of an Al-1% Zn alloy was covered on the outer surface thereof to produce a combined billet. Next, the combined billet was soaked at 350 to 600 ° C. in a heating furnace. Further, sandwich the combination billet between the die and the ram nose and insert it into the container. With the die and the ram nose fixed, press-fit a mandrel having an outer diameter larger than the inner diameter of the core, and expand the inner diameter of the core. The air between the core and skin was expelled. The mandrel was fixed in place, the hollow system was advanced and the combined billet was extruded through a die to produce a seamless hollow tube material. Subsequently, two clad tubes having an outer diameter of φ8 mm and an inner diameter of φ7 mm were produced through a drawing process. Using these pipes, the pipe material 1 was expanded in the same manner as the joining portion of the actual heat exchanger, and the pipe material 2 was inserted into the expanded pipe portion. Next, a fluoride-based flux was applied to the joint portion, and a torch brazing was performed at 600 ° C. for 3 seconds using a wire brazing material to obtain a joint specimen.

比較例20
管材としてJIS3003のビレットを作製し、これを加熱炉で350℃〜600℃に均熱した。次いで、ビレットをコンテナ内に挿入してダイスを通してビレットを押し出し中空管材を作製した。更に、Zn溶射ガンの中を通して付着量10g/mのZn溶射管を作製した。このZn溶射管に、430℃で8時間の予備加熱処理を施した。このようにして、外径φ8mm、内径φ7mmのZn溶射管を2本作製した。これらの管を用い、実際の熱交換器の接合部分と同じように、管材1を拡管し、その拡管部分に管材2を挿入した。次いで、接合部分にフッ化物系フラックスを塗布し、ワイヤーろう材を用いて600℃、5秒保持のトーチろう付けを行い接合試験片を得た。
Comparative Example 20
A billet of JIS3003 was produced as a tube material, and this was soaked at 350 ° C. to 600 ° C. in a heating furnace. Next, the billet was inserted into a container, and the billet was extruded through a die to produce a hollow tube material. Further, a Zn spray tube having an adhesion amount of 10 g / m 2 was produced through the Zn spray gun. This Zn sprayed tube was preheated at 430 ° C. for 8 hours. In this way, two Zn spray tubes having an outer diameter of 8 mm and an inner diameter of 7 mm were produced. Using these pipes, the pipe material 1 was expanded in the same manner as the joining portion of the actual heat exchanger, and the pipe material 2 was inserted into the expanded pipe portion. Next, a fluoride-based flux was applied to the joining portion, and a torch brazing was performed at 600 ° C. for 5 seconds using a wire brazing material to obtain a joining test piece.

表1から明らかなように、本発明例1〜8では、接合部におけるトーチろう付け性が良好であった。また、熱交換器ミニコアでの接合部及び非接合部における耐食性も良好であった。
比較例10では、純Alクラッド層のSi量が本発明範囲を超えるため、Rベンド部とUベンド部の耐食性が劣り貫通腐食を生じた。
比較例11では、純Alクラッド層のFe量が本発明を超えるため、Rベンド部とUベンド部の耐食性が劣り、貫通腐食を生じた。
比較例12では、ろう材ワイヤーのSi量が本発明未満のため、ろう材の液相線温度が下がるためトーチろう付け性が不良であった。
比較例13では、ろう材ワイヤーのSi量が本発明を超えるため、ろう材の液相線温度が下がるためトーチろう付け性が不良であった。
比較例14では、ろう材ワイヤーのZn量が本発明未満のため、Zn濃縮層とろう材部の電位差が大きくなり接合部に優先腐食が発生して接合部での耐食性に劣った。
比較例15では、ろう材ワイヤーのZn量が本発明を超えるため、ろう材中のZn量が多くなりフィレット部の腐食量が多くなるため、接合部での耐食性に劣った。
比較例16では、トーチろう付けの保持時間が本発明未満のため、接合部ののろう付け性が不良であった。
比較例17では、トーチろう付けの保持時間が本発明を超えるため、接合部のろう付けが不良であった。
比較例18では、トーチろう付けの温度が本発明未満のため、接合部のろう付けが不良であった。
比較例19、20では、純度99.5wt%の純Alクラッド層を用いていないため、フィン下部での耐食性に劣った。
As is apparent from Table 1, in Examples 1 to 8 of the present invention, the torch brazing property at the joint was good. Moreover, the corrosion resistance in the junction part and non-joint part in a heat exchanger minicore was also favorable.
In Comparative Example 10, since the amount of Si in the pure Al cladding layer exceeded the range of the present invention, the corrosion resistance of the R bend portion and the U bend portion was inferior, and penetration corrosion occurred.
In Comparative Example 11, since the amount of Fe in the pure Al cladding layer exceeded the present invention, the corrosion resistance of the R bend part and the U bend part was inferior, and penetration corrosion occurred.
In Comparative Example 12, since the amount of Si in the brazing material wire was less than that of the present invention, the liquidus temperature of the brazing material was lowered, and thus the torch brazing was poor.
In Comparative Example 13, since the amount of Si in the brazing material wire exceeded the present invention, the liquidus temperature of the brazing material was lowered, and the torch brazing property was poor.
In Comparative Example 14, since the amount of Zn in the brazing filler metal wire was less than that of the present invention, the potential difference between the Zn-enriched layer and the brazing filler metal portion increased, preferential corrosion occurred in the joint portion, and the corrosion resistance at the joint portion was poor.
In Comparative Example 15, since the amount of Zn in the brazing material wire exceeded the present invention, the amount of Zn in the brazing material increased and the amount of corrosion in the fillet portion increased, resulting in poor corrosion resistance at the joint.
In Comparative Example 16, since the holding time of the torch brazing was less than that of the present invention, the brazing property of the joint was poor.
In Comparative Example 17, since the holding time of the torch brazing exceeded the present invention, the brazing of the joint portion was poor.
In Comparative Example 18, since the temperature of the torch brazing was lower than that of the present invention, the brazing of the joint portion was poor.
In Comparative Examples 19 and 20, since a pure Al clad layer having a purity of 99.5 wt% was not used, the corrosion resistance at the lower portion of the fin was inferior.

このように本発明により、接合部であるトーチろう付け部における良好なろう付け性及び耐優先腐食性を備えると共に、非接合部であるRベンド及びUベンド部における耐食性を備えた接合管材が提供される。そして、これら管材とフィン材を接合することにより、管材/フィン材の接合部での隙間腐食を防止した熱交換器が提供される。   As described above, according to the present invention, there is provided a joining pipe material having good brazing property and preferential corrosion resistance in a torch brazing part which is a joint part, and corrosion resistance in R joint and U bend part which are non-joint parts. Is done. And the heat exchanger which prevented the crevice corrosion in the junction part of a pipe material / fin material by joining these pipe materials and fin materials is provided.

1……管材、チューブ
2……管材
3……クラッド層、Zn溶射層、犠牲陽極材
31……Al−Zn層
32……Al−Zn層
4……芯材
5……ろう材、トーチろう材
51……Zn濃化層
52……Zn濃化層
6……フィン
7……拡管用の治具
A……接合部
B……Rベンド部
C……Uベンド部
D……フィン下部
DESCRIPTION OF SYMBOLS 1 ... Tube material, tube 2 ... Tube material 3 ... Cladding layer, Zn sprayed layer, sacrificial anode material 31 ... Al-Zn layer 32 ... Al-Zn layer 4 ... Core material 5 ... Brazing material, torch brazing Material 51 …… Zn enriched layer 52 …… Zn enriched layer 6 …… Fin 7 …… Jig for tube expansion A …… Junction B BR R bend C …… U bend D Dfin bottom

Claims (2)

Al合金からなる芯材の外面に、純度99.5wt%以上で0.5wt%以下の不純物を含有し、当該不純物がSiとして0.25wt%以下、Feとして0.40wt%以下で残部不回避不純物からなる純Alのクラッド層を設けた管材を2本用意し、一方の管材の端部を拡管し、当該拡管部に他方の管材を挿入してトーチろう付けによって両管材を接合する方法において、トーチろう付けに用いるろう材が、Si11.0wt%〜13.0wt%、Zn1.0wt%〜2.0wt%で残部不回避不純物からなるAl合金であり、トーチろう付けが600℃に到達してから3〜8秒保持されることを特徴とする管材の接合方法。   The outer surface of the core material made of an Al alloy contains impurities of purity 99.5 wt% or more and 0.5 wt% or less, and the impurities are 0.25 wt% or less as Si and 0.40 wt% or less as Fe, and the remainder is inevitable In a method of preparing two pipes provided with a pure Al cladding layer made of impurities, expanding one end of one pipe, inserting the other pipe into the expanded part, and joining both pipes by torch brazing The brazing material used for torch brazing is an Al alloy consisting of Si 11.0 wt% to 13.0 wt%, Zn 1.0 wt% to 2.0 wt% and the remaining inevitable impurities, and the torch brazing reaches 600 ° C. The method for joining pipe materials is characterized in that the tube material is held for 3 to 8 seconds. 請求項1に記載の接合方法により接合した管材とフィン材とを接合した熱交換器。   The heat exchanger which joined the pipe material and the fin material which were joined by the joining method of Claim 1.
JP2009092962A 2009-04-07 2009-04-07 Method for joining pipe materials, and heat exchanger for joining pipe materials and fin materials joined by the joining method Active JP5731106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009092962A JP5731106B2 (en) 2009-04-07 2009-04-07 Method for joining pipe materials, and heat exchanger for joining pipe materials and fin materials joined by the joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009092962A JP5731106B2 (en) 2009-04-07 2009-04-07 Method for joining pipe materials, and heat exchanger for joining pipe materials and fin materials joined by the joining method

Publications (2)

Publication Number Publication Date
JP2010240696A true JP2010240696A (en) 2010-10-28
JP5731106B2 JP5731106B2 (en) 2015-06-10

Family

ID=43094355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009092962A Active JP5731106B2 (en) 2009-04-07 2009-04-07 Method for joining pipe materials, and heat exchanger for joining pipe materials and fin materials joined by the joining method

Country Status (1)

Country Link
JP (1) JP5731106B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014020704A (en) * 2012-07-20 2014-02-03 Panasonic Corp Bonded body of pipe members and heat exchanger for refrigeration cycle device
WO2014076949A1 (en) * 2012-11-14 2014-05-22 パナソニック株式会社 Al alloy pipe assembly and heat exchanger using same
CN104923933A (en) * 2015-06-08 2015-09-23 柳州市山泰气体有限公司 Argon bottle tubular base welding process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018294A (en) * 1983-07-13 1985-01-30 Sanden Corp Aluminum-brazed joint
JPH06170519A (en) * 1991-05-28 1994-06-21 Sky Alum Co Ltd Aluminum alloy-made laminated layer type heat exchanger having excellent corrosion resistance
JPH09510663A (en) * 1994-01-07 1997-10-28 クルップ ファウデーエム ゲーエムベーハー Method of joining aluminum parts by brazing, use of this method and apparatus for carrying out this method
JP2008215733A (en) * 2007-03-05 2008-09-18 Kobelco & Materials Copper Tube Inc Fin and tube type heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018294A (en) * 1983-07-13 1985-01-30 Sanden Corp Aluminum-brazed joint
JPH06170519A (en) * 1991-05-28 1994-06-21 Sky Alum Co Ltd Aluminum alloy-made laminated layer type heat exchanger having excellent corrosion resistance
JPH09510663A (en) * 1994-01-07 1997-10-28 クルップ ファウデーエム ゲーエムベーハー Method of joining aluminum parts by brazing, use of this method and apparatus for carrying out this method
JP2008215733A (en) * 2007-03-05 2008-09-18 Kobelco & Materials Copper Tube Inc Fin and tube type heat exchanger

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014020704A (en) * 2012-07-20 2014-02-03 Panasonic Corp Bonded body of pipe members and heat exchanger for refrigeration cycle device
WO2014076949A1 (en) * 2012-11-14 2014-05-22 パナソニック株式会社 Al alloy pipe assembly and heat exchanger using same
CN104768690A (en) * 2012-11-14 2015-07-08 松下电器产业株式会社 Al alloy pipe assembly and heat exchanger using same
JPWO2014076949A1 (en) * 2012-11-14 2017-01-05 パナソニック株式会社 Al alloy pipe joined body and heat exchanger using the same
CN104923933A (en) * 2015-06-08 2015-09-23 柳州市山泰气体有限公司 Argon bottle tubular base welding process

Also Published As

Publication number Publication date
JP5731106B2 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
JP6253212B2 (en) Tube for heat exchanger assembly configuration
JP6186239B2 (en) Aluminum alloy heat exchanger
JP4611797B2 (en) Aluminum alloy plate material for radiator tubes with excellent brazeability, and radiator tube and heat exchanger provided with the same
JP6263574B2 (en) Brazing sheet, method for producing the same and method for brazing aluminum structure
JP5334086B2 (en) Aluminum heat exchanger having excellent corrosion resistance and method for producing the same
JP5977640B2 (en) Aluminum pipe joint
JP6457271B2 (en) Al alloy pipe joined body and heat exchanger using the same
JP2010221256A (en) Tube joining method
JP4541252B2 (en) Aluminum alloy sheet for radiator tube
JP5731106B2 (en) Method for joining pipe materials, and heat exchanger for joining pipe materials and fin materials joined by the joining method
JP2006145060A (en) Aluminum heat exchanger
WO2001066295A1 (en) Method of short-time brazing for aluminum alloy assembly and low temperature brazing filler alloy
JP2010017721A (en) Brazing method for heat exchanger
JP6039218B2 (en) Manufacturing method of aluminum alloy flat tube for heat exchanger and manufacturing method of heat exchanger core
JP5680880B2 (en) Method for producing brazed and joined Al member
JP2019011922A (en) Method for manufacturing aluminum alloy heat exchanger with excellent anticorrosion, and aluminum alloy heat exchanger
JP5777662B2 (en) How to join pipe materials
JP2006205254A (en) Aluminum alloy material for heat exchanger having excellent brazing property and corrosion resistance and heat exchanger equipped with the same
JP5877739B2 (en) Aluminum alloy flat tube for heat exchanger and method for producing the same, heat exchanger core and method for producing the same
JP5354909B2 (en) Aluminum alloy bare fin material for heat exchanger
JP4290625B2 (en) Header tank for heat exchanger using extruded aluminum alloy and heat exchanger provided with the same
JP5729969B2 (en) Aluminum alloy brazing wax and manufacturing method thereof
JP7012529B2 (en) Single-sided wax fin material for heat exchangers and heat exchangers and their manufacturing methods
JP6204450B2 (en) Aluminum alloy flat tube for heat exchanger and method for producing the same, heat exchanger core and method for producing the same
JP2008308723A (en) Aluminum alloy brazing filler metal and aluminum alloy brazing sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140228

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140421

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150409

R150 Certificate of patent or registration of utility model

Ref document number: 5731106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150