JP5674542B2 - Profile measurement method for blast furnace interior - Google Patents

Profile measurement method for blast furnace interior Download PDF

Info

Publication number
JP5674542B2
JP5674542B2 JP2011094188A JP2011094188A JP5674542B2 JP 5674542 B2 JP5674542 B2 JP 5674542B2 JP 2011094188 A JP2011094188 A JP 2011094188A JP 2011094188 A JP2011094188 A JP 2011094188A JP 5674542 B2 JP5674542 B2 JP 5674542B2
Authority
JP
Japan
Prior art keywords
measurement
furnace
blast furnace
profile
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011094188A
Other languages
Japanese (ja)
Other versions
JP2012224918A (en
Inventor
茂治 若林
茂治 若林
松本 俊司
俊司 松本
哲哉 秋元
哲哉 秋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Texeng Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Texeng Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Texeng Co Ltd filed Critical Nippon Steel Corp
Priority to JP2011094188A priority Critical patent/JP5674542B2/en
Publication of JP2012224918A publication Critical patent/JP2012224918A/en
Application granted granted Critical
Publication of JP5674542B2 publication Critical patent/JP5674542B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Description

本発明は、高炉内装入物の表面の形状(プロフィル)の測定方法に関するものである。   The present invention relates to a method for measuring the shape (profile) of the surface of a blast furnace interior.

一般に、銑鉄の製造における高炉には、炉頂から装入物として、粉鉄鉱石を焼き固めた焼結鉱や塊状鉄鉱石等(以下では単に鉄鉱石または鉱石と記す)及びコークスが交互に高炉の上部から装入されて堆積し、炉内に鉱石層およびコークス層が形成される。高炉下方にある羽口から吹き込まれる熱風とコークスとの反応によって生じるCOガスにより、鉄鉱石は加熱、還元され(間接還元)、また、一部はコークスにより直接的に還元されて、軟化融着帯を形成した後、溶滴となる。溶滴、すなわち溶銑は、コークス層の間を通過して炉底部に溜まる。炉内に形成された鉱石層およびコークス層は炉内を徐々に降下し、高炉内炉頂部における装入物の表面位置は上下に変動する。   In general, blast furnaces in the production of pig iron use blast furnaces alternately with sintered ore or lump iron ore (hereinafter simply referred to as iron ore or ore) and coke as the charge from the top of the furnace. The ore layer and the coke layer are formed in the furnace. The iron ore is heated and reduced (indirect reduction) by the CO gas generated by the reaction between the hot air blown from the tuyere below the blast furnace and coke, and part of the iron ore is reduced directly by the coke and softened and fused. After forming the band, it becomes a droplet. The droplets, that is, the molten iron, pass between the coke layers and accumulate at the bottom of the furnace. The ore layer and coke layer formed in the furnace gradually descend in the furnace, and the surface position of the charge at the top of the furnace inside the blast furnace fluctuates up and down.

以上の工程において、高炉に装入された鉄鉱石及びコークスによって形成される炉頂部の装入物分布を調整し、適正なガス分布を得ることは非常に重要である。高炉内炉頂部における装入物のプロフィル(表面形状)は、ベル式装入装置ではムーバブルアーマを、また、ベルレス式装入装置では分配シュートを介する装入物の落下軌跡により決定される。通常、炉頂部の装入物のプロフィルは、高炉の中心鉛直方向(軸心)を軸として中央部が低い略逆円錘形状をなしている。高炉内装入物のプロフィルは、高炉の操業にとって重要な情報であり、従来から炉内に装入され堆積した装入物のプロフィルを測定する測定装置および方法が開発され、実用化されてきた。   In the above process, it is very important to adjust the charge distribution at the top of the furnace formed by the iron ore and coke charged in the blast furnace to obtain an appropriate gas distribution. The profile (surface shape) of the charge at the top of the furnace in the blast furnace is determined by the moving armor in the bell-type charging device and the fall trajectory of the charge through the distribution chute in the bell-less charging device. Usually, the profile of the charge at the top of the furnace has a substantially inverted conical shape with a low center part around the center vertical direction (axial center) of the blast furnace. The profile of the blast furnace interior is important information for the operation of the blast furnace, and measuring devices and methods for measuring the profile of the charge charged and deposited in the furnace have been developed and put into practical use.

例えば特許文献1に、炉中心軸上を外れた炉頂部の炉外位置に、マイクロ波の送受信アンテナおよび発信回路を備えたマイクロ波プローブを設け、マイクロ波プローブを回動させてマイクロ波を送受信することにより、炉中の装入物の表面輪郭を測定する測定装置が開示されている。   For example, in Patent Document 1, a microwave probe provided with a microwave transmission / reception antenna and a transmission circuit is provided at a position outside the furnace top on the furnace center axis, and the microwave probe is rotated to transmit and receive microwaves. Thus, a measuring device for measuring the surface contour of the charge in the furnace is disclosed.

また、例えば特許文献2には、炉体の側面から高炉の軸心に向けて、マイクロ波の送受信機能を備えたゾンデ管を挿入し、マイクロ波を高炉内装入物へ向けて発信して、高炉内装入物の表面までの距離を測定する方式が開示されている。   Further, for example, in Patent Document 2, a sonde tube having a microwave transmission / reception function is inserted from the side surface of the furnace body toward the blast furnace axis, and the microwave is transmitted toward the blast furnace interior, A method for measuring the distance to the surface of the blast furnace interior is disclosed.

これらの測定装置を用いる際には、炉内にマイクロ波を走査させて、順次炉内の各位置における装入物のプロフィルを測定する。そのため、測定開始位置と測定終了位置とでは測定時間に差が生じ、その間に高炉内装入物が降下する。したがって、測定時間差に応じて測定値を補正しなければ、正確なプロフィルが得られない。   When using these measuring devices, microwaves are scanned into the furnace, and the profile of the charge at each position in the furnace is sequentially measured. For this reason, a difference occurs in the measurement time between the measurement start position and the measurement end position, and the blast furnace interior falls during that time. Therefore, an accurate profile cannot be obtained unless the measurement value is corrected according to the measurement time difference.

そこで、予め任意の位置で測定した装入物の降下速度に基づき、距離測定データを補正する方法が考えられる。ところが、高炉内装入物の降下速度は炉内の位置によって異なり、中心部が小さく、炉の形状にもよるが中心部と炉壁付近とは30%程度の差がある。そのため、炉内径方向の位置に応じた補正を行わなければ、正確なプロフィルを求めることができない。   Therefore, a method for correcting the distance measurement data based on the descending speed of the charge measured in advance at an arbitrary position can be considered. However, the descending speed of the blast furnace interior varies depending on the position in the furnace, the center is small, and depending on the shape of the furnace, there is a difference of about 30% between the center and the vicinity of the furnace wall. Therefore, an accurate profile cannot be obtained unless correction according to the position in the furnace inner diameter direction is performed.

このような装入物の降下による測定誤差を除去する方法として、特許文献3に、等速で測定した往路と復路の平均測深値により装入物のプロフィルを検出する方法が開示されている。   As a method for removing the measurement error due to the descending of the charged material, Patent Document 3 discloses a method for detecting the profile of the charged material based on the average depth value of the forward path and the backward path measured at a constant speed.

特許第2870346号公報Japanese Patent No. 2870346 特開2002−275516号公報JP 2002-275516 A 特公平4−37124号公報Japanese Examined Patent Publication No. 4-37124

しかしながら、前述のように、高炉内装入物の降下速度が炉内の位置によって異なるため、特許文献3の場合、図5に示すように、得られた推定プロフィルは正確な装入プロフィルではないという問題がある。   However, as described above, since the descending speed of the blast furnace interior varies depending on the position in the furnace, in the case of Patent Document 3, the obtained estimated profile is not an accurate charging profile as shown in FIG. There's a problem.

本発明の目的は、炉内の位置による装入物の降下量を考慮し、高精度なプロフィル測定を行うことができる高炉内装入物のプロフィル測定方法を提供することにある。   An object of the present invention is to provide a method for measuring a profile of a blast furnace interior, which can perform a highly accurate profile measurement in consideration of a descending amount of the charge depending on a position in the furnace.

上記問題を解決するため、本発明は、高炉内装入物の炉頂部の表面形状を測定する測定方法であって、炉内の中心軸を通る直径方向に、高炉内装入物の炉頂部の表面の深さを、同一方向に同じ速度パターンで複数回測定し、複数回の測定値の差から、前記炉内の直径方向の位置毎の装入物降下速度を求め、前記位置毎の装入物降下速度と、測定開始時から各位置の1回目の測定時までの時間差から、前記時間差による装入物の降下量を算出して補正量とし、各位置の1回目の測定値に前記補正量を加えて補正することにより、測定開始時の装入物のプロフィルを推定することを特徴とする、高炉内装入物のプロフィル測定方法を提供する。   In order to solve the above problem, the present invention is a measurement method for measuring the surface shape of the furnace top of the blast furnace interior, and the surface of the furnace top of the blast furnace interior is diametrically passing through the central axis in the furnace. The depth of the same is measured multiple times with the same speed pattern in the same direction, and from the difference between the measured values multiple times, the charge lowering speed for each position in the diameter direction in the furnace is obtained, and the charging for each position is performed. Based on the object descent speed and the time difference from the start of measurement until the first measurement at each position, the amount of charge fall due to the time difference is calculated as a correction amount, and the correction is made to the first measurement value at each position. Provided is a method for measuring a profile of a blast furnace interior charge, wherein the profile of the charge at the start of measurement is estimated by adding and correcting the amount.

前記高炉内装入物のプロフィル測定方法においては、高炉内装入物の炉頂部の表面を測定する測定装置の、高炉内装入物の炉頂部の表面での測定点を、炉内の中心軸を通る直径方向に2往復走査させ、往路における測定データを測定値として採用し、復路の測定データは採用しないか或いは復路では測定を行わず、前記復路は前記往路よりも高速で走査させることが好ましい。   In the method for measuring the profile of the blast furnace interior, the measurement point of the measuring device for measuring the surface of the top of the blast furnace interior passes through the central axis in the furnace. It is preferable to perform two reciprocating scans in the diametrical direction, adopt measurement data in the forward path as measurement values, do not adopt measurement data in the return path, or perform measurement in the return path, and scan the return path at a higher speed than the forward path.

本発明によれば、炉内の位置による装入物の降下量を考慮して、高精度に高炉内装入物のプロフィルが測定できる。したがって、装入物表面のプロフィルの変化を正確に把握することができ、高炉の炉況悪化を未然に防止して、高炉の操業を安定化させることができる。   According to the present invention, the profile of the blast furnace interior can be measured with high accuracy in consideration of the descending amount of the charge depending on the position in the furnace. Therefore, it is possible to accurately grasp the change in the profile of the charge surface, to prevent the deterioration of the furnace condition of the blast furnace, and to stabilize the operation of the blast furnace.

本発明を実施する測定装置の一例を備えた高炉炉頂部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the blast furnace top part provided with an example of the measuring apparatus which implements this invention. 図1の測定装置の構成を示す拡大側面図である。It is an enlarged side view which shows the structure of the measuring apparatus of FIG. 本発明の実施の形態の説明図であり、(a)は装入物のプロフィルの測定値および補正値を示し、(b)は炉内径方向の各位置による装入物の降下速度を示し、(c)は炉内径方向の各位置による補正量を示す。It is explanatory drawing of embodiment of this invention, (a) shows the measured value and correction value of a charge profile, (b) shows the descent speed of the charge by each position of a furnace inner diameter direction, (C) shows the correction amount at each position in the furnace inner diameter direction. 本発明を実施する測定装置の異なる例を備えた高炉炉頂部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the blast furnace top part provided with the different example of the measuring apparatus which implements this invention. 従来の装入物のプロフィル検出方法の説明図である。It is explanatory drawing of the conventional profile detection method of a charge.

以下、本発明の実施の形態を、図を参照して説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present specification and drawings, elements having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明の測定方法を実施するためのプロフィル測定装置1を高炉2に設置した例を示す。高炉2の炉口部にはベルレス式装入装置5が設けられ、鉄鉱石やコークス等の装入物4が、炉周方向に旋回可能な分配シュート6を通って炉内に装入される。本実施形態では、プロフィル測定装置1は、炉頂部付近の、炉体3よりも外側に、一個所設置されている。なお、プロフィル測定装置1を複数台、高炉2の炉頂部の外側に配設してもよい。   FIG. 1 shows an example in which a profile measuring apparatus 1 for carrying out the measuring method of the present invention is installed in a blast furnace 2. A bell-less charging device 5 is provided at the furnace port portion of the blast furnace 2, and a charge 4 such as iron ore or coke is charged into the furnace through a distribution chute 6 that can turn in the furnace circumferential direction. . In the present embodiment, the profile measuring device 1 is installed at one place near the top of the furnace and outside the furnace body 3. A plurality of profile measuring devices 1 may be provided outside the top of the blast furnace 2.

図2は、プロフィル測定装置1の内部構造を示す図であり、測定装置1は、アンテナ11および反射板12と、これらのアンテナ11および反射板12を支持、駆動、制御する導波管13、マイクロ波送受信器14、駆動軸15、反射板駆動装置16を有している。   FIG. 2 is a diagram showing the internal structure of the profile measuring device 1. The measuring device 1 includes an antenna 11 and a reflecting plate 12, and a waveguide 13 that supports, drives, and controls the antenna 11 and the reflecting plate 12. A microwave transceiver 14, a drive shaft 15, and a reflector driving device 16 are included.

アンテナ11は、例えばφ250〜φ360mm程度のパラボラアンテナであり、導波管13を介して、マイクロ波送受信器14に連結されている。マイクロ波送受信器14は、周波数が一定範囲で連続的に時間変化するマイクロ波を発生し、当該マイクロ波の発信および受信が可能である。マイクロ波送受信器14には、データ処理部20が信号線で接続されている。   The antenna 11 is a parabolic antenna having a diameter of about φ250 to φ360 mm, for example, and is connected to the microwave transceiver 14 via the waveguide 13. The microwave transmitter / receiver 14 generates a microwave whose frequency continuously changes in a certain range, and can transmit and receive the microwave. A data processor 20 is connected to the microwave transceiver 14 by a signal line.

マイクロ波送受信器14で発生した、周波数が連続的に変化するマイクロ波は、アンテナ11により反射板12を経て測定対象に向けて放射され、測定対象物で反射したマイクロ波(反射波)をマイクロ波送受信器14で受信して検出する。データ処理部20では、アンテナ11でのマイクロ波の放射から受信までの間の周波数の変化分ΔFから、アンテナ11から測定対象(装入物表面)までのマイクロ波の往復時間ΔTが求められ、アンテナ11から測定対象までの距離が算出される。この測定は、マイクロ波を発射する電気信号と、装入物表面からの反射波を受信して得られる電気信号とをミキシングして測定するFMCW(Frequency Modulated Continuous Wave)方式(周波数変調連続波方式)と呼ばれる。当該方式のマイクロ波距離計は、市販の装置を用いてもよい。なお、このようなマイクロ波による距離測定方式は、実施形態として使用可能な一例である。   The microwave generated by the microwave transmitter / receiver 14 and continuously changing in frequency is radiated from the antenna 11 through the reflector 12 toward the measurement object, and the microwave (reflected wave) reflected by the measurement object is converted into the microwave. It is received and detected by the wave transceiver 14. In the data processing unit 20, the round-trip time ΔT of the microwave from the antenna 11 to the measurement target (the charge surface) is obtained from the change ΔF in the frequency from the emission to the reception of the microwave at the antenna 11. A distance from the antenna 11 to the measurement target is calculated. This measurement is based on the FMCW (Frequency Modulated Continuous Wave) method (Frequency Modulated Continuous Wave method) that mixes and measures the electrical signal that emits the microwave and the electrical signal that is obtained by receiving the reflected wave from the charged surface. ). A commercially available apparatus may be used for the microwave distance meter of this type. Such a distance measurement method using microwaves is an example that can be used as an embodiment.

測定に用いるマイクロ波の発信周波数帯域は、10GHz以上、好ましくは24GHz程度とし、周波数を高くするほど、アンテナ11を小型化できる。マイクロ波を用いることにより、温度や粉塵等の環境の影響を受けにくく、高炉2内のプロフィルを正確に測定できる。また、パラボラアンテナは指向性が高いため、高精度に所望する位置にマイクロ波を放射できる。さらに、放射時のマイクロ波の広がりが抑制されるために、炉内に向けた開口を小さくすることができるので好ましい。   The transmission frequency band of the microwave used for measurement is 10 GHz or more, preferably about 24 GHz. The higher the frequency, the smaller the antenna 11 can be made. By using the microwave, the profile in the blast furnace 2 can be accurately measured without being affected by the environment such as temperature and dust. Moreover, since the parabolic antenna has high directivity, microwaves can be radiated to a desired position with high accuracy. Furthermore, since the spread of the microwave at the time of radiation | emission is suppressed, since the opening toward the inside of a furnace can be made small, it is preferable.

アンテナ11のマイクロ波の送受信方向(中心軸線方向)の延長上に、反射板12と反射板駆動装置16とを連結する駆動軸15が設けられている。すなわち、駆動軸15の中心軸線が、アンテナ11の中心軸線と一致するように、駆動軸15が設けられている。図2に示すように、反射板12は、アンテナ11の中心軸線に対して略45°の角度で駆動軸15に固定されている。反射板12は、例えばステンレスの板材からなり、アンテナ11の正面側から見た面積が、アンテナ11よりも少し大きいものとする。形状は限定しないが、操作性の上では円形が好ましい。反射板駆動装置16により駆動軸15をその中心軸の周りに回転往復運動させることで、アンテナ11からその中心軸方向に放射されたマイクロ波を、反射板12で、例えば図2に示すように、高炉2の炉内側へ向けて反射し、高炉2の中心軸を通る直径方向に走査する。   A drive shaft 15 that connects the reflector 12 and the reflector driving device 16 is provided on an extension of the microwave transmission / reception direction (center axis direction) of the antenna 11. That is, the drive shaft 15 is provided so that the center axis of the drive shaft 15 coincides with the center axis of the antenna 11. As shown in FIG. 2, the reflector 12 is fixed to the drive shaft 15 at an angle of approximately 45 ° with respect to the central axis of the antenna 11. The reflector 12 is made of, for example, a stainless steel plate, and the area viewed from the front side of the antenna 11 is slightly larger than the antenna 11. Although the shape is not limited, a circular shape is preferable in terms of operability. By rotating and reciprocating the drive shaft 15 around its central axis by the reflector driving device 16, the microwave radiated from the antenna 11 in the central axis direction is reflected by the reflector 12 as shown in FIG. , Reflected toward the inside of the blast furnace 2 and scanned in the diameter direction passing through the central axis of the blast furnace 2.

以上のようなプロフィル測定装置1は、高炉2内部のガスや粉塵等が外部へ漏洩するのを防止するために、耐圧容器10に収納される。さらに、高炉2内部のガスや粉塵等が耐圧容器10内に侵入するのを防ぐために、測定時には、耐圧容器10内に、例えば炉内圧の1.1倍程度の圧力になるように窒素ガスを供給し、耐圧容器10内を高炉内部に比べて正圧にすることが好ましい。   The profile measuring apparatus 1 as described above is housed in the pressure vessel 10 in order to prevent the gas, dust and the like inside the blast furnace 2 from leaking to the outside. Further, in order to prevent gas and dust inside the blast furnace 2 from entering the pressure vessel 10, nitrogen gas is introduced into the pressure vessel 10 so that the pressure is, for example, about 1.1 times the furnace pressure during measurement. It is preferable to supply the pressure vessel 10 so that the inside of the pressure vessel 10 has a positive pressure compared to the inside of the blast furnace.

以下、プロフィル測定装置1を用いた本発明にかかる高炉内装入物のプロフィル測定方法について、図3に基づいて説明する。   Hereinafter, a method for measuring a profile of a blast furnace interior according to the present invention using the profile measuring device 1 will be described with reference to FIG.

先ず、プロフィル測定装置1の反射板12の向きを初期位置に向けて、マイクロ波送受信器14からマイクロ波を発信する。マイクロ波は、導波管13、アンテナ11を介して、反射板12により反射されて高炉内装入物4に照射され、装入物4までの距離Dを測定する。そして、反射板12を、直下側の炉壁に接する装入物までの距離を測定する初期位置から、炉の中心軸を通って、内径方向反対側の炉壁に接する装入物までの距離を測定する位置までの間、反射板駆動装置16により回転させる。所望の空間分解能に応じて予め設定した角度ごとに、装入物4までの距離を測定してその距離データが、また、反射板駆動装置16はそのときの走査角度データが、データ処理部20へ送られる。この往路測定は、例えば50秒かけて等しい角速度で行われる。復路は、例えば5秒程度で初期位置に戻るように反射板12を高速で回転させる。そして、1回目の測定から例えば1分など所定の時間間隔をあけて、1回目と同じ速度で反射板12を回転させて2回目の往路測定を行う。データ処理部20は、入力された走査角度データおよびそのときの距離データに基づいて、高炉内の各位置の装入物プロフィルを演算し、図3(a)の破線で示すように、1回目および2回目の測定プロフィルが求められる。   First, the microwave is transmitted from the microwave transmitter / receiver 14 with the direction of the reflector 12 of the profile measuring device 1 directed to the initial position. The microwave is reflected by the reflecting plate 12 via the waveguide 13 and the antenna 11 and irradiated to the blast furnace interior entrance 4, and the distance D to the charge 4 is measured. The distance from the initial position at which the reflector 12 measures the distance to the charge in contact with the furnace wall directly below, to the charge in contact with the furnace wall on the opposite side in the inner diameter direction through the center axis of the furnace. Is rotated by the reflector driving device 16 until the position to measure is measured. The distance to the charge 4 is measured for each angle set in advance according to the desired spatial resolution, and the distance data is measured. The reflector driving device 16 has the scanning angle data at that time as the data processing unit 20. Sent to. This outward measurement is performed, for example, at an equal angular velocity over 50 seconds. In the return path, for example, the reflector 12 is rotated at a high speed so as to return to the initial position in about 5 seconds. Then, at a predetermined time interval such as 1 minute from the first measurement, the reflector 12 is rotated at the same speed as the first measurement, and the second outbound measurement is performed. The data processing unit 20 calculates the charge profile at each position in the blast furnace based on the input scanning angle data and the distance data at that time, and as shown by the broken line in FIG. And a second measurement profile is determined.

このとき、炉の内径方向の各位置において、1回目の測定時刻taでの距離データDi(ta)と、2回目の測定時刻tbでの距離データDi(tb)から、それぞれの位置における高炉内装入物4の降下速度Viを演算する。1回目の測定と2回目の測定の間の各位置における降下速度Viは、以下の(1)式で求められる。
Vi=(Di(ta)−Di(tb))/(tb−ta) ・・・(1)
At this time, at each position in the inner diameter direction of the furnace, from the distance data Di (ta) at the first measurement time ta and the distance data Di (tb) at the second measurement time tb, The descending speed Vi of the entry 4 is calculated. The descent speed Vi at each position between the first measurement and the second measurement is obtained by the following equation (1).
Vi = (Di (ta) −Di (tb)) / (tb−ta) (1)

降下速度Viは、炉の形状等の影響により、通常、図3(b)に示すように、炉の中央が最も小さく、炉壁に向かって大きくなる傾向がある。   Due to the influence of the furnace shape and the like, the descending speed Vi usually tends to increase toward the furnace wall, as shown in FIG.

次に、測定した距離データの補正値を求める。上記(1)式により求められた各位置の降下速度Viと、測定開始時から各位置の1回目の測定時までの時間差により、その時間の降下量(補正量di)を求め、各位置の1回目の距離データの実測値に、それぞれの位置毎の降下量を加える。これにより、測定開始時の装入物のプロフィルを推定する。すなわち、先ず、測定位置ごとに、初期位置を測定した測定開始時からの経過時間taと、上記(1)式で求めた降下速度Viとの積により、補正量diを求める。補正量diは、図3(c)に示すように、初期位置では0であり、反対側の炉壁に向けて増加する。そして図3(a)に示すように、補正量diを1回目の距離データの実測値Di(ta)に加えて、測定開始時のプロフィルを示す各位置の距離Di(0)が求められる。つまり、補正された距離Di(0)は、以下の(2)式で求められる。
Di(0)=Di(ta)+Vi×ta ・・・(2)
Next, a correction value of the measured distance data is obtained. The amount of descent (correction amount di) of the time is obtained from the descent speed Vi of each position obtained by the above equation (1) and the time difference from the start of measurement until the first measurement at each position. The amount of descent for each position is added to the actually measured value of the first distance data. This estimates the charge profile at the start of measurement. That is, first, for each measurement position, the correction amount di is obtained by the product of the elapsed time ta from the measurement start time at which the initial position is measured and the descent speed Vi obtained by the above equation (1). As shown in FIG. 3C, the correction amount di is 0 at the initial position, and increases toward the opposite furnace wall. Then, as shown in FIG. 3A, the correction amount di is added to the actually measured value Di (ta) of the first distance data, and the distance Di (0) of each position indicating the profile at the start of measurement is obtained. That is, the corrected distance Di (0) is obtained by the following equation (2).
Di (0) = Di (ta) + Vi × ta (2)

本実施形態によれば、炉の内径方向の各位置において、1回目と2回目の測定時間間隔が全て等しいため、各位置での降下速度Viの演算を容易に行える。そして、各位置での降下速度Viは、同一方向の測定値を用いて求められるため、走査駆動装置の機械的ガタの影響を受けにくい。   According to this embodiment, since the first and second measurement time intervals are all equal at each position in the inner diameter direction of the furnace, the descent speed Vi at each position can be easily calculated. Since the descent speed Vi at each position is obtained using measured values in the same direction, the descent speed Vi is not easily affected by the mechanical play of the scanning drive device.

本実施形態において、反射板を炉の内径方向に往復させる際、往路、復路ともに距離測定を行い、データ処理時に往路の距離データのみを採用するようにしてもよいし、往路のみ距離測定を行うようにしてもよい。また、往路を低速にすることにより、測定データを多く取得でき、復路を高速にすれば、時間の無駄を削減できる。   In this embodiment, when the reflector is reciprocated in the inner diameter direction of the furnace, distance measurement may be performed for both the forward path and the backward path, and only the distance data of the forward path may be employed during data processing, or the distance measurement may be performed only for the forward path. You may do it. In addition, by making the forward path low, a lot of measurement data can be acquired, and if the backward path is made high speed, waste of time can be reduced.

尚、本発明では、往路と復路の速度が等しくても構わない。この場合、測定装置の操作速度、例えば図2のプロフィル測定装置1では反射板12の回転速度を、一定に保ったままで測定を行うことができる。表1は、プロフィル測定方法による測定精度および測定時間を比較したものである。従来例1は前述の特許文献3の方法、従来例2は、マイクロ波を往復させて任意の点で降下速度を測定し、往路の測定データにその降下速度に基づいた補正を行う方法である。本発明例1は、上記実施の形態において、往路と復路の速度を等しくした場合、本発明例2は、復路を往路よりも高速にした場合である。   In the present invention, the forward and return speeds may be equal. In this case, the measurement speed of the measuring device, for example, the profile measuring device 1 of FIG. 2, can be measured while keeping the rotational speed of the reflector 12 constant. Table 1 compares the measurement accuracy and measurement time by the profile measurement method. Conventional Example 1 is a method of the above-mentioned Patent Document 3, and Conventional Example 2 is a method of measuring a descending speed at an arbitrary point by reciprocating a microwave, and correcting outgoing measurement data based on the descending speed. . Example 1 of the present invention is a case where the speeds of the forward path and the return path are made equal in the above embodiment, and Example 2 of the present invention is a case where the return path is made faster than the forward path.

Figure 0005674542
Figure 0005674542

表1に示すように、従来例1では精度が低く、従来例2は、従来例1よりは精度が上がるものの、十分な精度は得られない。一方、本発明例1は、測定時間は従来例の1.5倍かかるが高精度な結果が得られ、本発明例2は、測定時間が従来例とほとんど変わらず、高精度な結果が得られる。   As shown in Table 1, the accuracy in Conventional Example 1 is low, and the accuracy in Conventional Example 2 is higher than that in Conventional Example 1, but sufficient accuracy cannot be obtained. On the other hand, the first example of the present invention takes 1.5 times the measurement time of the conventional example, but a high-accuracy result is obtained. It is done.

尚、上記の実施形態では、往路測定を等角速度で行うこととしたが、1回目と2回目を同じ角速度パターンで測定すれば、角速度が変動しても構わない。また、往路測定を3回以上行って位置毎の装入物降下速度を求めてもよい。   In the above-described embodiment, the forward path measurement is performed at an equal angular velocity. However, the angular velocity may vary as long as the first and second measurements are performed with the same angular velocity pattern. Moreover, you may obtain | require the charge fall speed | velocity | rate for every position by performing an outward measurement 3 times or more.

また、上記の実施形態では、プロフィル測定装置により、一方の炉壁から対向側の炉壁まで、炉内の直径方向全体の測定を行ったが、装入物が中心軸に対して対称であると仮定して、直径方向の半分だけを測定して全体のプロフィルを推定してもよい。   In the above-described embodiment, the entire measurement in the diametrical direction in the furnace is performed from one furnace wall to the opposite furnace wall by the profile measuring device, but the charge is symmetric with respect to the central axis. As a result, only half of the diametrical direction may be measured to estimate the overall profile.

また、本発明に用いるプロフィル測定装置は、図2に示すものには限らず、例えばマイクロ波を放射するホーン形のアンテナを回転させて、炉内にマイクロ波を走査する構造のものでもよい。また、図4に示すように、炉体3の側面から炉体3の軸心に向けて、マイクロ波距離計を備えた計測ランス9を挿入し、マイクロ波を高炉内装入物4へ向けて発信して、高炉内装入物4の表面までの距離を測定する方式の測定装置であってもよい。その他、高炉内装入物のプロフィル測定に従来から用いられている、装入物表面を走査する、または複数の測定点で測定するタイプの測定装置でも、同様に実施することができる。   The profile measuring apparatus used in the present invention is not limited to the one shown in FIG. 2, but may have a structure in which a microwave is scanned into the furnace by rotating a horn-shaped antenna that radiates microwaves, for example. Further, as shown in FIG. 4, a measurement lance 9 having a microwave distance meter is inserted from the side surface of the furnace body 3 toward the axis of the furnace body 3, and the microwave is directed toward the blast furnace interior entrance 4. It may be a measuring device that transmits and measures the distance to the surface of the blast furnace interior entrance 4. In addition, the measurement can be performed in the same manner with a measuring apparatus of a type that is conventionally used for measuring the profile of the blast furnace interior, and that scans the surface of the charge or measures at a plurality of measurement points.

以上、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。例えば、上記実施形態では、高炉内装入物の降下速度を求める際に2回測定を行うこととしたが、3回以上の複数回であっても構わない。   As mentioned above, although preferred embodiment of this invention was described, this invention is not limited to this example. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to. For example, in the above embodiment, the measurement is performed twice when determining the descending speed of the blast furnace interior entry, but it may be performed three or more times.

本発明は、円筒状の容器内において時間経過とともに増減する堆積物の表面形状の測定に適用できる。   The present invention can be applied to the measurement of the surface shape of a deposit that increases and decreases over time in a cylindrical container.

1 プロフィル測定装置
2 高炉
3 炉体
4 装入物
5 ベルレス式装入装置
6 分配シュート
10 耐圧容器
11 アンテナ
12 反射板
13 導波管
14 マイクロ波送受信器
15 駆動軸
16 反射板駆動装置
20 データ処理部
DESCRIPTION OF SYMBOLS 1 Profile measuring apparatus 2 Blast furnace 3 Furnace body 4 Charge 5 Bell-less type charging apparatus 6 Distribution chute 10 Pressure | voltage resistant container 11 Antenna 12 Reflector 13 Waveguide 14 Microwave transmitter / receiver 15 Drive shaft 16 Reflector drive 20 Data processing Part

Claims (2)

高炉内装入物の炉頂部の表面形状を測定する測定方法であって、
炉内の中心軸を通る直径方向に、高炉内装入物の炉頂部の表面の深さを、同一方向に同じ速度パターンで複数回測定し、
複数回の測定値の差から、前記炉内の直径方向の位置毎の装入物降下速度を求め、
前記位置毎の装入物降下速度と、測定開始時から各位置の1回目の測定時までの時間差から、前記時間差による装入物の降下量を算出して補正量とし、
各位置の1回目の測定値に前記補正量を加えて補正することにより、測定開始時の装入物のプロフィルを推定することを特徴とする、高炉内装入物のプロフィル測定方法。
A measuring method for measuring the surface shape of the furnace top of the blast furnace interior,
In the diametrical direction passing through the central axis in the furnace, the depth of the surface of the top of the blast furnace interior is measured several times with the same speed pattern in the same direction,
From the difference between the measured values of the plurality of times, find the charge drop speed for each position in the diameter direction in the furnace,
From the time of charge drop for each position and the time difference from the start of measurement until the first measurement of each position, the amount of charge drop due to the time difference is calculated and used as a correction amount,
A method for measuring a profile of a blast furnace interior charge, wherein the profile of the charge at the start of measurement is estimated by adding the correction amount to the first measurement value at each position to perform correction.
高炉内装入物の炉頂部の表面を測定する測定装置の、高炉内装入物の炉頂部の表面での測定点を、炉内の中心軸を通る直径方向に2往復走査させ、往路における測定データを測定値として採用し、復路の測定データは採用しないか或いは復路では測定を行わず、前記復路は前記往路よりも高速で走査させることを特徴とする、請求項1に記載の高炉内装入物のプロフィル測定方法。   The measurement device for measuring the surface of the furnace top of the blast furnace interior contains two reciprocating scans of the measurement point on the surface of the furnace top of the blast furnace interior in the diametrical direction passing through the central axis of the furnace. The blast furnace interior entrance according to claim 1, wherein the measured value of the return path is not used, the measurement data of the return path is not used, or the measurement is not performed on the return path, and the return path is scanned at a higher speed than the forward path. Profile measurement method.
JP2011094188A 2011-04-20 2011-04-20 Profile measurement method for blast furnace interior Active JP5674542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011094188A JP5674542B2 (en) 2011-04-20 2011-04-20 Profile measurement method for blast furnace interior

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011094188A JP5674542B2 (en) 2011-04-20 2011-04-20 Profile measurement method for blast furnace interior

Publications (2)

Publication Number Publication Date
JP2012224918A JP2012224918A (en) 2012-11-15
JP5674542B2 true JP5674542B2 (en) 2015-02-25

Family

ID=47275405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011094188A Active JP5674542B2 (en) 2011-04-20 2011-04-20 Profile measurement method for blast furnace interior

Country Status (1)

Country Link
JP (1) JP5674542B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103305641B (en) * 2013-06-20 2015-01-14 攀钢集团西昌钢钒有限公司 Method for loading materials by blowing in blast furnace
CN104099436B (en) * 2014-07-16 2016-06-01 首钢总公司 The method of observation blast furnace burden molten drop process and system
CN104531925A (en) * 2014-11-26 2015-04-22 中冶南方工程技术有限公司 Dual closed-loop control method and system of measuring ruler of furnace top of blast furnace
CN108265147A (en) * 2018-04-11 2018-07-10 湖北新冶钢特种钢管有限公司 Material top surface in top of blast furnace measuring system and measuring method
JP7436831B2 (en) 2020-04-13 2024-02-22 日本製鉄株式会社 Blast furnace operating method, pulverized coal injection control device, pulverized coal injection control program
CN113609936B (en) * 2021-07-22 2024-03-15 武汉钢铁有限公司 Method for determining radial descending speed distribution of furnace burden at upper part of blast furnace
CN113684330B (en) * 2021-07-30 2022-11-29 武汉钢铁有限公司 Method for judging columnar state of dead charge by using descending speed of furnace charge

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58218610A (en) * 1982-06-14 1983-12-19 Nippon Steel Corp Measuring method of layer thickness distribution for charged material of vertical furnace
JPS6021310A (en) * 1983-07-15 1985-02-02 Kawasaki Steel Corp Method for estimating distribution of charge layer in blast furnace

Also Published As

Publication number Publication date
JP2012224918A (en) 2012-11-15

Similar Documents

Publication Publication Date Title
JP5674542B2 (en) Profile measurement method for blast furnace interior
JP5412947B2 (en) Apparatus and method for measuring profile of blast furnace interior
JP5787607B2 (en) Profile measuring device for blast furnace interior
JP5220690B2 (en) Apparatus and method for measuring profile of blast furnace interior
JP5441730B2 (en) Profile measuring device for blast furnace interior
JP6405362B2 (en) Method for charging and depositing charge in blast furnace, surface detection device for charge, and method for operating blast furnace
JP7176561B2 (en) Blast furnace operation method
JP2019104922A (en) Apparatus for measuring coal-charging level in coke oven
JP6033690B2 (en) Profile measuring device for blast furnace interior
JP3855639B2 (en) Profile measurement method of blast furnace interior entrance surface
US4004219A (en) Method for measuring the conditions inside a metal covered furnace during its operation
JP6147602B2 (en) Profile measurement method for blast furnace interior
JP2016006419A (en) Detection method for surface shape of lining refractory of molten metal processing container, and system
JP2014219299A (en) Method of processing profile measurement data on charge in blast furnace
KR102438958B1 (en) level measuring device
WO2019124377A1 (en) Level measurement method and level measurement device
JP2003207382A (en) Method and device for measuring accumulated height of deposit in container
JP6583204B2 (en) Slag height measuring device, slag height measuring method and hot metal pretreatment method
JP2017150035A (en) Display method for blast furnace profile meter, and method for charging material to be charged in blast furnace
JP5509944B2 (en) Surface condition measuring apparatus and method for measuring surface condition of granular deposit
JP2015132580A (en) Measuring method and measuring apparatus of flow rate of powder flowing in pipe
JP2015120964A (en) Method of measuring falling trajectory of charged material in blast furnace
JP2003329518A (en) Method and apparatus for measurement of temperature on inner surface of structure
JP6066551B2 (en) Method for measuring concentration or flow rate of powder or fluid flowing in pipe, and measuring apparatus therefor
JPS62148874A (en) Measuring instrument for falling speed of blast furnace charge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131118

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141222

R150 Certificate of patent or registration of utility model

Ref document number: 5674542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350