JPS58218610A - Measuring method of layer thickness distribution for charged material of vertical furnace - Google Patents

Measuring method of layer thickness distribution for charged material of vertical furnace

Info

Publication number
JPS58218610A
JPS58218610A JP10164982A JP10164982A JPS58218610A JP S58218610 A JPS58218610 A JP S58218610A JP 10164982 A JP10164982 A JP 10164982A JP 10164982 A JP10164982 A JP 10164982A JP S58218610 A JPS58218610 A JP S58218610A
Authority
JP
Japan
Prior art keywords
charge
layer thickness
distribution
time
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10164982A
Other languages
Japanese (ja)
Inventor
Koji Inazaki
稲崎 宏治
Takashi Nanto
南外 孝
Yasutomo Fujimori
康朝 藤森
Hiroichi Kimura
木村 博一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Steel Corp
Original Assignee
Toshiba Corp
Nippon Steel Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Steel Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP10164982A priority Critical patent/JPS58218610A/en
Publication of JPS58218610A publication Critical patent/JPS58218610A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Blast Furnaces (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To detect distribution of the layer thickness and the layer thickness ratio of charged material with high accuracy, by detecting a surface sectional shape of a charged material charged successively in a vertical furnace batchwise and performing a prescribed operational processing. CONSTITUTION:A laser beam 7 of a laser apparatus 6 is irradiated to the inside of a blast furnace 1 with a reflex mirror 9 and a reflected light 7a from the surface of a charged material 2 is detected by a photodetector 8. A surface sectional shape of the material 2 is measured by a light projection angle alpha of the beam 7, a photodetecting angle beta of the light 7a and a distance L between a light projection window 4 and a photodetecting window 5. A sedimentation velocity distribution dn of n-th time's charged material is found by the difference of a curve A-A of the surface sectional shape immediately after charging n-th time's charged material and a curve B-B of the remeasured surface sectional shape immediately before charging (n+1)-th time's charge and each difference of the measuring time. Next, a curve C-C of the surface sectional shape immediately after (n+1)-th time's charge is measured and B'=B+(tB- tC)dn is computed from its measuring time tC and a measuring time tB of the curve B-B. The layer thickness distribution of (n+1)-th charged material is found from the difference of both curves. The layer thickness ratio distribution is found by repeating said process.

Description

【発明の詳細な説明】 本発明は.溶鋼炉等の竪ノ(μ炉にバッチ的に装入物を
層状に装入する時の装入物の層厚分布、層厚比分布を測
定する方法に関するものである。
[Detailed Description of the Invention] The present invention... This method relates to a method for measuring the layer thickness distribution and layer thickness ratio distribution of the charge when the charge is charged layered in batches into a vertical (μ) furnace such as a melting steel furnace.

溶鉱炉では.バッチ的に次々と装入した装入物の層厚分
布および層厚111分布を検知することは、操業−Lの
重要な検知要素である。この層厚分布および層11JJ
I Jls分布を高精度で検知することが出来れば、こ
れら層1+;i分布および層厚比分布と操業成績との予
じめW(析1〜を因果関係により、溶鉱炉等の操業者は
,理想の層j1,1分布:1.−よび層厚比分布に装入
物を装入することに31、リ,操業成績を高位安定させ
ることが出来る。
In the blast furnace. Detecting the layer thickness distribution and layer thickness 111 distribution of the charges charged one after another in batches is an important detection element in Operation-L. This layer thickness distribution and layer 11JJ
If the I Jls distribution can be detected with high accuracy, the operators of blast furnaces, etc. can Ideal layer j1,1 distribution: 1. By charging the charge with the layer thickness ratio distribution, the operational performance can be highly stabilized.

しかし従来方式でd、、溶鉱炉等の操業者が必要とする
装入物の層厚分布および層厚比分布を,高精度で検知す
る方θkがなかった。その必要精度は一装入物の粒子の
111均径相当が必要で、溶鉱炉では。
However, in the conventional method, there was no way to detect with high precision the layer thickness distribution and layer thickness ratio distribution of the charge required by operators of blast furnaces, etc. The required accuracy is equivalent to 111 uniform diameter of particles in one charge, in a blast furnace.

±30朋相当である。又その測定ピッチは、装入物の粒
子の)1′均径の数倍程瓜が必要で,溶鋼炉では.10
0〜2 Q O 11Mピッチが必要である。
It is equivalent to ±30 ho. In addition, the measurement pitch needs to be several times the 1' average diameter of the particles in the charge, and in a steel melting furnace. 10
0-2 Q O 11M pitch is required.

3− そこで、従来は溶鉱炉の操業者は、装入物の層つくり,
装入物を装入する千段一例えばpw式旋回装入装置やム
ーバブルアーマと呼ばれるもののシミュレータで、装入
物を実際に装入し、シミュレータ実験による装入物の層
厚分布および層厚比分布を求め,それと同じことが実際
の溶鉱炉等の中で起っているものと推定して操業して来
た。実際の溶鉱炉における装入物に関する直接検知手段
としては、数点の機械的な重錘によるサウンジング測定
が行われているにすぎなかった。
3- Therefore, in the past, operators of blast furnaces created layers of the charge,
The charge is actually charged in a simulator of a device called a PW rotating charging device or a movable armor, and the layer thickness distribution and layer thickness ratio of the charge are determined by simulator experiments. We have operated by calculating the distribution and assuming that the same thing is happening in an actual blast furnace. As a means of directly detecting the charge in an actual blast furnace, only sounding measurements using mechanical weights at several points have been performed.

本発明は、上記事情に着目してなされたもので。The present invention has been made by paying attention to the above-mentioned circumstances.

その目的とするところは溶鉱炉等の竪型炉にバッチ的に
次々と装入された装入物の表面断面形状(プロフィル)
を直接検知し、その直接検知した表面断面形状に、以下
に述べる方法で高精度な装入物の層厚分布、層厚比分布
を検知する方法を提供   ′するところにある。
The purpose of this is to determine the surface cross-sectional shape (profile) of the charges that are sequentially charged in batches into a vertical furnace such as a blast furnace.
The present invention provides a method for directly detecting the layer thickness distribution and layer thickness ratio distribution of the charged material using the directly detected surface cross-sectional shape using the method described below.

以下本発明を図面に示す一実施例を参照して説4− 明する。The present invention will be explained below with reference to an embodiment shown in the drawings. I will clarify.

本実施例は,装入物の層厚分布および層厚比分布検知方
法を,レーザを用いて装入物表面の断面形状を検出する
,いわゆるレーザ方式プロフィルメータを備えた溶鉱炉
にJ丙月1したものである。
In this example, the method for detecting the layer thickness distribution and layer thickness ratio distribution of the charge was applied to a blast furnace equipped with a so-called laser-type profile meter that uses a laser to detect the cross-sectional shape of the surface of the charge. This is what I did.

第1図は」二記レーザ方式プロフィルメータを備えた溶
鉱炉の概略構成図で、図中1は内部に例え壁3十バIS
は,上方に絞シ込1れで傾斜面となっており、この傾斜
面に〔1、溶鉱炉内部を介して,例えば相対向して投光
窓イおよび受光窓5が設けてある。この時,これらの投
光窓4および受光窓5との距離Lは予め定めらh.る。
Figure 1 is a schematic diagram of a blast furnace equipped with a laser type profilometer as described in 2. In the figure, 1 is an internal wall with 30 walls.
1 is an inclined surface with a constriction 1 at the top, and a light emitting window 1 and a light receiving window 5 are provided on this slanted surface, for example, facing each other through the inside of the blast furnace. At this time, the distance L between the light emitting window 4 and the light receiving window 5 is determined in advance by h. Ru.

」二記投光窓4は.溶鉱炉本体l外部に設けたレーザ装
置6のレーザ光7を溶鉱炉内に投光するためのものであ
る。一方受光窓5は受光レンズからなっておシ,溶鉱炉
本体l内の装入物2表面で乱反射された前記レーザ光7
を集光して,光検出器8に導いている。
”The second floodlight window 4 is. This is for projecting laser light 7 from a laser device 6 provided outside the blast furnace main body l into the blast furnace. On the other hand, the light receiving window 5 is composed of a light receiving lens, and the laser beam 7 diffusely reflected on the surface of the charge 2 in the blast furnace main body l.
The light is focused and guided to the photodetector 8.

このようなレーザ方式プロフィルメータを備え5− た溶鉱炉は、レーザ装置6のレーザ光7を,図示し7な
いコリメータ等の光学系を介したのち、反射鏡9で反射
させて溶鉱炉本体1内部に照射し.装入物2の表面によ
る上記レーザ光7の乱反射光7aを,受光窓5の受光レ
ンズで集光して光検出器8で検出する。そして、前記レ
ーザ光7の投光角α。
In a blast furnace equipped with such a laser type profile meter, the laser beam 7 from the laser device 6 passes through an optical system such as a collimator (not shown) 7, and then is reflected by a reflecting mirror 9 to enter the inside of the blast furnace body 1. Irradiate. The diffusely reflected light 7a of the laser beam 7 from the surface of the charge 2 is focused by the light receiving lens of the light receiving window 5 and detected by the photodetector 8. And the projection angle α of the laser beam 7.

反射光7aの受光角βおよび前記投光窓4と受光窓5と
の距離Lにより,いわゆる三角測量法の演算を行い、こ
れにより装入物2の表面各部の高さ、言い換えれば装入
物の表面断面形状(プロフィル)を、短時間例えば20
秒間で得ることが可能である。
The so-called triangulation method is calculated using the acceptance angle β of the reflected light 7a and the distance L between the light emitting window 4 and the light receiving window 5, and the height of each part of the surface of the charge 2, in other words, the charge For example, the surface cross-sectional shape (profile) of
It is possible to obtain it in seconds.

ところで、このようにして測定したn(任意の正整数)
回目の装入物装入直後の表面断面形状を模式的に示すと
、第2図のA−’A断面曲線となる。
By the way, n (any positive integer) measured in this way
A schematic representation of the surface cross-sectional shape immediately after the first charging is the A-'A cross-sectional curve in FIG.

次に(n+1)  回目装入直前に、n回目の装入物の
表面断面形状を再測定すると,装入物が沈降するために
B−B断面曲線のように、A−A断面曲線の下に表現さ
れる断面曲線となる。
Next, just before the (n+1)th charging, when re-measuring the surface cross-sectional shape of the n-th charge, it appears that the surface cross-sectional shape of the charge is below the A-A cross-sectional curve like the B-B cross-sectional curve because the charge has settled. The cross-sectional curve is expressed as .

A−A断面曲線とB−B断面曲線は,単なる平6ー 行移動で仁j、なく−ft’F鉱の−1の操業状況によ
って生じる場所ごとに不規則な沈降速度分布による沈降
の結果生じるものである。この沈降速度分布の概略分布
形状シ1:、第;3図に示すような分布で、炉壁部は沈
降速度が大で、炉芯部は沈降速度が小である。
The A-A cross-sectional curve and the B-B cross-sectional curve are the results of sedimentation caused by the irregular sedimentation velocity distribution in each location caused by the operating conditions of the -ft'F ore, not by simple horizontal movement. It is something that occurs. The approximate distribution shape of this sedimentation velocity distribution is as shown in Fig. 3, in which the sedimentation velocity is high in the furnace wall portion, and the sedimentation velocity is small in the furnace core portion.

従って、−に記A、 −A断面曲線とB−B断面曲線の
差分と、そhぞノ1.の測定時刻の差から、n回目装入
物の沈降速度分布dn(γ)を求めることができる。
Therefore, - is written A, - the difference between the A cross-sectional curve and the B-B cross-sectional curve, and 1. The settling velocity distribution dn(γ) of the n-th charge can be determined from the difference in measurement times.

ここで半径位置をc、A−Δ断面曲線をA(γ)。Here, the radial position is c, and the A-Δ cross-sectional curve is A(γ).

B −B断面曲線を80′) 、  /1− 、A断面
曲線の測定時刻をtA、B−13断面曲線の測定時刻を
tBと表わすと、0回[1装人物の沈降速度分布d、n
(γ)は次式のように表現できる。
If the B-B cross-section curve is 80'), /1-, the measurement time of the A-section curve is tA, and the measurement time of the B-13 cross-section curve is tB, then 0 times [1 person's sedimentation velocity distribution d, n
(γ) can be expressed as follows.

次に(n+1)回目装入面後に(n+1)  回目の装
入物の表面断面形状を1llll定すると、第2図のC
−C断面曲線が求めらノ1.る。C−C断面曲線は。
Next, after the (n+1)th charging surface, the surface cross-sectional shape of the (n+1)th charging is determined by 1lllll, and then C
-C cross-section curve is found 1. Ru. The C-C cross section curve is.

上記B −1311i面曲線の上に表現される断面曲線
となる。一方、a−01Qr面曲線で表現される(n+
1)7− 回目の装入物の表面断面形状を測定した時刻におけるB
−B断面曲線で表現されるn回目の装入物の表面断面形
状を、上記n回目の装入物の沈降速度分布an(γ)で
補正後の推定表面断面形状をB′−B′断面曲線で表現
する。ここで−Bl −B/断面曲線をB′(γ)、C
−C断面曲線の測定時刻をt。とすると。
The cross-sectional curve is expressed on the B-1311i plane curve. On the other hand, it is expressed by the a-01Qr surface curve (n+
1) B at the time when the surface cross-sectional shape of the charged material was measured for the 7th time.
- The estimated surface cross-sectional shape of the n-th charge expressed by the B cross-sectional curve is corrected by the settling velocity distribution an(γ) of the n-th charge, and the estimated surface cross-sectional shape is the B'-B' cross-section. Express with a curve. Here, −Bl −B/cross-sectional curve is B′(γ), C
The measurement time of the −C cross-sectional curve is t. If so.

Bl−B+断面曲線B′(γ)は次式で求まる。Bl-B+cross-sectional curve B'(γ) is determined by the following equation.

B′(γ)−B(γ)+ (tBtc )an(γ)C
−C断面曲線と上式で求められるB+ −B/断面曲線
との差分が、(n+1)  回目装入物の層厚分布にな
る。
B'(γ)-B(γ)+ (tBtc)an(γ)C
The difference between the -C cross-sectional curve and the B+ -B/ cross-sectional curve determined by the above equation becomes the layer thickness distribution of the (n+1)th charge.

この装入物の層厚分布は、実測した沈降速度分布データ
で補正しであるので、極めて高精度な層厚分布を検知す
ることが出来るので、前記必要精度±30鰭相当を達成
することが出来る。
Since the layer thickness distribution of this charge is corrected using actually measured sedimentation velocity distribution data, it is possible to detect the layer thickness distribution with extremely high accuracy, making it possible to achieve the above-mentioned required accuracy equivalent to ±30 fins. I can do it.

又沈降速度分布は数分以内ではほとんど無視できる程度
にしか変化しないが一数十分程度では、操業状況によっ
てかなり変動し、実測に基づく詳   1細な沈降速度
分布補正が極めて重要である。以上が装入物の層厚分布
を高精度で求める方法である。
In addition, although the sedimentation velocity distribution changes only to a negligible extent within a few minutes, it varies considerably depending on the operating conditions over a period of several tens of minutes, and detailed correction of the sedimentation velocity distribution based on actual measurements is extremely important. The above is a method for determining the layer thickness distribution of the charge with high accuracy.

8− 次に、装入物の層1’b て説明する。8- Next, layer 1’b of the charge I will explain.

第4121において、A−A断面曲線、B−B断面曲線
、c−c断面曲線1丁3’−B’断面曲線は、第2図と
それぞれ同一の定義さノ1.た断面曲線である。
In No. 4121, the AA cross-sectional curve, the B-B cross-sectional curve, and the cc cross-sectional curve 1-3'-B' cross-sectional curve have the same definitions as in FIG. This is the cross-sectional curve.

上記の方法で、C−C断面曲線とB′−B′断面曲線の
差分として、一つの層厚分布が求められる。
With the above method, one layer thickness distribution is obtained as the difference between the CC cross-sectional curve and the B'-B' cross-sectional curve.

次に第4図のO−0断面曲線を第2図のA−A断面曲線
、第4図の1’、) −D断面曲線を第2図のB−B断
面曲線、第4図のla −p:断面曲線を第2図の0−
0断面曲線、第4図のD′−D′断面曲線を第2図の1
1’−13’断面曲線に読み替えて、上記の方法で第4
図のF −In断面曲線とD′−D′断面曲線の差分と
して、別の層厚比分布が求められる。これら連続した2
層の装入物の層厚比分布は、上記2層のそれぞれの層厚
の比として演算できる。以上が装入物の層厚比分布を求
める方法である。
Next, the O-0 cross-sectional curve in Figure 4 is the A-A cross-sectional curve in Figure 2, the 1', -D cross-sectional curve in Figure 4 is the B-B cross-sectional curve in Figure 2, and the la is in Figure 4. -p: The cross-sectional curve is 0- in Figure 2.
0 cross section curve, D'-D' cross section curve in Figure 4, and 1 in Figure 2.
1'-13' section curve, and use the above method to obtain the fourth
Another layer thickness ratio distribution is obtained as the difference between the F-In cross-sectional curve and the D'-D' cross-sectional curve in the figure. These two consecutive
The layer thickness ratio distribution of the layer charge can be calculated as the ratio of the respective layer thicknesses of the two layers. The above is the method for determining the layer thickness ratio distribution of the charge.

前述したように溶鉱炉においては、コークスと鉱石をザ
ンドイツチ状に次々と装入して、溶鉱炉内に充填する操
業方法が取られている。装入する一9= コークスと鉱石の比は、溶鉱炉の燃料消費量に直結して
おり極めて重要である。コークスが多口で゛あれは燃料
消費量が増加しよくない。逆にコークスが少な目であれ
ば溶鉱炉の溶解能力が低下し。
As described above, a blast furnace is operated by charging coke and ore one after another in a Zandertsch shape to fill the blast furnace. Charging 19 = The ratio of coke to ore is extremely important as it is directly connected to the fuel consumption of the blast furnace. Too much coke is not good because it increases fuel consumption. Conversely, if there is less coke, the melting ability of the blast furnace will decrease.

操業状況が不良になる。従ってコークスと鉱石の比は、
省エネルギーおよび操業面から重要で、従来のマクロ管
理方法は、1回に装入する装入物の重量から、コークス
と鉱石の比を管理して来たが。
Operational conditions become poor. Therefore, the ratio of coke to ore is
This is important from an energy saving and operational perspective, and the conventional macro management method has been to control the ratio of coke to ore based on the weight of the charge charged at one time.

最近は更にミクロ管理指向に向っている。つまりミクロ
管理は、溶鉱炉内の各部におけるコークスと鉱石の比を
理想的に制御することを指向している。
Recently, there has been a shift toward micromanagement. In other words, micromanagement is aimed at ideally controlling the ratio of coke to ore in each part of the blast furnace.

なお、溶鉱炉内のコークス、鉱石の装入物の層厚は1通
常数百闘程度で、平均粒度は3層m+程度である。従っ
て層厚分布、層厚比分布に必要な精度は、±30罷程度
が理想である。
The layer thickness of the coke and ore charges in the blast furnace is usually about several hundred layers, and the average particle size is about 3 layers. Therefore, the ideal accuracy required for layer thickness distribution and layer thickness ratio distribution is about ±30 lines.

本発明の装入物の層厚分布および層厚比分布検知方法を
溶鉱炉に適用すれば、前述したとおり溶鉱炉の操業者が
必要とするミクロ管理が可能となり、燃料消費量の削減
および操業の安定化に多大10− の効果がある。
If the method for detecting the layer thickness distribution and layer thickness ratio distribution of a charge according to the present invention is applied to a blast furnace, it becomes possible to perform the micro-management required by blast furnace operators as described above, thereby reducing fuel consumption and stabilizing operations. It has a huge 10-degree effect on reduction.

なお、本発明は土n1:実施例に限定されるものでなく
、竪ノ(ソの各押針に適用できる。
It should be noted that the present invention is not limited to the soil n1: example, but can be applied to each type of push needle.

4図rI′Ii (1)簡111 fr、 if)、四
組11ン1はレーザ方式プ1−1フィル、メータを備え
た溶鉱炉の概略構成図、第2図は装入物の表面断面形状
の模式図、第3S図t1、装入物の沈降速度分布例を示
す模式図、第4図t:J:装人物の表面断面形状の模式
図である、1 1・・・溶鉱炉本体    2・・・装入物3・・・炉
壁       4・・投光窓5・・受光窓     
 6・・・レーザ装置7・・・レーザ光     7a
・・・乱反射光8・・・光検出Z      9・・・
反射鏡A−A、II〜I(、C−C’、 、 I)川’
*  liニーlj;・・ 実測の表面断面形状 13’−II’ 、 r+′−D’・・沈降速度分布(
、二よる補正後の推定表面断面形状 −」L− 第1回 60−
Figure 4 rI'Ii (1) Simple 111 fr, if), 4 sets 11-1 is a schematic configuration diagram of a blast furnace equipped with a laser type P1-1 fill and a meter, Figure 2 is the surface cross-sectional shape of the charge 3S diagram t1 is a schematic diagram showing an example of the sedimentation velocity distribution of the charge, Figure 4 t: J is a schematic diagram of the surface cross-sectional shape of the mounting body, 1 1... Blast furnace main body 2. ...Charging material 3...Furnace wall 4...Light emission window 5...Light receiving window
6... Laser device 7... Laser light 7a
...Diffuse reflected light 8...Light detection Z 9...
Reflector A-A, II-I (, C-C', , I) River'
*li knee lj;... Actual surface cross-sectional shape 13'-II', r+'-D'... Sedimentation velocity distribution (
, Estimated surface cross-sectional shape after correction by 2-"L- 1st 60-

Claims (1)

【特許請求の範囲】 ■ 竪型炉にn回目に装入した主として鉱石、コークス
からなる装入物の装入直後と、(n+1)回目の装入直
前におけるそれぞれのプロフィルを測定して、上記両プ
ロフィルの差分と測定時刻差からn回目に装入した装入
物の炉内における沈降速度分布を求める方法と、(n+
1)回目の装入直後に(n+1)回目の装入物のプロフ
ィルを測定する方法と、前記(n+1)回目の装入直後
におけるn回目装入物のプロフィルを、前記(n+1 
)回目の装入a前における測定値をもとに、前記沈降速
度分布と(n+1)回目の装入直前及び装入直後のプロ
フィル測定時刻差から推定する方法とを備え、この推定
したn回目装入物のプロフィルと、(n+1)回目の装
入物のプロフィル測定値から、炉内における装入物の層
厚分1− 布を求めることを特徴とする竪型炉における装入物層厚
分布測定方法。 2 装入物のプロフィル測定は、レーザー光操作による
プロフィルメーターで実時間にて行うことを特徴とする
特許請求の範囲第1項記載の竪型炉における装入物層厚
分布測定方法。 3 装入物の層厚分布は、炉芯を経て炉径方向に求める
ことを特徴とする特許請求の範囲第1項又は第2項記載
の竪型炉における装入物層厚分布測定方法。 4 装入物の層厚分布は、装入物の種類毎に測定するこ
とを特徴とする特許請求の範囲第1゜第2又は第3項記
載の竪型炉における装入物層厚分布測定方法。 5 装入物の層厚分布は、隣接する鉱石層とコークス層
を一対として求め、更に鉱石層/コークス層の層厚比分
布を求めることを特徴とする特許請求の範囲第1、第2
.第3又は第4項記載の竪型炉における装入物層厚分布
測定方法。 2−
[Scope of Claims] ■ The profile of a charge consisting mainly of ore and coke charged for the nth time into a vertical furnace and immediately before the (n+1)th charging is measured, and A method of determining the settling velocity distribution in the furnace of the nth charge from the difference between both profiles and the measurement time difference, and (n+
1) A method of measuring the profile of the (n+1)th charge immediately after the (n+1)th charging, and a method of measuring the profile of the nth charge immediately after the (n+1)th charging.
) Based on the measurement value before the charging time a, a method of estimating the sedimentation velocity distribution from the difference in time of profile measurement immediately before and immediately after the (n+1)th charging is provided; The layer thickness of the charge in a vertical furnace characterized by determining the layer thickness of the charge in the furnace from the profile of the charge and the (n+1)th measured value of the profile of the charge. Distribution measurement method. 2. The method for measuring the layer thickness distribution of a charge in a vertical furnace according to claim 1, wherein the profile of the charge is measured in real time using a profile meter operated by laser light. 3. A method for measuring the layer thickness distribution of the charge in a vertical furnace according to claim 1 or 2, characterized in that the layer thickness distribution of the charge is determined in the radial direction of the furnace through the furnace core. 4. Measurement of charge layer thickness distribution in a vertical furnace as set forth in claim 1.2 or 3., wherein the layer thickness distribution of the charge is measured for each type of charge. Method. 5. The layer thickness distribution of the charge is obtained by determining the adjacent ore layer and coke layer as a pair, and further determining the layer thickness ratio distribution of the ore layer/coke layer.
.. The method for measuring charge layer thickness distribution in a vertical furnace according to item 3 or 4. 2-
JP10164982A 1982-06-14 1982-06-14 Measuring method of layer thickness distribution for charged material of vertical furnace Pending JPS58218610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10164982A JPS58218610A (en) 1982-06-14 1982-06-14 Measuring method of layer thickness distribution for charged material of vertical furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10164982A JPS58218610A (en) 1982-06-14 1982-06-14 Measuring method of layer thickness distribution for charged material of vertical furnace

Publications (1)

Publication Number Publication Date
JPS58218610A true JPS58218610A (en) 1983-12-19

Family

ID=14306222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10164982A Pending JPS58218610A (en) 1982-06-14 1982-06-14 Measuring method of layer thickness distribution for charged material of vertical furnace

Country Status (1)

Country Link
JP (1) JPS58218610A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097048A (en) * 2007-10-18 2009-05-07 Kobe Steel Ltd Method for estimating distribution of layer thickness of charged material in blast furnace and instrument using the method
JP2010150583A (en) * 2008-12-24 2010-07-08 Kobe Steel Ltd Method for measuring layer thickness distribution of charged material in blast furnace, and apparatus for measuring layer thickness distribution using the same
JP2012224918A (en) * 2011-04-20 2012-11-15 Nippon Steel Corp Profile measuring method of blast furnace burden
JP2016161552A (en) * 2015-03-05 2016-09-05 東洋ゴム工業株式会社 Method for detecting width direction end position of belt-like member
JP2016161432A (en) * 2015-03-03 2016-09-05 東洋ゴム工業株式会社 Method for detecting width direction end position of belt-like member
CN109211113A (en) * 2018-11-28 2019-01-15 信利光电股份有限公司 Equipment based on laser measurement object size

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097048A (en) * 2007-10-18 2009-05-07 Kobe Steel Ltd Method for estimating distribution of layer thickness of charged material in blast furnace and instrument using the method
JP2010150583A (en) * 2008-12-24 2010-07-08 Kobe Steel Ltd Method for measuring layer thickness distribution of charged material in blast furnace, and apparatus for measuring layer thickness distribution using the same
JP2012224918A (en) * 2011-04-20 2012-11-15 Nippon Steel Corp Profile measuring method of blast furnace burden
JP2016161432A (en) * 2015-03-03 2016-09-05 東洋ゴム工業株式会社 Method for detecting width direction end position of belt-like member
JP2016161552A (en) * 2015-03-05 2016-09-05 東洋ゴム工業株式会社 Method for detecting width direction end position of belt-like member
CN109211113A (en) * 2018-11-28 2019-01-15 信利光电股份有限公司 Equipment based on laser measurement object size

Similar Documents

Publication Publication Date Title
US3986774A (en) Gauging surfaces by remotely tracking multiple images
CN1795363B (en) Method for contactlessly and dynamically detecting the profile of a solid body
Rothman et al. Impedance match equation of state experiments using indirectly laser-driven multimegabar shocks
JPS63500119A (en) Instruments for measuring surface morphology
JPS58218610A (en) Measuring method of layer thickness distribution for charged material of vertical furnace
JPH0449641B2 (en)
TW201107900A (en) Lithographic apparatus and device manufacturing method
Kanemura et al. Evaluation of applicability of laser-based distance meter to measure Li-jet thickness for IFMIF/EVEDA project
GB2183418A (en) Determining distance to a surface
Eichelberger Re‐Examination of the Nonsteady Theory of Jet Formation by Lined Cavity Charges
Hul et al. Investigation of nodal domains in the chaotic microwave ray-splitting rough billiard
CN103852809B (en) A kind of ground F-P surveys air-dry interferometer
Holmes Equation‐of‐state measurements of low‐density materials
CN112729355B (en) Method for calibrating Raman light incident angle suitable for atomic interferometer
Rothman et al. Measurement of the lead principal Hugoniot at∼ 800 kbar by indirect laser drive
JPS5824724B2 (en) Burden level distribution measurement method in vertical furnace
CN208998755U (en) A kind of elevator rail planeness detection system based on multistage optical lever
RU2119643C1 (en) Method determining planeness of moving strip of material
Huang et al. Measuring atmospheric turbulence strength based on differential imaging of light column
JPH0479522B2 (en)
Mildner Neutron intensity gains for converging guide systems
GB2564423A (en) Apparatus and method for determining an indicator of the macrotexture of a road surface
JP2905366B2 (en) Molten metal flow rate measuring device and molten metal flow rate measuring method
Zrelov et al. Apochromatic method for measuring the mean 657 MeV proton energy by using Vavilov-Cherenkov radiation
JPH0232207A (en) Roughness measuring method for metal surface