JP6147602B2 - Profile measurement method for blast furnace interior - Google Patents

Profile measurement method for blast furnace interior Download PDF

Info

Publication number
JP6147602B2
JP6147602B2 JP2013154766A JP2013154766A JP6147602B2 JP 6147602 B2 JP6147602 B2 JP 6147602B2 JP 2013154766 A JP2013154766 A JP 2013154766A JP 2013154766 A JP2013154766 A JP 2013154766A JP 6147602 B2 JP6147602 B2 JP 6147602B2
Authority
JP
Japan
Prior art keywords
measurement
profile
blast furnace
microwave
furnace interior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013154766A
Other languages
Japanese (ja)
Other versions
JP2015025710A (en
Inventor
徹 万仲
徹 万仲
哲哉 秋元
哲哉 秋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Texeng Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Texeng Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Texeng Co Ltd filed Critical Nippon Steel Corp
Priority to JP2013154766A priority Critical patent/JP6147602B2/en
Publication of JP2015025710A publication Critical patent/JP2015025710A/en
Application granted granted Critical
Publication of JP6147602B2 publication Critical patent/JP6147602B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Blast Furnaces (AREA)

Description

本発明は、高炉内装入物の表面の形状(プロフィル)の測定方法に関するものである。   The present invention relates to a method for measuring the shape (profile) of the surface of a blast furnace interior.

一般に、銑鉄の製造における高炉には、炉頂から装入物として、粉鉄鉱石を焼き固めた焼結鉱や塊状鉄鉱石等(以下では単に鉄鉱石または鉱石と記す)及びコークスが交互に装入されて堆積し、炉内に鉱石層およびコークス層が形成される。高炉下方にある羽口から吹き込まれる熱風とコークスとの反応によって生じるCOガスにより、鉄鉱石は加熱、還元され(間接還元)、また、一部はコークスにより直接的に還元されて、軟化融着帯を形成した後、溶滴となる。溶滴、すなわち溶銑は、コークス層の間を通過して炉底部に溜まる。炉内に形成された鉱石層およびコークス層は、炉内を徐々に降下する。   In general, blast furnaces in the production of pig iron are alternately charged with sintered ore or lump iron ore (hereinafter simply referred to as iron ore or ore) and coke as a charge from the top of the furnace. As a result, the ore layer and the coke layer are formed in the furnace. The iron ore is heated and reduced (indirect reduction) by the CO gas generated by the reaction between the hot air blown from the tuyere below the blast furnace and coke, and part of the iron ore is reduced directly by the coke and softened and fused. After forming the band, it becomes a droplet. The droplets, that is, the molten iron, pass between the coke layers and accumulate at the bottom of the furnace. The ore layer and coke layer formed in the furnace gradually descend in the furnace.

以上の工程において、高炉に装入された鉄鉱石及びコークスによって形成される炉頂部の装入物分布を調整し、適正なガス分布を得ることは非常に重要である。高炉内炉頂部における装入物のプロフィル(表面形状)は、ベル式装入装置ではムーバブルアーマを、また、ベルレス式装入装置では分配シュートを介する装入物の落下軌跡により決定される。通常装入時は、炉頂部の装入物のプロフィルは、高炉の中心鉛直方向(軸心)を軸として中央部が低い略逆円錘形状をなしている。高炉内装入物のプロフィルは、高炉の操業にとって重要な情報であり、殊に近年、高炉では、低コークス比での操業安定化を目的に、装入物の分布制御が複雑化しており、十分な測定頻度と精度を実現するプロフィルの測定ニーズが高まっている。   In the above process, it is very important to adjust the charge distribution at the top of the furnace formed by the iron ore and coke charged in the blast furnace to obtain an appropriate gas distribution. The profile (surface shape) of the charge at the top of the furnace in the blast furnace is determined by the moving armor in the bell-type charging device and the fall trajectory of the charge through the distribution chute in the bell-less charging device. At the time of normal charging, the profile of the charge at the top of the furnace has a substantially inverted conical shape whose center is low with the center vertical direction (axial center) of the blast furnace as the axis. The profile of the blast furnace interior is important information for the operation of the blast furnace, and in recent years, the distribution control of the charge has been complicated in order to stabilize the operation at a low coke ratio. There is a growing need for measurement of profiles that achieves high measurement frequency and accuracy.

従来、例えば特許文献1等に記載されているように、炉体の炉口部側面から、高炉の軸心に向けて、マイクロ波距離計を備えた計測ランスを挿入し、マイクロ波を高炉内装入物へ向けて発信して、高炉内装入物の表面までの距離を測定する方式が行われてきた。この方式は、炉体内の高濃度の粉塵中でも、マイクロ波の減衰が小さいために距離測定が可能であるという利点があるものの、装置が大型かつ高価で、操作が複雑である。また、測定中は原料の装入を待機させる必要があり、また原料の装入時には計測ランスを炉体の外へ退避させなければならないため、一日に多くて数回、実際には1回程度しか測定できない。しかも、測定時間が長時間になるため、測定中の原料降下量が大きく、測定後の原料レベルの回復に時間がかかるという問題がある。   Conventionally, as described in, for example, Patent Document 1 and the like, a measurement lance equipped with a microwave distance meter is inserted from the side surface of the furnace port of the furnace body toward the axis of the blast furnace, and the microwave is placed inside the blast furnace. There has been a method of transmitting to the entry and measuring the distance to the surface of the blast furnace interior entry. Although this method has the advantage that distance measurement is possible because of the small attenuation of microwaves even in high-concentration dust in the furnace, the apparatus is large and expensive, and the operation is complicated. In addition, during the measurement, it is necessary to wait for the raw material to be charged, and when the raw material is charged, the measurement lance must be withdrawn from the furnace body. Only the degree can be measured. In addition, since the measurement time is long, there is a problem that the amount of material drop during measurement is large, and it takes time to recover the material level after measurement.

そこで、マイクロ波の長所を維持し、原料の装入を長時間停止させることなくレベル測定が行える測定方法が、例えば特許文献2および特許文献3に記載されている。これらは、マイクロ波の送受信が行えるマイクロ波距離計と、マイクロ波放射方向を走査する走査駆動装置とを備えたプロフィル測定装置を、原料装入装置よりも上方の高炉の炉頂部に設置し、マイクロ波を高炉内に走査させ、マイクロ波距離計から入力された距離データおよび走査駆動装置から入力された走査角度データを組み合わせて、データ処理部で高炉内装入物の表面プロフィルを演算するものである。   Thus, for example, Patent Document 2 and Patent Document 3 describe measurement methods that can maintain the advantages of microwaves and perform level measurement without stopping the charging of raw materials for a long time. These installed a profile measuring device equipped with a microwave rangefinder capable of transmitting and receiving microwaves and a scanning drive device that scans the microwave radiation direction at the top of the blast furnace above the raw material charging device, A microwave is scanned into the blast furnace, and the surface profile of the blast furnace interior is calculated by the data processing unit by combining the distance data input from the microwave rangefinder and the scanning angle data input from the scanning drive unit. is there.

実公平1−12216号公報Japanese Utility Model Publication No. 1-2216 特開2010−174371号公報JP 2010-174371 A 特開2011−2241号公報Japanese Patent Application Laid-Open No. 2011-2241

ところが、上記特許文献2、3に記載されたプロフィル測定方法は、一定の角速度でマイクロ波の放射方向を回転させながらデータ取得するため、プロフィルの測定点間距離にばらつきが生じる。したがって、得られるプロフィルの精度を確保するためには、最も精度が得られにくい形状の場所を基準に回転角速度を決める必要があるが、その場合、測定時間が長くなるという問題がある。   However, since the profile measurement methods described in Patent Documents 2 and 3 acquire data while rotating the microwave radiation direction at a constant angular velocity, the distance between measurement points of the profile varies. Therefore, in order to ensure the accuracy of the obtained profile, it is necessary to determine the rotational angular velocity based on the location of the shape where the accuracy is most difficult to obtain, but in this case, there is a problem that the measurement time becomes long.

特許文献2、3に記載されているプロフィル測定装置は、炉内の装入物分配シュートとの干渉がないため、いつでも測定が可能であるものの、測定のタイミングが原料装入と重なると、十分な測定精度が得られない。したがって、精度よく測定するためには、プロフィルの測定中は原料装入を待機させることが望ましい。そのため、測定時間が長いと、特許文献1の場合と同様、高炉の操業に支障を来すとともに、測定中の原料降下量が大きく、測定後の原料レベルの回復に時間がかかることから、測定回数に制約が生じる。   The profile measuring apparatus described in Patent Documents 2 and 3 can measure at any time because there is no interference with the charge distribution chute in the furnace, but it is sufficient if the measurement timing overlaps with the raw material charging. Accurate measurement accuracy cannot be obtained. Therefore, in order to measure accurately, it is desirable to wait for the raw material charging during the measurement of the profile. Therefore, if the measurement time is long, the operation of the blast furnace is hindered, as in the case of Patent Document 1, and the amount of material fall during measurement is large, and it takes time to recover the material level after measurement. The number of times is limited.

本発明の目的は、任意の形状の高炉内装入物のプロフィルを、なるべく時間をかけず高精度に測定できる測定方法を提供することにある。   The objective of this invention is providing the measuring method which can measure the profile of the blast furnace interior inclusion of arbitrary shapes as highly accurately as possible without taking time.

上記問題を解決するため、本発明は、高炉の炉頂部に、マイクロ波の送受信により測定対象物までの距離を測定するプロフィル測定装置を設置し、前記プロフィル測定装置から、マイクロ波放射方向を、高炉内装入物の表面において前記高炉の中心軸を通る直径方向に走査させて前記装入物までの距離データを測定し、前記距離データ測定時のマイクロ波の走査角度データに基づいて前記距離データを座標変換して、前記高炉内装入物の表面プロフィルを演算する高炉内装入物のプロフィル測定において、マイクロ波を炉内直径方向に走査させて、前記高炉内装入物の概略プロフィルを測定し、前記概略プロフィルについて、前記炉内直径方向の座標に対する曲率を算出し、本測定時の全体の測定点数を設定し、前記曲率の絶対値が大きいほど測定点の分布密度を大きくするように測定点を決定し、前記測定点にマイクロ波を照射して本測定を行い、前記本測定で測定した距離データおよびそのときのマイクロ波の走査角度データから、前記高炉内装入物の表面プロフィルを演算することを特徴とする、高炉内装入物のプロフィル測定方法を提供する。
In order to solve the above-mentioned problem, the present invention installs a profile measuring device that measures the distance to the measurement object by transmitting and receiving microwaves at the top of the blast furnace, and from the profile measuring device, the microwave radiation direction is The distance data to the charge is measured by scanning in the diameter direction passing through the central axis of the blast furnace on the surface of the blast furnace interior charge, and the distance data based on the scanning angle data of the microwave at the time of the distance data measurement In the profile measurement of the blast furnace interior input to calculate the surface profile of the blast furnace interior input, the microwave is scanned in the diameter direction of the furnace to measure the approximate profile of the blast furnace interior input, for the general profile, to calculate the curvature with respect to the furnace diameter direction of the coordinates, set the overall number of points during this measurement, Ho absolute value of the curvature is large Determine the measurement points so as to increase the distribution density of the measurement points, perform the main measurement by irradiating the measurement points with microwaves, and from the distance data measured in the main measurement and the scanning angle data of the microwave at that time The present invention provides a method for measuring the profile of a blast furnace interior, wherein a surface profile of the interior of the blast furnace interior is calculated.

上記プロフィル測定方法において、前記マイクロ波は、アンテナから放射し反射板で反射させて前記高炉内装入物の表面に照射し、前記本測定は、前記測定点ごとに、前記概略プロフィルにおける前記測定点の座標から前記反射板の角度を求め、マイクロ波発信時から前記高炉内装入物による反射波の受信時までの間、前記反射板を前記角度で停止させて行うことが好ましい。
In the profile measurement method, the microwave is radiated from an antenna, reflected by a reflector, and irradiated on the surface of the blast furnace interior, and the measurement is performed at the measurement points in the approximate profile for each measurement point. It is preferable that the angle of the reflecting plate is obtained from the coordinates and the reflecting plate is stopped at the angle from when the microwave is transmitted to when the reflected wave is received by the blast furnace interior.

また、前記プロフィル測定装置を、前記高炉の中心軸に対して対称位置に2つ設置し、前記本測定は、前記測定点ごとに、前記2つのプロフィル測定装置のうち、マイクロ波の入射角度が90°に近い方のプロフィル測定装置で測定し、それぞれのプロフィル測定装置による測定データを組み合わせて前記高炉内装入物のプロフィルを演算してもよい。   Further, two of the profile measuring devices are installed at symmetrical positions with respect to the central axis of the blast furnace, and the main measurement is performed at each measurement point with an incident angle of microwaves of the two profile measuring devices. Measurement may be performed with a profile measuring device closer to 90 °, and the profile of the blast furnace interior may be calculated by combining measurement data obtained by the respective profile measuring devices.

また、前記高炉の操業時の各工程において、前記高炉内装入物の表面プロフィルを複数回連続して測定する際、初回測定時のみ前記概略プロフィルを測定し、2回目以降は、初回測定時のみ前記概略プロフィルを測定し、2回目以降は、前回の測定で得たプロフィルを概略プロフィルとして用いて前記本測定の測定点を決定してもよい。   Further, in each step during the operation of the blast furnace, when measuring the surface profile of the blast furnace interior multiple times continuously, the approximate profile is measured only at the first measurement, and the second and subsequent times are only at the first measurement. The outline profile may be measured, and after the second time, the measurement point of the main measurement may be determined using the profile obtained in the previous measurement as the outline profile.

本発明によれば、曲率の大きい場所の測定点の分布密度を高くすることで、複雑な形状のプロフィルを高精度に測定し、曲率の小さい場所の測定点の分布密度を低くすることで、測定時間を短縮できる。すなわち、無駄な時間を要することなく高精度なプロフィルを得ることができる。   According to the present invention, by increasing the distribution density of measurement points at a place with a large curvature, the profile of a complex shape is measured with high accuracy, and by reducing the distribution density of the measurement points at a place with a small curvature, Measurement time can be shortened. That is, a highly accurate profile can be obtained without wasting time.

炉頂部にプロフィル測定装置を備えた高炉炉頂部の例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the example of the blast furnace top part provided with the profile measuring apparatus in the furnace top part. プロフィル測定装置の一例を示す構成図である。It is a block diagram which shows an example of a profile measuring apparatus. 本発明にかかる測定手順の例を示すフローチャートである。It is a flowchart which shows the example of the measurement procedure concerning this invention. 通常装入の場合の本発明にかかる測定点の決定方法を説明するグラフであり、(a)は概略プロフィル、(b)は(a)の概略プロフィルの炉内x座標に対する曲率、(c)は(b)から求めた炉内x座標に対する測定点の分布密度、(d)は炉内x座標に対する測定点数の積算、(e)は炉内x座標に対する測定点である。It is a graph explaining the determination method of the measurement point concerning this invention in the case of normal charging, (a) is a rough profile, (b) is the curvature with respect to the x coordinate in a furnace of the rough profile of (a), (c). Is the distribution density of the measurement points with respect to the in-furnace x coordinate obtained from (b), (d) is the integration of the number of measurement points with respect to the in-furnace x coordinate, and (e) is the measurement point with respect to the in-furnace x coordinate. 中心装入の場合の本発明にかかる測定点の決定方法を説明するグラフであり、(a)は概略プロフィル、(b)は(a)の概略プロフィルの炉内x座標に対する曲率、(c)は(b)から求めた炉内x座標に対する測定点の分布密度、(d)は炉内x座標に対する測定点数の積算、(e)は炉内x座標に対する測定点である。It is a graph explaining the determination method of the measuring point concerning this invention in the case of center insertion, (a) is a rough profile, (b) is the curvature with respect to the x coordinate in a furnace of the rough profile of (a), (c). Is the distribution density of the measurement points with respect to the in-furnace x coordinate obtained from (b), (d) is the integration of the number of measurement points with respect to the in-furnace x coordinate, and (e) is the measurement point with respect to the in-furnace x coordinate. 本発明にかかる測定手順の異なる例を示すフローチャートである。It is a flowchart which shows the example from which the measurement procedure concerning this invention differs. マイクロ波の入射角度の求め方の例を示す説明図である。It is explanatory drawing which shows the example of how to obtain | require the incident angle of a microwave. 図4のプロフィルを測定する際の、測定装置ごとの炉内x座標とマイクロ波の入射角度との関係の例を示すグラフである。It is a graph which shows the example of the relationship between the x coordinate in a furnace and the incident angle of a microwave for every measuring apparatus at the time of measuring the profile of FIG. 図5のプロフィルを測定する際の、測定装置ごとの炉内x座標とマイクロ波の入射角度との関係の例を示すグラフである。It is a graph which shows the example of the relationship between the x coordinate in a furnace for every measuring apparatus, and the incident angle of a microwave at the time of measuring the profile of FIG.

以下、本発明の実施の形態を、図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、プロフィル測定装置を高炉に設置した例を示す。2つのプロフィル測定装置A1、A2は、高炉2の炉頂部付近の、炉体3よりも外側に、炉体3の中心軸に対して対称位置に設置されている。炉体3の炉口部にはベルレス式装入装置5が設けられ、鉄鉱石やコークス等の装入物4が、分配シュート6を通って炉内に装入される。   FIG. 1 shows an example in which a profile measuring device is installed in a blast furnace. The two profile measuring devices A1 and A2 are installed on the outer side of the furnace body 3 in the vicinity of the top of the blast furnace 2 and at symmetrical positions with respect to the central axis of the furnace body 3. A bell-less charging device 5 is provided at the furnace port of the furnace body 3, and a charge 4 such as iron ore or coke is charged into the furnace through the distribution chute 6.

図2は、プロフィル測定装置A1、A2の構成の一例を示す拡大図である。プロフィル測定装置A1、A2は、図2に示すように、アンテナ11および反射板12と、アンテナ11および反射板12をそれぞれ支持、駆動、制御する導波管13、マイクロ波送受信器14、駆動軸15、反射板駆動装置16を有する。アンテナ11および反射板12は、耐圧容器20の内部に収容されている。耐圧容器20は、底面に、炉内に向けた開口部21を有し、開口部21には、マイクロ波を通過可能な仕切板22、シャッター23、保護ネット24等が設けられている。   FIG. 2 is an enlarged view showing an example of the configuration of the profile measuring apparatuses A1 and A2. As shown in FIG. 2, the profile measuring apparatuses A1 and A2 include an antenna 11 and a reflecting plate 12, a waveguide 13 that supports, drives, and controls the antenna 11 and the reflecting plate 12, respectively, a microwave transceiver 14, and a drive shaft. 15 and a reflector driving device 16. The antenna 11 and the reflection plate 12 are accommodated in the pressure resistant container 20. The pressure vessel 20 has an opening 21 on the bottom surface facing the inside of the furnace, and the opening 21 is provided with a partition plate 22 that can pass microwaves, a shutter 23, a protective net 24, and the like.

アンテナ11は、例えばφ250〜φ360mm程度のパラボラアンテナであり、導波管13を介して、マイクロ波送受信器14に連結されている。マイクロ波送受信器14は、周波数が一定範囲で連続的に時間変化するマイクロ波を発生し、当該マイクロ波の発信および受信が可能なものである。マイクロ波送受信器14には、データ処理部18が信号線19で接続されている。   The antenna 11 is a parabolic antenna having a diameter of about φ250 to φ360 mm, for example, and is connected to the microwave transceiver 14 via the waveguide 13. The microwave transmitter / receiver 14 generates a microwave whose frequency continuously changes in a certain range and can transmit and receive the microwave. A data processor 18 is connected to the microwave transceiver 14 by a signal line 19.

マイクロ波送受信器14で発生した、周波数が連続的に変化するマイクロ波は、アンテナ11から放射されて反射板12で反射され、高炉2内の測定対象である装入物4の表面に照射される。照射されたマイクロ波は装入物4の表面で反射し、この反射波を、反射板12を介してマイクロ波送受信器14で受信して検出する。データ処理部18では、アンテナ11でのマイクロ波の放射から受信までの間の周波数の変化分ΔFから、アンテナ11から測定対象(装入物4の表面)までのマイクロ波の往復時間ΔTが求められ、アンテナ11から測定対象までの距離が算出される。この測定は、マイクロ波を発射する電気信号と、装入物表面からの反射波を受信して得られる電気信号とをミキシングして測定するFMCW(Frequency Modulated Continuous Wave)方式(周波数変調連続波方式)と呼ばれる。当該方式のマイクロ波距離計は、市販の装置を用いてもよい。   The microwave generated in the microwave transmitter / receiver 14 and continuously changing in frequency is radiated from the antenna 11, reflected by the reflector 12, and irradiated on the surface of the charge 4 to be measured in the blast furnace 2. The The irradiated microwave is reflected by the surface of the charge 4, and this reflected wave is received and detected by the microwave transmitter / receiver 14 via the reflector 12. In the data processing unit 18, the round-trip time ΔT of the microwave from the antenna 11 to the measurement target (the surface of the charge 4) is obtained from the change in frequency ΔF from the emission to reception of the microwave at the antenna 11. The distance from the antenna 11 to the measurement target is calculated. This measurement is based on the FMCW (Frequency Modulated Continuous Wave) method (Frequency Modulated Continuous Wave method) that mixes and measures the electrical signal that emits the microwave and the electrical signal that is obtained by receiving the reflected wave from the charged surface. ). A commercially available apparatus may be used for the microwave distance meter of this type.

測定に用いるマイクロ波の発信周波数帯域は、10GHz以上、好ましくは24GHz程度とし、周波数を高くするほど、アンテナ11を小型化できる。マイクロ波を用いることにより、温度や粉塵等の環境の影響を受けにくく、高炉2内のプロフィルを正確に測定できる。また、パラボラアンテナは指向性が高いため、所望する位置に向けて高精度にマイクロ波を放射できる。さらに、放射時のマイクロ波の広がりが抑制されるために、炉内に向けた開口部21を小さくすることができる。   The transmission frequency band of the microwave used for measurement is 10 GHz or more, preferably about 24 GHz. The higher the frequency, the smaller the antenna 11 can be made. By using the microwave, the profile in the blast furnace 2 can be accurately measured without being affected by the environment such as temperature and dust. Moreover, since the parabolic antenna has high directivity, microwaves can be radiated with high accuracy toward a desired position. Furthermore, since the spread of the microwave at the time of radiation | emission is suppressed, the opening part 21 toward the inside of a furnace can be made small.

図2に示すように、アンテナ11のマイクロ波の送受信方向(中心軸線方向)の延長上に、反射板12と反射板駆動装置16とを連結する駆動軸15が設けられている。すなわち、駆動軸15の中心軸線が、アンテナ11の中心軸線と一致するように、駆動軸15が設けられている。図2に示すように、反射板12は、アンテナ11の中心軸線に対して略45°の角度で駆動軸15に固定されている。反射板12は、例えばステンレスの板材からなり、アンテナ11の正面側から見た面積が、アンテナ11よりも少し大きいものとする。形状は限定しないが、操作性の上では円形が好ましい。反射板駆動装置16により駆動軸15をその中心軸の周りに回転させることで、アンテナ11からその中心軸方向に放射されたマイクロ波を、反射板12で高炉2の炉内側へ向けて反射し、高炉2の直径方向に走査する。反射板12によるマイクロ波の反射方向は、図2の紙面に対して垂直方向に移動する。反射板12は、マイクロ波が炉の中心軸を通るように配置する。   As shown in FIG. 2, a drive shaft 15 that connects the reflector 12 and the reflector driving device 16 is provided on an extension of the antenna 11 in the microwave transmission / reception direction (center axis direction). That is, the drive shaft 15 is provided so that the center axis of the drive shaft 15 coincides with the center axis of the antenna 11. As shown in FIG. 2, the reflector 12 is fixed to the drive shaft 15 at an angle of approximately 45 ° with respect to the central axis of the antenna 11. The reflector 12 is made of, for example, a stainless steel plate, and the area viewed from the front side of the antenna 11 is slightly larger than the antenna 11. Although the shape is not limited, a circular shape is preferable in terms of operability. By rotating the drive shaft 15 around its central axis by the reflector driving device 16, the microwave radiated from the antenna 11 toward the central axis is reflected by the reflector 12 toward the inside of the blast furnace 2. The blast furnace 2 is scanned in the diameter direction. The reflection direction of the microwaves by the reflecting plate 12 moves in a direction perpendicular to the paper surface of FIG. The reflector 12 is arranged so that the microwave passes through the central axis of the furnace.

耐圧容器20の開口部21は、高炉2の炉内に連通し、反射板12で反射したマイクロ波が、炉内の所定範囲に照射されるように形成される。   The opening 21 of the pressure vessel 20 communicates with the inside of the blast furnace 2 and is formed so that the microwave reflected by the reflecting plate 12 is irradiated to a predetermined range in the furnace.

耐圧容器20の内面は、炉内側開口部21および反射板12の反射面側を除いて、発信周波数帯域に対応した電波吸収体で覆い、耐圧容器20内でのマイクロ波の乱反射や多重反射に起因する測定ノイズを抑制することが好ましい。   The inner surface of the pressure vessel 20 is covered with a radio wave absorber corresponding to the transmission frequency band except for the inner opening 21 of the furnace and the reflection surface side of the reflector 12, so that the microwave can be diffusely reflected and multiple reflected in the pressure vessel 20. It is preferable to suppress the measurement noise caused.

また、プロフィル測定時には、高炉2内部のガスや粉塵等が耐圧容器20内に侵入するのを防ぎ、さらに耐圧容器20を介して外部へ高炉2内のガス等が漏洩するのを防止する目的で、耐圧容器20内に、例えば炉内圧の1.1倍程度の圧力になるように、窒素ガス等の不活性ガスで加圧を行うとよい。   Further, at the time of measuring the profile, for the purpose of preventing the gas or dust inside the blast furnace 2 from entering the pressure vessel 20 and further preventing the gas inside the blast furnace 2 from leaking to the outside through the pressure vessel 20. The pressure vessel 20 may be pressurized with an inert gas such as nitrogen gas so that the pressure is about 1.1 times the furnace pressure.

このようなプロフィル測定装置を用いてプロフィル測定を行う際、短時間で測定するために、装入物4に対するマイクロ波送受信部である反射板12を一定の角速度で常時回転させながら測定すると、データ処理部18のFMCW演算による距離検出の応答時間と、反射板駆動装置16に内蔵している走査角度検出器の応答時間が異なるため、測定された距離と反射板走査角度のデータ取得時刻を介した紐づけにずれが生じ、精度に問題が生じる。つまり、プロフィル測定を精度よく実施するには、測定点ごとに反射板12を一旦停止させる必要がある。そのため、測定点が多いほど測定時間がかかる。   When performing profile measurement using such a profile measuring device, in order to measure in a short time, if the reflector 12 that is a microwave transmission / reception unit for the charge 4 is measured while constantly rotating at a constant angular velocity, data is obtained. Since the response time of the distance detection by the FMCW calculation of the processing unit 18 and the response time of the scanning angle detector built in the reflector driving device 16 are different, the data acquisition time of the measured distance and the reflector scanning angle is determined. As a result, there is a deviation in the tying, which causes a problem in accuracy. That is, in order to carry out the profile measurement with high accuracy, it is necessary to temporarily stop the reflector 12 for each measurement point. For this reason, the more measurement points, the longer the measurement time.

そこで、本発明では、プロフィル形状に応じて測定点の分布密度を変化させることで、測定精度を維持しながら測定時間を短縮可能とした。以下、本発明の実施形態の一例を、図3のフローチャートおよび図4、図5に基づいて説明する。   Therefore, in the present invention, the measurement time can be shortened while maintaining the measurement accuracy by changing the distribution density of the measurement points according to the profile shape. Hereinafter, an example of an embodiment of the present invention will be described based on the flowchart of FIG. 3 and FIGS. 4 and 5.

概略プロフィル測定(S1)
先ず、従来の測定方法により、高炉2内の直径方向全体にマイクロ波を走査させて、概略プロフィルを測定する。すなわち、プロフィル測定装置の反射板12の向きを初期位置に向けて、マイクロ波送受信器14からマイクロ波を発信する。マイクロ波は、導波管13、アンテナ11を介して、反射板12により反射され、高炉内装入物4に照射された後、装入物4からの反射波を、反射板12を介してマイクロ波送受信器14で受信して、装入物4までの距離を測定する。その際、反射板12を、炉の直径方向の一端側から他端側の測定位置までの間、反射板駆動装置16により回転させる。予め設定した角度ごとに、装入物4までの距離を測定してその距離データが、また、反射板駆動装置16からはそのときの走査角度データが、データ処理部18へ送られる。プロフィル測定装置のデータ処理部18は、S1で取得した走査角度データおよびそのときの距離データに基づいて直交座標系のデータに座標変換する。概略プロフィルの測定では、高い精度は要求されないので、測定点ごとに反射板12を停止させる必要はなく、一定の角速度で回転させながら、短時間で測定を行えばよい。
Outline profile measurement (S1)
First, a general profile is measured by scanning microwaves in the entire diameter direction in the blast furnace 2 by a conventional measurement method. That is, the microwave is transmitted from the microwave transmitter / receiver 14 with the direction of the reflector 12 of the profile measuring device directed to the initial position. The microwave is reflected by the reflecting plate 12 through the waveguide 13 and the antenna 11 and irradiated to the blast furnace interior entrance 4, and then the reflected wave from the charge 4 is converted to the micro wave through the reflector 12. It is received by the wave transceiver 14 and the distance to the charge 4 is measured. At that time, the reflecting plate 12 is rotated by the reflecting plate driving device 16 from one end side in the diameter direction of the furnace to the measurement position on the other end side. For each preset angle, the distance to the load 4 is measured, and the distance data is sent to the data processing unit 18 from the reflector driving device 16. The data processing unit 18 of the profile measuring device performs coordinate conversion into orthogonal coordinate system data based on the scanning angle data acquired in S1 and the distance data at that time. In the measurement of the rough profile, high accuracy is not required, so it is not necessary to stop the reflecting plate 12 for each measurement point, and the measurement can be performed in a short time while rotating at a constant angular velocity.

異常点検出・除去(S2)
炉内に存在する障害物などによって異常点が認められたときには、そのデータを除去することが好ましい。異常点の検出は、例えばマイクロ波の装入物4への入射角度の変化量や測定点間距離が、予め設定したしきい値を超えたときに、当該測定点の測定データが異常であると判定して、そのデータを除去する。
Abnormal point detection / removal (S2)
When an abnormal point is recognized due to an obstacle present in the furnace, it is preferable to remove the data. The detection of the abnormal point is, for example, when the amount of change in the incident angle of the microwave into the charge 4 or the distance between the measurement points exceeds a preset threshold value, the measurement data at the measurement point is abnormal. And the data is removed.

降下量補正(S3)
さらに、測定した距離データについて、炉内反応等のための装入物の降下による補正量を求めることが好ましい。降下速度の求め方としては、例えば、炉内位置によらず降下速度Vが一定であると仮定して求めてもよい。すなわち、マイクロ波を直下に向けた位置などの任意の位置において、予め設定した同一走査角度時の1回目の距離データD1と、時間T後に測定した2回目の距離データD2から、
V=(D2−D1)/T
で求める。降下速度Vの求め方は、その他任意の方法で行うことができ、炉内の直径方向について連続して求めれば、更に高精度に求められる。
Descent correction (S3)
Furthermore, for the measured distance data, it is preferable to obtain a correction amount due to the fall of the charge for the reaction in the furnace. As a method of obtaining the descending speed, for example, it may be obtained assuming that the descending speed V is constant regardless of the position in the furnace. That is, at an arbitrary position such as a position where the microwave is directed directly below, from the first distance data D1 at the same scanning angle set in advance and the second distance data D2 measured after time T,
V = (D2-D1) / T
Ask for. The descending speed V can be obtained by any other method, and if it is continuously obtained in the diameter direction in the furnace, it can be obtained with higher accuracy.

スムージング(S4)
以上により得られた測定データについて、平均化などの処理を行って滑らかな曲線とし、炉内直径方向の座標をx、炉内高さ方向の座標をzとして、概略プロフィルz=h(x)を作成する。図4(a)は、装入物の装入形態の一例としての通常装入時の、中央部が低い略逆円錘形状の概略プロフィルの例であり、図5(a)は、装入形態の異なる例としての中心装入時の、中央部が盛り上がった概略プロフィルの例を示す。
Smoothing (S4)
About the measurement data obtained as described above, a process such as averaging is performed to obtain a smooth curve, where the coordinate in the furnace diameter direction is x, the coordinate in the furnace height direction is z, and the approximate profile z = h (x) Create FIG. 4 (a) is an example of a schematic profile of a substantially inverted conical shape with a low central portion at the time of normal charging as an example of the charging form of the charging. FIG. 5 (a) The example of the general | schematic profile which the center part raised at the time of center insertion as an example from which a form differs is shown.

概略プロフィルの測定は、高炉2の中心軸に対して対称位置にそれぞれ設置した2つのプロフィル測定装置A1、A2のうち、一方の測定装置のみで測定してもよいし、両方の測定装置で測定してもよい。両方の測定装置で測定する場合、例えば上記特許文献2または3に記載した方法でデータを合成してプロフィルを求めればよい。   The approximate profile may be measured with only one of the two profile measuring devices A1 and A2 installed at symmetrical positions with respect to the central axis of the blast furnace 2, or with both measuring devices. May be. When measuring with both measuring apparatuses, for example, the profile may be obtained by synthesizing data by the method described in Patent Document 2 or 3.

曲率計算(S5)
次に、概略プロフィルz=h(x)について、炉内の直径方向座標xに対する曲率の絶対値f(x)を計算する。
Curvature calculation (S5)
Next, the absolute value f (x) of the curvature with respect to the diametrical coordinate x in the furnace is calculated for the approximate profile z = h (x).

概略プロフィルの変化率をdz/dxとして、曲率の絶対値f(x)は、式(1)で計算される。

Figure 0006147602
When the rate of change of the approximate profile is dz / dx, the absolute value f (x) of the curvature is calculated by equation (1).
Figure 0006147602

図4(b)、図5(b)は、それぞれ図4(a)、図5(a)の各概略プロフィルについて、炉内x座標に対する曲率の絶対値f(x)をグラフに示したものである。   4 (b) and 5 (b) are graphs showing the absolute value f (x) of the curvature with respect to the in-furnace x-coordinate for each of the schematic profiles in FIGS. 4 (a) and 5 (a), respectively. It is.

測定点決定(S6)
曲率の絶対値が大きいほど測定点の分布密度を大きくするように測定点を決定する。ここでは、概略プロフィル上の測定点の分布密度が、S5で求めた曲率f(x)に比例するように測定点を決定し、各測定点を測定するための反射板の角度を算出する。
Measurement point determination (S6)
The measurement point is determined so as to increase the distribution density of the measurement point as the absolute value of the curvature increases. Here, the measurement points are determined so that the distribution density of the measurement points on the general profile is proportional to the curvature f (x) obtained in S5, and the angle of the reflector for measuring each measurement point is calculated.

x軸上の測定点の分布密度をg(x)、概略プロフィルの変化率をdz/dxとすると、概略プロフィルz=h(x)上の測定点の分布密度g’(x)は、式(2)で表される。

Figure 0006147602
When the distribution density of measurement points on the x axis is g (x) and the rate of change of the approximate profile is dz / dx, the distribution density g ′ (x) of the measurement points on the approximate profile z = h (x) is It is represented by (2).
Figure 0006147602

g’(x)とf(x)との間の比例係数をCとすると、

Figure 0006147602
全体の測定点数をNとすると、
Figure 0006147602
であり、測定点数Nを決めるとCが求められて、g(x)が決定する。尚、xmin、xmaxは、炉内直径方向に対向する炉壁位置である。図4(c)、図5(c)は、それぞれ図4(b)、図5(b)に示す曲率f(x)に基づいて算出された、炉内x座標に対するg(x)をグラフに示したものである。xmin=0、xmax=10の場合、測定点数NをそれぞれN=50、N=80とすると、測定点数の積算を示すグラフは図4(d)、図5(d)のようになる。 If the proportionality coefficient between g ′ (x) and f (x) is C,
Figure 0006147602
If the total number of measurement points is N,
Figure 0006147602
When the number N of measurement points is determined, C is obtained and g (x) is determined. Note that xmin and xmax are furnace wall positions facing each other in the diameter direction of the furnace. FIGS. 4C and 5C are graphs of g (x) with respect to the in-furnace x-coordinate calculated based on the curvature f (x) shown in FIGS. 4B and 5B, respectively. It is shown in. In the case of xmin = 0 and xmax = 10, assuming that the number N of measurement points is N = 50 and N = 80, respectively, graphs showing the integration of the number of measurement points are as shown in FIGS. 4 (d) and 5 (d).

そして、

Figure 0006147602
となるxaをxnとすると、xnは、測定点の分布密度g(x)を与える測定位置となる。図4(e)、図5(e)は、このようにして、図4(a)、図5(a)の各概略プロフィルから決定された、炉内x座標に対する測定点を示す。すなわち、図4(e)、図5(e)において、測定点が1.00となる炉内x座標の位置では測定を行い、0.00となる位置では測定を行わないことを示す。 And
Figure 0006147602
Where xa is xn, xn is a measurement position that gives a distribution density g (x) of measurement points. FIGS. 4 (e) and 5 (e) show the measurement points for the in-furnace x-coordinate determined in this way from the schematic profiles of FIGS. 4 (a) and 5 (a). That is, in FIGS. 4 (e) and 5 (e), the measurement is performed at the position of the in-furnace x coordinate where the measurement point is 1.00, and the measurement is not performed at the position of 0.00.

測定装置の座標位置を(xs、zs)、xnにおける概略プロフィルのz座標をznとすると、各xnを測定する際の反射板の角度θnは、

Figure 0006147602
である。尚、角度θnは、x軸方向を基準(0°)とし、反時計回りを正方向とする。角度θnは、測定装置A1から測定する場合、測定装置A2から測定する場合のそれぞれについて計算できる。 When the coordinate position of the measuring device is (xs, zs) and the z coordinate of the approximate profile at xn is zn, the angle θn of the reflector when measuring each xn is
Figure 0006147602
It is. The angle θn is based on the x-axis direction (0 °) and the counterclockwise direction is the positive direction. The angle θn can be calculated for each of the measurement from the measurement device A1 and the measurement from the measurement device A2.

本測定(S7)
S6で決定した測定点について、本測定を実施する。本測定では、測定点ごとに、S6で求めた各測定点における角度で、マイクロ波発信時から装入物4による反射波の受信時までの間、反射板12の回転を停止させることにより、高精度に測定できる。本測定で測定されたデータは、さらに、上記S2〜S4と同様に、異常点除去や降下量補正、スムージング等のデータ処理を適宜行って、高炉内装入物のプロフィルを演算する。
Main measurement (S7)
This measurement is performed for the measurement points determined in S6. In this measurement, for each measurement point, by stopping the rotation of the reflecting plate 12 from the time of microwave transmission to the time of reception of the reflected wave by the charge 4 at the angle at each measurement point obtained in S6, It can measure with high accuracy. The data measured in this measurement is further subjected to data processing such as abnormal point removal, descent amount correction, smoothing, and the like as in S2 to S4, to calculate the profile of the blast furnace interior.

曲率が大きい部分ほどプロフィルの形状変化が大きいので、概略プロフィル上の測定点の分布密度が曲率f(x)に比例するように測定点を選択すれば、プロフィル形状の複雑な部分の測定個所が多くなり、高精度に測定できる。一方、曲率f(x)が小さい部分は、形状変化が少ないため、測定点の分布密度を低くして測定点間隔が大きくなっても、測定精度が低下することはほとんどない。そして、曲率f(x)が小さい部分の測定点を削減することで、全体の測定点数を減らすことができるため、測定点ごとに反射板を停止させても、全体の測定時間を短縮させることができる。すなわち、反射板12の回転速度や停止時間、目標とする測定時間等に応じて、上記方法で測定点を決定することにより、測定精度を下げることなく測定時間を短縮させることができる。   Since the shape change of the profile is larger as the curvature is larger, if the measurement points are selected so that the distribution density of the measurement points on the approximate profile is proportional to the curvature f (x), the measurement location of the complicated portion of the profile shape can be obtained. Increased and can be measured with high accuracy. On the other hand, since the shape change is small in the portion where the curvature f (x) is small, even when the distribution density of the measurement points is lowered and the measurement point interval is increased, the measurement accuracy is hardly lowered. Since the number of measurement points can be reduced by reducing the number of measurement points with a small curvature f (x), the overall measurement time can be shortened even if the reflector is stopped at each measurement point. Can do. That is, the measurement time can be shortened without lowering the measurement accuracy by determining the measurement point by the above method according to the rotational speed and stop time of the reflecting plate 12, the target measurement time, and the like.

図6は、本発明の異なる実施形態であり、プロフィル測定装置を、図1に示すように高炉2の中心軸に対して対称位置に2つ設置し、概略プロフィルの形状に応じて選択した測定点について、2つのプロフィル測定装置A1、A2のいずれかで測定を行い、これらの測定データを組み合わせて装入物のプロフィルを演算するものである。   FIG. 6 shows a different embodiment of the present invention, in which two profile measuring devices are installed at symmetrical positions with respect to the central axis of the blast furnace 2 as shown in FIG. The point is measured by one of the two profile measuring devices A1 and A2, and the profile of the charge is calculated by combining these measurement data.

本実施形態では、概略プロフィルを2つのプロフィル測定装置で測定し、各プロフィル測定装置において、概略プロフィル測定(S1)、異常点除去(S2)、降下量補正(S3)までの手順を、前述の図3の実施形態と同様に行う。次に、各プロフィル測定装置が取得した概略プロフィルの測定データを、例えば前述の特許文献3等の方法によって合成し、さらにスムージングを行って、概略プロフィルを得る(S8)。その概略プロフィルについて、前述の図3の実施形態と同様にして曲率計算(S9)、測定点の決定(S10)を行う。尚、概略プロフィルは、いずれか一方のプロフィル測定装置のみで測定しても構わない。   In this embodiment, the approximate profile is measured by two profile measuring devices, and in each profile measuring device, the procedure up to the approximate profile measurement (S1), the abnormal point removal (S2), and the descent amount correction (S3) is described above. Similar to the embodiment of FIG. Next, the measurement data of the approximate profile acquired by each profile measuring device is synthesized by, for example, the method described in Patent Document 3 described above, and smoothing is performed to obtain an approximate profile (S8). About the rough profile, curvature calculation (S9) and measurement point determination (S10) are performed in the same manner as in the embodiment of FIG. Note that the approximate profile may be measured using only one of the profile measuring devices.

各測定点の測定装置決定(S11)
概略プロフィル上の各測定点について、2つのプロフィル測定装置A1、A2のいずれの測定装置で測定するかを決定する。測定装置の決定は、例えば、各測定点について、2つのプロフィル測定装置A1、A2から測定した場合のマイクロ波の入射角度を比較し、測定点ごとに、マイクロ波の入射角度が90°に近い方とする。
Determination of measuring device at each measuring point (S11)
For each measurement point on the general profile, it is determined which of the two profile measuring devices A1 and A2 is to be used for measurement. For example, the measurement apparatus is determined by comparing the incident angles of the microwaves when measured from the two profile measuring apparatuses A1 and A2 at each measurement point, and the incident angle of the microwave is close to 90 ° for each measurement point. And

入射角度の求め方の一例を説明する。図7に示すように、プロフィル測定装置A1、A2のマイクロ波照射位置をSm(m=1,2)、測定点をPmn(n=1,2,3,4,・・・)とする。mは、プロフィル測定装置のA1側(m=1)またはA2側(m=2)を表す。測定点Pmnの座標は、炉内半径方向をx軸、上下方向をz軸として、(xmn,zmn)で表される。概略プロフィルの曲線をLmとし、曲線Lmと直線SmPmnとの交点をQmnとする。曲線Lmを微分して交点Qmnにおける曲線Lmの接線を求め、その接線と直線SmPmnとのなす角度(0<θn<90°)を、マイクロ波の入射角度θmnとする。尚、入射角度θmnの求め方は、上記の例には限らず、例えば、測定点Pmnの前後の測定点を結ぶ直線P(mn−1)P(mn+1)と直線SmPmnとの角度としてもよい。   An example of how to determine the incident angle will be described. As shown in FIG. 7, it is assumed that the microwave irradiation positions of the profile measuring apparatuses A1 and A2 are Sm (m = 1, 2) and the measurement points are Pmn (n = 1, 2, 3, 4,...). m represents the A1 side (m = 1) or A2 side (m = 2) of the profile measuring apparatus. The coordinates of the measurement point Pmn are represented by (xmn, zmn), where the radial direction in the furnace is the x axis and the vertical direction is the z axis. The curve of the general profile is Lm, and the intersection of the curve Lm and the straight line SmPmn is Qmn. The curve Lm is differentiated to obtain the tangent line of the curve Lm at the intersection Qmn, and the angle (0 <θn <90 °) between the tangent line and the straight line SmPmn is defined as the microwave incident angle θmn. The method of obtaining the incident angle θmn is not limited to the above example, and may be, for example, an angle between a straight line P (mn−1) P (mn + 1) connecting the measurement points before and after the measurement point Pmn and the straight line SmPmn. .

図8は、通常装入時のプロフィル測定におけるx座標と入射角度θとの関係を示すグラフの例であり、図9は中心装入時のプロフィル測定におけるx座標と入射角度θとの関係を示すグラフの例である。図8の場合、区間aおよび区間cは、プロフィル測定装置A1側の方が入射角度が90°に近いので、プロフィル測定装置A1で測定を行い、区間bおよび区間dは、測定装置A2側の方が入射角度が90°に近いので、測定装置A2で測定を行う。図9の場合は、区間a、c、eは測定装置A1側、区間b、d、fは測定装置A2側で測定する。   FIG. 8 is an example of a graph showing the relationship between the x-coordinate and the incident angle θ in the profile measurement during normal charging, and FIG. 9 shows the relationship between the x-coordinate and the incident angle θ in the profile measurement during central charging. It is an example of the graph to show. In the case of FIG. 8, since the incident angle is closer to 90 ° on the profile measuring device A1 side in the section a and the section c, the measurement is performed by the profile measuring apparatus A1, and the section b and the section d are measured on the measuring apparatus A2 side. Since the incident angle is closer to 90 °, the measurement is performed by the measuring apparatus A2. In the case of FIG. 9, the sections a, c, and e are measured on the measuring apparatus A1 side, and the sections b, d, and f are measured on the measuring apparatus A2 side.

マイクロ波を用いて距離を測定する測定装置では、装入物4に対するマイクロ波の入射角度が小さい場合、マイクロ波の照射範囲内に含まれる装入物4の分布範囲が広くなり、測定結果にばらつきが生じる。さらに、入射角度が小さくなると、反射波の強度が弱くなり、測定精度が低下し、場合によっては測定不能となる。そのため、本実施形態のように2つのプロフィル測定装置A1、A2のうち、マイクロ波の入射角度が90°に近い方の測定装置で測定し、その測定結果を組み合わせることにより、より高精度なプロフィルを得ることができる。また、2つのプロフィル測定装置A1、A2で同時に測定することで、さらに測定時間の短縮を図ることもできる。   In the measuring apparatus that measures the distance using the microwave, when the incident angle of the microwave with respect to the charge 4 is small, the distribution range of the charge 4 included in the microwave irradiation range becomes wide, and the measurement result is Variation occurs. Further, when the incident angle is reduced, the intensity of the reflected wave is weakened, the measurement accuracy is lowered, and in some cases, measurement is impossible. For this reason, as in this embodiment, of the two profile measuring devices A1 and A2, the measurement device having the microwave incident angle close to 90 ° is used, and the measurement results are combined to obtain a more accurate profile. Can be obtained. Moreover, the measurement time can be further shortened by simultaneously measuring with the two profile measuring devices A1 and A2.

尚、各測定点を測定する測定装置の決定方法は、上記の入射角度を計算する方法以外でもよく、例えば、特許文献2等に記載したように、高炉の中心軸を挟んで測定装置と反対側を測定するように決定してもよい。   In addition, the determination method of the measuring device that measures each measurement point may be other than the method of calculating the incident angle described above. For example, as described in Patent Document 2 and the like, it is opposite to the measuring device with the central axis of the blast furnace interposed therebetween. You may decide to measure the side.

本測定(S12)
S10で決定した測定点について、S11で決定した方のプロフィル測定装置により、本測定を実施する。本測定では、測定点ごとに、各測定点における角度で反射板を停止させて測定することが好ましい。本測定で測定されたデータについて、図3のS2〜S4と同様に、異常点除去や降下量補正、スムージング等のデータ処理を適宜行って、高炉内装入物のプロフィルを得る。
Main measurement (S12)
For the measurement point determined in S10, the measurement is performed by the profile measuring device determined in S11. In this measurement, it is preferable to measure by stopping the reflector at an angle at each measurement point for each measurement point. About the data measured by this measurement, similarly to S2-S4 of FIG. 3, the data processing of abnormal point removal, descent | fall amount correction | amendment, smoothing, etc. is performed suitably, and the profile of a blast furnace interior entry is obtained.

また、現場では、炉内への原料装入は、複数バッチで1チャージとして管理し、例えば1回のチャージに対して、原料装入前、1バッチの原料装入後、2バッチの原料装入後、3バッチの原料装入後等に、連続してプロフィルを測定することがある。このような場合には、初回測定時のみ概略プロフィルを測定し、2回目以降は、前回の測定で得たプロフィルを概略プロフィルとして利用し、その都度設定される測定時間等に応じて本測定の測定点を決定してもよい。このように、概略プロフィルの測定を省略することによって、全体の測定時間を短縮することができる。   In the field, the charging of raw materials into the furnace is managed as one charge in multiple batches. For example, for one charge, before charging raw materials, after charging one batch of raw materials, charge two batches of raw materials. The profile may be measured continuously after charging, for example, after charging 3 batches of raw material. In such a case, the approximate profile is measured only at the first measurement. From the second time on, the profile obtained in the previous measurement is used as the approximate profile, and the main measurement is performed according to the measurement time set each time. A measurement point may be determined. Thus, by omitting the measurement of the approximate profile, the entire measurement time can be shortened.

以上、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described, this invention is not limited to this example. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.

例えば、プロフィル測定を行う測定装置は、図2に示す構造には限らず、上記特許文献2に記載されたような、マイクロ波距離計とホーン形のアンテナおよびアンテナを駆動する走査駆動装置からなる測定装置でもよい。   For example, the measuring device for measuring the profile is not limited to the structure shown in FIG. 2, but includes a microwave distance meter, a horn-shaped antenna, and a scanning drive device for driving the antenna as described in Patent Document 2 above. A measuring device may be used.

また、本発明は、高炉内装入物の装入形態が図4、5に示した通常装入や中心装入に限らず、それ以外の形状に装入物が堆積された場合でも、同様に実施できる。   Moreover, the present invention is not limited to the normal charging and the central charging shown in FIGS. 4 and 5 in the charging mode of the blast furnace interior charging, and even when the charging is deposited in other shapes, the same applies. Can be implemented.

また、本発明では、本測定の際、測定点ごとに、マイクロ波送受信部(上記実施形態においては反射板12)を停止させることが好ましいが、停止させずに回転させたまま測定しても構わない。この場合でも、測定点の分布密度が概略プロフィルの曲率に比例しているために、複雑な形状のプロフィルを精度よく測定できる。また、完全に停止させずに速度を下げて回転させながら測定してもよい。   In the present invention, it is preferable to stop the microwave transmission / reception unit (the reflection plate 12 in the above embodiment) for each measurement point during the main measurement. I do not care. Even in this case, since the distribution density of the measurement points is proportional to the curvature of the approximate profile, it is possible to accurately measure a profile having a complicated shape. Alternatively, measurement may be performed while rotating at a reduced speed without completely stopping.

本発明は、容器内のさまざまな形状の堆積物の表面形状の測定に適用できる。   The present invention can be applied to the measurement of the surface shape of various shapes of deposits in a container.

2 高炉
3 炉体
4 装入物
5 ベルレス式装入装置
6 分配シュート
11 アンテナ
12 反射板
13 導波管
14 マイクロ波送受信器
15 駆動軸
16 反射板駆動装置
18 データ処理部
20 耐圧容器
21 開口部
A1、A2 プロフィル測定装置
2 Blast Furnace 3 Furnace 4 Charge 5 Bellless Charging Device 6 Distribution Chute 11 Antenna 12 Reflector 13 Waveguide 14 Microwave Transceiver 15 Drive Shaft 16 Reflector Drive 18 Data Processing Unit 20 Pressure Vessel 21 Opening A1, A2 Profile measuring device

Claims (4)

高炉の炉頂部に、マイクロ波の送受信により測定対象物までの距離を測定するプロフィル測定装置を設置し、前記プロフィル測定装置から、マイクロ波放射方向を、高炉内装入物の表面において前記高炉の中心軸を通る直径方向に走査させて前記装入物までの距離データを測定し、前記距離データ測定時のマイクロ波の走査角度データに基づいて前記距離データを座標変換して、前記高炉内装入物の表面プロフィルを演算する高炉内装入物のプロフィル測定において、
マイクロ波を炉内直径方向に走査させて、前記高炉内装入物の概略プロフィルを測定し、
前記概略プロフィルについて、前記炉内直径方向の座標に対する曲率を算出し、
本測定時の全体の測定点数を設定し、前記曲率の絶対値が大きいほど測定点の分布密度を大きくするように測定点を決定し、
前記測定点にマイクロ波を照射して本測定を行い、
前記本測定で測定した距離データおよびそのときのマイクロ波の走査角度データから、前記高炉内装入物の表面プロフィルを演算することを特徴とする、高炉内装入物のプロフィル測定方法。
At the top of the blast furnace, a profile measuring device that measures the distance to the object to be measured by transmitting and receiving microwaves is installed. From the profile measuring device, the microwave radiation direction is set to the center of the blast furnace at the surface of the blast furnace interior entrance. Measure the distance data to the charge by scanning in the diameter direction passing through the axis, coordinate conversion of the distance data based on the microwave scan angle data at the time of the distance data measurement, the blast furnace interior In the blast furnace interior profile measurement to calculate the surface profile of
Scan the microwave in the diameter direction of the furnace, measure the approximate profile of the blast furnace interior,
For the approximate profile, calculate the curvature with respect to the coordinates in the furnace diameter direction,
Set the total number of measurement points at the time of the main measurement, and determine the measurement points to increase the distribution density of the measurement points as the absolute value of the curvature increases.
Perform the main measurement by irradiating the measurement point with microwaves,
A method for measuring a profile of a blast furnace interior, comprising calculating a surface profile of the blast furnace interior from distance data measured in the main measurement and microwave scanning angle data at that time.
前記マイクロ波は、アンテナから放射し反射板で反射させて前記高炉内装入物の表面に照射し、
前記本測定は、前記測定点ごとに、前記概略プロフィルにおける前記測定点の座標から前記反射板の角度を求め、マイクロ波発信時から前記高炉内装入物による反射波の受信時までの間、前記反射板を前記角度で停止させて行うことを特徴とする、請求項1に記載の高炉内装入物のプロフィル測定方法。
The microwave is radiated from the antenna and reflected by a reflector to irradiate the surface of the blast furnace interior,
Wherein this measurement, for each of the measuring points, the calculated angle of the reflecting plate from the coordinates of the measurement points in schematic profile, between the time the microwave transmitter until reception of the reflected wave by the blast furnace interior container, wherein The method for measuring a profile of a blast furnace interior entrance according to claim 1, wherein the reflector is stopped at the angle .
前記プロフィル測定装置を、前記高炉の中心軸に対して対称位置に2つ設置し、前記本測定は、前記測定点ごとに、前記2つのプロフィル測定装置のうち、マイクロ波の入射角度が90°に近い方のプロフィル測定装置で測定し、それぞれのプロフィル測定装置による測定データを組み合わせて前記高炉内装入物のプロフィルを演算することを特徴とする、請求項1または2に記載の高炉内装入物のプロフィル測定方法。   Two of the profile measuring devices are installed at symmetrical positions with respect to the central axis of the blast furnace, and the main measurement is performed at 90 ° for each measurement point. The blast furnace interior entry according to claim 1 or 2, wherein the profile of the blast furnace interior is calculated by combining the measurement data obtained by each of the profile measurement apparatuses, and measuring the profile of the blast furnace interior entrance by combining the measurement data obtained by the respective profile measurement apparatuses. Profile measurement method. 前記高炉の操業時の各工程において、前記高炉内装入物の表面プロフィルを複数回連続して測定する際、
初回測定時のみ前記概略プロフィルを測定し、2回目以降は、前回の測定で得たプロフィルを概略プロフィルとして用いて前記本測定の測定点を決定することを特徴とする、請求項1〜3のいずれかに記載の高炉内装入物のプロフィル測定方法。
In each step during the operation of the blast furnace, when continuously measuring the surface profile of the blast furnace interior, multiple times,
The said general | schematic profile is measured only at the time of the first measurement, and the measurement point of the said main measurement is determined using the profile obtained by the last measurement as a rough profile after the 2nd time. A method for measuring a profile of a blast furnace interior entry according to any one of the above.
JP2013154766A 2013-07-25 2013-07-25 Profile measurement method for blast furnace interior Active JP6147602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013154766A JP6147602B2 (en) 2013-07-25 2013-07-25 Profile measurement method for blast furnace interior

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013154766A JP6147602B2 (en) 2013-07-25 2013-07-25 Profile measurement method for blast furnace interior

Publications (2)

Publication Number Publication Date
JP2015025710A JP2015025710A (en) 2015-02-05
JP6147602B2 true JP6147602B2 (en) 2017-06-14

Family

ID=52490482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013154766A Active JP6147602B2 (en) 2013-07-25 2013-07-25 Profile measurement method for blast furnace interior

Country Status (1)

Country Link
JP (1) JP6147602B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6327383B1 (en) * 2017-05-16 2018-05-23 Jfeスチール株式会社 Charge distribution control method in blast furnace
JP7440715B2 (en) * 2020-03-19 2024-02-29 日本製鉄株式会社 Charge measuring method, charging method, charge measuring device and charging device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097672A (en) * 1998-09-18 2000-04-07 Sanyo Electric Co Ltd Control information generating method and assisting system in three-dimensional measuring system
JP4782990B2 (en) * 2004-05-31 2011-09-28 株式会社ミツトヨ Surface scanning measuring device, surface scanning measuring method, surface scanning measuring program, and recording medium
JP4020144B2 (en) * 2006-03-10 2007-12-12 オムロン株式会社 Inspection method of surface condition
JP5412947B2 (en) * 2008-12-29 2014-02-12 新日鐵住金株式会社 Apparatus and method for measuring profile of blast furnace interior
JP5220690B2 (en) * 2009-06-16 2013-06-26 新日鐵住金株式会社 Apparatus and method for measuring profile of blast furnace interior

Also Published As

Publication number Publication date
JP2015025710A (en) 2015-02-05

Similar Documents

Publication Publication Date Title
JP5412947B2 (en) Apparatus and method for measuring profile of blast furnace interior
JP5787607B2 (en) Profile measuring device for blast furnace interior
JP5674542B2 (en) Profile measurement method for blast furnace interior
JP5220690B2 (en) Apparatus and method for measuring profile of blast furnace interior
JP5441730B2 (en) Profile measuring device for blast furnace interior
US20180209004A1 (en) Surface detection apparatus of blast furnace burden and detection method
JP6147602B2 (en) Profile measurement method for blast furnace interior
WO2019189025A1 (en) Blast furnace facility and operation method for blast furnace
CN109188553B (en) Non-contact detection device and method for embedded electric wire in wall
WO2019189034A1 (en) Blast furnace facility and operation method for blast furnace
JP2016211897A (en) Measurement method and underground rader device
JP2014133922A (en) Profile measurement apparatus for blast furnace charging material
CN106702060B (en) A kind of blast furnace material flow track measuring device and measuring method based on radar
JP6220150B2 (en) Processing method for profile measurement data of blast furnace interior
JP2006112966A (en) Method and apparatus for measuring surface shape of charged material in blast furnace
JP3855639B2 (en) Profile measurement method of blast furnace interior entrance surface
JP6447470B2 (en) Charge distribution control method in blast furnace
JP6327383B1 (en) Charge distribution control method in blast furnace
Kundu et al. Novel method for real-time burden profile measurement at blast furnace
KR102438958B1 (en) level measuring device
CN113295004B (en) Material layer cooling control system, method and device of circular cooler
JP6706296B2 (en) Measuring method and underground radar device
JP2024067221A (en) Surface profile measuring method, profile measuring method for material charged in blast furnace, and method for manufacturing pig iron
JP5673092B2 (en) Scrap surface profile measurement method
JP4969929B2 (en) Blast furnace interior entry behavior detection device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170517

R150 Certificate of patent or registration of utility model

Ref document number: 6147602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350