JP6447470B2 - Charge distribution control method in blast furnace - Google Patents

Charge distribution control method in blast furnace Download PDF

Info

Publication number
JP6447470B2
JP6447470B2 JP2015229021A JP2015229021A JP6447470B2 JP 6447470 B2 JP6447470 B2 JP 6447470B2 JP 2015229021 A JP2015229021 A JP 2015229021A JP 2015229021 A JP2015229021 A JP 2015229021A JP 6447470 B2 JP6447470 B2 JP 6447470B2
Authority
JP
Japan
Prior art keywords
furnace
ore
region
charging
coke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015229021A
Other languages
Japanese (ja)
Other versions
JP2017095761A (en
Inventor
徳久 塚原
徳久 塚原
祐大 五十嵐
祐大 五十嵐
佑介 柏原
佑介 柏原
大山 伸幸
伸幸 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015229021A priority Critical patent/JP6447470B2/en
Publication of JP2017095761A publication Critical patent/JP2017095761A/en
Application granted granted Critical
Publication of JP6447470B2 publication Critical patent/JP6447470B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

本発明は、旋回シュートを備えたベルレス装入装置により炉内への原料装入を行う高炉において、炉内での装入物分布を適正に制御するための装入物分布制御方法に関する。   The present invention relates to a charge distribution control method for appropriately controlling a charge distribution in a furnace in a blast furnace in which a raw material is charged into the furnace by a bell-less charging apparatus having a turning chute.

一般に、高炉では、炉頂部から原料である鉱石(鉱石にコークスの一部が混合される場合もある)とコークスが交互に装入され、炉内には鉱石層とコークス層が交互に堆積した状態で原料が充填される。
高炉の操業では、炉頂部での装入物分布を適正な状態に維持することが重要であり、装入物分布が適正でないとガス流分布の不均一化、ガス通気性の低下、還元効率の低下などにより、生産性の低下や高炉操業の不安定化を招く。
炉頂部から原料を装入する手段として、旋回シュート(分配シュート)を備えたベルレス装入装置が広く用いられており、この装入装置では、旋回シュートの傾動角と旋回数を選択することにより、炉半径方向での原料の落下位置と堆積量を調整することで、装入物分布を制御するようにしている。
Generally, in the blast furnace, ore (which may be mixed with the coke) and coke are charged alternately from the top of the furnace, and ore layers and coke layers are alternately deposited in the furnace. The raw material is filled in the state.
In blast furnace operation, it is important to maintain an appropriate charge distribution at the top of the furnace. If the charge distribution is not appropriate, the gas flow distribution becomes uneven, the gas permeability decreases, and the reduction efficiency. As a result, the productivity will decrease and the blast furnace operation will become unstable.
As a means for charging the raw material from the top of the furnace, a bell-less charging device equipped with a turning chute (distribution chute) is widely used. In this charging device, the tilt angle and the number of turns of the turning chute are selected. The distribution of the charged material is controlled by adjusting the dropping position of the raw material and the deposition amount in the furnace radial direction.

一方、装入物分布を把握するためには、炉内装入物面(原料堆積面)のプロフィールを測定する必要がある。この炉内装入物面のプロフィールを測定する手法として、マイクロ波などの検出波を炉内装入物面に向けて送信し、炉内装入物面で反射した検出波を受信して炉内装入物面までの距離を測定し、この測定距離に基づいて炉内装入物面のプロフィールを求めることが行われており、具体的な手法としては、検出波用アンテナを設けた計測ランスを炉口部側方から炉中心部に向けて挿入する方法が主流である(例えば、特許文献1、2)。   On the other hand, in order to grasp the charge distribution, it is necessary to measure the profile of the furnace interior entrance surface (raw material deposition surface). As a method of measuring the profile of the furnace interior entrance surface, a detection wave such as a microwave is transmitted toward the furnace interior entrance surface, and the detection wave reflected by the furnace interior entrance surface is received to receive the furnace interior entrance. The distance to the surface is measured, and the profile of the furnace interior entrance surface is obtained based on the measured distance. As a specific method, a measurement lance provided with a detection wave antenna is connected to the furnace port. The method of inserting from the side toward the furnace center is the mainstream (for example, Patent Documents 1 and 2).

特開平7−34107号公報JP-A-7-34107 特開2002−115008号公報JP 2002-115008 A

高炉の装入物分布制御を精度良く行うには、炉内装入物面のプロフィールを正確且つ迅速に把握する必要があるが、特許文献1、2のような従来の測定方法では、測定自体に時間がかかり、迅速な測定ができないことに加えて、原料の装入時には計測ランスを炉体の外に退避させなければならないため、測定頻度が低くなるという問題がある。このため、測定結果から得られる情報を迅速に実操業に反映できない。さらに、測定結果に基づき特定のアクション(装入物分布制御)をとったとしても、その結果をすぐに確認できない。すなわち、従来の測定方法では、炉内装入物面のプロフィールの測定結果を装入物分布制御に反映し、確認しながら行うことが実質困難である。
また、原料の装入時には炉内装入物堆積面を測定することができないため、原料の堆積過程を把握することができない。このため、原料堆積のどの過程に問題があるかが分からず、装入物分布制御の精度を向上させることが困難である。
In order to accurately control the charge distribution in the blast furnace, it is necessary to accurately and quickly grasp the profile of the furnace interior charge surface. In addition to being time consuming and not being able to make a quick measurement, there is a problem that the measurement frequency becomes low because the measurement lance has to be withdrawn from the furnace body when the raw material is charged. For this reason, the information obtained from the measurement results cannot be quickly reflected in the actual operation. Furthermore, even if a specific action (charge distribution control) is taken based on the measurement result, the result cannot be confirmed immediately. That is, with the conventional measurement method, it is substantially difficult to perform the measurement while reflecting and confirming the profile measurement result of the furnace interior entrance surface in the charge distribution control.
In addition, since the furnace interior inclusion deposition surface cannot be measured when the raw material is charged, the raw material deposition process cannot be grasped. For this reason, it is difficult to determine which process of raw material deposition has a problem, and it is difficult to improve the accuracy of charge distribution control.

したがって本発明の目的は、高炉内の装入物分布を正確且つ迅速に把握することで、装入物分布を適正に制御することができ、これにより鉱石の高い還元効率が得られるとともに、高炉操業の安定化を図ることができる装入物分布制御方法を提供することにある。   Therefore, the object of the present invention is to accurately and quickly grasp the charge distribution in the blast furnace, so that the charge distribution can be appropriately controlled, thereby obtaining a high reduction efficiency of the ore and the blast furnace. The object is to provide a charge distribution control method capable of stabilizing the operation.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]旋回シュートを備えたベルレス装入装置により、高炉内に鉱石(但し、鉱石にコークスの一部及び/又は副原料を混合した混合原料の場合を含む。)とコークスを交互に装入し、鉱石層(但し、前記混合原料による混合原料層の場合を含む。)とコークス層を交互に積層させる原料装入を行うとともに、1チャージでの鉱石とコークスの装入を各々複数バッチで行うに際し、
高炉の炉頂部に設置された炉内装入物面のプロフィール測定装置であって、炉内装入物面までの距離を電波式の距離計で測定するとともに、該距離計の検出波放射方向を炉径方向に走査させて得られた炉内装入物面までの距離データに基づき、炉内装入物面のプロフィールを測定するプロフィール測定装置を用いて、少なくとも各バッチでの装入後の炉内装入物面のプロフィールを測定し、該プロフィールに基づき各バッチで装入された鉱石とコークスの装入分布を求め、この装入分布に基づいて、炉内装入層の最上部における鉱石層厚さ比[Lo/(Lc+Lo)](但し、Lo:鉱石層厚さ、Lc:コークス層厚さ)が下記(a)〜(d)の条件を満足する装入分布となるように、鉱石の装入における少なくとも1つのバッチでの旋回シュートのノッチ又は/及び旋回数を調整することを特徴とする高炉における装入物分布制御方法。
(a)第1領域の平均値:0.5未満
(b)第2領域の平均値:0.6以上0.9未満
(c)第3領域の平均値:0.4以上0.8未満
(d)第1領域の平均値<第3領域の平均値<第2領域の平均値
但し、炉半径方向における炉中心からの距離をr(m)、炉口部での炉内半径をRt(m)とした場合に、炉半径方向における炉内領域を、炉中心側から順に、r/Rt≦0.20:第1領域、0.20<r/Rt≦0.80:第2領域、0.80<r/Rt:第3領域とする。
The gist of the present invention for solving the above problems is as follows.
[1] By means of a bell-less charging device equipped with a swivel chute, ores (including mixed raw materials in which a portion of coke and / or auxiliary materials are mixed with ore) and coke are alternately charged into the blast furnace. In addition, the raw material charging in which the ore layer (however, including the mixed raw material layer by the mixed raw material) and the coke layer are alternately laminated is performed, and the charging of the ore and the coke in one charge is performed in a plurality of batches. In doing so,
This is a profile measuring device for the furnace interior entrance surface installed at the top of the blast furnace. The distance to the furnace interior entrance surface is measured with a radio-type distance meter, and the detected wave radiation direction of the distance meter is Using a profile measuring device that measures the profile of the furnace interior entrance surface based on the distance data to the furnace interior entrance surface obtained by scanning in the radial direction, the furnace interior entrance after at least each batch is charged. The profile of the surface is measured, and the distribution of the ore and coke charged in each batch is obtained based on the profile. Based on this distribution, the ore layer thickness ratio at the top of the furnace interior layer [Lo / (Lc + Lo)] (where Lo: ore layer thickness, Lc: coke layer thickness) has a charging distribution that satisfies the following conditions (a) to (d). Swivel chute notch in at least one batch during charging or And burden distribution control method in a blast furnace, characterized in that adjusting the number of turns.
(A) Average value of the first region: less than 0.5 (b) Average value of the second region: 0.6 or more and less than 0.9 (c) Average value of the third region: 0.4 or more and less than 0.8 (D) Average value of the first region <Average value of the third region <Average value of the second region However, the distance from the furnace center in the furnace radial direction is r (m), and the furnace radius at the furnace port is Rt In the case of (m), the in-furnace region in the furnace radial direction is, in order from the furnace center side, r / Rt ≦ 0.20: first region, 0.20 <r / Rt ≦ 0.80: second region 0.80 <r / Rt: The third region.

[2]上記[1]の装入物分布制御方法において、(a)〜(d)の条件を満足する装入分布となるように、少なくとも1つのバッチでの炉壁に最も近い鉱石装入位置を、少なくとも1ノッチ分炉中心側にシフトさせることを特徴とする高炉における装入物分布制御方法。
[3]上記[2]の装入物分布制御方法において、1チャージでの鉱石の装入を2バッチで行う場合、第1バッチ及び第2バッチでの炉壁に最も近い鉱石装入位置を、少なくとも1ノッチ分炉中心側にシフトさせることを特徴とする高炉における装入物分布制御方法。
[4]上記[1]〜[3]のいずれかの装入物分布制御方法において、(a)〜(d)の条件を満足する装入分布となるように、少なくとも1つのバッチにおいて、r/Rt:0.8近傍の領域が鉱石装入位置となるノッチでの旋回シュートの旋回数を増加させることで、r/Rt:0.7〜0.8の領域での鉱石層厚さ比[Lo/(Lc+Lo)]の平均値を増加させることを特徴とする高炉における装入物分布制御方法。
[5]上記[4]の装入物分布制御方法において、1チャージでの鉱石の装入を2バッチで行う場合、第1バッチにおいて、r/Rt:0.8近傍の領域が鉱石装入位置となるノッチでの旋回シュートの旋回数を増加させることで、r/Rt:0.7〜0.8の領域での鉱石層厚さ比[Lo/(Lc+Lo)]の平均値を増加させることを特徴とする高炉における装入物分布制御方法。
[2] In the charge distribution control method of [1] above, the ore charge closest to the furnace wall in at least one batch so as to obtain a charge distribution that satisfies the conditions (a) to (d). A charge distribution control method in a blast furnace, wherein the position is shifted to the furnace center side by at least one notch.
[3] In the charge distribution control method of [2] above, when ore charging is performed in two batches, the ore charging position closest to the furnace wall in the first batch and the second batch is determined. , A charge distribution control method in a blast furnace, characterized by shifting to the center side of the furnace by at least one notch.
[4] In the charge distribution control method according to any one of [1] to [3] above, in at least one batch, r so as to obtain a charge distribution that satisfies the conditions (a) to (d). / Rt: Ore layer thickness ratio in the region of r / Rt: 0.7-0.8 by increasing the number of turns of the turning chute at the notch where the region near 0.8 is the ore charging position A charge distribution control method in a blast furnace, characterized by increasing an average value of [Lo / (Lc + Lo)].
[5] In the charge distribution control method of [4] above, when ore charging is performed in two batches in one charge, in the first batch, the area near r / Rt: 0.8 is ore charging. By increasing the number of turns of the turning chute at the notch at the position, the average value of the ore layer thickness ratio [Lo / (Lc + Lo)] in the region of r / Rt: 0.7-0.8 A charge distribution control method in a blast furnace characterized by increasing the amount.

本発明によれば、高炉内の装入物分布を正確且つ迅速に把握して、装入物分布を適正に制御することができる。このため、鉱石の高い還元効率が得られるとともに、高炉操業の安定化を図ることができる。   According to the present invention, it is possible to accurately and quickly grasp the charge distribution in the blast furnace and appropriately control the charge distribution. For this reason, high reduction efficiency of ore can be obtained, and stabilization of blast furnace operation can be achieved.

本発明法で用いる炉内装入物面のプロフィール測定装置の一実施形態を模式的に示す縦断面図The longitudinal cross-sectional view which shows typically one Embodiment of the profile measuring apparatus of the furnace interior entrance surface used by this invention method 図1の炉内装入物面のプロフィール測定装置の設置例を示すもので、プロフィール測定装置を設置した高炉炉頂部の縦断面図Fig. 1 shows an installation example of the profile measuring device on the furnace interior entrance surface of Fig. 1 and is a longitudinal sectional view of the top of the blast furnace furnace where the profile measuring device is installed 本発明法を適用する前の炉内装入層最上部における装入分布(1チャージでのコークス、鉱石の装入分布)を示す図面Drawing showing charging distribution (coke and ore charging distribution in one charge) in the uppermost layer in the furnace interior before applying the method of the present invention 図3の炉内装入層最上部における炉半径方向での鉱石層厚さ比[Lo/(Lc+Lo)]を示す図面Drawing showing the ore layer thickness ratio [Lo / (Lc + Lo)] in the furnace radial direction at the top of the furnace interior in Fig. 3 本発明法を適用したアクション(1)による原料装入後の炉内装入層最上部における炉半径方向での鉱石層厚さ比[Lo/(Lc+Lo)]を、図4の鉱石層厚さ比[Lo/(Lc+Lo)]と比較して示す図面The ore layer thickness ratio [Lo / (Lc + Lo)] in the furnace radial direction at the top of the furnace interior layer after charging the raw material by the action (1) to which the present invention method is applied is shown in FIG. Drawing shown in comparison with thickness ratio [Lo / (Lc + Lo)] 本発明法を適用したアクション(1)による原料装入後の炉半径方向でのガス利用率ηCO(水平ゾンデηCO)を、図3の装入分布における炉半径方向でのガス利用率ηCOと比較して示す図面The gas utilization rate ηCO (horizontal sonde ηCO) in the furnace radial direction after charging the raw material by the action (1) to which the present invention method is applied is compared with the gas utilization rate ηCO in the furnace radial direction in the charging distribution of FIG. Drawing 本発明法を適用したアクション(2)による原料装入後の炉内装入層最上部における炉半径方向での鉱石層厚さ比[Lo/(Lc+Lo)]を、図5の鉱石層厚さ比[Lo/(Lc+Lo)]と比較して示す図面The ore layer thickness ratio [Lo / (Lc + Lo)] in the furnace radial direction at the top of the furnace interior layer after charging the raw material by the action (2) to which the present invention method is applied is shown in FIG. Drawing shown in comparison with thickness ratio [Lo / (Lc + Lo)] 本発明法を適用したアクション(2)による原料装入後の炉半径方向でのガス利用率ηCO(水平ゾンデηCO)を、図6のガス利用率ηCOと比較して示す図面FIG. 6 shows the gas utilization rate ηCO (horizontal sonde ηCO) in the furnace radial direction after raw material charging by the action (2) to which the present invention method is applied in comparison with the gas utilization rate ηCO of FIG. 実操業において、図3及び図4に示すような原料装入と装入物分布であった操業途中から本発明法を実施し、アクション(2)に相当する原料装入と装入物分布で操業を行った場合において、本発明法の実施前後での操業結果を示す図面In actual operation, the method of the present invention was carried out from the middle of the operation as shown in FIGS. 3 and 4, and the raw material charging and the charge distribution corresponding to action (2) were performed. Drawing that shows the operation results before and after the implementation of the method of the present invention in the case of operation

本発明法は、旋回シュートを備えたベルレス装入装置により、高炉内に鉱石(但し、鉱石にコークスの一部及び/又は副原料を混合した混合原料の場合を含む。)とコークスを交互に装入し、鉱石層(但し、前記混合原料による混合原料層の場合を含む。)とコークス層を交互に積層させる原料装入を行うとともに、1チャージでの鉱石とコークスの装入を各々複数バッチで行うに際し、特定の炉内装入物面プロフィール測定装置を用いて、少なくとも各バッチでの装入後の炉内装入物面のプロフィールを測定し、このプロフィールに基づき各バッチで装入された鉱石とコークスの装入分布を求め、この装入分布に基づいて、炉内装入層の最上部における鉱石層厚さ比[Lo/(Lc+Lo)](但し、Lo:鉱石層厚さ、Lc:コークス層厚さ)が特定の条件を満足する装入分布となるように、鉱石の装入における少なくとも1つのバッチでの旋回シュートのノッチ又は/及び旋回数を調整するものである。   According to the method of the present invention, ores (including a mixed raw material in which a part of coke and / or a secondary raw material is mixed with ore) and coke are alternately placed in a blast furnace by a bell-less charging device equipped with a turning chute. The raw material charging is performed by alternately laminating the ore layer (including the mixed raw material layer by the mixed raw material) and the coke layer, and plural chargings of the ore and the coke in each charge are performed. When performing in batch, using a specific furnace interior entry surface profile measuring device, measure the profile of the furnace interior entry surface after charging at least in each batch, and based on this profile, it was charged in each batch Obtain the distribution of ore and coke, and based on this distribution, the ratio of the ore layer thickness [Lo / (Lc + Lo)] at the top of the furnace interior layer (Lo: ore layer thickness, Lc: thickness of coke layer) So that satisfactory charging distribution and adjusts the notch and / or number of turns of the swivel chute at least one batch of charging ore.

本発明において鉱石とは、鉄源である焼結鉱、塊鉱石、ペレットなどの1種以上を意味する。
鉱石層の還元性を向上させるなどの目的で、鉱石にコークスの一部を混合した混合原料を装入する方法(鉱石コークス混合装入法)や鉱石に副原料を混合した混合原料を装入する方法が採られる場合があり、本発明において高炉内に鉱石を装入するとは、上記但し書きのように、鉱石にコークスの一部及び/又は副原料を混合した混合原料を装入する場合を含み、したがって、鉱石層とは、そのような混合原料による混合原料層(コークス及び/又は副原料混合鉱石層)の場合を含む。
ここで、副原料とは、スラグのCaO、SiO、MgO成分などを調整するために使用される原料であり、鉱石と混合して装入されるもの(但し、焼結鉱やペレットの一部として含まれる副原料は除く)としては、例えば、石灰石、珪石、蛇紋岩などが挙げられる。
In the present invention, ore means one or more of iron ore, such as sintered ore, massive ore, and pellets.
For the purpose of improving the reducibility of the ore layer, a mixed raw material in which a part of coke is mixed with ore (ore coke mixed charging method) or a mixed raw material in which auxiliary materials are mixed with ore are charged. In the present invention, charging ore into the blast furnace in the present invention refers to a case where a mixed raw material in which a part of coke and / or auxiliary materials are mixed into the ore as described above. Therefore, the ore layer includes the case of a mixed raw material layer (coke and / or auxiliary raw material mixed ore layer) by such a mixed raw material.
Here, the auxiliary raw material is a raw material used for adjusting CaO, SiO 2 , MgO components, etc. of slag, and is mixed with ore and charged (however, one of sintered ore and pellets). Examples of the excluding auxiliary materials included as part include limestone, quartzite, and serpentine.

高炉の原料装入では、積層するコークス層と鉱石層を形成する一連の装入が1チャージであり、この1チャージでの鉱石とコークスの装入を各々1バッチ又は複数バッチで行うが、本発明では、1チャージでの鉱石とコークスの装入を各々複数バッチで行う。
旋回シュートを備えたベルレス装入装置では、炉頂バンカーから旋回シュートに原料(鉱石、コークスなど)が供給され、旋回シュートが旋回しながら原料を装入する。旋回シュートは、高炉の中心軸(垂線)に対して傾動可能であり、その傾動角の調整により炉半径方向での原料落下位置を選択することができる。通常、1バッチの原料装入で旋回シュートの傾動角を複数段階で変化させ、各傾動角で旋回シュートを1回以上旋回させる。複数段階に変化させる傾動角はノッチNo.で表わされ、例えば、ノッチNo.1:傾動角55°、ノッチNo.2:傾動角53°・・・ノッチNo.19:傾動角19°ノッチNo.20:傾動角17°というように設定する。したがって、各バッチでの旋回シュートのノッチ又は/及び旋回数を調整することで装入物分布を制御することができる。
In blast furnace raw material charging, a series of charging to form laminated coke layer and ore layer is one charge, and charging of ore and coke at one charge is performed in one batch or multiple batches, respectively. In the invention, charging of ore and coke in one charge is performed in a plurality of batches.
In a bell-less charging device equipped with a turning chute, raw materials (ores, coke, etc.) are supplied to the turning chute from the furnace top bunker, and the turning chute turns to charge the raw material. The turning chute can be tilted with respect to the central axis (perpendicular) of the blast furnace, and the raw material dropping position in the furnace radial direction can be selected by adjusting the tilt angle. Usually, the tilt angle of the turning chute is changed in a plurality of stages with one batch of raw material charging, and the turning chute is turned at least once at each tilt angle. The tilt angle to be changed in a plurality of stages is represented by a notch No., for example, notch No. 1: tilt angle 55 °, notch No. 2: tilt angle 53 °... Notch No. 19: tilt angle 19 ° notch No. 20: The tilt angle is set to 17 °. Therefore, it is possible to control the charge distribution by adjusting the notch of the turning chute or / and the number of turns in each batch.

本発明法で用いる炉内装入物面のプロフィール測定装置は、高炉の炉頂部に設置される測定装置であって、炉内装入物面までの距離を電波式の距離計で測定するとともに、その距離計の検出波放射方向を炉径方向に走査させて得られた炉内装入物面までの距離データに基づき、炉内装入物面のプロフィールを測定するものである。
このプロフィール測定装置は、電波式の距離計の検出波放射方向を炉径方向に走査させて、炉内装入物面までの距離を連続的に測定できるものであれば、その構成を問わないが、特に、以下のような実施形態のものが好ましい。
The profile measuring device for the furnace interior entrance surface used in the method of the present invention is a measurement device installed at the top of the furnace of the blast furnace, and measures the distance to the furnace interior entrance surface with a radio wave type distance meter, The profile of the furnace interior entrance surface is measured based on the distance data to the furnace interior entrance surface obtained by scanning the detection wave radiation direction of the distance meter in the furnace radial direction.
This profile measuring device is not limited in its configuration as long as it can continuously measure the distance to the furnace interior entrance surface by scanning the detection wave radiation direction of the radio distance meter in the furnace radial direction. In particular, the following embodiments are preferable.

図1及び図2は、本発明法で用いる炉内装入物面のプロフィール測定装置の一実施形態とその設置例を示すもので、図1はプロフィール測定装置を模式的に示す縦断面図、図2は図1のプロフィール測定装置を設置した高炉炉頂部の縦断面図である。図において、20は炉体、21はベルレス式装入装置の旋回シュート(分配シュート)であり、炉頂バンカー(図示せず)に入れられた鉄石やコークスなどの原料が、この旋回シュート21を通じて炉内に装入される。図2においてθが旋回シュート21の傾動角である。   FIG. 1 and FIG. 2 show an embodiment of a profile measuring device for a furnace interior entrance surface used in the method of the present invention and an installation example thereof. FIG. 1 is a longitudinal sectional view schematically showing the profile measuring device. 2 is a longitudinal sectional view of the top of the blast furnace furnace in which the profile measuring device of FIG. 1 is installed. In the figure, 20 is a furnace body, 21 is a turning chute (distribution chute) of a bell-less charging device, and raw materials such as iron stone and coke put in a furnace top bunker (not shown) are passed through this turning chute 21. Charged into the furnace. In FIG. 2, θ is the tilt angle of the turning chute 21.

図1及び図2に示すプロフィール測定装置は、電波式の距離計が、ミリ波やマイクロ波などの検出波を送受信する検出波送受信器1と、この検出波送受信器1に導波管4を介して接続されたアンテナ2と、このアンテナ2に対向して設けられた反射角度が可変の検出波反射板3とを備えており、検出波送受信器1から送信されてアンテナ2から放射された検出波を、検出波反射板3で反射させて炉内装入物面に入射させ、炉内装入物面で反射した検出波を検出波反射板3とアンテナ2を経て検出波送受信器1で受信することで、炉内装入物面までの距離を測定するとともに、検出波反射板3の反射角度を調整することにより、検出波放射方向を炉径方向に走査させるものである。   The profile measuring apparatus shown in FIGS. 1 and 2 includes a detection wave transmitter / receiver 1 in which a radio wave type distance meter transmits / receives a detection wave such as a millimeter wave or a microwave, and a waveguide 4 is connected to the detection wave transmitter / receiver 1. And a detection wave reflector 3 having a variable reflection angle provided opposite to the antenna 2, and is transmitted from the detection wave transmitter / receiver 1 and radiated from the antenna 2. The detection wave is reflected by the detection wave reflector 3 and incident on the furnace interior entrance surface, and the detection wave reflected by the furnace interior entrance surface is received by the detection wave transceiver 1 via the detection wave reflector 3 and the antenna 2. Thus, the distance to the furnace interior entrance surface is measured, and the reflection angle of the detection wave reflection plate 3 is adjusted to scan the detection wave radiation direction in the furnace radial direction.

炉頂部の炉体部分には、下方又は斜め下方に炉内装入物面(堆積面)が望めるような位置に窓孔5が形成されるとともに、その炉体部分の外側には、窓孔5を覆うようにして所定の耐圧性能を有するケーシング6が取り付け固定されている。そして、このケーシング6内部が収納室7を構成し、この収納室7は窓孔5を通じて炉内空間に開口12している。
収納室7内にアンテナ2が配置されるとともに、収納室7の外側(炉体20の外側)に検出波送受信器1が配置されている。検出波送受信器1とアンテナ2を接続する導波管4は、ケーシング6を貫通し、その先端にアンテナ2が支持されている。
また、収納室7内に、アンテナ2と対向するようにして検出波反射板3が配置されている。収納室7の外側(炉体20の外側)には検出波反射板3を回動させるための駆動装置8が配置され、その回転駆動軸9がケーシング6を貫通し、その先端に検出波反射板3が支持されている。
A window hole 5 is formed in the furnace body portion at the top of the furnace at a position where a furnace interior entrance surface (deposition surface) can be seen downward or obliquely downward, and the window hole 5 is formed outside the furnace body portion. A casing 6 having a predetermined pressure resistance is attached and fixed so as to cover. The inside of the casing 6 constitutes a storage chamber 7, and the storage chamber 7 opens into the furnace space through the window hole 5.
The antenna 2 is disposed in the storage chamber 7, and the detection wave transceiver 1 is disposed outside the storage chamber 7 (outside the furnace body 20). A waveguide 4 connecting the detection wave transmitter / receiver 1 and the antenna 2 passes through the casing 6, and the antenna 2 is supported at the tip thereof.
Further, the detection wave reflection plate 3 is disposed in the storage chamber 7 so as to face the antenna 2. A drive device 8 for rotating the detection wave reflecting plate 3 is disposed outside the storage chamber 7 (outside the furnace body 20), and the rotation drive shaft 9 passes through the casing 6 and reflects the detection wave at the tip thereof. A plate 3 is supported.

ここで、アンテナ2と、検出波反射板3及びその駆動装置8と、収納室7の開口部12の位置関係は、(i)アンテナ2の中心軸線の延長線と駆動装置8の回転駆動軸9の中心軸線が一致し、(ii)検出波反射板3は、駆動装置8の回転駆動軸9に固定されることで回動可能であり、(iii)アンテナ2と検出波反射板3は、アンテナ2から送信され、検出波反射板3で反射した検出波が開口部12を通過して炉内に導かれるように、開口部12に対して配置される、という条件を備えている。
なお、炉内装入物の吹き抜け時に、吹き上げられた原料が検出波反射板3に当たって反射面13などが破損することがないようにするため、非測定時においては、検出波反射板3はその背面側(反射面13の反対側)が開口部12に向くような回動位置に停止できるようにしている。
Here, the positional relationship among the antenna 2, the detection wave reflection plate 3 and its driving device 8, and the opening 12 of the storage chamber 7 is as follows: (Ii) the detection wave reflector 3 can be rotated by being fixed to the rotational drive shaft 9 of the drive device 8, and (iii) the antenna 2 and the detection wave reflector 3 are The detection wave transmitted from the antenna 2 and reflected by the detection wave reflection plate 3 is provided such that the detection wave is arranged with respect to the opening 12 so as to be guided into the furnace through the opening 12.
In order to prevent the reflected raw material 13 from being damaged by the blown-up raw material hitting the detection wave reflecting plate 3 when the furnace interior material is blown through, the detection wave reflecting plate 3 is not connected to the rear surface when not measuring. It can be stopped at a rotational position such that the side (opposite the reflecting surface 13) faces the opening 12.

検出波送受信器1は、周波数が一定範囲で連続的に時間変化する検出波(ミリ波、マイクロ波など)を発生し、その検出波の送信及び受信が可能である。
アンテナ2としては、パラボラアンテナ、ホーンアンテナなどを用いることができる。なお、これらのなかでは、レンズ付きホーンアンテナが指向特性に優れているので特に好ましい。
検出波反射板3は、例えば、ステンレスなどの金属材からなり、形状は限定しないが、通常は円形である。検出波反射板3を駆動装置8の回転駆動軸9で回転させることにより、アンテナ2からその中心軸方向に送信され、検出波反射板3で反射する検出波の放射方向を炉径方向に走査させることができる。
The detection wave transmitter / receiver 1 generates a detection wave (millimeter wave, microwave, etc.) whose frequency continuously changes in a certain range, and can transmit and receive the detection wave.
As the antenna 2, a parabolic antenna, a horn antenna, or the like can be used. Among these, a horn antenna with a lens is particularly preferable because it has excellent directivity characteristics.
The detection wave reflecting plate 3 is made of, for example, a metal material such as stainless steel and is not limited in shape, but is usually circular. By rotating the detection wave reflecting plate 3 with the rotation drive shaft 9 of the driving device 8, the radiation direction of the detection wave transmitted from the antenna 2 in the central axis direction and reflected by the detection wave reflecting plate 3 is scanned in the furnace radial direction. Can be made.

収納室7内の検出波反射板3と開口部12との間(本実施形態では開口部12の近傍位置)には、収納室7を炉内空間から遮断する仕切弁10が開閉可能に設けられている。収納室7の外側(炉体20の外側)に仕切弁10の開閉駆動部11が設置され、この開閉駆動部11により仕切弁10がスライド移動することで開閉がなされる。仕切弁10はプロフィール測定時に開放され、それ以外の時には閉じられる。   A gate valve 10 that shuts off the storage chamber 7 from the furnace space is provided between the detection wave reflection plate 3 and the opening 12 in the storage chamber 7 (in the vicinity of the opening 12 in this embodiment) so as to be opened and closed. It has been. An opening / closing drive unit 11 for the gate valve 10 is installed outside the storage chamber 7 (outside the furnace body 20), and the gate valve 10 is slid by the opening / closing drive unit 11 to be opened and closed. The gate valve 10 is opened at the time of profile measurement, and is closed at other times.

また、測定時に炉内ガスや粉塵等が収納室7内に侵入しないようにするとともに、ケーシング6から外部に炉内ガスが漏洩するのを防止するために、ケーシング6にはパージガス供給用のガス供給管14が接続され、このガス供給管14を通じて収納室7内に所定圧のパージガス(通常、窒素ガス)が供給されるようにしてある。
このプロフィール測定装置は、検出波送受信器1で受信して検出したデータに基づきアンテナ2から炉内装入物面までの距離を算出し、さらに、この距離データから炉内装入物面のプロフィールを求めるデータ処理部15を有している。
Further, in order to prevent in-furnace gas and dust from entering the storage chamber 7 during measurement, and to prevent the in-furnace gas from leaking from the casing 6 to the outside, the casing 6 has a purge gas supply gas. A supply pipe 14 is connected, and a purge gas (usually nitrogen gas) having a predetermined pressure is supplied into the storage chamber 7 through the gas supply pipe 14.
This profile measuring device calculates the distance from the antenna 2 to the furnace interior entrance surface based on the data received and detected by the detection wave transmitter / receiver 1, and further obtains the profile of the furnace interior entrance surface from this distance data. A data processing unit 15 is included.

以上のようなプロフィール測定装置では、検出波送受信器1で発生した周波数が連続的に変化する検出波がアンテナ2から送信され、検出波反射板3を経て炉内装入物面に向けて放射される。炉内装入物面で反射した検出波(反射波)は、検出波反射板3を経て検出波送受信器1で受信される。このような検出波による炉内装入物面の検出において、駆動装置8により検出波反射板3を回転させて検出波の反射角度を変えることで、図2に示されるように検出波放射方向を炉半径方向で走査させる。データ処理部15では、通常、FMCW方式(周波数変調連続波方式)によりアンテナ2から炉内装入物面までの検出波の往復時間が求められ、アンテナ2から炉内装入物面までの距離が算出される。そして、上記のように検出波放射方向を炉半径方向で走査させて得られた距離データから炉内装入物面のプロフィールが求められる。   In the profile measuring apparatus as described above, a detection wave having a continuously changing frequency generated by the detection wave transmitter / receiver 1 is transmitted from the antenna 2 and radiated toward the furnace interior entrance surface through the detection wave reflector 3. The The detection wave (reflected wave) reflected by the furnace interior entrance surface is received by the detection wave transceiver 1 via the detection wave reflector 3. In the detection of the furnace interior entrance surface by such a detection wave, the detection wave reflection direction is changed as shown in FIG. 2 by changing the reflection angle of the detection wave by rotating the detection wave reflector 3 by the driving device 8. Scan in the radial direction of the furnace. In the data processing unit 15, the round trip time of the detection wave from the antenna 2 to the furnace interior entrance surface is usually obtained by the FMCW method (frequency modulation continuous wave system), and the distance from the antenna 2 to the furnace interior entrance surface is calculated. Is done. Then, the profile of the furnace interior entrance surface is obtained from the distance data obtained by scanning the detection wave radiation direction in the furnace radial direction as described above.

本発明法では、上記プロフィール測定装置を用いて、少なくとも各バッチでの装入後の炉内装入物面のプロフィールを測定し、このプロフィールに基づき各バッチで装入された鉱石とコークスの装入分布を求める。そして、この装入分布に基づいて装入物分布制御(アクション)を行うが、この装入物分布制御では、(i)炉中心部の通気性を高め、安定的なガス流を確保するために、炉中心部のO(鉱石)/C(コークス)を低位に保つ(すなわち、コークスの比率を高める)、(ii)炉周辺部のガス流速を高め、熱レベルを高位に維持することで炉壁での亜鉛付着物の成長を抑制するため、炉周辺部のO/Cを低位に保つ(すなわち、コークスの比率を高める)、(iii)炉全体の還元効率を向上させるために、炉中間部(炉半径方向において炉中心部と炉周辺部間の領域)のO/Cを高位に維持する、(iv)局部的な通気性の悪化によるガス流分布の不均一化、鉱石の昇温還元の遅れを防止するため、局部的な高O/Cの発生を抑える、という観点から、炉内装入層の最上部における鉱石層厚さ比[Lo/(Lc+Lo)](但し、Lo:鉱石層厚さ、Lc:コークス層厚さ)が下記(a)〜(d)の条件を満足する装入分布となるように、鉱石の装入における少なくとも1つのバッチでの旋回シュートのノッチ又は/及び旋回数を調整する。ここで、炉半径方向における炉中心からの距離をr(m)、炉口部での炉内半径をRt(m)とした場合に、炉半径方向における炉内領域を、炉中心側から順に、r/Rt≦0.20:第1領域(炉中心部)、0.20<r/Rt≦0.80:第2領域(炉中間部)、0.80<r/Rt:第3領域(炉周辺部)とする。
(a)第1領域の平均値:0.5未満
(b)第2領域の平均値:0.6以上0.9未満
(c)第3領域の平均値:0.4以上0.8未満
(d)第1領域の平均値<第3領域の平均値<第2領域の平均値
なお、以下の説明においては、炉内装入層の最上部における炉半径方向での鉱石層厚さ比[Lo/(Lc+Lo)]を、単に“[Lo/(Lc+Lo)]”という。
In the method of the present invention, using the profile measuring device, at least the profile of the furnace interior entrance surface after charging in each batch is measured, and charging of ore and coke charged in each batch is based on this profile. Find the distribution. Then, charge distribution control (action) is performed based on this charge distribution. In this charge distribution control, (i) in order to improve the air permeability of the furnace center and ensure a stable gas flow. In addition, O (Ore) / C (Coke) in the center of the furnace is kept low (that is, the ratio of coke is increased), (ii) The gas flow rate in the periphery of the furnace is increased, and the heat level is maintained at a high level. In order to suppress the growth of zinc deposits on the furnace wall, the O / C around the furnace is kept low (that is, the coke ratio is increased), and (iii) the furnace is improved in order to improve the reduction efficiency of the entire furnace. Maintain O / C in the middle part (region between the furnace center and the furnace periphery in the furnace radial direction) at a high level, (iv) non-uniform gas flow distribution due to local deterioration of air permeability, ore rise From the viewpoint of suppressing the occurrence of local high O / C to prevent delay in temperature reduction Ore layer thickness ratio [Lo / (Lc + Lo)] (where Lo: ore layer thickness, Lc: coke layer thickness) at the top of the furnace interior layer is the following conditions (a) to (d) To adjust the notch or / and the number of turns of the turning chute in at least one batch in the charging of the ore. Here, when the distance from the furnace center in the furnace radial direction is r (m) and the in-furnace radius at the furnace port is Rt (m), the in-furnace area in the furnace radial direction is sequentially from the furnace center side. , R / Rt ≦ 0.20: first region (furnace center), 0.20 <r / Rt ≦ 0.80: second region (furnace middle), 0.80 <r / Rt: third region (Furnace periphery).
(A) Average value of the first region: less than 0.5 (b) Average value of the second region: 0.6 or more and less than 0.9 (c) Average value of the third region: 0.4 or more and less than 0.8 (D) Average value of the first region <Average value of the third region <Average value of the second region Note that in the following description, the ore layer thickness ratio in the furnace radial direction at the top of the furnace interior layer [ Lo / (Lc + Lo)] is simply referred to as “[Lo / (Lc + Lo)]”.

すなわち、(a)の条件は上記(i)の観点から、(c)の条件は上記(ii)の観点から、(b)の条件は上記(iii)及び(iv)の観点から、それぞれ規定される。また、(d)の条件は、上記(iii)の観点と、炉周辺部(第3領域)における鉱石層厚さ比[Lo/(Lc+Lo)]の平均値が炉中心部(第1領域)と同等若しくはそれ以下になると、炉周辺部のガス流速が高くなり過ぎ、炉体抜熱量が高くなることで、ヒートロスが増加するなどの問題を生じる恐れがある、との観点から規定される。   That is, the condition (a) is defined from the viewpoint (i), the condition (c) is defined from the viewpoint (ii), and the condition (b) is defined from the viewpoints (iii) and (iv). Is done. The condition (d) is that the average value of the ore layer thickness ratio [Lo / (Lc + Lo)] in the furnace periphery (third region) is the center of the furnace (first Is less than or equal to (region), the gas flow velocity around the furnace becomes too high, and the amount of heat removed from the furnace body increases, which may lead to problems such as increased heat loss. The

本発明において、上記(a)〜(d)の条件を満足する装入分布となるように、鉱石の装入における少なくとも1つのバッチでの旋回シュートのノッチ又は/及び旋回数を調整する場合、例えば、以下のような実施形態を採ることができる。
(i)少なくとも1つのバッチでの炉壁に最も近い鉱石装入位置を、少なくとも1ノッチ分炉中心側にシフトさせる。例えば、1チャージでの鉱石の装入を2バッチで行う場合、第1バッチ及び第2バッチでの炉壁に最も近い鉱石装入位置を、少なくとも1ノッチ分炉中心側にシフトさせる。
(ii)少なくとも1つのバッチにおいて、r/Rt=0.8近傍の領域が鉱石装入位置となるノッチでの旋回シュートの旋回数を増加させることで、r/Rt=0.7〜0.8の領域での[Lo/(Lc+Lo)]の平均値を増加させる。例えば、1チャージでの鉱石の装入を2バッチで行う場合、第1バッチにおいて、r/Rt=0.8近傍の領域が鉱石装入位置となるノッチでの旋回シュートの旋回数を増加させることで、r/Rt=0.7〜0.8の領域での[Lo/(Lc+Lo)]の平均値を増加させる。
In the present invention, when adjusting the notch of the turning chute or / and the number of turns in at least one batch in the charging of the ore so as to obtain a charging distribution that satisfies the conditions (a) to (d) above, For example, the following embodiments can be adopted.
(I) The ore charging position closest to the furnace wall in at least one batch is shifted to the furnace center side by at least one notch. For example, when ore charging with one charge is performed in two batches, the ore charging position closest to the furnace wall in the first batch and the second batch is shifted to the furnace center side by at least one notch.
(Ii) In at least one batch, by increasing the number of turns of the turning chute at the notch where the region near r / Rt = 0.8 is the ore charging position, r / Rt = 0.7-0. The average value of [Lo / (Lc + Lo)] in the region of 8 is increased. For example, when ore charging with one charge is performed in two batches, in the first batch, the number of turns of the turning chute at the notch where the region near r / Rt = 0.8 is the ore charging position is increased. Thus, the average value of [Lo / (Lc + Lo)] in the region of r / Rt = 0.7 to 0.8 is increased.

以下、図1及び図2に示すような炉内装入物面のプロフィール測定装置を用い、本発明法により装入物分布制御を行った操業例について説明する。
この操業例では、原料(鉱石、コークス)装入の各バッチにおける旋回シュートの1旋回毎に、プロフィール測定装置で炉内装入物面のプロフィールを測定した。
図3は、本発明法を適用する前の炉内装入層最上部における装入分布(1チャージでのコークス、鉱石の装入分布)を示しており、図4は、図3の炉内装入層最上部における炉半径方向での[Lo/(Lc+Lo)]を示している。
図3及び図4は、上述したプロフィール測定装置を用いて各バッチでの装入後の炉内装入物面のプロフィールを測定し、このプロフィールに基づき各バッチで装入された鉱石とコークスの装入分布を求めたものである。この点は、後述する操業例の各図面についても同様である。
Hereinafter, an operation example in which the charge distribution control is performed by the method of the present invention using the profile measuring device for the furnace interior entrance surface as shown in FIGS. 1 and 2 will be described.
In this operation example, the profile of the furnace interior entrance surface was measured with a profile measuring device for each turn of the turning chute in each batch of raw material (ore ore, coke) charging.
FIG. 3 shows the charging distribution (coke and ore charging distribution in one charge) at the top of the furnace inner layer before applying the method of the present invention, and FIG. [Lo / (Lc + Lo)] in the furnace radial direction at the top of the layer is shown.
3 and 4 show the profile of the furnace interior charge surface after charging in each batch using the profile measuring apparatus described above, and the ore and coke charging in each batch based on this profile. The distribution is calculated. This also applies to each drawing of the operation example described later.

本実施例において、C1、C2はコークスの装入、O1、O2は鉱石の装入を示し、1チャージにおいてコークス装入、鉱石装入がそれぞれ2バッチでなされ、C1(コークスの第1バッチ)→C2(コークスの第2バッチ)→O1(鉱石の第1バッチ)→O2(鉱石の第2バッチ)の順に装入される。また、図3の縦軸は基準高さを“0”(この基準高さ“0”の位置は、旋回シュートの傾動角θが0°の時の旋回シュートの(下方)先端位置)とする炉高方向位置(mm)、横軸は炉中心部を“0”とする炉半径方向位置(mm)である。また、「ベースO2」とは前チャージのO2の装入面のことである。
本実施例では、旋回シュートの傾動角を25段階(ノッチNo.1〜25)で変化させることができる原料装入装置を用いた。
In this example, C1 and C2 indicate coke charging, and O1 and O2 indicate ore charging. In one charge, coke charging and ore charging are performed in two batches respectively, and C1 (first coke batch) → C2 (second batch of coke) → O1 (first batch of ore) → O2 (second batch of ore). In addition, the vertical axis of FIG. 3 sets the reference height to “0” (the position of the reference height “0” is the (downward) tip position of the turning chute when the tilt angle θ of the turning chute is 0 °). The position in the furnace height direction (mm), and the horizontal axis is the position in the furnace radial direction (mm) with the furnace center being “0”. The “base O2” is the charging surface of the precharged O2.
In this example, a raw material charging apparatus capable of changing the tilt angle of the turning chute in 25 stages (notches No. 1 to 25) was used.

図4において、目標とする[Lo/(Lc+Lo)]を実線で示すが、この目標とする[Lo/(Lc+Lo)]に対して、第2領域(炉中間部)中のr/Rt=0.25前後とr/Rt=0.7〜0.8の領域において[Lo/(Lc+Lo)]が過小であり、一方、r/Rt=0.5前後の領域において[Lo/(Lc+Lo)]が過大である。また、第3領域(炉周辺部)の[Lo/(Lc+Lo)]も全体として過小である。したがって、図中矢印で示すような方向に[Lo/(Lc+Lo)]を増減させるのが適当であると考えられた。
図3の装入分布について、O2の1旋回毎の装入位置と原料推定落下位置を比較すると、O2の鉱石は概ね原料推定落下位置を起点に、炉中心部方向に広範囲に堆積していることが判った。落下位置が炉周辺部側に偏りすぎているために、炉中心部方向への傾斜角が大きくなり、落下後の原料の流れ込みが過大となったものと判断された。
In FIG. 4, the target [Lo / (Lc + Lo)] is indicated by a solid line, and r in the second region (furnace intermediate portion) with respect to the target [Lo / (Lc + Lo)]. [Lo / (Lc + Lo)] is too small in the region of /Rt=0.25 and r / Rt = 0.7 to 0.8, while in the region of r / Rt = 0.5, Lo / (Lc + Lo)] is excessive. In addition, [Lo / (Lc + Lo)] in the third region (furnace peripheral portion) as a whole is too small. Therefore, it was considered appropriate to increase or decrease [Lo / (Lc + Lo)] in the direction indicated by the arrow in the figure.
Compared with the charging distribution shown in Fig. 3, the O2 charging position for each turn and the estimated raw material falling position are compared, and the ore of O2 is generally deposited in a wide range toward the furnace center starting from the estimated raw material falling position. I found out. Since the dropping position was too biased toward the furnace periphery, the inclination angle toward the furnace center became large, and it was judged that the flow of the raw material after dropping was excessive.

そこで、炉周辺部への鉱石装入量の低減により、傾斜角低減・フラット化を図るべく、アクション(1)として、鉱石装入について以下のような調整を行った。すなわち、それまでの原料装入装置の運転スケジュールに対して、O1での炉壁に最も近い鉱石装入位置を1ノッチ分、O2での炉壁に最も近い鉱石装入位置を2ノッチ分、それぞれ炉中心部側にシフトさせた運転スケジュールで鉱石の装入(コークスの装入は変更なし)を行った。具体的には、それまでの運転スケジュールでは、O1での炉壁に最も近い鉱石装入位置がノッチNo.5によるもの、O2での炉壁に最も近い鉱石装入位置がノッチNo.4によるものであったのに対し、アクション(1)の運転スケジュールでは、O1、O2での炉壁に最も近い鉱石装入位置はそれぞれノッチNo.6によるものとした。   Therefore, the following adjustments were made for ore charging as action (1) in order to reduce the inclination angle and make it flat by reducing the amount of ore charging to the furnace periphery. In other words, the ore charging position closest to the furnace wall at O1 is 1 notch, and the ore charging position closest to the furnace wall at O2 is 2 notches, relative to the operation schedule of the raw material charging apparatus so far. Ore charging (coke charging was not changed) was carried out with the operation schedule shifted to the furnace center. Specifically, according to the previous operation schedule, the ore charging position closest to the furnace wall at O1 is due to Notch No. 5, and the ore charging position closest to the furnace wall at O2 is due to Notch No. 4. On the other hand, in the operation schedule of action (1), the ore charging position closest to the furnace wall at O1 and O2 was determined by Notch No.6.

このアクション(1)による原料装入後の炉内装入物面のプロフィールをプロフィール測定装置で測定したところ、鉱石落下位置の炉周辺部側への偏りが改善され、その結果、炉中心部方向への傾斜角が低減されていた。
図5は、このアクション(1)による原料装入後の炉半径方向での[Lo/(Lc+Lo)]を、図4の[Lo/(Lc+Lo)]と比較して示している。また、図6は、アクション(1)による原料装入後の炉半径方向でのガス利用率ηCO(水平ゾンデηCO)を、図3の装入分布における炉半径方向でのガス利用率ηCOと比較して示している。なお、図5及び図6において「ベース」とは、図3及び図4の装入分布での[Lo/(Lc+Lo)]とガス利用率ηCOである。
図5によれば、アクション(1)後の[Lo/(Lc+Lo)]は、図4の[Lo/(Lc+Lo)]と較べて、第2領域(炉中間部)中のr/Rt=0.25前後とr/Rt=0.7〜0.8の領域の[Lo/(Lc+Lo)]が増加し、一方、r/Rt=0.5前後の領域の[Lo/(Lc+Lo)]が減少し、さらに、第3領域(炉周辺部)の[Lo/(Lc+Lo)]が全体として増加している。これらの結果、図6に示すように炉周辺部のガス利用率ηCOが向上している。
When the profile of the furnace interior entrance surface after charging the raw material by this action (1) was measured with a profile measuring device, the deviation of the ore falling position toward the furnace periphery was improved, and as a result, toward the furnace center The inclination angle was reduced.
FIG. 5 shows [Lo / (Lc + Lo)] in the furnace radial direction after charging the raw material by this action (1) in comparison with [Lo / (Lc + Lo)] in FIG. . FIG. 6 compares the gas utilization rate ηCO (horizontal sonde ηCO) in the furnace radial direction after charging the raw material by action (1) with the gas utilization rate ηCO in the furnace radial direction in the charging distribution of FIG. As shown. 5 and FIG. 6, “base” means [Lo / (Lc + Lo)] and gas utilization rate ηCO in the charging distribution of FIG. 3 and FIG.
According to FIG. 5, [Lo / (Lc + Lo)] after the action (1) is r in the second region (furnace middle part) compared with [Lo / (Lc + Lo)] in FIG. [Lo / (Lc + Lo)] increases around /Rt=0.25 and r / Rt = 0.7 to 0.8, while [Lo / (Lc + Lo)] increases around [R / Rt = 0.5]. / (Lc + Lo)] decreases, and [Lo / (Lc + Lo)] in the third region (furnace periphery) increases as a whole. As a result, as shown in FIG. 6, the gas utilization rate ηCO in the furnace periphery is improved.

図5に示すアクション(1)後の[Lo/(Lc+Lo)]は、第2領域(炉中間部)中のr/Rt=0.7〜0.8の領域の[Lo/(Lc+Lo)]をさらに改善(増加)できる余地があると考えられたため、この領域の[Lo/(Lc+Lo)]を図5の破線矢印に示すように増加させるべく、アクション(2)として、鉱石装入について以下のような調整を行った。すなわち、[Lo/(Lc+Lo)]を増加させたいr/Rt=0.7〜0.8の領域とO1の鉱石装入位置と原料推定落下位置の関係を考慮し、上記アクション(1)による運転スケジュールに対して、O1においてr/Rt=0.8近傍の領域が鉱石装入位置となるノッチでの旋回シュートの旋回数を増加させた運転スケジュールで鉱石の装入(コークスの装入は変更なし)を行った。具体的には、アクション(1)の運転スケジュールでは、O1においてr/Rt=0.8近傍の領域が鉱石装入位置となるノッチNo.11、13での旋回シュートの旋回数が1であるのに対し、アクション(2)の運転スケジュールでは、No.11、13での旋回シュートの旋回数を2とした。   [Lo / (Lc + Lo)] after action (1) shown in FIG. 5 is [Lo / (Lc) in the region of r / Rt = 0.7 to 0.8 in the second region (furnace intermediate portion). + Lo)] could be further improved (increased), so action (2) was made to increase [Lo / (Lc + Lo)] in this area as shown by the dashed arrows in FIG. The following adjustments were made for ore charging. That is, considering the relationship between the region of r / Rt = 0.7 to 0.8 where [Lo / (Lc + Lo)] is to be increased, the ore charging position of O1 and the estimated raw material falling position, the above action (1 ), The ore charging (coke charging) is performed with the driving schedule in which the number of turns of the turning chute at the notch where the area near r / Rt = 0.8 is the ore charging position in O1 is increased. No change). Specifically, in the operation schedule of action (1), the number of turns of the turning chute at notches No. 11 and 13 in which the region near r / Rt = 0.8 is the ore charging position in O1 is 1. On the other hand, in the operation schedule of action (2), the number of turns of the turning chute in No. 11 and 13 was set to 2.

このアクション(2)による原料装入後の炉内装入物面のプロフィールをプロフィール測定装置で測定したところ、炉中間部の鉱石層の厚さが増加していた。
図7は、このアクション(2)による原料装入後の炉半径方向での[Lo/(Lc+Lo)]を、図5の[Lo/(Lc+Lo)](アクション(1)後の[Lo/(Lc+Lo)])と比較して示している。また、図8は、アクション(2)による原料装入後の炉半径方向でのガス利用率ηCO(水平ゾンデηCO)を、図6のガス利用率ηCO(アクション(1)後のガス利用率ηCO)と比較して示している。
図7によれば、アクション(2)後の[Lo/(Lc+Lo)]は、アクション(1)後の[Lo/(Lc+Lo)]と較べて、第2領域(炉中間部)中のr/Rt=0.7〜0.8の領域の[Lo/(Lc+Lo)]が増加し、図中に実線で示したような目標とする[Lo/(Lc+Lo)]に近づけることができた。これらの結果、図8に示すように、炉中間部のガス利用率ηCOが向上している。
When the profile of the furnace interior entrance surface after charging the raw material by this action (2) was measured with a profile measuring device, the thickness of the ore layer in the middle of the furnace increased.
FIG. 7 shows [Lo / (Lc + Lo)] in the furnace radial direction after raw material charging by this action (2), and [Lo / (Lc + Lo)] (after action (1) in FIG. [Lo / (Lc + Lo)]). 8 shows the gas utilization rate ηCO (horizontal sonde ηCO) in the radial direction of the furnace after charging the raw material by action (2), and the gas utilization rate ηCO (gas utilization rate ηCO after action (1) in FIG. ).
According to FIG. 7, [Lo / (Lc + Lo)] after action (2) is the second region (furnace middle) compared to [Lo / (Lc + Lo)] after action (1). [Lo / (Lc + Lo)] in the region of r / Rt = 0.7 to 0.8 increases, and the target [Lo / (Lc + Lo)] as shown by the solid line in the figure I was able to approach. As a result, as shown in FIG. 8, the gas utilization rate ηCO in the furnace middle portion is improved.

実操業において、図3及び図4に示すような原料装入と装入物分布であった操業途中から本発明法を実施し、上記アクション(2)に相当する原料装入と装入物分布で操業を行った。本発明法の実施前後での操業結果を図9に示すが、本発明法を実施することでコークス比を2kg/t低減することができた。   In actual operation, the method of the present invention was carried out from the middle of the operation as shown in FIGS. 3 and 4 and the raw material charging and the charge distribution corresponding to the above action (2). Operated. The operation results before and after the implementation of the method of the present invention are shown in FIG. 9, and the coke ratio could be reduced by 2 kg / t by implementing the method of the present invention.

1 検出波送受信器
2 アンテナ
3 検出波反射板
4 導波管
5 窓孔
6 ケーシング
7 収納室
8 駆動装置
9 回転駆動軸
10 仕切弁
11 開閉駆動部
12 開口部
13 反射面
14 ガス供給管
15 データ処理部
20 炉体
21 旋回シュート
DESCRIPTION OF SYMBOLS 1 Detection wave transmitter / receiver 2 Antenna 3 Detection wave reflector 4 Waveguide 5 Window hole 6 Casing 7 Storage chamber 8 Drive device 9 Rotation drive shaft 10 Gate valve 11 Opening / closing drive part 12 Opening part 13 Reflecting surface 14 Gas supply pipe 15 Data Processing unit 20 Furnace 21 Turning chute

Claims (1)

旋回シュートを備えたベルレス装入装置により、高炉内に鉱石(但し、鉱石にコークスの一部及び/又は副原料を混合した混合原料の場合を含む。)とコークスを交互に装入し、鉱石層(但し、前記混合原料による混合原料層の場合を含む。)とコークス層を交互に積層させる原料装入を行うとともに、1チャージでの鉱石とコークスの装入を各々複数バッチで行うに際し、
高炉の炉頂部に設置された炉内装入物面のプロフィール測定装置であって、炉内装入物面までの距離を電波式の距離計で測定するとともに、該距離計の検出波放射方向を炉径方向に走査させて得られた炉内装入物面までの距離データに基づき、炉内装入物面のプロフィールを測定するプロフィール測定装置を用いて、少なくとも各バッチでの装入後の炉内装入物面のプロフィールを測定し 、該プロフィールに基づき各バッチで装入された鉱石とコークスの装入分布を求め、この装入分布に基づいて、炉内装入層の最上部における鉱石層厚さ比[Lo/(Lc+Lo)](但し、Lo:鉱石層厚さ、Lc:コークス層厚さ)が下記(a)〜(d)の条件を満足する装入分布となるように、鉱石の装入における少なくとも1つのバッチでの旋回シュートのノッチ又は/及び旋回数を調整することを特徴とする高炉における装入物分布制御方法。
(a)第1領域の平均値:0.5未満
(b)第2領域の平均値:0.6以上0.9未満
(c)第3領域の平均値:0.4以上0.8未満
(d)第1領域の平均値<第3領域の平均値<第2領域の平均値
但し、炉半径方向における炉中心からの距離をr(m)、炉口部での炉内半径をRt(m)とした場合に、炉半径方向における炉内領域を、炉中心側から順に、r/Rt≦0.20:第1領域、0.20<r/Rt≦0.80:第2領域、0.80<r/Rt:第3領域とする。
By means of a bell-less charging device equipped with a swirl chute, ore is charged alternately in the blast furnace (including mixed raw materials in which a portion of coke and / or auxiliary materials are mixed with ore) and coke. When performing raw material charging for alternately laminating layers (however, including the mixed raw material layer by the mixed raw material) and coke layers, and charging ore and coke in one charge in multiple batches,
This is a profile measuring device for the furnace interior entrance surface installed at the top of the blast furnace. The distance to the furnace interior entrance surface is measured with a radio-type distance meter, and the detected wave radiation direction of the distance meter is Using a profile measuring device that measures the profile of the furnace interior entrance surface based on the distance data to the furnace interior entrance surface obtained by scanning in the radial direction, the furnace interior entrance after at least each batch is charged. Measure the profile of the object surface, find the distribution of ore and coke charged in each batch based on the profile, and based on this distribution of the ore layer thickness ratio at the top of the furnace interior layer [Lo / (Lc + Lo)] (where Lo: ore layer thickness, Lc: coke layer thickness) has a charging distribution that satisfies the following conditions (a) to (d). Swivel chute notch in at least one batch during charging or And burden distribution control method in a blast furnace, characterized in that adjusting the number of turns.
(A) Average value of the first region: less than 0.5 (b) Average value of the second region: 0.6 or more and less than 0.9 (c) Average value of the third region: 0.4 or more and less than 0.8 (D) Average value of the first region <Average value of the third region <Average value of the second region However, the distance from the furnace center in the furnace radial direction is r (m), and the furnace radius at the furnace port is Rt In the case of (m), the in-furnace region in the furnace radial direction is, in order from the furnace center side, r / Rt ≦ 0.20: first region, 0.20 <r / Rt ≦ 0.80: second region 0.80 <r / Rt: The third region.
JP2015229021A 2015-11-24 2015-11-24 Charge distribution control method in blast furnace Active JP6447470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015229021A JP6447470B2 (en) 2015-11-24 2015-11-24 Charge distribution control method in blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015229021A JP6447470B2 (en) 2015-11-24 2015-11-24 Charge distribution control method in blast furnace

Publications (2)

Publication Number Publication Date
JP2017095761A JP2017095761A (en) 2017-06-01
JP6447470B2 true JP6447470B2 (en) 2019-01-09

Family

ID=58816828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015229021A Active JP6447470B2 (en) 2015-11-24 2015-11-24 Charge distribution control method in blast furnace

Country Status (1)

Country Link
JP (1) JP6447470B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2753936C1 (en) * 2018-03-28 2021-08-24 ДжФЕ СТИЛ КОРПОРЕЙШН Device for blast furnace and method for performing operation for blast furnace
JP7393637B2 (en) * 2020-01-17 2023-12-07 日本製鉄株式会社 How to operate a blast furnace
JP7393636B2 (en) * 2020-01-17 2023-12-07 日本製鉄株式会社 How to operate a blast furnace

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2870346B2 (en) * 1992-03-23 1999-03-17 住友金属工業株式会社 Vertical furnace charge profile measuring method and measuring device
JP3855639B2 (en) * 2000-10-05 2006-12-13 住友金属工業株式会社 Profile measurement method of blast furnace interior entrance surface
JP5728164B2 (en) * 2010-04-07 2015-06-03 株式会社神戸製鋼所 Blast furnace charge target distribution conversion apparatus, blast furnace charge target distribution conversion method used in the apparatus, and blast furnace charge target distribution conversion program
IN2014DN10251A (en) * 2012-05-28 2015-08-07 Nippon Steel & Sumitomo Metal Corp
KR101740874B1 (en) * 2014-03-04 2017-05-26 가부시키가이샤 와이야디바이스 Method for charging and depositing charging material in shaft furnace, charging material surface detection device, and method for operating shaft furnace

Also Published As

Publication number Publication date
JP2017095761A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
WO2019189025A1 (en) Blast furnace facility and operation method for blast furnace
JP7176561B2 (en) Blast furnace operation method
JP6447470B2 (en) Charge distribution control method in blast furnace
JP5412947B2 (en) Apparatus and method for measuring profile of blast furnace interior
JP6327383B1 (en) Charge distribution control method in blast furnace
JP5220690B2 (en) Apparatus and method for measuring profile of blast furnace interior
JP2006112966A (en) Method and apparatus for measuring surface shape of charged material in blast furnace
JP6033690B2 (en) Profile measuring device for blast furnace interior
JP2018048361A (en) Blast furnace raw fuel charging device and blast furnace raw fuel charging method
JP2021113341A (en) Operation method of blast furnace
EP3896177B1 (en) Method for charging raw material into bell-less blast furnace, and blast furnace operation method
JP6147602B2 (en) Profile measurement method for blast furnace interior
JP2017150035A (en) Display method for blast furnace profile meter, and method for charging material to be charged in blast furnace
JP7393636B2 (en) How to operate a blast furnace
JP7055355B2 (en) How to charge and deposit the charged material in the blast furnace, and how to operate the blast furnace
JP2001049312A (en) Method for charging raw material in bell-less blast furnace
JP2017020078A (en) Blast furnace
JP2021175822A (en) Method for charging center coke
JP2000008105A (en) Control of distribution of charged material from furnace top of blast furnace
JP2023057594A (en) Blast furnace operation method, charging method control device, and charging method control program
JPH06264119A (en) Method for charging raw material into bell-less blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181119

R150 Certificate of patent or registration of utility model

Ref document number: 6447470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250