JP2017150035A - Display method for blast furnace profile meter, and method for charging material to be charged in blast furnace - Google Patents

Display method for blast furnace profile meter, and method for charging material to be charged in blast furnace Download PDF

Info

Publication number
JP2017150035A
JP2017150035A JP2016033340A JP2016033340A JP2017150035A JP 2017150035 A JP2017150035 A JP 2017150035A JP 2016033340 A JP2016033340 A JP 2016033340A JP 2016033340 A JP2016033340 A JP 2016033340A JP 2017150035 A JP2017150035 A JP 2017150035A
Authority
JP
Japan
Prior art keywords
charging
blast furnace
charge
amount
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016033340A
Other languages
Japanese (ja)
Inventor
早衛 萱野
Hayae Kayano
早衛 萱野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wadeco Co Ltd
Original Assignee
Wadeco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wadeco Co Ltd filed Critical Wadeco Co Ltd
Priority to JP2016033340A priority Critical patent/JP2017150035A/en
Priority to PCT/JP2016/072905 priority patent/WO2017022818A1/en
Publication of JP2017150035A publication Critical patent/JP2017150035A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To correct a deposition profile in a new charging operation to optimize the operation of a blast furnace by displaying the descending speed or descending amount of a charging material.SOLUTION: A display method for blast furnace profile meter includes: measuring the deposition profiles immediately before and after charging in every charging operation; comparing the deposition profile just after charging at the previous charging with that just before charging at this time charging; calculating a descending speed or a descending amount at each position on the surface of the charging material in the period from just after previous charging to just before this time charging; and displaying a surface image showing distribution of the descending speed or descending amount on the surface of the charging material, and a sectional image showing the descending speed or amount at an optional position of the surface of the charging material.SELECTED DRAWING: Figure 5

Description

本発明は、高炉に装入される鉄鉱石やコークスの堆積状態を検出する高炉プロファイルメータの表示方法に関する。また、本発明は、前記表示方法を反映して高炉への装入物を装入する方法に関する。   The present invention relates to a display method of a blast furnace profile meter that detects the accumulation state of iron ore and coke charged in a blast furnace. In addition, the present invention relates to a method for charging a blast furnace with a charge reflecting the display method.

鉄鉱石を溶解する高炉では、通常、炉頂から大ベル(ベル式装入装置)やシュータ(ベルレス式装入装置)により鉄鉱石とコークスとを交互に装入して層状に堆積させて操作している。   In a blast furnace that melts iron ore, iron ore and coke are normally charged from the top of the furnace with a large bell (bell-type charging device) or a shooter (bell-less charging device) and deposited in layers. doing.

高炉を安定して操業するための重要な要因の1つに、炉内のガス流の分布がある。このガス流の分布は、鉄鉱石やコークスの堆積状況と密接な関係があり、通常は、実験によりガス流の分布が最適となる堆積状態、即ち堆積物の傾斜面の角度や、鉄鉱石の堆積層とコークスの堆積層との層厚比等が最適となるような理論堆積プロファイルを求め、実際の堆積状態が理論堆積プロファイルと合致するように大ベルやシュータの動作を制御して、鉄鉱石やコークスの投下量を調整している。   One of the important factors for stable operation of the blast furnace is the distribution of gas flow in the furnace. This gas flow distribution is closely related to the iron ore and coke deposits, and usually the deposition state where the gas flow distribution is optimal by experiment, that is, the angle of the slope of the deposit, the iron ore Obtain the theoretical deposition profile that optimizes the layer thickness ratio between the deposition layer and the coke deposition layer, and control the operation of the large bell and shooter so that the actual deposition condition matches the theoretical deposition profile. The amount of stone and coke dropped is adjusted.

理論堆積プロファイルと合致するように堆積されているかを確認するために、装入直後に鉄鉱石またはコークスの堆積表面にマイクロ波やミリ波を向けて送信し、鉄鉱石またはコークスの表面で反射された反射波を受信して堆積プロファイルを求めることが行われている。   In order to check whether the deposits are consistent with the theoretical deposition profile, microwaves and millimeter waves are transmitted to the iron ore or coke deposition surface immediately after charging and reflected on the iron ore or coke surface. A deposition profile is obtained by receiving reflected waves.

この堆積プロファイルを検出するための検出装置(プロファイルメータ)として、例えば特許文献1では、図1に示すように、高炉6の内部に挿入されるランス1の先端開口近傍にアンテナ2を通じて、マイクロ波送受信手段3からのマイクロ波を炉内の装入物7(鉄鉱石7aまたはコークス7b)に向けて送信し、装入物7の表面で反射されたマイクロ波をアンテナ2で受信してマイクロ波送受信手段3で検波し、送信と受信との時間差から装入物7の表面までの距離を求めている。その際、ランス1を炉壁5から、高炉6の軸線4に向かって往復させることにより、装入物7の堆積プロファイルを求めている。装入物7の堆積状態は、図示されるように、高炉6の軸線4上が最も深く、炉壁5に向かって徐々に浅くなる逆釣鐘状を呈しており、走査位置毎に装入物7までの距離を測定することにより、装入物7の堆積プロファイルを線状(2次元的)に検出することができる。   As a detection device (profile meter) for detecting this deposition profile, for example, in Patent Document 1, as shown in FIG. The microwave from the transmission / reception means 3 is transmitted toward the charge 7 (iron ore 7a or coke 7b) in the furnace, and the microwave reflected by the surface of the charge 7 is received by the antenna 2 to receive the microwave. Detection is performed by the transmission / reception means 3, and the distance to the surface of the charge 7 is obtained from the time difference between transmission and reception. At this time, the deposition profile of the charge 7 is obtained by reciprocating the lance 1 from the furnace wall 5 toward the axis 4 of the blast furnace 6. As shown in the figure, the accumulation state of the charge 7 is in the shape of a reverse bell that is deepest on the axis 4 of the blast furnace 6 and gradually becomes shallower toward the furnace wall 5. By measuring the distance to 7, the deposition profile of the charge 7 can be detected linearly (two-dimensionally).

また、本出願人も、先に特許文献2において、図2に示すように、高炉6の炉頂付近に設けた開口部6aの直上に反射板120を配設し、反射板120と対向してアンテナ111を配設し、マイクロ波送受信手段110からの検出波Mをアンテナ111から送信して反射板120で反射して炉内に送り、炉内の装入物7(鉄鉱石7aやコークス7b)で反射された反射波を反射板120で反射してマイクロ波送受信手段110に送るとともに、反射板120に取り付けた角度可変機構(図示せず)により反射面を互いに直交する2方向に回動させることにより、送信波を装入物7の表面を面状に走査させて、堆積プロファイルを3次元的に検知するプロファイルメータ100を提案している。   In addition, as shown in FIG. 2, the applicant of the present application previously provided a reflector 120 immediately above the opening 6 a provided near the top of the blast furnace 6 and opposed to the reflector 120. The antenna 111 is arranged, the detection wave M from the microwave transmitting / receiving means 110 is transmitted from the antenna 111, reflected by the reflector 120, and sent into the furnace, and the charge 7 (iron ore 7a and coke in the furnace) is sent. The reflected wave reflected in 7b) is reflected by the reflecting plate 120 and sent to the microwave transmitting / receiving means 110, and the reflecting surface is rotated in two directions orthogonal to each other by an angle variable mechanism (not shown) attached to the reflecting plate 120. Proposed is a profile meter 100 that three-dimensionally detects a deposition profile by moving the surface of the charge 7 in a plane by moving the transmitted wave.

そして、特許文献1、2に記載されているようなプロファイルメータでは、測定した堆積プロファイルに基づく位置情報(装入物の位置での堆積量)を装入物の供給手段である大ベル(図1の符号8)やシュータ(図2の符号10)に送り、大ベルからの鉄鉱石やコークスの投下量や、シュータの回動速度等を制御している。   In the profile meters as described in Patent Documents 1 and 2, position information (deposition amount at the position of the charge) based on the measured deposition profile is used as a large bell (Fig. 1 and the shooter (reference numeral 10 in FIG. 2) to control the amount of iron ore and coke dropped from the large bell, the rotation speed of the shooter, and the like.

特開平7−34107号公報JP-A-7-34107 特許第5391458号公報Japanese Patent No. 5391458

ところで、高炉の操業とともに、装入物の表面レベルが徐々に降下するが、降下速度は高炉の中心部よりも炉壁側の方が速くなる。高炉の中心部には炉芯が形成されるため、中心部を避けるように、その周辺で降下量が多くなる。このような炉壁側で降下速度が速くなる現象は、大型の高炉で起こりやすい。   By the way, with the operation of the blast furnace, the surface level of the charge gradually decreases, but the lowering speed becomes faster on the furnace wall side than the central part of the blast furnace. Since a core is formed at the center of the blast furnace, the amount of descent increases around the center so as to avoid the center. Such a phenomenon that the descent speed increases on the furnace wall side is likely to occur in a large blast furnace.

また、鉄鉱石やコークスは種々の大きさの塊状物であるため、面状に一様に降下しないことが多く、局所的に降下速度が遅い部分と早い部分とが存在する。   Further, since iron ore and coke are agglomerates of various sizes, they often do not fall uniformly in a planar shape, and there are locally a portion where the descent rate is slow and a portion where the descent rate is fast.

このような降下速度や降下量の部分的な違いは、装入直後の堆積プロファイルを見ただけでは判断できない。実際は、降下速度が一様であるとみなし、前回の装入直後の堆積プロファイルを基に、新たな装入時に理論堆積プロファイルになるように装入量を設定して装入しており、前回の装入作業と今回の装入作業との間の、実際の降下速度や降下量を反映させたものではない。   Such partial differences in the descent speed and descent amount cannot be determined by just looking at the deposition profile immediately after charging. Actually, it is assumed that the descent speed is uniform, and the charging amount is set so that the theoretical deposition profile is obtained at the time of new charging based on the deposition profile immediately after the previous charging. It does not reflect the actual descent speed or amount of descent between this charging operation and the current charging operation.

降下速度や降下量が他の部分よりも大きく異なっている部分、即ち降下速度や降下量が異常な部分を残したまま新たな装入操作を行うと、理論堆積プロファイル通りの最適な操業を行うことができない。   If a new charging operation is performed while leaving a part where the descent speed and descent amount are significantly different from other parts, that is, a part where the descent speed and descent amount are abnormal, the optimum operation according to the theoretical deposition profile is performed. I can't.

そこで本発明は、装入物の降下速度または降下量を表示することにより、新たな装入作業において堆積プロファイルを修正して高炉の操業を最適に行えるようにすることを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to display a charging rate or amount of charging to correct a deposition profile in a new charging operation so that the operation of a blast furnace can be optimized.

上記課題を解決するために本発明は、下記の高炉プロファイルメータの表示方法及び高炉への装入物の装入方法を提供する。
(1)高炉に装入され、堆積している装入物の表面に検出波を送信し、装入物の表面で反射された反射波を受信して装入物の表面の各位置における堆積量を示す堆積プロファイルを検出する高炉プロファイルメータの表示方法であって、
前回の装入時における装入直後の堆積プロファイルと、今回の装入時における装入直前の堆積プロファイルとを比較し、前回の装入直後から今回の装入直前での期間における装入物の表面の各位置での降下速度または降下量を算定するとともに、
装入物の表面における降下速度または降下量の分布を示す表面画像と、装入物の表面の任意の位置における降下速度または降下量を示す断面画像とを表示することを特徴とする高炉プロファイルメータの表示方法。
(2)前記表面画像において、装入物の表面を直径に沿って複数に区画するとともに、区画した直径に相当する線分を表示し、
前記断面画像において、前記線分に沿った断面画像を表示する
ことを特徴とする上記(1)記載の高炉プロファイルメータの表示方法。
(3)前記降下速度又は降下量に異常が見られる場合、異常箇所を抽出し、前回の装入作業より以前の所定の回数の装入作業における画像を表示することを特徴とする上記(1)または(2)記載の高炉プロファイルメータの表示方法。
(4)上記(1)〜(3)の何れか1項に記載の表示方法を基に画像を監視し、高炉への装入物を装入する際に、装入手段を制御することを特徴とする高炉への装入物の装入方法。
In order to solve the above problems, the present invention provides the following blast furnace profile meter display method and blast furnace charging method.
(1) A detection wave is transmitted to the surface of the charge that has been charged and deposited in the blast furnace, and a reflected wave reflected by the surface of the charge is received to deposit at each position on the surface of the charge. A method of displaying a blast furnace profile meter for detecting a deposition profile indicating a quantity,
Compare the deposition profile immediately after charging at the previous charging with the deposition profile immediately before charging at the current charging, and the amount of charge in the period from immediately after the previous charging to just before the current charging. Calculate the descent speed or descent amount at each position on the surface,
A blast furnace profile meter characterized by displaying a surface image showing a descending speed or amount distribution on the surface of the charge and a cross-sectional image showing a descending speed or amount at any position on the surface of the charge How to display.
(2) In the surface image, the surface of the charge is divided into a plurality along the diameter, and a line segment corresponding to the divided diameter is displayed.
In the cross-sectional image, the cross-sectional image along the line segment is displayed.
(3) When an abnormality is found in the descending speed or the descending amount, an abnormal part is extracted, and an image in a predetermined number of times of charging work before the previous charging work is displayed (1) ) Or the display method of the blast furnace profile meter according to (2).
(4) The image is monitored based on the display method described in any one of (1) to (3) above, and the charging means is controlled when charging the blast furnace. The charging method of the charge to the blast furnace characterized.

本発明によれば、装入物の実際の降下速度または降下量を検出・表示することにより、新たな装入作業において堆積プロファイルを修正して高炉の操業を最適に行うことができる。   According to the present invention, by detecting and displaying the actual descending speed or descending amount of the charged material, it is possible to optimally operate the blast furnace by correcting the deposition profile in a new charging operation.

プロファイルメータの一例(2次元堆積プロファイル測定)を示す図である。It is a figure which shows an example (two-dimensional deposition profile measurement) of a profile meter. プロファイルメータの他の例(3次元堆積プロファイル測定)を示す図である。It is a figure which shows the other example (three-dimensional deposition profile measurement) of a profile meter. 前回の装入時における装入直後の装入物の堆積プロファイルを示す(A)表面画像及び(B)断面画像である。It is the (A) surface image and (B) cross-sectional image which show the accumulation profile of the charge immediately after the insertion at the time of the last charge. 今回の装入時における装入直前の装入物の堆積プロファイルを示す(A)表面画像及び(B)断面画像である。It is the (A) surface image and (B) cross-sectional image which show the accumulation profile of the charging material just before charging at the time of this charging. 降下速度または降下量を示す(A)表面画像及び(B)断面画像である。It is (A) surface image and (B) cross-sectional image which show descent speed or descent amount. (A)表面画像及び(B)断面画像の他の表示例を示す図である。It is a figure which shows the other example of a display of (A) surface image and (B) cross-sectional image. 降下異常個所が複数ある場合の表示例を示す図である。It is a figure which shows the example of a display when there are two or more descent | fall abnormal parts.

以下、図面を参照して本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

本発明において、装入物の堆積プロファイルを検出する方法としては、図2に示したように、反射板120を回動させることにより、装入物7の表面を面状に走査し、3次元堆積プロファイルを測定する方法が好ましい。この3次元堆積プロファイルでは、装入物7の表面の各位置での堆積量を正確に測定することができ、更には装入物7の表面の任意の位置での断面を求めることができる。   In the present invention, as a method for detecting the charge accumulation profile, the surface of the charge 7 is scanned in a planar manner by rotating the reflector 120 as shown in FIG. A method of measuring the deposition profile is preferred. With this three-dimensional deposition profile, the amount of deposition at each position on the surface of the charge 7 can be accurately measured, and a cross section at any position on the surface of the charge 7 can be obtained.

本発明では、装入作業の都度、装入直前及び装入直後に堆積プロファイルを測定する。
そして、前回の装入時における装入直後の堆積プロファイルと、今回の装入時における装入直前の堆積プロファイルとを比較することにより、前回の装入と今回の装入との間における装入物の降下状態を知ることができる。
In the present invention, the deposition profile is measured immediately before and immediately after the charging operation.
Then, by comparing the deposition profile immediately after charging at the previous charging with the deposition profile immediately before charging at the current charging, charging between the previous charging and the current charging is performed. You can know the descending state of an object.

図3は、前回の装入時における装入直後の堆積プロファイルの一例であり、同図(A)は装入物の表面の堆積状態を示す表面画像であり、同図(B)は装入物の表面の任意の直線に沿った堆積量(堆積高さ)を示す断面画像である。また、図3(A)では、装入物の表面の堆積状態を、同じ堆積量の点を結んだ等高線で示している。   FIG. 3 is an example of a deposition profile immediately after charging at the time of the previous charging. FIG. 3A is a surface image showing a deposition state of the surface of the charging material, and FIG. 3B is a charging image. It is a cross-sectional image which shows the deposition amount (deposition height) along the arbitrary straight lines of the surface of an object. Further, in FIG. 3A, the accumulation state on the surface of the charge is indicated by contour lines connecting the points of the same accumulation amount.

図4は、今回の装入時における装入直前の堆積プロファイルの一例であり、同図(A)は表面画像であり、同図(B)は断面画像である。図4(A)には符号Hで示す部分(H部分)が大きく窪んでいることが表示されており、図4(B)にはH部分の中心付近を通る直径(図4(A)の水平線)に沿った堆積量が表示されている。   FIG. 4 is an example of a deposition profile immediately before charging at the time of the current charging. FIG. 4A is a surface image, and FIG. 4B is a cross-sectional image. 4A shows that the portion indicated by the symbol H (H portion) is greatly depressed, and FIG. 4B shows the diameter passing through the vicinity of the center of the H portion (of FIG. 4A). The amount of deposition along the horizontal line is displayed.

従って、図3の画像と図4の画像とを比較することにより、H部分の装入物の降下速度または降下量が、他の部分に比べて大きいことが分かる。尚、図3(B)に、図4(B)の画像(図中の2点鎖線)を重ねて示すこともできる。   Therefore, by comparing the image of FIG. 3 and the image of FIG. 4, it can be seen that the descending speed or amount of the charge in the H portion is larger than that in the other portions. Note that the image of FIG. 4B (two-dot chain line in the drawing) can also be superimposed on FIG. 3B.

図5は、図3と図4から得られた降下速度または降下量を示す画像であり、同図(A)は表面画像、同図(B)は断面画像である。H部分以外の部分では、降下速度または降下量は略一定で、変動許容範囲Aであるのに対し、H部分では変動許容範囲Aを超えている部分(図中、斜線部分)を含んでいる。尚、変動許容範囲Aは、任意に設定可能である。   FIGS. 5A and 5B are images showing the descending speed or the amount of descending obtained from FIGS. 3 and 4. FIG. 5A is a surface image, and FIG. 5B is a cross-sectional image. In the portion other than the H portion, the descending speed or the amount of descent is substantially constant and the variation allowable range A, whereas the H portion includes a portion exceeding the allowable variation range A (shaded portion in the figure). . The fluctuation allowable range A can be arbitrarily set.

このように、前回の装入直後の堆積プロファイルと今回の装入直前の堆積プロファイルとを比較することにより、前回の装入から今回の装入までの間の装入物の降下速度または降下量を求め、H部分のように降下速度または降下量が他の部分と大きく異なっている部分(降下異常部分)を知ることができる。そして、この降下異常部分を考慮して、今回の装入作業時に、装入手段である大ベル(図1の符号8)やシュータ(図2の符号10)の制御に役立てることにより、高炉の操業をより安定して行うことができる。具体的には、降下速度または降下量を基に、装入手段からの装入量の分布やコークス比の調整を行う。また、羽口から供給する熱風の風量、風温、湿度、PCI(微粉炭)量等を調整して、降下異常部分が発生しないようにすることもできる。あるいは、降下異常個所がある場合、警報を発してもよい。   In this way, by comparing the deposition profile immediately after the previous charging with the deposition profile immediately before the current charging, the descending speed or amount of the charged material from the previous charging to the current charging is reduced. , And a portion where the descent speed or amount of descent is significantly different from other portions (descent abnormal portion) such as the H portion can be known. In consideration of this descent abnormal portion, it is useful for controlling the large bell (symbol 8 in FIG. 1) and the shooter (symbol 10 in FIG. 2) as the charging means during the current charging operation. Operation can be performed more stably. Specifically, the distribution of the charging amount from the charging means and the coke ratio are adjusted based on the descending speed or the descending amount. It is also possible to adjust the amount of hot air supplied from the tuyere, the air temperature, the humidity, the amount of PCI (pulverized coal), and the like so as not to cause an abnormal descent. Alternatively, an alarm may be issued when there is an abnormal part of descent.

画像の表示様式は、種々変更可能である。例えば図6は、図5に対応する表面画像(A)及び線分(X1、X2、X3、X4)における降下速度又は降下量を示す断面画像(B)であるが、同図(A)の表面画像において、表面の任意の位置、例えば同図の水平線(X=0°の位置とX=180°の位置とを結ぶ線)をX1、X1と直交する線X2(X=90°の位置とX=270°の位置とを結ぶ線)、線X2の両側にて線X1と線X2とを2等分する線X3(X=45°の位置とX=225°の位置とを結ぶ線)及び線X4(X=135°の位置とX=315°の位置とを結ぶ線)を重ねて表示する。それとともに、同図(B)の断面画像において、線X1〜X4沿った各断面を、線種や線色を変えて、重ねて表示する(図の例では線種を変えて4本)。   The display format of the image can be variously changed. For example, FIG. 6 is a cross-sectional image (B) showing the descent speed or descent amount in the surface image (A) and line segments (X1, X2, X3, X4) corresponding to FIG. In the surface image, an arbitrary position on the surface, for example, a horizontal line (a line connecting a position of X = 0 ° and a position of X = 180 °) in the figure is X1, a line X2 orthogonal to X1 (a position of X = 90 °) And a line connecting the line X1 and the line X2 into two equal parts on both sides of the line X2 (a line connecting the position of X = 45 ° and the position of X = 225 °) ) And the line X4 (line connecting the position of X = 135 ° and the position of X = 315 °) are displayed in an overlapping manner. At the same time, in the cross-sectional image of FIG. 5B, the cross-sections along the lines X1 to X4 are displayed in an overlapping manner with different line types and line colors (in the example of the figure, four line types are changed).

尚、線X1〜X4の間隔、即ち角度差は、上記した45°以外にも任意に設定可能である。また、表示箇所も線X1〜X4の4ヶ所に限らず、増減することができる。更に、図4(A)は、線X1がX=0°の位置での表面画像を示しているが、線X1を任意の角度で線X3側(上方)、あるいは線X4側(下方)に回転させた表面画像を表示することもできる。   In addition, the space | interval of line X1-X4, ie, an angle difference, can be arbitrarily set other than 45 degrees mentioned above. Further, the display locations are not limited to the four locations of the lines X1 to X4, and can be increased or decreased. Further, FIG. 4A shows a surface image when the line X1 is at a position of X = 0 °, but the line X1 is directed to the line X3 side (upward) or the line X4 side (downward) at an arbitrary angle. A rotated surface image can also be displayed.

また、降下異常個所が複数ある場合もある。例えば、図7に示すように降下異常個所がH10部分とH20部分の2箇所ある場合、同図(A)の表面画像に、H10部分とH20部分の各中心付近を通る線分X10とX20とを表示するとともに、それぞれの中心付近を通る直径に相当する線分X10、X20を表示するとともに、同図(B)の断面画像に、線X10と線X20に沿った断面を重ねて表示する。   There may also be multiple descent abnormalities. For example, as shown in FIG. 7, in the case where there are two descending abnormal portions, the H10 portion and the H20 portion, line segments X10 and X20 passing near the centers of the H10 portion and the H20 portion in the surface image of FIG. Is displayed, and line segments X10 and X20 corresponding to the diameters passing through the respective centers are displayed, and the cross-sections along the lines X10 and X20 are superimposed on the cross-sectional image of FIG.

更には、降下速度又は降下量の計測データを連続して記録し、任意の回数毎に表示して降下速度又は降下量の変化状況を求め、装入方法等の高炉の制御に反映させることもできる。   Furthermore, measurement data of descent speed or descent amount can be recorded continuously, displayed at any number of times to determine the change in descent speed or descent amount, and reflected in blast furnace control such as charging method. it can.

1 ランス
2 アンテナ
3 マイクロ波送受信手段
6 高炉
7 装入物
7a 鉄鉱石
7b コークス
8 大ベル
10 シュータ
110 マイクロ波送受信手段
111 アンテナ
120 反射板
DESCRIPTION OF SYMBOLS 1 Lance 2 Antenna 3 Microwave transmission / reception means 6 Blast furnace 7 Charge 7a Iron ore 7b Coke 8 Large bell 10 Shuta 110 Microwave transmission / reception means 111 Antenna 120 Reflector

Claims (4)

高炉に装入され、堆積している装入物の表面に検出波を送信し、装入物の表面で反射された反射波を受信して装入物の表面の各位置における堆積量を示す堆積プロファイルを検出する高炉プロファイルメータの表示方法であって、
前回の装入時における装入直後の堆積プロファイルと、今回の装入時における装入直前の堆積プロファイルとを比較し、前回の装入直後から今回の装入直前での期間における装入物の表面の各位置での降下速度または降下量を算定するとともに、
装入物の表面における降下速度または降下量の分布を示す表面画像と、装入物の表面の任意の位置における降下速度または降下量を示す断面画像とを表示することを特徴とする高炉プロファイルメータの表示方法。
The detection wave is transmitted to the surface of the charge that is charged and deposited in the blast furnace, and the reflected wave reflected by the surface of the charge is received to indicate the amount of deposition at each position on the surface of the charge. A method for displaying a blast furnace profile meter for detecting a deposition profile,
Compare the deposition profile immediately after charging at the previous charging with the deposition profile immediately before charging at the current charging, and the amount of charge in the period from immediately after the previous charging to just before the current charging. Calculate the descent speed or descent amount at each position on the surface,
A blast furnace profile meter characterized by displaying a surface image showing a descending speed or amount distribution on the surface of the charge and a cross-sectional image showing a descending speed or amount at any position on the surface of the charge How to display.
前記表面画像において、装入物の表面を直径に沿って複数に区画するとともに、区画した直径に相当する線分を表示し、
前記断面画像において、前記線分に沿った断面画像を表示する
ことを特徴とする請求項1記載の高炉プロファイルメータの表示方法。
In the surface image, the surface of the charge is divided into a plurality along the diameter, and a line segment corresponding to the divided diameter is displayed.
The blast furnace profile meter display method according to claim 1, wherein a cross-sectional image along the line segment is displayed in the cross-sectional image.
前記降下速度又は降下量に異常が見られる場合、異常箇所を抽出し、前回の装入作業より以前の所定の回数の装入作業における画像を表示することを特徴とする請求項1または2記載の高炉プロファイルメータの表示方法。   3. The method according to claim 1, wherein when an abnormality is observed in the descending speed or the descending amount, an abnormal part is extracted and an image in a predetermined number of times of charging work before the previous charging work is displayed. To display the blast furnace profile meter. 請求項1〜3の何れか1項に記載の表示方法を基に画像を監視し、高炉への装入物を装入する際に、装入手段を制御することを特徴とする高炉への装入物の装入方法。



An image is monitored based on the display method according to any one of claims 1 to 3, and the charging means is controlled when charging the charging material into the blast furnace. How to charge the charge.



JP2016033340A 2015-08-04 2016-02-24 Display method for blast furnace profile meter, and method for charging material to be charged in blast furnace Pending JP2017150035A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016033340A JP2017150035A (en) 2016-02-24 2016-02-24 Display method for blast furnace profile meter, and method for charging material to be charged in blast furnace
PCT/JP2016/072905 WO2017022818A1 (en) 2015-08-04 2016-08-04 Surface detection device and charging method of charged material into blast furnace and operating method of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016033340A JP2017150035A (en) 2016-02-24 2016-02-24 Display method for blast furnace profile meter, and method for charging material to be charged in blast furnace

Publications (1)

Publication Number Publication Date
JP2017150035A true JP2017150035A (en) 2017-08-31

Family

ID=59738819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016033340A Pending JP2017150035A (en) 2015-08-04 2016-02-24 Display method for blast furnace profile meter, and method for charging material to be charged in blast furnace

Country Status (1)

Country Link
JP (1) JP2017150035A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200132959A (en) * 2018-03-28 2020-11-25 제이에프이 스틸 가부시키가이샤 Blast furnace equipment and operation method of blast furnace
JP6893588B1 (en) * 2021-03-29 2021-06-23 日鉄エンジニアリング株式会社 Charge subsidence behavior measuring device and charge subsidence behavior measuring method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52125359A (en) * 1976-04-14 1977-10-21 Ishikawajima Harima Heavy Ind Method of measuring level distribution of charging materials in vertical furnace
JPH0611328A (en) * 1992-03-23 1994-01-21 Sumitomo Metal Ind Ltd Method and instrument for measuring profile of charge in shaft furnace
JP5391458B2 (en) * 2009-07-09 2014-01-15 株式会社ワイヤーデバイス Method and apparatus for measuring charge profile in blast furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52125359A (en) * 1976-04-14 1977-10-21 Ishikawajima Harima Heavy Ind Method of measuring level distribution of charging materials in vertical furnace
JPH0611328A (en) * 1992-03-23 1994-01-21 Sumitomo Metal Ind Ltd Method and instrument for measuring profile of charge in shaft furnace
JP5391458B2 (en) * 2009-07-09 2014-01-15 株式会社ワイヤーデバイス Method and apparatus for measuring charge profile in blast furnace

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEI, JIDONG ET AL.: "3-Dimension Burden Surface Imaging System with T-shaped MINO Rader in the Blast Furnade", ISIJ INTERNATIONAL, vol. 55, no. 3, JPN6019025245, March 2015 (2015-03-01), JP, pages 592 - 599, ISSN: 0004151490 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200132959A (en) * 2018-03-28 2020-11-25 제이에프이 스틸 가부시키가이샤 Blast furnace equipment and operation method of blast furnace
US11512899B2 (en) 2018-03-28 2022-11-29 Jfe Steel Corporation Blast furnace apparatus and operation method for blast furnace
KR102480647B1 (en) * 2018-03-28 2022-12-22 제이에프이 스틸 가부시키가이샤 How to operate a blast furnace
JP6893588B1 (en) * 2021-03-29 2021-06-23 日鉄エンジニアリング株式会社 Charge subsidence behavior measuring device and charge subsidence behavior measuring method
WO2022209021A1 (en) * 2021-03-29 2022-10-06 日鉄エンジニアリング株式会社 Charged material settlement behavior measuring device, and charged material settlement behavior measuring method

Similar Documents

Publication Publication Date Title
JP7176561B2 (en) Blast furnace operation method
JP5412947B2 (en) Apparatus and method for measuring profile of blast furnace interior
JP7176560B2 (en) Blast furnace operation method
JP2017150035A (en) Display method for blast furnace profile meter, and method for charging material to be charged in blast furnace
CN102409123A (en) Blast furnace burden face imaging system based on multisource heterogeneous data fusion
JP5674542B2 (en) Profile measurement method for blast furnace interior
JP5441730B2 (en) Profile measuring device for blast furnace interior
JP6540636B2 (en) Blast furnace operation method
JP2006112966A (en) Method and apparatus for measuring surface shape of charged material in blast furnace
JP2015086461A (en) Blast furnace operation method
JP6447470B2 (en) Charge distribution control method in blast furnace
JP2017128783A (en) Display method of blast furnace profile meter and charging method of charging material to blast furnace
JP6631588B2 (en) Method for detecting deviation of charge descending speed and method for operating blast furnace
JP3855639B2 (en) Profile measurement method of blast furnace interior entrance surface
JP6327383B1 (en) Charge distribution control method in blast furnace
JP6540654B2 (en) Blast furnace operation method
CN108291831A (en) The method and system of liquid and solid material is measured during converting iron to steel in metallurgical tank or stove
JP6575467B2 (en) Blast furnace operation method
JP6547474B2 (en) Blast furnace and measurement method for measuring the level of blast furnace charge
JP2019183261A (en) Device for determining condition of blast furnace, method for operating blast furnace and method for determining condition of blast furnace
JP7393636B2 (en) How to operate a blast furnace
JP7055355B2 (en) How to charge and deposit the charged material in the blast furnace, and how to operate the blast furnace
JP2022137614A (en) Blast furnace operation method, charging method control device and charging method control program
JP2022137869A (en) Blast furnace operation method, charging method control device and charging method control program
CN107084704A (en) blast furnace skew detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191112