JP2019183261A - Device for determining condition of blast furnace, method for operating blast furnace and method for determining condition of blast furnace - Google Patents

Device for determining condition of blast furnace, method for operating blast furnace and method for determining condition of blast furnace Download PDF

Info

Publication number
JP2019183261A
JP2019183261A JP2019025891A JP2019025891A JP2019183261A JP 2019183261 A JP2019183261 A JP 2019183261A JP 2019025891 A JP2019025891 A JP 2019025891A JP 2019025891 A JP2019025891 A JP 2019025891A JP 2019183261 A JP2019183261 A JP 2019183261A
Authority
JP
Japan
Prior art keywords
blast furnace
sound wave
temperature distribution
state
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019025891A
Other languages
Japanese (ja)
Other versions
JP6870693B2 (en
Inventor
伊藤 友彦
Tomohiko Ito
友彦 伊藤
島本 拓幸
Hiroyuki Shimamoto
拓幸 島本
山口 達也
Tatsuya Yamaguchi
達也 山口
西村 望
Nozomi Nishimura
望 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2019183261A publication Critical patent/JP2019183261A/en
Application granted granted Critical
Publication of JP6870693B2 publication Critical patent/JP6870693B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide: a device for determining conditions of a blast furnace, capable of appropriately determining deviation and disorder in raw material insertion and reaction in the circumferential direction of the blast furnace; a method for operating the blast furnace; and a method for determining the conditions of the blast furnace.SOLUTION: The device for determining conditions of a blast furnace comprises: temperature distribution measurement means for measuring temperature distribution right above a raw material insertion surface in the blast furnace; high temperature portion position detecting means for detecting a position of a high temperature portion having a temperature more than a predetermined temperature on the basis of information on the temperature distribution measured by the temperature distribution measurement means; and determining means for determining whether the conditions of the furnace are abnormal on the basis of the position of the high temperature portion detected by the high temperature portion position detecting means.SELECTED DRAWING: Figure 1

Description

本発明は、高炉の炉況状態を判定する高炉炉況状態判定装置、高炉の操業方法、及び、高炉炉況状態判定方法に関する。   The present invention relates to a blast furnace state determination apparatus, a blast furnace operating method, and a blast furnace state determination method for determining a furnace state of a blast furnace.

従来、高炉の炉内状況(以下、炉況という。)を監視し、適切な操業条件に変更して高炉の操業を行うことが知られている(特許文献1など)。そのため、高炉の炉況状態の異常を早期に的確に把握することは重要である。高炉は円筒形の炉であるため、高炉円周方向における原料装入や反応の偏りや乱れが発生した場合には、出銑状態の円周方向のばらつきによる操業状態悪化などが発生する場合がある。そのため、高炉円周方向における原料装入や反応の偏りや乱れを早期に検知することは、重要な異常検知対象の一つである。   Conventionally, it has been known to monitor the in-furnace state of a blast furnace (hereinafter referred to as the furnace state), and to operate the blast furnace by changing to an appropriate operating condition (Patent Document 1, etc.). For this reason, it is important to quickly and accurately grasp abnormalities in the blast furnace state. Since the blast furnace is a cylindrical furnace, if the raw material is charged or the reaction is biased or disturbed in the circumferential direction of the blast furnace, the operating condition may deteriorate due to variations in the circumferential direction of the tapping state. is there. Therefore, early detection of raw material charging in the blast furnace circumferential direction and reaction bias and disturbance is one of the important abnormality detection targets.

従来、高炉円周方向における原料装入や反応の偏りや乱れを検知する方法として、高炉内の原料装入面直上の温度分布を計測して行うものが知られており、高炉円周方向における原料装入や反応の偏りや乱れがある場合には、原料装入面直上の温度分布の偏りや乱れとして表われる。   Conventionally, as a method of detecting material charging and reaction bias and disturbance in the blast furnace circumferential direction, a method of measuring the temperature distribution immediately above the raw material charging surface in the blast furnace is known. When there is a bias or disorder in the raw material charging or reaction, it appears as a bias or disorder in the temperature distribution just above the raw material charging surface.

特開2005−272880号公報JP 2005-272880 A

新井、山本、架谷、化学工学論文集、1989年、第15巻、第6号、p.1073-1075Arai, Yamamoto, Kajiya, Chemical Engineering Journal, 1989, Vol. 15, No. 6, p.1073-1075

しかしながら、高炉内の原料装入面直上における測定位置の温度情報からしか異常検知ができないため、前記測定位置の温度情報から高炉円周方向における原料装入や反応の偏りや乱れの判定を作業者が行うと、その判定基準が属人的となるため判定結果にばらつきが生じてしまい、常時適切な判定ができないおそれがある。   However, since the abnormality can be detected only from the temperature information at the measurement position directly above the raw material charging surface in the blast furnace, the operator can determine the raw material charging in the circumferential direction of the blast furnace and the determination of reaction bias and disturbance. If this is done, the determination criteria will be personal, and the determination results will vary, and there is a risk that appropriate determination will not be possible at all times.

本発明は、上記課題に鑑みてなされたものであって、その目的は、高炉円周方向における原料装入や反応の偏りや乱れを適切に判定することができる高炉炉況状態判定装置、高炉の操業方法、及び、高炉炉況状態判定方法を提供することである。   The present invention has been made in view of the above-mentioned problems, and the purpose thereof is a blast furnace state determination apparatus, a blast furnace, which can appropriately determine raw material charging and reaction bias and disturbance in the blast furnace circumferential direction. It is to provide an operation method and a blast furnace state condition determination method.

上述した課題を解決し、目的を達成するために、本発明に係る高炉炉況状態判定装置は、高炉の炉況状態を判定する高炉炉況状態判定装置であって、高炉内における原料装入面直上の温度分布を計測する温度分布計測手段と、前記温度分布計測手段によって計測された前記温度分布の情報に基づいて、所定温度を上回る高温部の位置を検出する高温部位置検出手段と、前記高温部位置検出手段によって検出された前記高温部の位置に基づいて、前記炉況状態が異常であるかを判定する判定手段と、を備えることを特徴とするものである。   In order to solve the above-described problems and achieve the object, a blast furnace state determination apparatus according to the present invention is a blast furnace state determination apparatus for determining a furnace state of a blast furnace, in which raw material charging in the blast furnace is performed. A temperature distribution measuring means for measuring a temperature distribution immediately above the surface, and a high temperature part position detecting means for detecting a position of a high temperature part exceeding a predetermined temperature based on the information of the temperature distribution measured by the temperature distribution measuring means; And determining means for determining whether or not the furnace state is abnormal based on the position of the high temperature portion detected by the high temperature portion position detecting means.

また、本発明に係る高炉炉況状態判定装置は、上記の発明において、前記温度分布計測手段は、高炉炉頂部に設けられた複数の音波送受信手段のうち1つの音波送受信手段から音波を送信し、相異なる音波送受信手段で前記音波を受信して、前記音波を送信した時点から各音波送受信手段で受信するまでの前記音波の各音波伝搬経路における音波伝搬時間の計測を、全ての音波送受信手段で実施し、前記音波伝搬時間に基づいて高炉炉頂部の温度分布を計測することを特徴とするものである。   Further, in the blast furnace state condition determining apparatus according to the present invention, in the above invention, the temperature distribution measuring means transmits sound waves from one sound wave transmitting / receiving means among a plurality of sound wave transmitting / receiving means provided at the top of the blast furnace furnace. The sound wave transmission time in each sound wave propagation path from the time when the sound wave is received by the different sound wave transmission / reception means until the sound wave transmission / reception means receives each sound wave is measured by all the sound wave transmission / reception means. And the temperature distribution at the top of the blast furnace is measured based on the sound wave propagation time.

また、本発明に係る高炉の操業方法は、上記の発明の高炉炉況状態判定装置によって判定された高炉の炉況状態に応じて、操業条件を変更することを特徴とするものである。   Moreover, the operating method of the blast furnace which concerns on this invention changes an operating condition according to the furnace state state of the blast furnace determined by the blast furnace state state determination apparatus of said invention.

また、本発明に係る高炉炉況状態判定方法は、高炉の炉況状態を判定する高炉炉況状態判定方法であって、高炉内における原料装入面直上の温度分布を計測する温度分布計測ステップと、前記温度分布計測ステップで計測された前記温度分布の情報に基づいて、所定温度を上回る高温部の位置を検出する高温部位置検出ステップと、前記高温部位置検出ステップで検出された前記高温部の位置に基づいて、前記炉況状態が異常であるかを判定する炉況異常判定ステップと、を有することを特徴とするものである。   Further, the blast furnace state state determining method according to the present invention is a blast furnace state state determining method for determining a furnace state state of the blast furnace, and a temperature distribution measuring step for measuring a temperature distribution immediately above the raw material charging surface in the blast furnace. And a high temperature part position detecting step for detecting a position of a high temperature part exceeding a predetermined temperature based on the information of the temperature distribution measured in the temperature distribution measuring step, and the high temperature detected in the high temperature part position detecting step. A furnace condition abnormality determining step for determining whether or not the furnace condition is abnormal based on the position of the section.

また、本発明に係る高炉炉況状態判定方法は、上記の発明において、前記温度分布計測ステップでは、高炉炉頂部に設けられた複数の音波送受信手段のうち1つの音波送受信手段から音波を送信し、相異なる音波送受信手段で前記音波を受信して、前記音波を送信した時点から各音波送受信手段で受信するまでの前記音波の各音波伝搬経路における音波伝搬時間の計測を、全ての音波送受信手段で実施し、前記音波伝搬時間に基づいて高炉炉頂部の温度分布を計測することを特徴とするものである。   In the blast furnace state state determination method according to the present invention, in the above invention, in the temperature distribution measurement step, a sound wave is transmitted from one sound wave transmitting / receiving means among a plurality of sound wave transmitting / receiving means provided at the top of the blast furnace furnace. The sound wave transmission time in each sound wave propagation path from the time when the sound wave is received by the different sound wave transmission / reception means until the sound wave transmission / reception means receives each sound wave is measured by all the sound wave transmission / reception means. And the temperature distribution at the top of the blast furnace is measured based on the sound wave propagation time.

また、本発明に係る高炉炉況状態判定方法は、上記の発明において、原料が前記高炉に装入される繰り返し単位を1チャージとして、前記高温部の位置が検出されたチャージが複数回継続した場合に、前記炉況状態が異常であると判定することを特徴とするものである。   In the blast furnace state determination method according to the present invention, in the above invention, the charge in which the position of the high-temperature part is detected is continued a plurality of times, with the repetition unit in which the raw material is charged into the blast furnace as one charge. In this case, it is determined that the furnace state is abnormal.

また、本発明に係る高炉の操業方法は、上記の発明の高炉炉況状態判定方法を用いた高炉の操業方法であって、操業諸元を変更した時刻から所定の時間内に前記高炉炉況状態判定方法によって、前記炉況状態が異常と判定された場合には、前記操業諸元の変更時点よりも前の前記操業諸元に戻すことを特徴とするものである。   The blast furnace operation method according to the present invention is a blast furnace operation method using the blast furnace state determination method according to the present invention, wherein the blast furnace state is within a predetermined time from the time when the operation specifications are changed. When the state of the furnace is determined to be abnormal by the state determination method, the operation specifications before the change time of the operation specifications are returned to the operation specifications.

また、本発明に係る高炉の操業方法は、上記の発明において、前記操業諸元は装入物分布であることを特徴とするものである。   Moreover, the operating method of the blast furnace which concerns on this invention is the above-mentioned invention. WHEREIN: The said operation item is a charge distribution, It is characterized by the above-mentioned.

本発明に係る高炉炉況状態判定装置、高炉の操業方法、及び、高炉炉況状態判定方法は、高炉円周方向における原料装入や反応の偏りや乱れを適切に判定することができるという効果を奏する。   The blast furnace state determination apparatus, the blast furnace operation method, and the blast furnace state determination method according to the present invention have the effect that it is possible to appropriately determine raw material charging and reaction bias and disturbance in the blast furnace circumferential direction. Play.

図1は、実施形態に係る高炉炉況状態判定装置の概略構成を示した図である。FIG. 1 is a diagram illustrating a schematic configuration of a blast furnace state state determining apparatus according to an embodiment. 図2は、実施形態に係る高炉炉況状態判定方法の一例を示したフローチャートである。FIG. 2 is a flowchart showing an example of a blast furnace state state determination method according to the embodiment. 図3は、音波を用いた温度分布計測装置として、高炉炉頂部の内部に向けて10個のマイク/スピーカー素子を円周方向に沿って設置した場合を示した図である。FIG. 3 is a diagram showing a case where ten microphone / speaker elements are installed along the circumferential direction toward the inside of the blast furnace top as a temperature distribution measuring apparatus using sound waves. 図4は、音速分布を元にした温度の求め方の説明に用いる図である。FIG. 4 is a diagram used for explaining how to obtain the temperature based on the sound velocity distribution. 図5は、実施例で温度計測データの使用する範囲を示した図である。FIG. 5 is a diagram illustrating a range in which the temperature measurement data is used in the embodiment. 図6は、高炉炉頂部を複数の領域に区分けした図である。FIG. 6 is a diagram in which the blast furnace top is divided into a plurality of regions. 図7は、同じチャージにて第2領域及び第3領域で平均温度が温度閾値を超えた領域数と、通気抵抗指数との関係を示したグラフである。FIG. 7 is a graph showing the relationship between the number of regions where the average temperature exceeds the temperature threshold in the second region and the third region and the ventilation resistance index with the same charge. 図8は、装入物分布を変更した後の第2領域及び第3領域の平均温度が温度閾値を超えた領域数の変化を示したグラフである。FIG. 8 is a graph showing a change in the number of regions in which the average temperature of the second region and the third region after the charge distribution is changed exceeds the temperature threshold.

以下に、本発明を適用した高炉の炉況状態を判定する高炉炉況状態判定装置、高炉の操業方法、及び、高炉炉況状態判定方法の一実施形態について説明する。なお、本実施形態により本発明が限定されるものではない。   Hereinafter, an embodiment of a blast furnace state determination apparatus, a blast furnace operation method, and a blast furnace state determination method for determining a furnace state of a blast furnace to which the present invention is applied will be described. In addition, this invention is not limited by this embodiment.

図1は、実施形態に係る高炉炉況状態判定装置1の概略構成を示した図である。実施形態に係る高炉炉況状態判定装置1は、図1に示すように、温度分布計測センサ2と、データ収集装置3と、高温部位置検出装置4と、判定装置5と、報知装置6とによって構成されている。   FIG. 1 is a diagram showing a schematic configuration of a blast furnace state state determination apparatus 1 according to the embodiment. As shown in FIG. 1, the blast furnace state state determination device 1 according to the embodiment includes a temperature distribution measurement sensor 2, a data collection device 3, a high temperature part position detection device 4, a determination device 5, and a notification device 6. It is constituted by.

温度分布計測センサ2は、鉄鉱石を原料として銑鉄を生産する高炉の内部において、高炉の頂部から装入された原料からなる層の最上面である原料装入面の直上にある空間の温度分布(ここでは例えばガス温度分布であり、以下、単に原料装入面直上の温度分布という。)を計測する。温度分布計測センサ2としては、炉頂部に設置されたゾンデに埋め込まれた炉径方向に複数位置の温度を測定可能なように熱電対でもよいが、より詳細な温度分布を求めるには、音波を用いた温度分布計測装置(音響トモグラフィーを用いた温度分布計測装置)を用いるのが好ましい。   The temperature distribution measuring sensor 2 is a temperature distribution in a space immediately above a raw material charging surface which is the uppermost surface of a layer made of raw material charged from the top of the blast furnace inside a blast furnace that produces pig iron using iron ore as a raw material. (Here, for example, it is a gas temperature distribution, and hereinafter, simply referred to as a temperature distribution immediately above the raw material charging surface) is measured. The temperature distribution measuring sensor 2 may be a thermocouple so that the temperature at a plurality of positions can be measured in the furnace radial direction embedded in a sonde installed at the top of the furnace, but in order to obtain a more detailed temperature distribution, It is preferable to use a temperature distribution measuring device (temperature distribution measuring device using acoustic tomography).

データ収集装置3は、温度分布計測センサ2からの計測値である温度分布データ(温度分布情報)を収集し蓄積する。   The data collection device 3 collects and accumulates temperature distribution data (temperature distribution information) that is a measurement value from the temperature distribution measurement sensor 2.

なお、高炉内への原料装入タイミングの間隔に対して、温度分布計測センサ2による原料装入面直上の全域にわたる温度分布の計測が完了するまでの時間が遅すぎると、計測された温度分布に偏りや乱れが発生している異常判定となる可能性が高くなるおそれがある。そのため、温度分布計測センサ2は、30[s]以内で原料装入面直上の全域にわたる温度分布の計測が完了するものであり、温度分布計測センサ2からのリアルタイムの温度分布データをデータ収集装置3で収集し蓄積する。   If the time until the temperature distribution measurement over the entire area immediately above the raw material charging surface is completed by the temperature distribution measuring sensor 2 is too late with respect to the raw material charging timing interval in the blast furnace, the measured temperature distribution There is a possibility that there is a high possibility that the abnormality determination is biased or disturbed. Therefore, the temperature distribution measurement sensor 2 completes the measurement of the temperature distribution over the entire region immediately above the raw material charging surface within 30 [s], and the data distribution device collects the real-time temperature distribution data from the temperature distribution measurement sensor 2. Collect and accumulate in step 3.

高温部位置検出装置4は、データ収集装置3に蓄積された温度分布データに基づいて、高炉内の原料装入面直上で予め設定した温度閾値以上の温度が出現した位置すなわち高温部の位置を検出する。例えば、高温部位置検出装置4は、データ収集装置3に蓄積された温度分布データを、炉頂に設定した座標系に温度をマッピングすることによって領域内の平均温度を計算することが可能である。また、高温部位置検出装置4としては、コンピュータプログラムとして実現すればよい。なお、高温部位置検出装置7においては、データ収集装置3に蓄積された温度分布データからではなく、温度分布計測センサ2が計測した温度分布データ(温度分布情報)から直に、高温部の位置を検出するようにしてもよい。   Based on the temperature distribution data accumulated in the data collection device 3, the high temperature part position detection device 4 determines the position at which a temperature equal to or higher than a preset temperature threshold appears immediately above the raw material charging surface in the blast furnace, that is, the position of the high temperature part. To detect. For example, the high temperature part position detection device 4 can calculate the average temperature in the region by mapping the temperature distribution data accumulated in the data collection device 3 to the coordinate system set at the top of the furnace. . Moreover, what is necessary is just to implement | achieve as a high temperature part position detection apparatus 4 as a computer program. In the high temperature portion position detection device 7, the position of the high temperature portion is not directly from the temperature distribution data accumulated in the data collection device 3 but directly from the temperature distribution data (temperature distribution information) measured by the temperature distribution measurement sensor 2. May be detected.

判定装置5は、高温部位置検出装置4が検出した高温部の位置に基づいて、炉況状態の判定を行うものであり、炉頂の指定した領域の平均温度が一定期間以上高かった場合を炉況異常と判定する。   The determination device 5 determines the furnace state based on the position of the high temperature portion detected by the high temperature portion position detection device 4, and the case where the average temperature in the designated area at the top of the furnace is higher than a certain period. Judged as abnormal furnace conditions.

報知装置6は、判定装置5の判定結果を警報などによってオペレータに提示する。報知装置6からの警報によって炉況異常、すなわち、高炉円周方向における原料装入や反応の偏りや乱れが発生したことを知ったオペレータは、例えば、高炉円周方向において原料をどのように装入するかなどを予め複数設定している装入物制御パターンを変更するなどして、高炉円周方向における原料装入や反応の偏りや乱れを抑制するように、高炉の操業条件を変更する。   The notification device 6 presents the determination result of the determination device 5 to the operator by an alarm or the like. An operator who knows that an alarm from the notification device 6 has caused an abnormal furnace condition, that is, raw material charging in the blast furnace circumferential direction or reaction bias or disturbance has occurred, for example, how to load the raw material in the blast furnace circumferential direction. Change the operating conditions of the blast furnace to suppress raw material charging and reaction bias and disturbance in the blast furnace circumferential direction, such as by changing the charge control pattern that has been set in advance. .

また、原料装入は異なる原料を交互に捲いて行われるが、その繰り返し単位を1チャージと呼ぶことにする。   In addition, raw material charging is performed by alternately charging different raw materials, and the repeating unit is referred to as one charge.

ここで、高炉においては、装入された原料の分布状況によって、原料が炉内へ降下した際に、炉況の良否が大きく左右される。したがって、挿入された原料の分布(装入物分布)を精度よく制御するため、原料種や原料の粒度などによって、炉内の旋回シュートの傾動角や旋回数や装入する向き(半径方向で内側から外側、または、半径方向で外側から内側)などを予め決定し、装入する。ところが、原料はそれぞれ粒径や形状にバラつきがあるため、狙った場所へ、狙った分布で装入しても、一部が崩れて分布が乱れる(原料の流れ込み)場合がある。特に、高炉の外周よりも少し内側の部分の分布を作りこむために、複雑な装入を行うことがある。本願発明者らは、こうした場合、炉内内側に原料が崩れることがあり、原料が崩れ残った部分から高温のガスが上昇してくることを発見した。また、このような状況が継続すると、炉況が悪化することがわかった。こうした現象は、炉内の半径方向の中間部で発生することが多く、そうした位置の高温部の出現状況を監視することが、炉況異常を判定するために有効である。   Here, in the blast furnace, when the raw material falls into the furnace, the quality of the furnace condition greatly depends on the distribution state of the charged raw material. Therefore, in order to accurately control the distribution of the inserted raw material (charge distribution), depending on the raw material type and raw material particle size, etc., the tilt angle of the turning chute in the furnace, the number of turns and the direction of charging (in the radial direction) From inside to outside or from outside to inside in the radial direction) is determined in advance and charged. However, since the raw materials vary in particle size and shape, even if the raw material is charged to the target location with the target distribution, a part of the raw material may collapse and the distribution may be disturbed (flow of the raw material). In particular, in order to create a distribution in a portion slightly inside the outer periphery of the blast furnace, complicated charging may be performed. In such a case, the present inventors have discovered that the raw material may collapse inside the furnace, and the high-temperature gas rises from the portion where the raw material remains broken. It was also found that if this situation continues, the furnace condition deteriorates. Such a phenomenon often occurs in the middle part in the radial direction in the furnace, and monitoring the appearance of the high temperature part at such a position is effective for determining the furnace condition abnormality.

次に、実施形態に係る高炉炉況状態判定方法について説明する。図2は、実施形態に係る高炉炉況状態判定方法の一例を示したフローチャートである。図2に示した実施形態に係る高炉炉況状態判定方法は、温度分布計測ステップ(ステップS1)と、温度分布データ蓄積ステップ(ステップS2)と、高温部位置検出ステップ(ステップS3)と、炉況異常判定ステップ(ステップS4)とを有している。   Next, a blast furnace state state determination method according to the embodiment will be described. FIG. 2 is a flowchart showing an example of a blast furnace state state determination method according to the embodiment. The blast furnace state determination method according to the embodiment shown in FIG. 2 includes a temperature distribution measurement step (step S1), a temperature distribution data accumulation step (step S2), a high temperature part position detection step (step S3), a furnace A situation abnormality determination step (step S4).

図2に示した実施形態に係る高炉炉況状態判定方法においては、まず、鉄鉱石を原料として銑鉄を生産する高炉の内部において、炉下部の羽口から吹き込まれ、炉内の原料との熱交換を経て吹き上がってきた熱風の原料装入面直上の温度分布を計測する(ステップS1)。次に、温度分布計測ステップ(ステップS1)で得られた温度分布データを蓄積する(ステップS2)。次に、温度分布データ蓄積ステップ(ステップS2)で蓄積された温度分布データ(温度分布情報)に基づいて、高温部の位置を検出する(ステップS3)。そして、高温部位置検出ステップ(ステップS3)で検出した高温部の位置によって、炉況状態が異常であるかの判定を行う(ステップS4)。   In the blast furnace state condition determination method according to the embodiment shown in FIG. 2, first, in the blast furnace that produces pig iron using iron ore as a raw material, the heat from the tuyeres at the lower part of the furnace is blown into the furnace. A temperature distribution immediately above the raw material charging surface of hot air blown up through the exchange is measured (step S1). Next, the temperature distribution data obtained in the temperature distribution measurement step (step S1) is accumulated (step S2). Next, the position of the high temperature part is detected based on the temperature distribution data (temperature distribution information) accumulated in the temperature distribution data accumulation step (step S2) (step S3). Then, it is determined whether the furnace state is abnormal based on the position of the high temperature part detected in the high temperature part position detection step (step S3) (step S4).

高炉の操業においては、主に原料性状(粒径分布や成分など)に誤認識があった場合や、炉頂の装入バンカー等の秤量器に誤差が生じ、傾動シュートで原料を捲いた結果、炉径方向で偏差が生じた場合などでは、操業諸元の一つである装入物分布が設計どおりに行われず炉況を悪化させてしまう場合がある。高炉に装入された原料は、およそ8時間で溶銑として炉外に排出されることがわかっている。   In the operation of the blast furnace, mainly when there is a misrecognition of the raw material properties (particle size distribution, components, etc.), or an error occurs in the weighing machine such as a charging bunker at the top of the furnace, and the result of rolling the raw material with a tilting chute When there is a deviation in the furnace diameter direction, the charge distribution, which is one of the operation specifications, is not performed as designed, and the furnace condition may be deteriorated. It is known that the raw material charged in the blast furnace is discharged out of the furnace as molten iron in about 8 hours.

通常、原料が炉体のシャフト部の中部から下部まで降下し、原料が熱によって溶解が始まる高さ(融着帯に達する)まで降下したときに、炉況に影響が出てくると考えられる。これは、想定していたガスの流れが、想定外の装入物分布によって乱れ、融着帯の形状が変形するからと考えられる。装入された原料が溶銑として高炉から排出されるには、8時間程度かかることが知られているが、シャフト部はおおよそ装入面から中間の高さの位置であり、一般に高炉の径方向で最外部ではシャフト部の下部付近に融着帯が位置すると考えられ、高炉の径方向の内側に進むにしたがって融着帯が上方に位置するようになる。そして、高炉の径方向の中心である炉心部では、融着帯がシャフト上部まで達していると考えられる。よって、装入物分布変更後、原料が融着帯付近まで降下する2時間から4時間以降に、炉況状態に影響が出始めることになる。すなわち、変更した装入物分布が適切ではなかった場合には、羽口から炉内に吹き込まれたガスが、原料と十分に熱交換をしないまま炉頂へ上昇する。そのため、装入物分布変更後、2時間から4時間以降に、炉頂の温度分布に高温部が出現するようになった場合は、装入物分布が適切ではなかったことがわかる。このような炉況状態に異常が現れた場合には、装入物分布の変更時点よりも前の装入物分布へ戻すような操業を行って、炉況状態の異常を回避することが考えられる。   Normally, when the raw material falls from the middle to the lower part of the shaft part of the furnace body, and the raw material falls to the height at which melting starts (to reach the cohesive zone), it is thought that the furnace condition will be affected. . This is presumably because the assumed gas flow is disturbed by an unexpected charge distribution and the shape of the cohesive zone is deformed. It is known that it takes about 8 hours for the charged raw material to be discharged from the blast furnace as molten iron, but the shaft is roughly at a position intermediate from the charging surface, and is generally in the radial direction of the blast furnace. In the outermost part, it is considered that the cohesive zone is located near the lower part of the shaft portion, and the cohesive zone is located at the upper side as it proceeds inward in the radial direction of the blast furnace. And in the core part which is the center of the diameter direction of a blast furnace, it is thought that the cohesive zone has reached the upper part of the shaft. Therefore, after the charge distribution is changed, the furnace state starts to be affected after 2 to 4 hours when the raw material descends to the vicinity of the cohesive zone. That is, when the changed charge distribution is not appropriate, the gas blown into the furnace from the tuyere rises to the furnace top without sufficiently exchanging heat with the raw material. Therefore, it can be seen that when the high temperature portion appears in the temperature distribution at the top of the furnace after 2 to 4 hours after the charge distribution change, the charge distribution is not appropriate. If abnormalities appear in such furnace conditions, it may be possible to avoid abnormalities in furnace conditions by performing an operation to return to the charge distribution before the charge distribution change time. It is done.

なお、装入物分布が適切ではなかった場合には、シャフト圧力に異常が出ることが多い。一方で、高炉の径方向の中間部に装入物分布の不適切な部分がある場合には、炉心部に近い部分のガスの流れが乱れるため、炉体表面に設置されたシャフト圧力計に影響が表れにくい。よって、特に炉心部に近い位置で高温部が現れるような炉況異常については、本発明が有効となる。   If the charge distribution is not appropriate, the shaft pressure often becomes abnormal. On the other hand, if there is an improper part of the charge distribution in the middle part of the blast furnace in the radial direction, the gas flow in the part near the core will be disturbed, so the shaft pressure gauge installed on the surface of the furnace body Influence is hard to appear. Therefore, the present invention is effective particularly for a reactor state abnormality in which a high temperature portion appears at a position close to the core portion.

[実施例]
次に、実際の原料装入面直上の温度分布計測データを用いた、本発明の実施例について説明する。なお、本実施例では、原料装入面直上の温度分布を計測する温度分布計測センサ2として、音波を用いた温度分布計測装置(音響トモグラフィーを用いた温度分布計測装置)を用いている。
[Example]
Next, an embodiment of the present invention using temperature distribution measurement data immediately above the actual raw material charging surface will be described. In the present embodiment, a temperature distribution measuring device (a temperature distribution measuring device using acoustic tomography) using sound waves is used as the temperature distribution measuring sensor 2 for measuring the temperature distribution immediately above the raw material charging surface.

図3は、音波を用いた温度分布計測装置として、高炉炉頂部10の内部に向けて10個のマイク/スピーカー素子20a〜20jを円周方向に沿って設置した場合を示した図である。実施形態においては、図3に示すように、高炉炉頂部10の内部に向けて、音波送受信手段であるマイク兼スピーカーとなる10個のマイク/スピーカー素子20a〜20j(マイク/スピーカー素子20a〜20jを特に区別しない場合には、マイク/スピーカー素子20という。)を円周方向に沿って設置している。そして、マイク/スピーカー素子20a〜20jのうちの1つである、例えば、マイク/スピーカー素子20aのスピーカーから音波を送信し、残りのマイク/スピーカー素子20b〜20jの各マイクで前記音波を受信し、前記音波を送信した時点から各マイクで受信するまでの前記音波の各音波伝搬経路における音波伝搬時間を計測する。そして、全てのマイク/スピーカー素子20a〜20jのスピーカーから順次音波を送信し、前述したようにして全てのマイク/スピーカー素子20a〜20jについて音波伝搬時間を計測し、その計測した音波伝搬時間に基づいて、原料装入面直上の温度分布を計測する。   FIG. 3 is a diagram showing a case where ten microphone / speaker elements 20a to 20j are installed along the circumferential direction toward the inside of the blast furnace top 10 as a temperature distribution measuring apparatus using sound waves. In the embodiment, as shown in FIG. 3, 10 microphone / speaker elements 20 a to 20 j (microphone / speaker elements 20 a to 20 j) that serve as microphones and speakers serving as sound wave transmitting and receiving means are directed toward the inside of the blast furnace top 10. Are not specifically distinguished, they are referred to as microphone / speaker elements 20) along the circumferential direction. Then, a sound wave is transmitted from one of the microphone / speaker elements 20a to 20j, for example, a speaker of the microphone / speaker element 20a, and the sound wave is received by each of the remaining microphones / speaker elements 20b to 20j. The sound wave propagation time in each sound wave propagation path of the sound wave from when the sound wave is transmitted until it is received by each microphone is measured. Then, sound waves are sequentially transmitted from the speakers of all the microphone / speaker elements 20a to 20j, the sound wave propagation times are measured for all the microphone / speaker elements 20a to 20j as described above, and based on the measured sound wave propagation times. Then, measure the temperature distribution just above the raw material charging surface.

ここで、マイク/スピーカー素子20のスピーカーから発せられた音波は、高炉炉頂部10内の空間を伝搬していくが、音速は媒質となる気体の温度との間に、下記(1)式の関係がある。   Here, the sound wave emitted from the speaker of the microphone / speaker element 20 propagates through the space in the blast furnace top 10, and the speed of sound is expressed by the following equation (1) between the temperature of the gas serving as a medium. There is a relationship.

Figure 2019183261
Figure 2019183261

ただし、上記(1)式中、Tは音波伝播経路上の平均温度、Cは音速、Rは気体定数、γは比熱比、Mは気体の分子量である。   In the above equation (1), T is the average temperature on the sound wave propagation path, C is the speed of sound, R is the gas constant, γ is the specific heat ratio, and M is the molecular weight of the gas.

なお、上記(1)式における音速Cは、音波を発信したマイク/スピーカー素子20のスピーカーから、残りのマイク/スピーカー素子20の各マイクまでの距離は既知であるから、スピーカーから音波を発信してマイクで音波を受信するまでの時間を計測することによって求めることができる。これにより、上記(1)式に示した関係から、音波を発信したマイク/スピーカー素子20のスピーカーから、残りのマイク/スピーカー素子20の各マイクへの音波伝搬経路上の平均温度を計算することができる。   Note that the speed of sound C in the above equation (1) is such that the distance from the speaker of the microphone / speaker element 20 that transmitted the sound wave to each microphone of the remaining microphone / speaker element 20 is known, so the sound wave is transmitted from the speaker. Then, it can be obtained by measuring the time until the sound wave is received by the microphone. Accordingly, the average temperature on the sound wave propagation path from the speaker of the microphone / speaker element 20 that has transmitted the sound wave to each microphone of the remaining microphone / speaker element 20 is calculated from the relationship shown in the above formula (1). Can do.

次に、温度の求め方について説明する。温度分布は、音速分布を元に、例えば以下の方法によって計算される。   Next, how to obtain the temperature will be described. The temperature distribution is calculated based on the sound speed distribution, for example, by the following method.

図4に示すように、音波伝搬経路が互いに平行となる一対のマイク/スピーカー素子20のスピーカーとマイクとの組を考える。スピーカーからr軸に垂直なs軸方向へ音波信号を送受信する。また、高炉炉頂部10に設定されたxy軸(原点は炉心と一致)のx軸とr軸とのなす角をθとすると、高炉炉頂部10のある点の極座標を(R,θ)と表すことができる。そして、音速分布をf(x,y)とすると、スピーカーで取得される投影データg(r,θ)は音波伝搬時間の分布であり、下記(2)式で表される。   As shown in FIG. 4, a pair of a microphone and a speaker of a pair of microphone / speaker elements 20 whose sound wave propagation paths are parallel to each other is considered. A sound wave signal is transmitted and received from the speaker in the s-axis direction perpendicular to the r-axis. Further, if the angle formed by the x axis of the xy axis set at the blast furnace top 10 (the origin coincides with the core) and the r axis is θ, the polar coordinate of a certain point of the blast furnace top 10 is (R, θ). Can be represented. If the sound velocity distribution is f (x, y), the projection data g (r, θ) acquired by the speaker is a sound wave propagation time distribution and is expressed by the following equation (2).

Figure 2019183261
Figure 2019183261

ここで、上記(2)式において、下記(3)式とおけば、下記(4)式のように表すことができる。   Here, in the above equation (2), the following equation (3) can be expressed as the following equation (4).

Figure 2019183261
Figure 2019183261

Figure 2019183261
Figure 2019183261

上記(4)式は、X線CTと同じ形であり、CTのアルゴリズムによって音速分布を再構成することが可能である。   The above equation (4) has the same form as X-ray CT, and the sound speed distribution can be reconstructed by the CT algorithm.

そして、音波伝搬経路が互いに平行となる一対のマイク/スピーカー素子20のスピーカーとマイクとの他の組についてθを変化させて、g(r,θ)を計算することによって高精度化される。具体的な方法としては、例えば、非特許文献1に記載されているような二次元フーリエ変換法などの適用が可能である。   The accuracy is improved by calculating θ (g, r) by changing θ for another pair of the speaker / microphone of the pair of microphone / speaker elements 20 whose sound wave propagation paths are parallel to each other. As a specific method, for example, a two-dimensional Fourier transform method described in Non-Patent Document 1 can be applied.

図5は、実施例で温度計測データの使用する範囲を示した図である。図5に示すように、高炉炉頂部10の径方向において外周側よりも内側の領域の温度分布データに対して高温部の位置を検出することによって、装入物分布の流れ込みを検知し、炉況を把握することが可能である。こうした原料が流動化した状況は、高炉炉頂部10の径方向において中心Oから半径rの3/4の距離よりも内側であって中心Oから半径rの1/4の距離よりも外側の範囲である図中斜線で示した中間部MAで顕著である。そして、本願発明者は、中間部MAに高温部が出現すると、炉況が不安定化するのが多いことを見出した。   FIG. 5 is a diagram illustrating a range in which the temperature measurement data is used in the embodiment. As shown in FIG. 5, by detecting the position of the high temperature portion with respect to the temperature distribution data in the region inside the outer peripheral side in the radial direction of the blast furnace top 10, the flow of the charge distribution is detected, and the furnace It is possible to grasp the situation. The state in which the raw material is fluidized is a range in the radial direction of the blast furnace top 10 from the center O to a distance of 3/4 of the radius r and from the center O to a distance of 1/4 of the radius r. This is conspicuous in the intermediate portion MA indicated by hatching in the figure. And this inventor discovered that when a high temperature part appeared in the intermediate part MA, a furnace condition will become unstable in many cases.

そこで、本実施例においては、図6に示すように、高炉炉頂部10を半径方向に4等分し、内側から順に第1領域、第2領域、第3領域、第4領域とした。また、高炉炉頂部10を円周方向に8等分し、図中時計回り方向で順にA領域、B領域、C領域、D領域、E領域、F領域、G領域、H領域とした。そして、このように高炉炉頂部10の半径方向と円周方向とに区分けされた領域を、ぞれぞれ、領域1−A、領域1−B、・・・、領域2−A、・・・、領域3−A、・・・、領域4−A、・・・、領域4−Hと呼ぶことにする。   Therefore, in this embodiment, as shown in FIG. 6, the blast furnace top 10 is divided into four equal parts in the radial direction, and the first region, the second region, the third region, and the fourth region are formed in order from the inside. Further, the blast furnace top 10 was divided into eight equal parts in the circumferential direction, and the A region, B region, C region, D region, E region, F region, G region, and H region were sequentially arranged in the clockwise direction in the figure. And the area | region divided into the radial direction and the circumferential direction of the blast furnace top part 10 in this way is area | region 1-A, area | region 1-B, ..., area | region 2-A, ..., respectively. .., Region 4-A,..., Region 4-A,.

本実施例においては、特に高炉炉頂部10の中間部MAに対応する領域である第2領域及び第3領域、すなわち、領域2−A、・・・、領域2−H、領域3−A、・・・、領域3−Hに着目し、炉況が不安定と考えられる際に、これら着目した領域に平均温度が温度閾値である300[℃]以上の高温部が出現したかどうかを検出した。そして、本実施例では、同一の領域に3チャージ連続で高温部が出現した場合、または、同じチャージで6つ以上の領域に高温部が出現した場合を炉況異常とした。   In the present embodiment, the second region and the third region which are regions corresponding to the middle portion MA of the blast furnace top 10 in particular, that is, the region 2-A, ..., the region 2-H, the region 3-A, ... When focusing on region 3-H and the furnace condition is considered to be unstable, it is detected whether a high-temperature part having an average temperature of 300 [° C.] or more, which is the temperature threshold, has appeared in these focused regions did. In this example, the furnace condition abnormality was determined when a high temperature portion appeared in three consecutive charges in the same region, or when a high temperature portion appeared in six or more regions with the same charge.

図7は、同じチャージにて第2領域及び第3領域で平均温度が温度閾値を超えた領域数と、通気抵抗指数との関係を示したグラフである。本実施例の高炉では、高炉の炉況を表す通気抵抗指数が1.1を超えると炉況が不安定であると考えられる。そのため、本実施例では、図3に示すように、同じチャージにて第2領域及び第3領域で平均温度が温度閾値を超えた領域数、言い換えれば、同じチャージにて第2領域及び第3領域に高温部が出現した領域数が、通気抵抗指数1.1を超える6領域以上のときを炉況異常とすればよいことがわかる。   FIG. 7 is a graph showing the relationship between the number of regions where the average temperature exceeds the temperature threshold in the second region and the third region and the ventilation resistance index with the same charge. In the blast furnace of this example, it is considered that the furnace condition is unstable when the ventilation resistance index representing the furnace condition of the blast furnace exceeds 1.1. Therefore, in this embodiment, as shown in FIG. 3, the number of regions in which the average temperature exceeds the temperature threshold in the second region and the third region with the same charge, in other words, the second region and the third region with the same charge. It can be seen that when the number of regions where the high temperature portion appears in the region is 6 regions or more exceeding the ventilation resistance index of 1.1, the furnace condition may be regarded as abnormal.

また、その他の高炉炉況状態判定方法としては、1チャージ中に所定の平均温度を超える回数(1チャージ中に高温部が出現した回数)をカウントすることも有効な判定方法であると考えられる。   As another blast furnace state determination method, counting the number of times that exceeds a predetermined average temperature during one charge (the number of times a high temperature portion has appeared during one charge) is also considered to be an effective determination method. .

図8は、装入物分布を変更した後の第2領域及び第3領域の平均温度が温度閾値を超えた領域数の変化を示したグラフである。図8に示すように、装入物分布変更後、2時間を過ぎたころから徐々に第2領域及び第3領域の平均温度が温度閾値を超えた領域数が増加した。そして、図8に示すように、装入物分布変更後、4時間を過ぎたところで前記領域数が6を超えたため、装入物分布を元に戻すと、6時間を過ぎたところから徐々に前記領域数が減少した。   FIG. 8 is a graph showing a change in the number of regions in which the average temperature of the second region and the third region after the charge distribution is changed exceeds the temperature threshold. As shown in FIG. 8, the number of regions where the average temperature of the second region and the third region exceeded the temperature threshold gradually increased from about 2 hours after the charge distribution change. And, as shown in FIG. 8, since the number of regions exceeded 6 after 4 hours after the charge distribution change, when the charge distribution was returned to the original, the area gradually increased from 6 hours. The number of areas decreased.

1 高炉炉況状態判定装置
2 温度分布計測センサ
3 データ収集装置
4 高温部位置検出装置
5 判定装置
6 報知装置
10 高炉炉頂部
20 マイク/スピーカー素子
DESCRIPTION OF SYMBOLS 1 Blast furnace state state determination apparatus 2 Temperature distribution measurement sensor 3 Data collection apparatus 4 High temperature part position detection apparatus 5 Determination apparatus 6 Notification apparatus 10 Blast furnace top 20 Microphone / speaker element

Claims (8)

高炉の炉況状態を判定する高炉炉況状態判定装置であって、
高炉内における原料装入面直上の温度分布を計測する温度分布計測手段と、
前記温度分布計測手段によって計測された前記温度分布の情報に基づいて、所定温度を上回る高温部の位置を検出する高温部位置検出手段と、
前記高温部位置検出手段によって検出された前記高温部の位置に基づいて、前記炉況状態が異常であるかを判定する判定手段と、
を備えることを特徴とする高炉炉況状態判定装置。
A blast furnace state determination device for determining the state of a blast furnace,
Temperature distribution measuring means for measuring the temperature distribution immediately above the raw material charging surface in the blast furnace;
Based on the temperature distribution information measured by the temperature distribution measuring means, a high temperature part position detecting means for detecting a position of a high temperature part exceeding a predetermined temperature;
Determination means for determining whether or not the furnace state is abnormal based on the position of the high temperature part detected by the high temperature part position detection means;
A blast furnace state determination device characterized by comprising:
請求項1に記載の高炉炉況状態判定装置において、
前記温度分布計測手段は、高炉炉頂部に設けられた複数の音波送受信手段のうち1つの音波送受信手段から音波を送信し、相異なる音波送受信手段で前記音波を受信して、前記音波を送信した時点から各音波送受信手段で受信するまでの前記音波の各音波伝搬経路における音波伝搬時間の計測を、全ての音波送受信手段で実施し、前記音波伝搬時間に基づいて高炉炉頂部の温度分布を計測することを特徴とする高炉炉況状態判定装置。
In the blast furnace state determination apparatus according to claim 1,
The temperature distribution measuring means transmits sound waves from one sound wave transmitting / receiving means among a plurality of sound wave transmitting / receiving means provided at the top of the blast furnace furnace, receives the sound waves by different sound wave transmitting / receiving means, and transmits the sound waves. Measurement of the sound wave propagation time in each sound wave propagation path from the time point until reception by each sound wave transmission / reception means is carried out by all sound wave transmission / reception means, and the temperature distribution at the top of the blast furnace is measured based on the sound wave propagation time. A blast furnace state determination apparatus characterized by:
請求項1または2に記載の高炉炉況状態判定装置によって判定された高炉の炉況状態に応じて、操業条件を変更することを特徴とする高炉の操業方法。   A method for operating a blast furnace, wherein the operating conditions are changed according to the furnace state of the blast furnace determined by the blast furnace state determining apparatus according to claim 1. 高炉の炉況状態を判定する高炉炉況状態判定方法であって、
高炉内における原料装入面直上の温度分布を計測する温度分布計測ステップと、
前記温度分布計測ステップで計測された前記温度分布の情報に基づいて、所定温度を上回る高温部の位置を検出する高温部位置検出ステップと、
前記高温部位置検出ステップで検出された前記高温部の位置に基づいて、前記炉況状態が異常であるかを判定する炉況異常判定ステップと、
を有することを特徴とする高炉炉況状態判定方法。
A blast furnace state determination method for determining a blast furnace state,
A temperature distribution measuring step for measuring the temperature distribution immediately above the raw material charging surface in the blast furnace;
Based on the temperature distribution information measured in the temperature distribution measurement step, a high temperature part position detection step for detecting a position of a high temperature part exceeding a predetermined temperature;
A furnace condition abnormality determining step for determining whether the furnace condition state is abnormal based on the position of the high temperature part detected in the high temperature part position detecting step;
A method for determining the state of a blast furnace state, comprising:
請求項4に記載の高炉炉況状態判定方法において、
前記温度分布計測ステップでは、高炉炉頂部に設けられた複数の音波送受信手段のうち1つの音波送受信手段から音波を送信し、相異なる音波送受信手段で前記音波を受信して、前記音波を送信した時点から各音波送受信手段で受信するまでの前記音波の各音波伝搬経路における音波伝搬時間の計測を、全ての音波送受信手段で実施し、前記音波伝搬時間に基づいて高炉炉頂部の温度分布を計測することを特徴とする高炉炉況状態判定方法。
In the blast furnace state determination method according to claim 4,
In the temperature distribution measuring step, a sound wave is transmitted from one sound wave transmitting / receiving means among a plurality of sound wave transmitting / receiving means provided at the top of the blast furnace, and the sound waves are received by different sound wave transmitting / receiving means, and the sound waves are transmitted. Measurement of the sound wave propagation time in each sound wave propagation path from the time point until reception by each sound wave transmission / reception means is carried out by all sound wave transmission / reception means, and the temperature distribution at the top of the blast furnace is measured based on the sound wave propagation time. A method for determining a state of a blast furnace state characterized by:
請求項4または5に記載の高炉炉況状態判定方法において、
原料が前記高炉に装入される繰り返し単位を1チャージとして、前記高温部の位置が検出されたチャージが複数回継続した場合に、前記炉況状態が異常であると判定することを特徴とする高炉炉況状態判定方法。
In the blast furnace state determination method according to claim 4 or 5,
The repeating unit in which the raw material is charged into the blast furnace is defined as one charge, and when the charge in which the position of the high temperature portion is detected continues several times, it is determined that the furnace state is abnormal. Blast furnace state condition judgment method.
請求項4乃至6のいずれか1項に記載の高炉炉況状態判定方法を用いた高炉の操業方法であって、
操業諸元を変更した時刻から所定の時間内に前記高炉炉況状態判定方法によって、前記炉況状態が異常と判定された場合には、前記操業諸元の変更時点よりも前の前記操業諸元に戻すことを特徴とする高炉の操業方法。
A blast furnace operating method using the blast furnace state condition determining method according to any one of claims 4 to 6,
If the furnace state is determined to be abnormal by the blast furnace state determination method within a predetermined time from the time when the operation item is changed, the operation items before the change of the operation item are determined. Blast furnace operation method characterized by returning to the original.
請求項7に記載の高炉の操業方法において、
前記操業諸元は装入物分布であることを特徴とする高炉の操業方法。
In the operating method of the blast furnace of Claim 7,
The operating method of a blast furnace, wherein the operating specifications are a distribution of charges.
JP2019025891A 2018-04-03 2019-02-15 Blast furnace condition condition determination device, blast furnace operation method, and blast furnace condition condition determination method Active JP6870693B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018071334 2018-04-03
JP2018071334 2018-04-03

Publications (2)

Publication Number Publication Date
JP2019183261A true JP2019183261A (en) 2019-10-24
JP6870693B2 JP6870693B2 (en) 2021-05-12

Family

ID=68339943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019025891A Active JP6870693B2 (en) 2018-04-03 2019-02-15 Blast furnace condition condition determination device, blast furnace operation method, and blast furnace condition condition determination method

Country Status (1)

Country Link
JP (1) JP6870693B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022044816A1 (en) * 2020-08-24 2022-03-03 Jfeスチール株式会社 Blast furnace condition determination device, operation method of blast furnace, and manufacturing method for molten iron

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319613A (en) * 1988-06-17 1989-12-25 Kawasaki Steel Corp Method of administrating operation of blast furnace
JPH01319615A (en) * 1988-06-17 1989-12-25 Kawasaki Steel Corp Method of operating blast furnace
JPH04173908A (en) * 1990-11-02 1992-06-22 Nippon Steel Corp Method for preventing blowby in blast furnace operation
JPH04173909A (en) * 1990-11-02 1992-06-22 Nippon Steel Corp Method for preventing blowby in blast furnace operation
JP2018035393A (en) * 2016-08-31 2018-03-08 Jfeスチール株式会社 Blast furnace operation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319613A (en) * 1988-06-17 1989-12-25 Kawasaki Steel Corp Method of administrating operation of blast furnace
JPH01319615A (en) * 1988-06-17 1989-12-25 Kawasaki Steel Corp Method of operating blast furnace
JPH04173908A (en) * 1990-11-02 1992-06-22 Nippon Steel Corp Method for preventing blowby in blast furnace operation
JPH04173909A (en) * 1990-11-02 1992-06-22 Nippon Steel Corp Method for preventing blowby in blast furnace operation
JP2018035393A (en) * 2016-08-31 2018-03-08 Jfeスチール株式会社 Blast furnace operation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022044816A1 (en) * 2020-08-24 2022-03-03 Jfeスチール株式会社 Blast furnace condition determination device, operation method of blast furnace, and manufacturing method for molten iron
JP2022036716A (en) * 2020-08-24 2022-03-08 Jfeスチール株式会社 Blast furnace condition determination device, blast furnace operation method, and hot metal production method
JP7264132B2 (en) 2020-08-24 2023-04-25 Jfeスチール株式会社 Blast Furnace Status Determining Device, Blast Furnace Operating Method, and Hot Metal Manufacturing Method

Also Published As

Publication number Publication date
JP6870693B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
JP6617767B2 (en) Blast furnace state determination apparatus, blast furnace operation method, and blast furnace state determination method
CN108517384B (en) A kind of monitoring method of blast furnace crucibe side wall
JP2017190482A (en) System for detecting failure of blast furnace sensor and system for predicting abnormal condition of blast furnace
JP2019183261A (en) Device for determining condition of blast furnace, method for operating blast furnace and method for determining condition of blast furnace
JP5674542B2 (en) Profile measurement method for blast furnace interior
JP6540636B2 (en) Blast furnace operation method
CN106324583B (en) A kind of online elimination method of vector array passive sonar abnormal data
JP6870694B2 (en) Blast furnace condition condition determination device, blast furnace operation method, and blast furnace condition condition determination method
JP6540654B2 (en) Blast furnace operation method
JP7307341B2 (en) Furnace gas pressure fluctuation detection method
JP6575467B2 (en) Blast furnace operation method
JP6631588B2 (en) Method for detecting deviation of charge descending speed and method for operating blast furnace
JP5387066B2 (en) Blast furnace gas flow distribution estimation method, blast furnace gas flow distribution estimation device, and blast furnace gas flow distribution estimation program
JP5915596B2 (en) Anomaly monitoring method and anomaly monitoring apparatus
JP2017150035A (en) Display method for blast furnace profile meter, and method for charging material to be charged in blast furnace
JP3487203B2 (en) Blast furnace condition prediction method
RU2529332C2 (en) Method to determine topography of metallurgical facility lining layers
JP6944393B2 (en) Plant condition evaluation system, plant condition evaluation method, and program
JP6617619B2 (en) Blast furnace operation method
JP6547474B2 (en) Blast furnace and measurement method for measuring the level of blast furnace charge
JP4276563B2 (en) Blast furnace bottom condition diagnosis method
JP6409490B2 (en) Method for estimating fall trajectory, method for correcting fall trajectory estimation method, and method for estimating charge distribution
JPH04365807A (en) Method for predicting lowering of furnace heat accompanying wall falling in high temperature furnace
RU2005121358A (en) METHOD FOR MONITORING THE STATE OF THE BLAST FURNACE LINE
JP2022137614A (en) Blast furnace operation method, charging method control device and charging method control program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210329

R150 Certificate of patent or registration of utility model

Ref document number: 6870693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250