JPH04173909A - Method for preventing blowby in blast furnace operation - Google Patents

Method for preventing blowby in blast furnace operation

Info

Publication number
JPH04173909A
JPH04173909A JP29857390A JP29857390A JPH04173909A JP H04173909 A JPH04173909 A JP H04173909A JP 29857390 A JP29857390 A JP 29857390A JP 29857390 A JP29857390 A JP 29857390A JP H04173909 A JPH04173909 A JP H04173909A
Authority
JP
Japan
Prior art keywords
furnace
reference value
blast furnace
gas temperature
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29857390A
Other languages
Japanese (ja)
Other versions
JPH0711018B2 (en
Inventor
Shinobu Morimoto
森本 忍
Masahiro Sanai
讃井 政博
Kozo Yamamura
山村 耕造
Tatsuro Hirata
平田 達朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP29857390A priority Critical patent/JPH0711018B2/en
Publication of JPH04173909A publication Critical patent/JPH04173909A/en
Publication of JPH0711018B2 publication Critical patent/JPH0711018B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Blast Furnaces (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To improve detective reliability to possibility of blowby development and to improve stability of blast furnace operation by comparing variation of surface level and dropping velocity of charged material in the blast furnace, variance and variable gradient, etc., of furnace gas temps. with the reference values. CONSTITUTION:In the blast furnace during operation, the surface level of charged material in the blast furnace is measured with a sounding device S. Further, the furnace gas temps. in plural riser Zj, are measured with furnace top thermometer Tzj. These measured values are inputted to a computer CMR through an input/output interface SPC. Then, it is detected whether the surface level of charged material at plural points in circumferential direction of the furnace and dropping velocity at each position are the reference values or more. Further, the variance of furnace gas temp. within the prescribed time and temp. variation gradient thereof, are detected. Successively, when the above level difference shows the reference value or more, and at least one of the dropping velocities shows the reference value or more and at least one of the variation gradients of the above furnace gas temps. shows the reference value or lower and at least one of the furnace gas temps. shows the reference value or more and at least one of the furnace gas temps. shows temp. drop larger than or equal to the reference value, the blasting rate into the blast furnace is reduced to prevent the blowby.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高炉操業に関し、特に、高炉の吹抜は防止に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to blast furnace operations, and in particular to the prevention of blast furnace blowouts.

〔従来の技術〕[Conventional technology]

高炉操業において炉内の圧力損失が局所的に増しこれが
装入物荷重と釣り合った状態になると装入物の局所的な
静止、いわゆる棚吊りが発生し、棚吊りの上側では装入
物の降下が止り、棚吊りの下方の炉内装入物の降下に伴
って棚吊りの下に空間を生ずる。この空洞がある程度大
きくなると棚吊りの外側の装入物が空洞に滑り込み(ス
リップ)これに伴ってこの局部的な棚吊りがくずれる。
During blast furnace operation, when the pressure loss inside the furnace increases locally and becomes balanced with the charge load, the charge locally stands still, so-called shelf suspension, and above the shelf suspension, the charge drops. , and as the contents of the furnace below the shelf hanger fall, a space is created under the shelf hanger. When this cavity becomes large to a certain extent, the charge outside the shelf suspension slips into the cavity, causing the local shelf suspension to collapse.

棚吊りが大きくそのくずれが急激に起ると大量の装入物
の局所的な、比較的に速い移動により、炉内の圧力損失
が局所的に低下しそこから炉内ガスが上方に吹上げ、こ
のとき装入物が炉頂に吹き上げられる。このような吹き
上げはいわゆる吹抜けと呼ばれ、炉内温度分布、装入物
分布を乱して正常な熱交換環元が行われなくなり、溶銑
温度等を乱したり、ひどい場合には冷込みに到ることが
ある。
If the shelf hangs large and collapses rapidly, the pressure drop in the furnace decreases locally due to the relatively fast local movement of a large amount of charge, and the gas in the furnace blows upward. At this time, the charge is blown up to the top of the furnace. This type of blow-up is called blow-by, and it disturbs the temperature distribution in the furnace and the charge distribution, preventing normal heat exchange, which disturbs the temperature of the hot metal, and in severe cases can cause cooling. It may come.

しかも炉頂の温度が極端に上昇するので、高炉設備の保
全上も大きな問題となる。
Moreover, since the temperature at the top of the furnace rises extremely, this poses a major problem in terms of maintenance of the blast furnace equipment.

特公平1−20203号公報には、高炉の高さ方向の複
数位置の炉壁内面部の静圧を測定し、これらの静圧から
、各測定位置から炉頂までの圧力損失を求め、一方、各
測定位置から炉頂までの装入物荷重を求めて、求めた圧
力損失と装入物荷重の比に対応して炉内吹込み送風条件
をpl!整して上記棚吊り (およびそれによってもた
らさせるスリップおよび吹抜け)を防止する技術が提示
されている。
Japanese Patent Publication No. 1-20203 discloses that the static pressure on the inner surface of the furnace wall at multiple positions in the height direction of the blast furnace is measured, and from these static pressures, the pressure loss from each measurement position to the top of the furnace is determined. , find the charge load from each measurement position to the top of the furnace, and set the air blowing conditions in the furnace in accordance with the ratio of pressure loss and charge load found! Techniques have been presented to prevent the above-mentioned shelf suspension (and the resulting slippage and blow-through).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが高炉内装入物の荷重は、焼結鉱の性状(粒度、
TFe、還元粉化性9強度等)、コークスの性状(粒度
、還元粉化性9強度等)及び炉内状況(高炉炉壁の損耗
:内容積の変化、摩擦抵抗の変化)により変動し、炉内
各点の装入物荷重の算出(推定)精度が低く、したがっ
て棚吊り等の発生可能性の推定精度が低い。これにより
、棚吊り等の抑制の信頼性を高めるためには過度に送風
量を抑制することになり操業の安定性が乱される。
However, the load of the blast furnace contents depends on the properties of the sintered ore (particle size,
TFe, reduction powdering properties 9 strength, etc.), coke properties (particle size, reduction powdering properties 9 strength, etc.), and furnace conditions (blast furnace wall wear: changes in internal volume, changes in frictional resistance). The accuracy of calculating (estimating) the charge load at each point in the furnace is low, and therefore the accuracy of estimating the possibility of shelving, etc. occurring is low. As a result, in order to increase the reliability of suppressing shelf hanging, etc., the amount of air blown must be excessively suppressed, which disturbs the stability of operation.

送風量の抑制を緩めると棚吊り等を起す可能性が高くな
る。したがって、より一層信頼性が高い吹抜は防止技術
が望まれる。
Relaxing the restriction on air flow increases the possibility of shelf hanging, etc. Therefore, an even more reliable technique for preventing stairwells is desired.

本発明は、吹抜けの発生可能性の検出信頼性を高くして
高炉操業の安定性をより高くすることを目的とする。
An object of the present invention is to increase the reliability of detecting the possibility of occurrence of blow-through, thereby increasing the stability of blast furnace operation.

〔課題を解決するための手段〕[Means to solve the problem]

本願の第1番の発明では、高炉内装入物の、炉周方向複
数点の上表面レベル(Li)の差(ΔH)が基準値(Δ
Is)以上であるかを検出すると共に上表面レベル(L
l)それぞれの位置の降下速度(dLj)が基準値(d
Ls)以上であるかを検出し;高炉炉頂部の複数の上昇
管zHの炉頂ガス温度(Tei)のそれぞれの所定時間
間隔Te+5(10sec)の変化量(dTej)と所
定時間間隔Tetl(60sec)の温度勾配(Tai
)を検出し。
In the first invention of the present application, the difference (ΔH) in the upper surface level (Li) at multiple points in the circumferential direction of the blast furnace contents is set to a reference value (ΔH).
Is) or above is detected and the upper surface level (L
l) The descent speed (dLj) at each position is the reference value (d
Ls) or above; detect the amount of change (dTej) in each predetermined time interval Te+5 (10 sec) of the furnace top gas temperature (Tei) of a plurality of riser pipes zH at the top of the blast furnace furnace and the predetermined time interval Tetl (60 sec). ) temperature gradient (Tai
) is detected.

前記上表面レベルの差(ΔH)が基準値(ΔHs)以上
(DΔH;])および上表面レベル(Lj)のそれぞれ
の降下速度(dLj)の少くとも一層が基準値(dLs
)以上(DdL=1)で、前記複数の上昇管の炉頂ガス
温度(Tei)の変化勾配(Tii)の少くとも一層が
基準値Vp以上(Tai+max≧Vp)および他の少
くとも一層が基準値V+a以下(Tiimin≦Vn)
かつ前記炉頂ガス温度の少くとも一層が基準値(dTe
)以上の温度低下変化を示したとき(DRd=I & 
DdT=1)に、高炉内への送風量を低減する(第2b
図の27−29)。
The difference in the upper surface level (ΔH) is equal to or higher than the reference value (ΔHs) (DΔH; ]), and at least one of the lowering speeds (dLj) of the upper surface level (Lj) is equal to the reference value (dLs).
) or more (DdL=1), at least one layer of the change gradient (Tii) of the furnace top gas temperature (Tei) of the plurality of riser tubes is equal to or higher than the reference value Vp (Tai+max≧Vp), and at least one other layer is the reference value Value V+a or less (Tiimin≦Vn)
and at least one layer of the furnace top gas temperature is at a reference value (dTe
) or more (DRd=I &
DdT=1), reduce the amount of air blown into the blast furnace (2nd b).
27-29 in the figure).

本願の第2番目の発明では、高炉炉頂部の複数の上昇管
zjの炉頂ガス温度(Tei)のそれぞれの所定時間間
隔Tets (10sec)の変化量(dTei)と所
定間間隔Te口(60sec)の温度勾配(Tai)を
検出し、高炉シャフト上部の装入物表面レベルの直下(
通常操業時における最低装入物上表面レベルより0.5
m〜1lII下)の装入物内の高炉円周方向複数点の炉
内ガス温度(Tsi)のそれぞれを検出し:前記複数の
上昇管zjの炉頂ガス温度(Tei)変化勾配(Tai
)の少くとも一層が基準値Vp以上(T月maw≧Vp
)および他の少くとも一層が基準値Vm以下(Tajm
in≦Vn)、かつ少くとも一層が基準値(dTe)以
上の温度低下しくDRd=1 & DdT=1)、高炉
シャフト上部の装入物表面直下の高炉円周方向複数点の
いずれかの位置の炉内ガス温度(Tsi)の所定時間内
における温度変化が基準値(測定位置における過去の通
常操業状態での炉内ガス温度の管理上限値)(ΔTsl
〜ΔTsz)範囲内で前記複数点の少くとも一層(Ts
max)が基準値(T s s )以上(DT=1)の
ときに、高炉内への送風量を低減する(第3b図の49
−28−29)。
In the second invention of the present application, the amount of change (dTei) in each predetermined time interval Tets (10 sec) of the furnace top gas temperature (Tei) of the plurality of riser pipes zz at the top of the blast furnace and the predetermined interval Te ) is detected, and the temperature gradient (Tai) at the top of the blast furnace shaft is detected, and the temperature gradient (Tai) at
0.5 below the minimum charge surface level during normal operation
Detect each of the furnace gas temperatures (Tsi) at a plurality of points in the blast furnace circumferential direction within the charge of 200 m to 1lII below:
) at least one layer is equal to or higher than the standard value Vp (T month maw≧Vp
) and at least one other layer is below the reference value Vm (Tajm
in≦Vn), and at least one layer has a temperature drop of more than the reference value (dTe) DRd=1 & DdT=1), at any one of multiple points in the circumferential direction of the blast furnace immediately below the surface of the charge at the top of the blast furnace shaft. The temperature change in the furnace gas temperature (Tsi) within a predetermined time is the reference value (control upper limit value of the furnace gas temperature in the past normal operating state at the measurement position) (ΔTsl
~ΔTsz) at least one layer of the plurality of points (Ts
max) is equal to or higher than the reference value (Tss) (DT=1), the amount of air blown into the blast furnace is reduced (see 49 in Figure 3b).
-28-29).

なお、カッコ内の記号は、以下に説明する本発明の実施
例の対応事項に付した記号等を示す。
Note that the symbols in parentheses indicate symbols etc. attached to corresponding items in the embodiments of the present invention described below.

〔作用〕[Effect]

吹抜けの発生の前には、棚吊りなど該下り状態に異常を
生じ、装入物内に局所的な空洞が生ずる。
Before the occurrence of blow-through, an abnormality occurs in the descending state such as hanging on a shelf, and a local cavity is created in the charged material.

このような状態では高炉円周方向で装入物の降下速度の
相違が大きくなり、装入物上表面レベルLJの高低差が
大きくなる。
In such a state, the difference in the descending speed of the charge increases in the circumferential direction of the blast furnace, and the height difference in the top surface level LJ of the charge increases.

ところで、装入物内にかなりの大きさの空洞が発生する
と、高炉円周方向で炉頂ガス温度分布が乱れ、高炉円周
方向のある位置の炉頂ガス温度が低下傾向に他の位置の
炉頂ガス温度が上昇傾向となって円周方向の炉頂ガス温
度偏差が発生する。
By the way, when a cavity of considerable size occurs in the charge, the top gas temperature distribution in the circumferential direction of the blast furnace is disturbed, and the top gas temperature at a certain position in the circumferential direction of the blast furnace tends to decrease while that at other positions. The furnace top gas temperature tends to rise, and a circumferential furnace top gas temperature deviation occurs.

しかし、吹抜けに至るときには上記とは逆に炉頂ガス温
度の比較的高い状態の炉頂ガス温度が大きく低下する。
However, when reaching the blow-through, contrary to the above, the furnace top gas temperature, which is relatively high, decreases significantly.

すなわち、空洞内に装入物が崩れ込み始めると、空洞を
流れる炉内ガス流が減少してその部分の近傍の装入物表
面より流出して該部分の上にある炉頂上昇管に流入する
炉内ガス温度が比較的に高い状態から低下を始め、その
他の位置を流れる炉内ガス流が増大してその部分の装入
物の表面より流出して該表面の上にある炉頂上昇管に流
入しその炉内ガス温度は比較的低い状態から上昇を始め
吹抜けに至ると急激に上昇する。
That is, when the charge begins to collapse into the cavity, the flow of furnace gas flowing through the cavity decreases and flows out from the charge surface near that area and into the furnace top riser above that area. The temperature of the gas in the furnace begins to decrease from a relatively high state, and the flow of gas in the furnace flowing through other locations increases, flowing out from the surface of the charge in that area and rising to the top of the furnace above the surface. The temperature of the gas flowing into the furnace starts to rise from a relatively low state and rises rapidly when it reaches the atrium.

第1番目の発明ではこのような現象に着目して、高炉内
装入物の、炉周方向複数点位置間の上表面レベル(L]
)の差(ΔH)が基準値(Δ)Is)以上であるかを検
出し、かつ、表面レベル(11)のそれぞれの位置にお
ける降下速度(dLi)が基準値(dLs)以上である
かを検出し、更に、高炉炉頂部の複数の上昇管の炉頂ガ
ス温度(Tei)のそれぞれの所定時間内の変化量(d
Tei)と温度変化勾配を検出し、上表面レベル(Li
)の差(ΔH)が基準値(八〇s)以上および炉周方向
複数点の上表面レベル(1j)のそれぞれの降下速度(
dLi)の少くとも一層が基準値(dLs)以上、なら
びに、複数の上昇管の炉頂ガス温度(Tej)の温度変
化勾配が少くとも一層が基準値Vp以上(Taimix
≧VP)、および他の少くとも一層が基準値Vn以下(
Taimin≦Vn)、かつ少くとも一層が基準値(d
Te)以上の温度低下変化を示したとき(DRd=I 
&DdT=1)に、高炉内への送風量を低減する(第2
b図の27−29)。すなわち、装入物上表面レベルト
ノの高低差が大きくしかも装入物上表面しルベルの降下
速度が高く、加えて、高炉円周方向のある位置の炉頂ガ
ス温度が急激に上昇し他の位置の炉頂ガス温度が緩やか
な上昇か又は低下し、かつある位置の炉頂ガス温度が基
準値以上の温度低下変動を示したときに、送風量を低減
する。
The first invention focuses on such a phenomenon, and the upper surface level (L) of the contents in the blast furnace between multiple points in the circumferential direction.
) is greater than or equal to the reference value (Δ)Is), and whether the descending speed (dLi) at each position of the surface level (11) is greater than or equal to the reference value (dLs). Furthermore, the amount of change (d
Tei) and temperature change gradient are detected, and the upper surface level (Li
) difference (ΔH) is equal to or higher than the standard value (80 s) and the respective lowering speeds (
dLi) is above the reference value (dLs), and at least one layer of the temperature change gradient of the furnace top gas temperature (Tej) of the plurality of risers is above the reference value Vp (Taimix
≧VP), and at least one other layer is below the reference value Vn (
Taimin≦Vn), and at least one layer is equal to the reference value (d
When the temperature decreases by more than Te) (DRd=I
&DdT=1), reduce the amount of air blown into the blast furnace (second
27-29 in Figure b). In other words, the difference in height between the level tonnage on the top surface of the charge is large and the rate of descent of the top level tonnage on the top surface of the charge is high. When the furnace top gas temperature at a certain position gradually increases or decreases, and the furnace top gas temperature at a certain position shows a temperature decrease fluctuation greater than a reference value, the air flow rate is reduced.

この第1番目の発明によれば、吹抜は予知の信頼性が高
く、操業の安定性が向上する。
According to this first invention, the prediction reliability of the atrium is high, and the stability of the operation is improved.

第2番目の発明でも上述の現象に着目して、高炉炉頂部
の複数の上昇管の炉頂ガス温度(Tej)のそれぞれの
変化量(dTei)と温度変化勾配を検出し、高炉シャ
フト上部の装入物上表面ST直下の高炉円周方向複数点
の炉内ガス温度(Tsj)のそれぞれを検出すると共に
、その検出値から各位置における温度変化量を検出して
、複数の上昇管ZJの炉頂ガス温度(Tej)の少くと
も一層が基準値12以上(dT@ax≧vp)、および
他の少くとも一層が基準値v11以下(dTm i n
≧Vn)、かつ少くとも一層が基準値(dTe)以上低
下変化しくDRd=I & DdT=1)、加えて、高
炉円周方向複数点のいずれかの位置の炉内ガス温度(T
sj)の所定時間内における温度変化が基準値(ΔTs
1−ΔTs2)範囲内で、前記複数点の少くとも一層(
Tsmaz)が基準値(Tss)以上になった(DT=
1)ときに、高炉内への送風量を低減する(第2b図の
49−28−29)。すなわち、高炉円周方向のある位
置の炉頂ガス温度が急激に低下し、他の位置の炉頂ガス
温度が緩やかに上昇し、又は低下しかつ、ある位置の炉
頂ガス温度が基準値以上の低下変動を示し、加えて、ス
キンフローガス温度に経時的変動を生じたときに送風量
を低減する。
The second invention also focuses on the above-mentioned phenomenon, and detects the amount of change (dTei) and temperature change gradient of the top gas temperature (Tej) of a plurality of riser pipes at the top of the blast furnace, and detects the temperature change gradient at the top of the blast furnace shaft. The furnace gas temperature (Tsj) at multiple points in the circumferential direction of the blast furnace directly below the top surface ST of the charge is detected, and the amount of temperature change at each position is detected from the detected value, and the At least one layer of the furnace top gas temperature (Tej) is equal to or higher than the standard value 12 (dT@ax≧vp), and at least one other layer is equal to or lower than the standard value v11 (dTmin
≧Vn), and at least one layer decreases by more than the reference value (dTe) DRd=I & DdT=1), and in addition, the furnace gas temperature (T
sj) within a predetermined time is the reference value (ΔTs
1-ΔTs2), at least one layer of the plurality of points (
Tsmaz) has exceeded the standard value (Tss) (DT=
1) Reduce the amount of air blown into the blast furnace (49-28-29 in Figure 2b). In other words, the furnace top gas temperature at a certain position in the circumferential direction of the blast furnace suddenly decreases, the furnace top gas temperature at other positions gradually increases or decreases, and the furnace top gas temperature at a certain position exceeds the reference value. In addition, the amount of air blown is reduced when the skin flow gas temperature changes over time.

この第2番目の発明によれば、炉頂ガス温度およびスキ
ンフローガス温度の円周方向の経時的変化量の異変検出
の組合せで吹抜は予知を行なうのでその信頼性が高く、
操業の安定性が向上する。
According to this second invention, the atrium is predicted by a combination of abnormality detection of the amount of change over time in the circumferential direction of the furnace top gas temperature and the skin flow gas temperature, so its reliability is high;
Operational stability is improved.

本発明の他の目的および特徴は、図面を参照した以下の
実施例の説明より明らかになろう。
Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

〔第1番の発明の実施例〕 第1図に、本発明を実施する装置の概要を示す。[Embodiment of the first invention] FIG. 1 shows an outline of an apparatus for implementing the present invention.

この実施例では、シャフト上段部の装入物表面ST直下
の炉内ガス温度Te」を検出する4個の温度計Tki 
(スキンフロー温度計)が、高炉円周方向に等間隔に設
置されており、装入物上表面レベルL」直下の炉内ガス
温度Tsjを示す温度検出信号を入出力インターフェイ
ス(人、出力信号処理回路)SPCに与える。シャフト
部の上方にはサウンシング装置Sが装備されており、こ
れが装入物上表面の表面レベル(高さ)Ljを円周方向
で等間隔に定めた4点で検出し、表面レベル信号を入出
力インターフェイスSPCに与える。高炉炉頂には4本
の上昇管Zjがあり、これらにもガス温度計Tzjが装
備されており、これらが上昇管Zjを上昇する炉頂ガス
温度Tejを計測し炉頂ガス温度を示す信号を入出力イ
ンターフェイスSPCに与える。
In this embodiment, four thermometers Tki are used to detect the furnace gas temperature Te just below the charge surface ST in the upper part of the shaft.
Skin flow thermometers (skin flow thermometers) are installed at equal intervals in the circumferential direction of the blast furnace. processing circuit) is given to the SPC. A sounding device S is installed above the shaft, which detects the surface level (height) Lj of the upper surface of the charge at four points equally spaced in the circumferential direction, and inputs surface level signals. to the output interface SPC. There are four riser pipes Zj at the top of the blast furnace, and these are also equipped with gas thermometers Tzz, which measure the top gas temperature Tej rising through the riser pipes Zj and send a signal indicating the top gas temperature. is given to the input/output interface SPC.

各上昇管zJにNo、1〜4の番号を付け、各上昇管Z
jを上昇する炉頂ガス温度TejのJが上昇管N o 
、数字(j=1〜4)を示すものとすると、すなわち上
昇管ZJの炉頂ガス温1TejがN。、Jの上昇管の炉
頂ガス温度を示すものであるとすると、スキンフローガ
ス温度Tsj測定位置(円周方向」=1〜4)、装入物
上表面レベルLJ測定位置(円周方向」=1〜4)のそ
れぞれ(円周方向の位置j)は、高炉の垂直軸心と各上
昇管ZJの中心軸を含む各垂直面上にある。
Each ascending pipe ZJ is numbered 1 to 4, and each rising pipe Z
J of the furnace top gas temperature Tej that increases j is the riser pipe No
, a number (j=1 to 4), that is, the furnace top gas temperature 1Tej of the riser pipe ZJ is N. , indicates the furnace top gas temperature of the riser pipe of J, skin flow gas temperature Tsj measurement position (circumferential direction" = 1 to 4), charge top surface level LJ measurement position (circumferential direction") =1 to 4) (circumferential position j) is on each vertical plane including the vertical axis of the blast furnace and the central axis of each riser pipe ZJ.

すなわち、仮に炉内ガスが高炉軸心に関して全く対称に
上昇するとすると、Tsjは装入物表面直下の装入物内
を上昇管No、jに向って上昇するスキンフローガス温
度、LJは上昇管No、jに最も近い装入物表面の表面
レベル、Tejは上昇管No、j内を流れる炉頂ガス温
度である。
That is, assuming that the gas in the furnace rises completely symmetrically with respect to the blast furnace axis, Tsj is the skin flow gas temperature rising in the charge just below the surface of the charge toward riser pipe No. The surface level of the charge surface closest to No,j, Tej is the temperature of the top gas flowing in the riser pipe No,j.

サウンジング装置Sは、円周方向4点の装入物上表面レ
ベルを測定して入出力インターフェイスSPCに入力し
てそこに測定データを10secの周期でラッチする。
The sounding device S measures the surface level of the charge at four points in the circumferential direction, inputs the measured data to the input/output interface SPC, and latches the measured data therein at a cycle of 10 seconds.

スキンフロー温度計TkJおよび上昇管ZJ内ガス温度
を測定する炉頂温度計Tzjは、それぞれ温度検出デー
タを入出力インターフェイスSPCに入力してそこに2
sec周期、5sec周期でラッチする。
The skin flow thermometer TkJ and the furnace top thermometer Tzz that measures the gas temperature in the riser pipe ZJ each input temperature detection data to the input/output interface SPC and output the data there.
sec period, latches at 5 sec period.

入出力インターフェイスSPCは、与えられた測定デー
タの最新のものすべてをloset周期でlセットのデ
ータフレームに編集し保持しており、コンピュータCM
Rがデータを要求して来ると該1セツトのデータフレー
ムをコンピュータCMRに転送する。
The input/output interface SPC edits and holds all the latest measurement data given into l sets of data frames at loset intervals, and the computer CM
When R requests data, it transfers the set of data frames to computer CMR.

コンピュータCMRは、loset周期で測定データを
入出力インターフェイスSPCに要求し、1セツトのデ
ータフレームを受信して、その中の所要のデータを摘出
しそして後述する吹抜は予知処理を実行して吹抜けの発
生可能性を判定し、判定結果に対応した送風制御データ
を作成し、測定データを要求するとき転送指示信号と共
に送風制御データを入出力インターフェイスSPCに出
力する。入出力インターフェイスSPCは、コンピュー
タCMRからの送風制御データは送風装置BRAに送出
する。
The computer CMR requests measurement data from the input/output interface SPC at the loset period, receives one set of data frames, extracts the required data from it, and performs a prediction process to describe the atrium. It determines the possibility of occurrence, creates ventilation control data corresponding to the determination result, and outputs the ventilation control data to the input/output interface SPC together with a transfer instruction signal when requesting measurement data. The input/output interface SPC sends air blow control data from the computer CMR to the air blower BRA.

第2a図および第2b図に、コンピュータCMRの吹抜
は予知処理の内容を示す。
FIGS. 2a and 2b show the contents of the prediction process in the open space of the computer CMR.

まず第2a図を参照すると、この処理を開始するときに
はコンピュータCMRはまず10秒タイマをスタートシ
IO秒の経過を待つ(ステップ1,2;以下カッコ内で
はステップという語を省略し番号数字のみを記す)。1
0秒が経過すると10秒タイマを再スタートしく3)、
入出力インターフェイスSPCより測定データを読込む
(4)。
First, referring to Figure 2a, when starting this process, the computer CMR first starts a 10 second timer and waits for IO seconds to elapse (steps 1 and 2; hereinafter, the word step is omitted in parentheses and only numbers are used). ). 1
When 0 seconds elapse, restart the 10 second timer 3).
Read the measurement data from the input/output interface SPC (4).

コンピュータCMRは次に、読込んだ最新の測定データ
より表面レベルデータLJを読出して(5)、表面レベ
ルデータLIの中の最大値Lmaxと最小値Lminを
摘出しく6.7)、最大値Lmaxと最小値Lminの
偏差ΔHを算出しく8)、偏差ΔHが基準値ΔHs(0
,5m)以上であるかをチエツクして(9)、そうであ
ると判定データレジスタDΔHに「1」を書込み(10
)、そうでなければ判定データレジスタDΔHをクリア
する(11)。
Next, the computer CMR reads the surface level data LJ from the latest measurement data read (5), extracts the maximum value Lmax and minimum value Lmin from the surface level data LI (6.7), and extracts the maximum value Lmax. Calculate the deviation ΔH between the minimum value Lmin and the minimum value Lmin (8).
, 5m) or more (9), and if so, write "1" to the judgment data register DΔH (10
), otherwise the judgment data register DΔH is cleared (11).

次にコンピュータCMRは、最新の表面レベル測定値L
1と10sec前の表面レベル測定値(前回の入力値)
を参照して、過去10secの間の表面レベル降下量d
L1を算出する(13)。そして、降下量dLJが基準
値dLs(1,0m)以上であるかをチエツクして(1
4)、そうであると判定データレジスタDdLにrl」
を書込み(15)、そうでなれれば判定データレジスタ
DdLをクリアする(16)。
The computer CMR then displays the latest surface level measurements L
Surface level measurement value 1 and 10 seconds ago (previous input value)
With reference to, the surface level fall amount d during the past 10 seconds
Calculate L1 (13). Then, check whether the descent amount dLJ is greater than or equal to the reference value dLs (1,0 m) (1,0 m).
4) If so, write "rl" in the judgment data register DdL.
(15), and if not, clear the judgment data register DdL (16).

次に第2b図を参照する。コンピュータCMRは次に、
上昇管Z」の炉頂ガス温度Te」を10sec間隔で測
定データより読出しく17)、今回より6回前までの読
出しデータと共に行レジスタMTRjに書込む(+8)
Reference is now made to Figure 2b. Computer CMR then
Read the furnace top gas temperature Te of the riser pipe Z from the measurement data at 10-sec intervals (17) and write it to the row register MTRj along with the read data up to six times before this time (+8).
.

一方、今回読出した炉頂ガス温度Teiの測定データを
前回読出した測定データにより、l0secの間の各炉
頂ガス温度の低下変動量dTe jを算出する。
On the other hand, based on the measurement data of the furnace top gas temperature Tei read this time and the measurement data read last time, the amount of decrease dTe j of each furnace top gas temperature during 10 sec is calculated.

そして、今回算出した温度低下変動量dTe iが基準
値dTe (20℃)以上であるか(異常変動があるか
)をチエツクする(19)。異常低下変動があると判定
レジスタDdTに「1」を書込み(20)、ないと判定
レジスタDdTをクリアする(21)。
Then, it is checked whether the temperature drop fluctuation amount dTe i calculated this time is greater than or equal to the reference value dTe (20° C.) (whether there is an abnormal fluctuation) (19). If there is an abnormal decrease fluctuation, "1" is written in the determination register DdT (20), and if there is no abnormality, the determination register DdT is cleared (21).

コンピュータCMRは次に、行レジスタMTR」のデー
タ(60secの間の、l0sec毎に入力した炉内ガ
ス温度Tej)から回帰式により高炉円周方向における
各位置での温度変化勾配(dTi)を算出しく22a)
、この算出値の中の最高値dTjmaxと最低値dTi
minを摘出して(22,23)、最高値dTjmax
が基準値vp (7℃/分)以上であるかをチエツクし
かつ最低値dTiminが基準値Vn(3℃/分)以下
であるかをチエツクして(24゜25)、両者が共にあ
るとき(1つの上昇管で炉頂ガス温度が急激に上昇しか
つもう1つの上昇管で炉頂ガス温度が緩やかに上昇又は
低下)には、判定レジスタDRdにrlJを書込み(2
6)、少なくとも一方がないときには判定レジスタDR
dをクリアする(27)コンピュータCMRは次に、判
定レジスタDΔH,DdL。
Next, the computer CMR calculates the temperature change gradient (dTi) at each position in the circumferential direction of the blast furnace using a regression formula from the data in the row register MTR (furnace gas temperature Tej input every 10 seconds during 60 seconds). 22a)
, the highest value dTjmax and the lowest value dTi among these calculated values
Extract min (22, 23) and find the highest value dTjmax
Check whether the minimum value dTimin is equal to or greater than the reference value vp (7℃/min) and check whether the minimum value dTimin is less than or equal to the reference value Vn (3℃/min) (24°25). (When the furnace top gas temperature increases rapidly in one riser pipe and the furnace top gas temperature gradually increases or decreases in the other riser pipe), write rlJ to the determination register DRd (2
6), if at least one is missing, the judgment register DR
(27) Computer CMR then clears determination registers DΔH and DdL.

DdTおよびDRdの内容をチエツクして(28)、そ
れらの内容がすべて「!」であると吹抜けの可能性あり
と判断する。すなわち、装入物表面レベルの円周方向の
差が基準値以上、円周方向のある位置で表面レベル変動
が基準値以上、ある上昇管の炉頂ガス温度の低下変動が
基準値以上、および、上昇管の1つの炉頂ガス温度が上
昇し、しかも、もう1つのガス温度が低下、が同時に成
立すると、吹抜けの可能性があると判定する。
The contents of DdT and DRd are checked (28), and if the contents are all "!", it is determined that there is a possibility of a blowout. In other words, the difference in the circumferential direction of the charge surface level is greater than or equal to the reference value, the surface level variation is greater than or equal to the reference value at a certain position in the circumferential direction, the decreasing variation in the furnace top gas temperature of a certain riser is greater than or equal to the reference value, and If the temperature of the top gas in one of the riser pipes increases and the temperature of the other gas decreases at the same time, it is determined that there is a possibility of blow-through.

吹抜けの可能性ありと判定するとコンピュータCMRは
、吹抜は防止用の風量減指示データを生成してこれを入
出力インターフェイスSPcを介して送風装置BRAに
与え(29)、かつCRTデイスプレィDI3の表示を
、現在の測定データ、判定データおよび送風装置の送風
量データならびに吹抜は注意を示すものに更新する(3
0)。
When determining that there is a possibility of an atrium blowout, the computer CMR generates air volume reduction instruction data to prevent an atrium and sends this to the blower BRA via the input/output interface SPc (29), and displays the information on the CRT display DI3. , the current measurement data, judgment data, air volume data of the blower device, and atrium will be updated to indicate caution (3)
0).

なお、上述のように吹抜けを予知したときには、吹抜は
限界指数F、 (a BY−TP) X S X 10RIM:高炉の
実効内容積。
In addition, when the atrium is predicted as described above, the atrium is the limit index F, (a BY-TP) X S X 10 RIM: Effective internal volume of the blast furnace.

QC: ORE/C0KE (−)。QC: ORE/C0KE (-).

Pc:C0KB嵩密度(+/m3)。Pc: C0KB bulk density (+/m3).

ρo二ORE嵩密度(1/m3) 。ρo2ORE bulk density (1/m3).

Bv:送風量(lh3/mi n) 。Bv: Air flow rate (lh3/min).

TP:炉頂圧力(Kg/cm2) 。TP: Furnace top pressure (Kg/cm2).

S:炉内平均断面積(I112) に、吹抜は防止用の値を与え、逆算により送風量BYを
算出し、算出した送風量BYより更に安全度を高めるた
めの値を減算し、残漬を示す送風量データを送風装置B
RAに与える(29)。
S: For the average cross-sectional area inside the furnace (I112), give a value for preventing the blowout, calculate the air volume BY by back calculation, and subtract the value to further increase safety from the calculated air volume BY. Air blowing amount data showing the air blowing device B
Give to RA (29).

吹抜は対処要と判定しなかったときには、現状態維持の
信号を送風装置BRAに与え(31)、CRTデイスプ
レィDI3の表示を、現在の測定データ、判定データお
よび送風装置の送風量データならびに吹抜けがないこと
を表示する(32)。
If it is determined that the atrium does not require action, a signal to maintain the current state is given to the blower BRA (31), and the display on the CRT display DI3 is changed to display the current measurement data, judgment data, airflow amount data of the blower, and the atrium. It is displayed that there is no such thing (32).

〔第2番の発明の実施例〕 この実施例のコンピュータCMRの処理動作を第3a図
および第3c図に示す。この実施例では、10secの
時間経過毎にコンピュータCMRは以下の処理を行なう
[Embodiment of the second invention] The processing operation of the computer CMR of this embodiment is shown in FIGS. 3a and 3c. In this embodiment, the computer CMR performs the following processing every 10 seconds.

まず第3a図を参照する。コンピュータCMRはまず最
新の炉頂ガス温度Tejを10sec間隔で測定データ
より読出しく1〜4)、今回より6回前までの読出しデ
ータと共に行レジスタMTRjに書込む(18)。−方
、今回読出した炉頂ガス温度Teiの測定データと前回
読出した測定データにより10secの間の各炉頂ガス
温度の低下変動量dTe iを算出する。そして、今回
算出した温度低下変動量dTe iが基準値dTe(2
0℃)以上であるか(異常変動があるカリをチエツクす
る(19)。異常低下変動があると判定レジスタDdT
に「1」を書込み(20)、ないと判定レジスタDdT
をクリアする(21)。  コンピュータCMRは次に
、行レジスタMTRjのデータ(60secの間の、l
0sec毎に入力した炉頂ガス温度Te1)から回帰式
により高炉円周方向における各位置での温度変化勾配(
dTi)を算出しく22a)、この算出値の中の最高値
dTmaxと最低値dTminを摘出して(22,23
)、最高値dTioaxが基準値vp (7℃/分)以
上であるかをチエツクしかつ最低値dTminが基準値
Vn (3℃/分)以下であるかをチエツクして(24
,25)、両者が共にあるとき(1つの上昇管zlで炉
頂ガス温度が上昇しかつもう1つの上昇管2」で炉頂ガ
ス温度が低下)には、判定レジスタDRdにrlJを書
込み(26)、一方がないときには判定レジスタDRd
をクリアする(27)。
Reference is first made to FIG. 3a. The computer CMR first reads out the latest furnace top gas temperature Tej from the measurement data at 10 sec intervals (1 to 4), and writes it into the row register MTRj together with the read data up to six times before this time (18). - On the other hand, based on the measurement data of the furnace top gas temperature Tei read this time and the measurement data read last time, the amount of decrease dTe i of each furnace top gas temperature during 10 seconds is calculated. Then, the temperature drop fluctuation amount dTe i calculated this time is the reference value dTe(2
0°C) or higher (checks the potency with abnormal fluctuation (19). If there is abnormal lowering fluctuation, judgment register DdT
Write “1” to (20) and determine that there is no register DdT.
Clear (21). Computer CMR then reads the data in row register MTRj (for 60 seconds, l
From the furnace top gas temperature Te1) input every 0 sec, the temperature change gradient (
22a), extract the maximum value dTmax and minimum value dTmin from the calculated values (22, 23
), check whether the highest value dTioax is greater than or equal to the reference value vp (7°C/min), and check whether the lowest value dTmin is less than or equal to the reference value Vn (3°C/min) (24
, 25), when both are present (the top gas temperature increases in one riser pipe zl and the furnace top gas temperature decreases in the other riser pipe 2), rlJ is written in the determination register DRd ( 26), if one is missing, the judgment register DRd
Clear (27).

次に2sec間隔で入力したスキンフローガス温度をコ
ンピュータCMRは、10sec毎に該スキンフローガ
ス温度データTsiを読出す(41)。
Next, the computer CMR reads out the skin flow gas temperature data Tsi every 10 seconds based on the skin flow gas temperature inputted at intervals of 2 seconds (41).

次に第3b図を参照する。コンピュータCMRは、読出
した温度データTsj、j=1〜4別の各5個の測定デ
ータ中の最高値Tsmaxと最低値Tsrnjnを摘出
して(42,43)それらの温度差(温度変化量)ΔT
s 1=Ts jmax−Ts 1m1nを算出しく4
4)、温度差ΔTsiが基準値ΔTs、(10℃)−Δ
TS2(20℃)の範囲内であるか(スキンフローガス
温度に変動があるか)、および、最高値Tsiωaxが
基準値Tss(300℃)以上であるかをチエツクしく
45.46)、そうであると判定レジスタDTに「1」
を書込み(47)、ないと判定レジスタDTをクリアす
る(48)。
Reference is now made to Figure 3b. The computer CMR extracts the highest value Tsmax and lowest value Tsrnjn from each of the five measured data for each of the read temperature data Tsj, j=1 to 4 (42, 43), and calculates the temperature difference (amount of temperature change) between them. ΔT
Calculate s 1=Ts jmax-Ts 1m1n4
4), the temperature difference ΔTsi is the reference value ΔTs, (10°C) - Δ
Check whether it is within the range of TS2 (20°C) (is there a fluctuation in the skin flow gas temperature) and whether the maximum value Tsiωax is greater than or equal to the reference value Tss (300°C)45.46). If there is, “1” is written in the judgment register DT.
is written (47), and the determination register DT is cleared (48).

コンピュータCMRは次に、判定レジスタDdT、 D
RdおよびDTの内容をチエツクして(49)、それら
の内容がすべて「1」であると吹抜けの可能性ありと判
断する。すなわち、ある上昇管Zノの炉頂ガス温度の低
下変動が基準値以上、上昇管zHの1つの炉頂ガス温度
の温度変化勾配が基準値以上し、しかも、もう1つの炉
頂ガス温度の温度変化勾配が基準値以下、および、スキ
ンフローガス温度Ts」の変化量円周方向いずれかの位
置で異常で、しかも、ある位置のスキンフローガス温度
Tsjが異常に高い、が同時に成立すると、吹抜けの可
能性があると判定する。
The computer CMR then registers the decision registers DdT, D
The contents of Rd and DT are checked (49), and if they are all "1", it is determined that there is a possibility of a blowout. That is, the decreasing fluctuation of the furnace top gas temperature of a certain riser pipe Z is above the reference value, the temperature change gradient of the furnace top gas temperature of one riser pipe ZH is above the reference value, and the change in the furnace top gas temperature of the other riser pipe ZH is If the temperature change gradient is below the reference value, the amount of change in the skin flow gas temperature Ts is abnormal at any position in the circumferential direction, and the skin flow gas temperature Tsj at a certain position is abnormally high, at the same time, It is determined that there is a possibility of a blowout.

吹抜けの可能性ありと判定するとコンピュータCMRは
、吹抜は防止用の風量減指示データを生成してこれを入
出力インターフェイスSPCを介して送風装置BRAに
与え(29)、かつCRTデイスプレィDisの表示を
、現在の測定データ、判定データおよび送風装置の送風
量データならびに吹抜は注意を示すものに更新する(3
0)。
When determining that there is a possibility of an atrium, the computer CMR generates air volume reduction instruction data to prevent an atrium and sends this to the blower BRA via the input/output interface SPC (29), and displays the display on the CRT display Dis. , the current measurement data, judgment data, air volume data of the blower device, and atrium will be updated to indicate caution (3)
0).

吹抜けを予知しなかったときには、そのときの現状維持
信号を送風装置BRAに与え(31)、CRTデイスプ
レィ015の表示を、現在の測定データ、判定データお
よび送風装置の送風量データならびに吹抜けのないこと
を表示する(32)。
If no blow-through is predicted, a signal to maintain the current status at that time is given to the blower BRA (31), and the display on the CRT display 015 is changed to indicate the current measurement data, judgment data, airflow amount data of the blower, and that there is no blow-through. is displayed (32).

〔発明の効果〕〔Effect of the invention〕

第1番目の発明によれば、装入物表面レベル変動検出に
炉頂ガス温度の円周方向の異変検出をも加えて吹抜は予
知を行なうのでその信頼性が高く、操業の安定性が向上
する。
According to the first invention, the blowhole is predicted by adding the detection of circumferential changes in the top gas temperature to the detection of changes in the surface level of the charge, resulting in high reliability and improved operational stability. do.

第2番目の発明によれば、炉頂ガス温度の円周方向の異
変検出にスキンフローガス温度の円周方向の異変検出を
も加えて吹抜は予知を行なうのでその信頼性が高く、操
業の安定性が向上する。
According to the second invention, since the atrium predicts by adding the circumferential variation detection of the skin flow gas temperature to the circumferential variation detection of the furnace top gas temperature, the reliability is high and the operation is improved. Improved stability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本願の発明を実施する装置の概要を示すブロ
ック図である。 第2a図および第2b図は、本願の第1実施例の、第1
図に示すコンピュータCMRの処理動作を示すフローチ
ャートである。 第3a図および第3b図は、本願の第2実施例の、コン
ピュータCMRの処理動作を示すフローチャートである
。 第3b図 ■
FIG. 1 is a block diagram showing an outline of an apparatus for carrying out the invention of the present application. Figures 2a and 2b show the first example of the first embodiment of the present application.
3 is a flowchart showing the processing operation of the computer CMR shown in the figure. FIGS. 3a and 3b are flowcharts showing the processing operations of the computer CMR in the second embodiment of the present application. Figure 3b■

Claims (2)

【特許請求の範囲】[Claims] (1)高炉内装入物の、炉周方向複数点の上表面レベル
の差が基準値以上であるかを検出すると共に上表面レベ
ルそれぞれの位置の降下速度が基準値以上であるかを検
出し、 高炉炉頂部の複数の上昇管の炉頂ガス温度のそれぞれの
所定時間内の変化量と温度変化勾配を検出し、 炉周方向複数点の上表面レベル差が基準値以上および上
表面レベルそれぞれの降下速度の少くとも一者が基準値
以上で、前記複数の上昇管の炉頂ガス温度変化勾配の少
くとも一者が基準値以上で他の少くとも一者が基準値以
下で、かつ、少くとも炉頂ガス温度の一者が基準値以上
の温度低下を示したとき、高炉内への送風量を低減する
、高炉操業における吹抜け防止方法。
(1) Detect whether the difference between the upper surface levels at multiple points in the circumferential direction of the blast furnace contents is greater than or equal to a reference value, and also detect whether the rate of descent at each position of the upper surface level is greater than or equal to the reference value. , detects the amount of change and temperature change gradient in the top gas temperature of multiple riser pipes at the top of the blast furnace within a predetermined time, and detects whether the difference in the top surface level at multiple points in the furnace circumferential direction is above the reference value and the top surface level, respectively. At least one of the descending speeds of the plurality of riser tubes is equal to or higher than the reference value, at least one of the top gas temperature change gradients of the plurality of riser pipes is equal to or higher than the reference value, and at least one of the others is equal to or lower than the reference value, and A blow-through prevention method in blast furnace operation that reduces the amount of air blown into the blast furnace when at least one of the furnace top gas temperatures shows a temperature drop above a standard value.
(2)高炉炉頂部の複数の上昇管の炉頂ガス温度のそれ
ぞれの所定時間の変化量と温度変化勾配を検出し、 高炉シャフト上部の装入物表面直下の高炉円周方向複数
点の炉内ガス温度のそれぞれを検出し、前記複数の上昇
管の炉頂ガス温度変化勾配の少くとも一者が基準値以上
で、他の少くとも一者が基準値以下で、かつ、少くとも
炉頂ガス温度の一者が基準値以上の温度低下を示し、高
炉シャフト上部の装入物表面直下の高炉円周方向複数点
のいずれかの位置の炉内ガス温度の所定時間内における
温度変化が基準値範囲内で前記複数点の少くとも一者が
基準値以上のとき、高炉内への送風量を低減する、高炉
操業における吹抜け防止方法。
(2) Detect the amount of change and temperature change gradient of the top gas temperature in multiple riser pipes at the top of the blast furnace furnace at multiple points in the circumferential direction of the blast furnace directly below the surface of the charge at the top of the blast furnace shaft. Detecting each of the internal gas temperatures, at least one of the furnace top gas temperature change gradients of the plurality of riser pipes is above the reference value, at least one of the others is below the reference value, and at least one of the furnace top gas temperature change gradients of the plurality of riser pipes is One of the gas temperatures shows a temperature drop above the standard value, and the temperature change within a predetermined period of time in the furnace gas temperature at any of multiple points in the circumferential direction of the blast furnace directly below the surface of the charge at the top of the blast furnace shaft is the standard. A method for preventing blow-through in blast furnace operation, which reduces the amount of air blown into the blast furnace when at least one of the plurality of points is equal to or higher than a reference value within a value range.
JP29857390A 1990-11-02 1990-11-02 Blow-through prevention method in blast furnace operation Expired - Lifetime JPH0711018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29857390A JPH0711018B2 (en) 1990-11-02 1990-11-02 Blow-through prevention method in blast furnace operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29857390A JPH0711018B2 (en) 1990-11-02 1990-11-02 Blow-through prevention method in blast furnace operation

Publications (2)

Publication Number Publication Date
JPH04173909A true JPH04173909A (en) 1992-06-22
JPH0711018B2 JPH0711018B2 (en) 1995-02-08

Family

ID=17861497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29857390A Expired - Lifetime JPH0711018B2 (en) 1990-11-02 1990-11-02 Blow-through prevention method in blast furnace operation

Country Status (1)

Country Link
JP (1) JPH0711018B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090453A (en) * 2008-10-09 2010-04-22 Nippon Steel Corp Method of operating vertical melting furnace
JP2019183262A (en) * 2018-04-03 2019-10-24 Jfeスチール株式会社 Device for determining condition of blast furnace, method for operating blast furnace and method for determining condition of blast furnace
JP2019183261A (en) * 2018-04-03 2019-10-24 Jfeスチール株式会社 Device for determining condition of blast furnace, method for operating blast furnace and method for determining condition of blast furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101540248B1 (en) * 2013-12-26 2015-07-29 주식회사 포스코 Signs of blast furnace sensors and detection methods for channeling

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090453A (en) * 2008-10-09 2010-04-22 Nippon Steel Corp Method of operating vertical melting furnace
JP2019183262A (en) * 2018-04-03 2019-10-24 Jfeスチール株式会社 Device for determining condition of blast furnace, method for operating blast furnace and method for determining condition of blast furnace
JP2019183261A (en) * 2018-04-03 2019-10-24 Jfeスチール株式会社 Device for determining condition of blast furnace, method for operating blast furnace and method for determining condition of blast furnace

Also Published As

Publication number Publication date
JPH0711018B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
JPH04173909A (en) Method for preventing blowby in blast furnace operation
JP2503301B2 (en) Blow-through prevention method in blast furnace operation
CN110523941A (en) Continuous casting bonding steel leakage multistage risk control method and control device
JP6540636B2 (en) Blast furnace operation method
JPH04173910A (en) Method for preventing blowby in blast furnace operation
CN107389971A (en) A kind of on-line measurement device of On Solids Recirculating Flowrate of Circulating Fluidized Bed
JP7307341B2 (en) Furnace gas pressure fluctuation detection method
JPH10281914A (en) Method for detecting leakage of cooling water
EP0421743B1 (en) Coolant supply apparatus for liquid-cooled electronic device
JPH0229419B2 (en) RENZOKUCHUZOIGATANIOKERUCHUZOKONOHADANKENSHUTSUHOHO
JPWO2021033721A1 (en) Blast furnace abnormality judgment device, blast furnace abnormality judgment method, blast furnace operation method and hot metal manufacturing method
JPH02123413A (en) Temperature abnormality detecting system
JPH10310807A (en) Operation of blast furnace
JP2678767B2 (en) Blast furnace operation method
JP2970357B2 (en) Blast furnace blow-through prevention method
JPH10298618A (en) Operation of blast furnace
JPH0617067Y2 (en) Thermal stress monitoring device for thick-walled tubular structures
KR100402019B1 (en) Method For Anticipating Channeling In Blast Furnace
JPH0399761A (en) Method for detecting breakout in continuous casting
KR20040095468A (en) An apparatus for detecting gas distribution in furnace using cross sonde with the press detecting function
TW202307408A (en) Method and system for detecting abnormal temperature rise
JPH0120203B2 (en)
JPS6122234B2 (en)
TW202123066A (en) Method for detecting liquid level turbulence of surface image
TWI576436B (en) Method for estimating thickness of furnace and cooling system using the same