JP2503301B2 - Blow-through prevention method in blast furnace operation - Google Patents

Blow-through prevention method in blast furnace operation

Info

Publication number
JP2503301B2
JP2503301B2 JP29857290A JP29857290A JP2503301B2 JP 2503301 B2 JP2503301 B2 JP 2503301B2 JP 29857290 A JP29857290 A JP 29857290A JP 29857290 A JP29857290 A JP 29857290A JP 2503301 B2 JP2503301 B2 JP 2503301B2
Authority
JP
Japan
Prior art keywords
furnace
reference value
blast furnace
blow
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29857290A
Other languages
Japanese (ja)
Other versions
JPH04173908A (en
Inventor
忍 森本
政博 讃井
耕造 山村
達朗 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP29857290A priority Critical patent/JP2503301B2/en
Publication of JPH04173908A publication Critical patent/JPH04173908A/en
Application granted granted Critical
Publication of JP2503301B2 publication Critical patent/JP2503301B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高炉操業に関し、特に、高炉の吹抜け防止に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to blast furnace operation, and more particularly to prevention of blow-through in a blast furnace.

〔従来の技術〕[Conventional technology]

高炉操業において炉内の圧力損失が局所的に増しこれ
が装入物荷重と釣り合った状態になると装入物の局所的
な静止、いわゆる棚吊りが発生し、棚吊りの上側では装
入物の降下が止り、棚吊りの下方の炉内装入物の降下に
伴って棚吊りの下に空洞を生ずる。この空洞がある程度
大きくなると棚吊りの外側の装入物が空洞に滑り込み
(スリップ)これに伴ってこの局部的な棚吊りがくずれ
る。棚吊りが大きくそのくずれが急激に起ると大量の装
入物の局所的な、比較的に速い移動により、炉内の圧力
損失が局所的に低下しそこから炉内ガスが上方に吹上
げ、このとき装入物が炉頂に吹き上げられる。このよう
な吹き上げはいわゆる吹抜けと呼ばれ、炉内温度分布,
装入物分布を乱して正常な熱交換,環元が行われなくな
り溶銑温度等を乱したり、ひどい場合には冷込みに到る
ことがある。しかも炉頂の温度が極端に上昇するので、
高炉設備の保全上も大きな問題となる。
When the pressure loss in the furnace locally increases during blast furnace operation and it becomes in a state of being balanced with the load of the charge, local stoppage of the charge, so-called hanging, occurs. Stops and creates a cavity under the hanging as the furnace interior contents fall below the hanging. When this cavity becomes large to some extent, the charge on the outside of the hanging system slips into the cavity, which causes the local hanging process to collapse. If the shelving is large and the collapse occurs suddenly, a large amount of the charged material moves locally and relatively quickly, causing the pressure loss inside the furnace to decrease locally and blowing up the gas inside the furnace upward. , At this time, the charge is blown up to the top of the furnace. This kind of blow-up is called so-called blow-through, and the temperature distribution in the furnace,
The distribution of the charge may be disturbed to prevent normal heat exchange and ringing, disturbing the hot metal temperature, etc., or, in severe cases, cooling. Moreover, since the temperature at the top of the furnace rises extremely,
It is also a major problem in maintaining blast furnace equipment.

特公平1−20203号公報には、高炉の高さ方向の複数
位置の炉壁内面部の静圧を測定し、これらの静圧から、
各測定位置から炉頂までの圧力損失を求め、一方、各測
定位置から炉頂までの装入物荷重を求めて、求めた圧力
損失と装入物荷重の比に対応して炉内吹込み送風条件を
調整して上記棚吊り(およびそれによってもたらさせる
スリップおよび吹抜け)を防止する技術が提示されてい
る。
Japanese Examined Patent Publication No. 1-20203 discloses that the static pressure of the inner surface of the furnace wall at a plurality of positions in the height direction of the blast furnace is measured, and from these static pressures,
Obtain the pressure loss from each measurement position to the furnace top, meanwhile, determine the charge load from each measurement position to the furnace top, and blow into the furnace according to the calculated ratio of pressure loss and charge load. Techniques have been proposed to adjust the blowing conditions to prevent the above-mentioned hanging (and the slip and blow-through caused thereby).

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

ところが高炉内装入物の荷重は、焼結鉱の性状(粒
度,TFe,還元粉化性,強度等),コークスの性状(粒
度,還元粉化性,強度等)及び炉内状況(高炉炉壁の損
耗:内容積の変化,摩擦抵抗の変化)により変動し、炉
内各点の装入物荷重の算出(推定)精度が低く、したが
って棚吊り等の発生可能性の推定精度が低い。これによ
り、棚吊り等の抑制の信頼性を高めるためには過度に送
風量を抑制することになり操業の安定性が乱される。送
風量の抑制を緩めると棚吊り等を起す可能性が高くな
る。したがって、より一層信頼性が高い吹抜け防止技術
が望まれる。
However, the load on the interior of the blast furnace depends on the properties of the sinter (grain size, TFe, reduced pulverization property, strength, etc.), coke properties (grain size, reduced pulverization property, strength, etc.), and furnace conditions (blast furnace wall Wear: Changes in internal volume, changes in frictional resistance), and the accuracy of calculating (estimating) the load of the charge at each point in the furnace is low, and therefore the accuracy of estimating the possibility of rack hanging is low. As a result, in order to increase the reliability of restraint such as hanging from a shelf, the amount of air blow is excessively restrained and the stability of operation is disturbed. Loosening the control of the air flow increases the possibility of hanging on a shelf. Therefore, a more reliable blow-through prevention technique is desired.

本発明は、吹抜けの発生可能性の検出信頼性を高くし
て高炉操業の安定性をより高くすることを目的とする。
It is an object of the present invention to increase the reliability of detection of the possibility of occurrence of blow-through and further improve the stability of blast furnace operation.

〔課題を解決するための手段〕[Means for solving the problem]

本願の第1番の発明では、高炉シャフト部におけるス
トックライン下方の炉壁高さ方向に位置が異なる複数点
の炉内圧力(Pij)のそれぞれが基準値(Pis)以上であ
るかを所定時間Td(20sec)以下の時間間隔Tps(10se
c)で検出し、該複数点の内の最上位置以外の何れかの
炉内圧力(Pij,i=中段又は下段)が基準値(Pis)以上
になってから所定時間Td(20sec)内に上記最上位置の
炉内圧力(Pij,i=上段)が基準値(Pis)以上になった
ときに高炉内への送風量を低減する(第2b図の13〜1
6)。
In the first invention of the present application, it is determined for a predetermined time whether each of the in-reactor pressures (Pij) at a plurality of points at different positions in the furnace wall height direction below the stock line in the blast furnace shaft portion is equal to or higher than a reference value (Pis). Time interval Tps less than Td (20sec) Tps (10se
detected in c), and within a predetermined time Td (20 sec) after the reactor pressure (Pij, i = middle stage or lower stage) of any of the points other than the uppermost position becomes equal to or higher than the reference value (Pis). When the pressure in the furnace at the uppermost position (Pij, i = upper stage) exceeds the reference value (Pis), the amount of air blown into the blast furnace is reduced (Fig. 2b, 13 to 1).
6).

本願の第2番の発明では、高炉シャフト部におけるス
トックライン下方の炉壁高さ方向で上段の炉内圧力(Pi
j,i=上段)が基準値(Pis)以上であるかを所定時間間
隔Tpsa(10sec)で検出し;高炉内装入物の、炉周方向
複数点の上表面レベル(Lj)の差(ΔH)が基準値(Δ
Hs)以上であるかを所定時間間隔Ths(10sec)で検出す
ると共に上表面レベル(Lj)それぞれの位置の装入物降
下速度(dLj)が基準値(dLs)以上であるかを時間間隔
Tfs(10sec)で検出し;上段の炉内圧力(Pij,i=上
段)が基準値(Pis)以上で、かつ、前記上表面レベル
の差(ΔH)が基準値(ΔHs)以上(DΔH=1)およ
び上表面レベル(Lj)のそれぞれの降下速度(dLj)の
少くとも一者が基準値(dLs)以上(DdL=1)、が成立
したときに高炉内への送風量を低減する(第2c図の34−
37)。
In the second invention of the present application, the furnace pressure (Pi in the upper stage in the furnace wall height direction below the stock line in the blast furnace shaft portion)
It is detected at a predetermined time interval Tpsa (10 sec) whether j, i = upper) is greater than or equal to the reference value (Pis); the difference (ΔH) between the upper surface levels (Lj) of the blast furnace interior entrance at multiple points in the furnace circumferential direction. ) Is the reference value (Δ
Hs) or more is detected at a predetermined time interval Ths (10 sec), and whether or not the load descending speed (dLj) at each position of the upper surface level (Lj) is the reference value (dLs) or more is timed.
Detected at Tfs (10 sec); the upper furnace pressure (Pij, i = upper) is a reference value (Pis) or more, and the upper surface level difference (ΔH) is a reference value (ΔHs) or more (DΔH = 1) and the lowering speed (dLj) of each of the upper surface level (Lj) is at least one of the reference values (dLs) or more (DdL = 1), the air flow rate into the blast furnace is reduced ( 34c in Fig. 2c
37).

本願の第3番目の発明では、高炉シャフト部における
ストックライン下方の炉壁高さ方向で上段の炉内圧力
(Pij,i=上段)を所定時間間隔Tpsa(10sec)で検出
し; 高炉炉頂部の複数の上昇管の炉頂ガス温度(Tej)の
それぞれの変化量(dTej)を所定時間間隔Tets(10se
c)で検出し; 高炉シャフト上部の装入物表面直下の高炉円周方向複
数点のガス温度(Tsj)のそれぞれを所定時間間隔Tits
(2sec)内で検出し; 上段の炉内圧力(Pij,i=上段)が基準値(Pis)以上
(DMd=1)で、かつ、前記複数の上昇管の炉頂ガス温
度(Tej)の変化勾配の少なくとも一者が基準値Vp以上
(dTmax≧Vp)および他の少なくとも一者が基準値Vn以
下(dTmin≦Vn)で、かつ少なくとも前記炉頂ガスの一
者が吹抜け予測基準値(dTe)以上の温度低下を示した
とき(DRd=1&DdT=1)か、又は、前記高炉シャフト
上部の装入物表面直下の高炉円周方向複数点のいずれか
の位置の炉内ガス温度(Tsj)の所定時間Ts(10sec)内
における温度変化(ΔTs)が基準値(ΔTs1〜ΔTs2)範
囲内で、前記複数の炉内ガス温度(Tsj)の少なくとも
一者が基準以上を示すか、又は、前記複数の上昇管の炉
頂ガス温度(Tej)の変化勾配の少なくとも一者(Tsma
x)が基準値(Tss)以上(DT=1)を示すときに高炉内
への送風量を低減する(第3c図の69−70−37)。
In the third invention of the present application, the in-furnace pressure (Pij, i = upper stage) in the upper stage in the furnace wall height direction below the stock line in the shaft portion of the blast furnace is detected at a predetermined time interval Tpsa (10 sec); The change amount (dTej) of the furnace top gas temperature (Tej) of a plurality of rising pipes of
c); the gas temperatures (T sj ) at multiple points in the circumferential direction of the blast furnace just below the surface of the charge on the upper part of the blast furnace shaft are determined at predetermined time intervals T its.
Detected within (2 sec); the upper furnace pressure (Pij, i = upper) is above the reference value (Pis) (DMd = 1) and the furnace top gas temperature (Tej) of the plurality of risers At least one of the change gradients is equal to or higher than the reference value Vp (dTmax ≧ Vp) and at least one other is equal to or less than the reference value Vn (dTmin ≦ Vn), and at least one of the furnace top gases has a blow-through prediction reference value (dTe ) When the above temperature drop is shown (DRd = 1 & DdT = 1), or in the furnace gas temperature (Tsj) at any of several points in the circumferential direction of the blast furnace just below the surface of the charge above the blast furnace shaft. Of the temperature change (ΔTs) within a predetermined time Ts ( 10 sec) within a reference value (ΔTs 1 to ΔTs 2 ) range, at least one of the plurality of in-furnace gas temperatures (Tsj) indicates a reference value or more, or , At least one of the gradients of the top gas temperature (Tej) of the plurality of risers (Tsma
When x) is greater than the reference value (Tss) (DT = 1), the amount of air blown into the blast furnace is reduced (69-70-37 in Fig. 3c).

なお、カッコ内の記号は、以下に説明する本発明の実
施例の対応事項に付した記号等を示す。
The symbols in parentheses indicate the symbols attached to the corresponding items of the embodiments of the present invention described below.

〔作用〕[Action]

高炉シャフトの炉内圧力を高さ方向の複数点で測定す
ると、高炉の吹き抜けが生じる前に、例えば第4図に示
すように、時系列の圧力変動が現われ、下段のシャフト
圧力がある程度以上に上昇してから所定時間(例えば20
sec、この時間はシャフト圧力測定点の間隔により異な
るものであり、この値は、圧力測定間隔を1mにした場合
である。)内に中段,上段のシャフト圧力が所定圧(吹
抜け許容限界値)以上に順次上昇したときに吹抜けが生
ずる可能性が高い。
When the in-furnace pressure of the blast furnace shaft is measured at multiple points in the height direction, time-series pressure fluctuations appear, for example, as shown in FIG. A certain time (for example, 20
sec, this time varies depending on the interval between shaft pressure measurement points, and this value is when the pressure measurement interval is 1 m. There is a high possibility that blow-through will occur when the shaft pressures in the middle and upper stages gradually increase above a predetermined pressure (allowable blow-through limit value).

これは、装入物内に生じた前記空洞にその周りの装入
物がくずれ始めると、該空洞を偏流して流れている比較
的多量の炉内ガスが偏流を妨げられて他の部位を流れよ
うとし、この際に他の部位の圧力が上昇し、炉内ガスが
シャフト下部から上部に流れるのでこの圧力上昇がシャ
フト下部から上部に順次伝搬して行くことが原因と推察
される。
This is because when the charge around it begins to collapse into the cavity created in the charge, a relatively large amount of in-furnace gas flowing in the cavity is blocked and the other flow is blocked. Attempting to flow, the pressure in other parts rises at this time, and the gas in the furnace flows from the lower part of the shaft to the upper part, and it is speculated that this pressure increase is sequentially propagated from the lower part of the shaft to the upper part.

したがって上述の第1番目の発明のように、高炉シャ
フト部におけるストックライン下方の炉壁高さ方向に位
置が異なる複数点の炉内圧力(Pij)のそれぞれが基準
値(Pis)以上であるかを所定時間Td(20sec)以下の時
間間隔Tps(10sec)で検出し、該複数点の内、最上位置
以外の何れか1つの炉内圧力が基準値以上になってから
所定時間Td(20sec)内に最上位置の炉内圧力が基準値
以上になったことをもって吹抜けの可能性ありと判断し
うる。ところで、シャフト圧力の上昇位置がシャフト下
段であれば該シャフト上部に積層している多量の装入物
の影響によりガス流が分散又は減速して吹抜けに至らな
い場合があるのに対して、シャフト圧力の上昇位置がシ
ャフト上段であれば装入物の影響が小さく上昇して来た
多量の炉内ガスがそのまま装入物の表面から流出して吹
抜ける可能性が極めて高い。
Therefore, as in the first aspect of the invention described above, are each of the in-reactor pressures (Pij) at a plurality of points at different positions in the furnace wall height direction below the stock line in the blast furnace shaft part equal to or greater than the reference value (Pis)? Is detected at a time interval Tps (10 sec) of a predetermined time Td (20 sec) or less, and a predetermined time Td (20 sec) after the pressure in any one of the plurality of points other than the uppermost position becomes a reference value or more. It can be judged that there is a possibility of blow-through when the pressure in the furnace at the highest position becomes higher than the reference value. By the way, when the position where the shaft pressure rises is the lower stage of the shaft, the gas flow may be dispersed or slowed down due to the influence of a large amount of the charge accumulated on the upper part of the shaft to prevent blow-through. If the pressure rise position is at the upper stage of the shaft, it is highly possible that a large amount of the in-furnace gas that has risen with little influence of the charge flows out from the surface of the charge and blows through.

そこで第1番目の発明では、最上位置の炉内圧力(Pi
j,i=上段)以外の位置の何れかの炉内圧力(Pij,i=中
段又は下段)が基準値(Pis)以上になってから所定時
間Td(20sec)以内に最上位置の炉内圧力が基準値(Pi
s)以上になったときに、吹抜けの可能性が高いので、
高炉内への送風量を低減する(第2b図の16〜18)。
Therefore, in the first invention, the furnace pressure (Pi
Within the predetermined time Td (20 sec) after the in-furnace pressure (Pij, i = middle or lower) at any position other than j, i = upper) exceeds the reference value (Pis), the highest in-furnace pressure Is the reference value (Pi
s) When it is above, there is a high possibility of a void, so
Reduce the amount of air blown into the blast furnace (16-18 in Fig. 2b).

これにより吹抜け防止のための送風量の低減が、吹抜
けの可能性が高いときのみ行なわれ、吹抜け防止の信頼
性は高くしかも、過敏(高頻度)に送風量を抑制するこ
とがなくなり操業の安定性が向上する。
As a result, the amount of air blown to prevent blow-through is reduced only when the possibility of blow-through is high, and the reliability of blow-through prevention is high, and the air flow rate is not sensitively (frequently) controlled and operation is stable. The property is improved.

吹抜けの発生の前には、棚吊りなど荷下り状態に異常
を生じ、装入物内に局所的な空洞が生ずる。このような
状態では高炉円周方向でストックラインレベル(装入物
上表面)の降下速度の相違が大きくなり、ストックライ
ンレベルの高低差が大きくなる。
Before the occurrence of the blow through, abnormalities occur in the unloading state such as hanging from a shelf, and local cavities occur in the charge. In such a state, the difference in the descending speed of the stock line level (the upper surface of the charge) in the circumferential direction of the blast furnace becomes large, and the difference in the height of the stock line level becomes large.

第2番目の発明では、上段の炉内圧力(Pij,i=上
段)が基準値(Pis)以上であるかを所定時間間隔Tpsa
(10sec)で検出する。
In the second aspect of the invention, it is determined whether the upper furnace pressure (Pij, i = upper) is equal to or higher than the reference value (Pis) at a predetermined time interval Tpsa.
(10 seconds) to detect.

更に、高炉内装入物の、炉周方向複数点の上表面レベ
ル(Lj)の差(ΔH)が基準値(ΔHs)以上であるかを
所定時間間隔Ths(10sec)で検出し、かつ、高炉内装入
物上表面のそれぞれの位置の降下速度(dLj)が基準値
(dLs)以上であるかを所定時間間隔Tfs(10sec)で検
出し、上段の炉内圧力(Pij,i=上段)が基準値(Pis)
以上で、かつ、上表面レベル(Lj)の差(ΔH)が基準
値(ΔHs)以上および炉周方向複数点の上表面レベル
(lj)のそれぞれの位置の降下速度(dLj)の少くとも
一者が基準値(dLs)以上、が成立したときに高炉内へ
の送風量を低減する(第2c図の34〜37)。すなわち、シ
ャフト上段の炉内圧力(Pij,i=上段)が基準値(Pis)
以上で、かつ、装入物上表面レベルの高低差が大きくし
かも装入物上表面レベルの降下速度が高いときに送風量
を低減する。
Further, it is detected at a predetermined time interval Ths (10 sec) whether the difference (ΔH) between the upper surface levels (Lj) of the interior contents of the blast furnace at a plurality of points in the furnace circumferential direction is equal to or greater than a reference value (ΔHs), and the blast furnace Whether the descent rate (dLj) at each position on the inner surface of the inner container is equal to or higher than the reference value (dLs) is detected at a predetermined time interval Tfs (10sec), and the upper furnace pressure (Pij, i = upper) is detected. Reference value (Pis)
Above, the difference (ΔH) in the upper surface level (Lj) is the reference value (ΔHs) or more, and the descent rate (dLj) at each position of the upper surface level (lj) at multiple points in the furnace circumferential direction is at least one. Reduces the amount of air blown into the blast furnace when a person satisfies the standard value (dLs) or more (34 to 37 in Fig. 2c). That is, the furnace pressure (Pij, i = upper stage) in the upper stage of the shaft is the reference value (Pis)
Above, when the height difference of the upper surface level of the charge is large and the descending speed of the upper surface level of the charge is high, the air flow rate is reduced.

この第2番目の発明によれば、吹抜け予知の信頼性が
更に高く、操業の安定性が更に向上する。
According to the second aspect of the invention, the reliability of blow-through prediction is further enhanced, and the stability of operation is further improved.

ところで、装入物内にかなりの大きさの空洞が発生す
ると、高炉円周方向で炉頂ガス温度分布が乱れ、高炉円
周方向のある位置の炉頂ガス温度が低下傾向に他の位置
の炉頂ガス温度が上昇傾向となって円周方向の炉頂ガス
温度偏差が大きくなり、棚吊りがくずれると、上昇傾向
であった位置の炉頂ガス温度が大きく低下する。すなわ
ち、空洞内に装入物が崩れ込み始めると、空洞を流れる
炉内ガス流が減少してその部分の近傍の装入物表面より
流出して該部分の上にある炉頂上昇管に流入する炉内ガ
ス温度が比較的高い状態から低下を始め、その他の位置
を流れる炉内ガス流が増大してその部分の装入物の表面
より流出して該表面の上にある炉頂上昇管に流入しその
炉内ガス温度は上昇し吹抜けに至ると上昇傾向を示して
いた位置の炉内ガス温度が更に急激に上昇する。
By the way, if a cavity with a large size is generated in the charging material, the temperature distribution of the furnace top gas in the circumferential direction of the blast furnace is disturbed, and the temperature of the furnace top gas at a certain position in the circumferential direction of the blast furnace tends to decrease. When the furnace top gas temperature tends to rise, the deviation of the furnace top gas temperature in the circumferential direction becomes large, and when the hanging of the shelf collapses, the furnace top gas temperature at the position where it has tended to rise greatly decreases. That is, when the charge begins to collapse into the cavity, the gas flow in the furnace flowing through the cavity decreases and flows out from the surface of the charge in the vicinity of that part and flows into the furnace top rising pipe above that part. The temperature inside the furnace begins to decrease from a relatively high temperature, and the gas flow inside the furnace flowing at other positions increases and flows out from the surface of the charging material at that portion and rises above the surface. Flowing into the furnace, the temperature of the gas in the furnace rises, and when it reaches the blow-through, the temperature of the gas in the furnace at the position that had been rising tends to rise more rapidly.

第3番目の発明ではこの現象に着目して、上段の炉内
圧力(Pij,i=上段)が基準値(Pis)以上であるかを所
定時間間隔Tpsa(10sec)で検出すると共に、高炉炉頂
部の複数の上昇管の炉頂ガス温度(Tej)のそれぞれの
低下変化量(dTej)を所定時間間隔Tets(10sec)で検
出し、更に、上昇管Zj別の炉頂ガス温度の温度勾配を所
定時間間隔Tda(60sec)で算出する。そして、シャフト
最上位置の炉内圧力(Pij,i=上段)が基準値(Pis)以
上(DMd=1)で、かつ、複数の上昇管の所定時間Tda
(60sec)内の炉頂ガス温度(Tej)の温度勾配の少くと
も一者が基準値Vp(7℃/分)以上(dTmax≧Vp)およ
び他の少くとも一者が基準値Vn(3℃/分)以下(dTmi
n≦Vn)でかつ少くとも炉頂ガス温度の一者が吹抜け予
測基準値(dTe)以上の温度低下を示したとき(DRd=1
&DdT=1)に、高炉内への送風量を低減する(第3c図
の69−70−37)。すなわち、上段の炉内圧力(Pij,i=
上段)が基準値(Pis)以上(DMd=1)で、かつ、高炉
円周方向のある位置の炉頂ガス温度勾配が基準値より低
下し他の位置の炉頂ガス温度勾配が基準値より上昇し、
かつ前記低下した炉頂ガス温度が基準値以上の温度低下
変動を示したときに送風量を低減する。
In the third invention, paying attention to this phenomenon, it is detected at a predetermined time interval Tpsa (10 sec) whether the upper furnace pressure (Pij, i = upper) is equal to or higher than a reference value (Pis), and the blast furnace The decrease amount (dTej) of each of the furnace top gas temperatures (Tej) of the plurality of rising pipes at the top is detected at a predetermined time interval Tets (10 sec), and the temperature gradient of the furnace top gas temperature for each rising pipe Zj is further detected. It is calculated at a predetermined time interval Tda (60 seconds). Then, the furnace pressure (Pij, i = upper stage) at the uppermost position of the shaft is equal to or higher than the reference value (Pis) (DMd = 1), and the predetermined time Tda of the plurality of riser pipes
At least one of the temperature gradient of the furnace top gas temperature (Tej) within (60 sec) is the reference value Vp (7 ° C / min) or more (dTmax ≧ Vp) and the other at least one is the reference value Vn (3 ° C). / Min) or less (dTmi
n ≦ Vn) and at least one of the furnace top gas temperatures shows a temperature drop more than the blow-through prediction reference value (dTe) (DRd = 1
& DdT = 1), reduce the amount of air blown into the blast furnace (69-70-37 in Fig. 3c). That is, the pressure in the upper furnace (Pij, i =
(Upper) is above the reference value (Pis) (DMd = 1), and the temperature gradient of the top gas at one position in the circumferential direction of the blast furnace is lower than the reference value, and the temperature gradient of the top gas at other positions is below the reference value. Rise,
Further, when the lowered furnace top gas temperature shows a temperature drop fluctuation of a reference value or more, the air flow rate is reduced.

この第3番目の発明によれば、炉頂ガス温度の円周方
向の分布異変検出をも加えた吹抜け予知を行なうのでそ
の信頼性が更に高く、操業の安定性が更に向上する。
According to the third aspect of the present invention, since the blow-through prediction is performed with the detection of the variation in the distribution of the furnace top gas temperature in the circumferential direction, the reliability is further increased and the stability of the operation is further improved.

第4番目の発明でも上述の現象に着目して、上段の炉
内圧力(Pij,i=上段)が基準値(Pis)以上であるかを
所定時間間隔Tpsa(10sec)で検出し、更に高炉シャフ
ト上部の装入物内の高炉円周方向複数点のガス温度(Ts
i)のそれぞれを検出する。上段の炉内圧力(Pij,i=上
段)が基準値(Pis)以上(DMd=1)で、かつ、高炉円
周方向複数点のいずれかの位置の炉内ガス温度(Tsj)
の所定時間Ts(10sec)内における温度変化(ΔTs)が
基準値(ΔTs1〜ΔTs2)範囲内で前記複数点の少くとも
一者(Tsmax)が基準値(Tss)以上になった(DT=1)
ときに送風量を低減する(第3c図の69−70−71−37)。
Also in the fourth invention, paying attention to the above-mentioned phenomenon, it is detected at a predetermined time interval Tpsa (10 sec) whether the upper furnace pressure (Pij, i = upper) is equal to or higher than the reference value (Pis), and the blast furnace Gas temperature (Ts) at multiple points in the blast furnace circumference in the charge above the shaft
Detect each of i). The upper furnace pressure (Pij, i = upper) is equal to or higher than the reference value (Pis) (DMd = 1) and the furnace gas temperature (Tsj) at any of multiple points in the blast furnace circumferential direction
The temperature change (ΔTs) within a predetermined time Ts ( 10 sec) of is within a reference value (ΔTs 1 to ΔTs 2 ) range, and at least one of the plurality of points (Tsmax) becomes equal to or greater than the reference value (Tss) (DTs). = 1)
Sometimes it reduces the air flow (69-70-71-37 in Figure 3c).

この第4番目の発明でも、スキンフローガス温度異変
検出をも加えて吹抜け予知を行なうのでその信頼性が更
に高く、操業の安定性が更に向上する。
Also in the fourth aspect of the invention, since the blow-through prediction is performed by also detecting the skin flow gas temperature change detection, the reliability is further increased and the operation stability is further improved.

本発明の他の目的および特徴は、図面を参照した以下
の実施例の説明より明らかになろう。
Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

〔第1,2番の発明の実施例〕 第1図に、本発明を実施する装置の概要を示す。この
実施例では、高炉のシャフト部におけるストックライン
ST下方の、下段,中段および上段のそれぞれに、各4個
の圧力計P1j〜P3j(総計12個)が、高炉円周方向に等間
隔に設置されており、それぞれが各位置の炉内圧力Pij
を検出し圧力検出信号を入出力インターフェイス(入,
出力信号処理回路)SPCに与える。通常操業において、
最低装入物の上表面レベルより1m下(直下)の装入物内
の炉内ガス温度を検出する4個の温度計(スキンフロー
ガス温度計)Tkjが、高炉円周方向に等間隔に設置され
ており、装入物内を上昇する炉内ガス温度Tsj(スキン
フローガス温度)を示す温度検出信号を入出力インター
フェイスSPCに与える。シャフト部の上方にはサウンジ
ング装置Sjが装備されており、これが装入物上表面のレ
ベル(高さ)Ljを円周方向で等間隔に定めた4点で検出
し、レベル信号を入出力インターフェイスSPCに与え
る。高炉炉頂には4本の上昇管Zjがあり、これらにもガ
ス温度計Tzjが装備されており、これらが上昇管Zj内を
上昇するガス温度Tejを計測し炉頂ガス温度を示す信号
を入出力インターフェイスSPCに与える。
[First and Second Embodiments of the Invention] FIG. 1 shows an outline of an apparatus for carrying out the present invention. In this example, the stock line in the shaft part of the blast furnace
Four pressure gauges P 1 j to P 3 j (12 in total) are installed at equal intervals in the blast furnace circumferential direction at each of the lower, middle, and upper stages below the ST, each at each position. Furnace pressure of Pij
Is detected and the pressure detection signal is input / output interface (ON,
Output signal processing circuit) Give to SPC. In normal operation,
Four thermometers (skin flow gas thermometers) Tkj that detect the temperature of the gas in the furnace 1 m below (immediately below) the upper surface level of the minimum charge (skin flow gas thermometer) are arranged at equal intervals in the circumferential direction of the blast furnace. It is installed and gives a temperature detection signal indicating the furnace gas temperature Tsj (skin flow gas temperature) rising in the charge to the input / output interface SPC. A sounding device Sj is installed above the shaft, which detects the level (height) Lj of the upper surface of the charge at four points that are set at equal intervals in the circumferential direction, and outputs the level signal as an input / output interface. Give to SPC. There are four rising pipes Zj on the top of the blast furnace, which are also equipped with gas thermometers Tzj, which measure the gas temperature Tej rising in the rising pipe Zj and give a signal indicating the furnace top gas temperature. I / O interface SPC is given.

上昇管ZjにNo.1〜4の番号を付け、上昇管Zjのガス温
度Tejのjが上昇管No.数字(j=1〜4)を示すものと
すると、すなわち上昇管Zjのガス温度TejがNo.jの上昇
管のガス温度を示すものであるとすると、シャフト各段
部の炉内圧力Pij測定位置(i=1が上段,2が中段,3が
下段;円周方向j=1〜4),スキンフローガス温度Ts
j測定装置(円周方向j=1〜4),装入物上表面レベ
ルLj測定位置(円周方向j=1〜4)のそれぞれ(円周
方向の位置j)は、高炉の垂直軸心と各上昇管Zjの中心
軸を含む各垂直面上にある。
Numbers 1 to 4 are given to the rising pipe Zj, and j of the gas temperature Tej of the rising pipe Zj indicates the rising pipe No. number (j = 1 to 4), that is, the gas temperature Tej of the rising pipe Zj. Is the gas temperature in the riser pipe of No. j, the furnace pressure Pij measurement position at each stage of the shaft (i = 1 is the upper stage, 2 is the middle stage, 3 is the lower stage; circumferential direction j = 1 ~ 4), skin flow gas temperature Ts
j measuring device (circumferential direction j = 1 to 4), each of the charge upper surface level Lj measuring positions (circumferential direction j = 1 to 4) (circumferential direction j) is the vertical axis of the blast furnace. And on each vertical plane including the center axis of each riser Zj.

すなわち、仮に炉内ガスが高炉軸心に関して全く対称
に上昇するとすると、Pijはシャフト部を上昇管No.jに
向って上昇する炉内ガスの圧力、Tsjは装入物上表面直
下内を上昇管No.jに向って上昇するスキンフローガス温
度、Ljは上昇管No.jに最も近い装入物表面のレベル、Te
jは上昇管No.jの管内を上昇している炉頂ガス温度であ
る。
That is, if the furnace gas rises symmetrically with respect to the blast furnace axis, Pij is the pressure of the furnace gas that rises in the shaft portion toward the rising pipe No.j, and Tsj rises just below the upper surface of the charge. Skin flow gas temperature rising toward tube No.j, Lj is the level of the charge surface closest to the rising tube No.j, Te
j is the temperature of the gas at the top of the furnace rising in the rising pipe No. j.

サウンジング装置Sjは、連続的に円周方向4点の装入
物レベルを測定して入出力インターフェイスSPCに連続
的に入力してそこに10sec周期で測定データをラッチす
る。シャフト圧力計P1j〜P3jはそれぞれ圧力検出データ
を入出力インターフェイスSPCに連続的に入力して、そ
こに2sec周期でラッチする。スキンフローガス温度Tsj
を測定するスキンフロー温度計Tkjおよび上昇管内ガス
温度Tejを測定する炉頂温度計Tzjはそれぞれ温度検出デ
ータを入出力インターフェイスSPCに連続的に入力して
そこに2sec周期でラッチする。
The sounding device Sj continuously measures the charge levels at four points in the circumferential direction, continuously inputs the same to the input / output interface SPC, and latches the measured data therein at a cycle of 10 seconds. The shaft pressure gauges P 1 j to P 3 j each continuously input the pressure detection data to the input / output interface SPC and latch it there at a cycle of 2 seconds. Skin flow gas temperature Tsj
The skin flow thermometer Tkj for measuring the temperature and the furnace top thermometer Tzj for measuring the gas temperature Tej in the rising pipe continuously input the temperature detection data to the input / output interface SPC and latch the data at a cycle of 2 seconds.

入出力インターフェイスSPCは、与えられた測定デー
タの最新のものすべてを、2secの周期で1セットのデー
タフレームに編集し保持しており、コンピュータCMRが
データを要求して来ると該1セットのデータフレームを
コンピュータCMRに転送する。
The input / output interface SPC edits and holds all the latest measurement data given in a set of data frames at a cycle of 2 seconds. When the computer CMR requests data, the set of data is set. Transfer the frame to the computer CMR.

コンピュータCMRは、2sec周期で測定データを入出力
インターフェイスSPCに要求し、1セットのデータフレ
ームを受信して、その中の所要のデータを摘出しそして
後述する吹抜け予知処理を実行して吹抜けの発生可能性
を判定し、判定結果に対応した送風制御データを作成
し、測定データを要求するとき転送指示信号と共に送風
制御データを入出力インターフェイスSPCに出力する。
入出力インターフェイスSPCは、コンピユータCMRからの
送風制御データは送風装置BRAに送出する。
The computer CMR requests measurement data from the input / output interface SPC at a cycle of 2 seconds, receives a set of data frames, extracts the required data from the data frames, and executes the blowout prediction process described later to generate blowouts. The possibility is determined, the ventilation control data corresponding to the determination result is created, and when the measurement data is requested, the ventilation control data is output to the input / output interface SPC together with the transfer instruction signal.
The input / output interface SPC sends the air blow control data from the computer CMR to the air blower BRA.

第2a図〜第2c図に、コンピュータCMRの吹抜け予知処
理の内容を示す。
2a to 2c show the contents of the blow-through prediction process of the computer CMR.

まず第2a図を参照すると、この処理を開始するときに
はコンピユータCMRはまず2秒タイマをスタートし2秒
の経過を待つ(ステップ1,2;以下カッコ内ではステップ
という語を省略し番号数字のみを記す)。2秒が経過す
ると2秒タイマを再スタートし(3)、入出力インター
フェイスSPCより測定データを読込む(4)。
First, referring to FIG. 2a, when starting this process, the computer CMR first starts a 2-second timer and waits for 2 seconds (steps 1 and 2; in the following, the word step is omitted in parentheses and only a number is given). Note). When 2 seconds have passed, the 2-second timer is restarted (3) and the measurement data is read from the input / output interface SPC (4).

シャフト圧力Pij(総計12個)は、それぞれにつき今
回読込んだ値と過去4回読込んだ値の計5個を常持レジ
スタに保持してそれらの中の最高値Pijmaxを算出し常時
最新の最高値Pijmaxをレジスタに保持する(5)。そし
て10sec毎に(5回のデータ読込み毎に)(6〜7)、
最高値Pijmaxが基準値pis以上になったかをチェックし
て(9)、基準値Pis以上になるとこれを示すデータ
「1」をレジスタDPijに書込み(10)、基準値Pis未満
であるとレジスタDPijをクリアする(11)。なお、基準
値Pisは、シャフト上段(i=1)に割り宛てているも
のP1sが3.4Kg/cm2、シャフト中段(i=2)に割り宛て
ているものP2sが3.7Kg/cm2、シャフト下段(i=3)に
割り宛てているものP3sが4.0Kg/cm2である。レジスタDP
ijのデータを書込むテーブル(メモリ領域)は、第2a図
に示すMPMの記憶領域分布としており、1つのレジスタD
Pijに対して一行(0〜2の3領域)を割り当ててい
る。今回の判定データをレジスタDPijに書込む(10,1
1)と、コンピュータCMRは、MPMの列No.1の判定データ
を列No.2に書込み、列No.0の判定データを列No.1に書込
み、そして、今回の判定データ(DPijの内容)を列No.0
に書込む(12)。これにより、MRMには常時、過去20sec
の間の、10sec毎に判定したデータが書込まれているこ
とになる。
For the shaft pressure Pij (12 in total), the value read this time and the value read four times in the past are stored in the permanent register for a total of five values, and the highest value Pijmax among them is calculated to obtain the latest value. The maximum value Pijmax is held in the register (5). And every 10 seconds (every 5 times data reading) (6 to 7),
It is checked whether the maximum value Pijmax is greater than or equal to the reference value pis (9), and when it is greater than or equal to the reference value Pis, the data "1" indicating this is written in the register DPij (10). If it is less than the reference value Pis, the register DPij is determined. Clear (11). As for the reference value Pis, those for the upper shaft (i = 1) are divided to P 1 s for 3.4 kg / cm 2 , and those for the middle shaft (i = 2) for P 2 s are 3.7 kg / cm 2 . cm 2, P 3 s which are addressed assigned to the shaft lower (i = 3) is 4.0 Kg / cm 2. Register DP
The table (memory area) in which the data of ij is written has the storage area distribution of the MPM shown in FIG.
One row (3 areas 0 to 2) is assigned to Pij. Write the judgment data this time to the register DPij (10,1
1), the computer CMR writes the judgment data of column No. 1 of MPM to column No. 2, the judgment data of column No. 0 to column No. 1, and the judgment data of this time (the contents of DPij ) To column No. 0
Write on (12). As a result, the MRM always has the past 20 seconds
During this period, the data judged every 10 seconds will be written.

次に第2b図を参照する。コンピュータCMRは、シャフ
ト上段の圧力Pij(i=1)が基準値以上つまり、レジ
スタDPij(i=1)が1になると過去20sec以内に、シ
ャフト中段又は下段の圧力Pij(i=2又は3)が基準
値以上であった(短時間の内に吹抜けが発生する可能性
が極めて高い:緊急な対処要)つまり、テーブルMPMの
中、下の列No.0〜2に1があるかをチェックして(13,1
4)、そうであると、吹抜け対処用の風量減指示データ
を生成してこれを入出力インターフェイスSPCを介して
送風装置BRAに与え(15)、かつCRTディスプレイDISの
表示を、現在の測定データ,判定データおよび送風装置
の送風量データならびに吹抜け注意を示すものに更新す
る(16)。
Reference is now made to FIG. 2b. The computer CMR determines that the pressure Pij (i = 1) in the upper shaft is equal to or higher than the reference value, that is, when the register DPij (i = 1) becomes 1, the pressure Pij (i = 2 or 3) in the middle or lower shaft within the past 20 seconds. Was above the standard value (there is a high possibility that a blow-through will occur within a short time: urgent action is required). In other words, check whether there is 1 in the lower column No. 0 to 2 in the table MPM. Then (13,1
4) If so, generate the air volume reduction instruction data for coping with the blow-by and give this to the blower device BRA via the input / output interface SPC (15), and display the CRT display DIS on the current measurement data. , Update the judgment data, the air flow rate data of the air blower, and the cautions for blown air (16).

なお、上述のように緊急な対処要と判定したときに
は、吹抜け限界指数F、 RIV:高炉の実効内容積, OC:ORE/COKE(−), ρc:COKE嵩密度(t/m3), ρ0:ORE嵩密度(t/m3), BV:送風量(Nm3/min), TP:炉頂圧力(Kg/cm2), S:炉内平均断面積(m2) に、吹抜けの緊急防止用の値を与え、逆算により送風量
BVを算出し、算出した送風量BVより更に安全度を高める
ための値を減算し、残値を示す送風量データを送風装置
BRAに与える(15)。
When it is determined that an urgent countermeasure is required as described above, the blow-through limit index F, RIV: Effective internal volume of blast furnace, OC: ORE / COKE (-), ρc: COKE bulk density (t / m 3 ), ρ 0 : ORE bulk density (t / m 3 ), BV: Air flow rate (Nm 3 / min), TP: Furnace top pressure (Kg / cm 2 ), S: Furnace mean cross-sectional area (m 2 ) given the value for emergency prevention of blow through, and calculated by back calculation
BV is calculated, and the value for increasing the safety level is subtracted from the calculated air flow rate BV, and the air flow rate data indicating the remaining value is sent to the air blower.
Give to BRA (15).

緊急な対処要と判定しなかったときには、そのとき定
まっている正常操業用の送風量算出値を送風装置BRAに
与え(17)、CRTディスプレイDISの表示を、現在の測定
データ,判定データおよび送風装置の送風量データなら
びに吹抜けのないことを表示する(18)。
When it is not judged that an urgent action is required, the air flow rate calculation value for normal operation determined at that time is given to the air blower BRA (17), and the display of the CRT display DIS displays the current measurement data, judgment data and air flow. The air flow rate data of the device and the absence of blow-through are displayed (18).

以上が、シャフト部の圧力検出値に基づいた吹抜け
(短時間内の発生)予知と吹抜け緊急予知処理である。
The above is the blow-through (occurrence within a short time) prediction and blow-through emergency prediction processing based on the detected pressure value of the shaft portion.

次に、もう少し時間的な余裕がある第2の発明の実施
例における吹抜け予知と吹抜け予防処理の内容を説明す
る。
Next, the contents of the blow-through prediction and blow-through prevention processing in the embodiment of the second aspect of the present invention, which has a little more time, will be described.

コンピュータCMRは、10secの時間経過毎に最新の表面
レベル測定値Liを読込むと共にその値Liと10sec前の表
面レベル測定値(前回の読込値)を減算して、過去10se
c間の表面レベル降下量dLjを算出する(21〜25)。そし
て、降下量dLjが基準値dLs(1.0m)以上であるかをチェ
ックして(26)、そうであると判定データレジスタDdL
に「1」を書込み(27A)、そうでなれれば判定データ
レジスタDdLをクリアする(27B)。次に表面レベル測定
値Lj,j=1〜4の内の最大値Lmaxと最小値Lminを摘出す
る(28,29)。
The computer CMR reads the latest surface level measurement value Li every 10 seconds, and subtracts the value Li from the surface level measurement value 10 seconds before (the last read value) to obtain the past 10se.
Calculate the surface level drop dLj between c (21 to 25). Then, it is checked whether the descent amount dLj is greater than or equal to the reference value dLs (1.0 m) (26), and if it is, the determination data register DdL
Write "1" to (27A), and if not, clear the judgment data register DdL (27B). Next, the maximum value Lmax and the minimum value Lmin of the surface level measurement values Lj, j = 1 to 4 are extracted (28, 29).

次に第2c図を参照する。コンピユータCMRは次に、最
大値Lmaxと最小値Lminの偏差ΔHを算出し(30)、偏差
ΔHが基準値ΔHs(0.5m)以上であるかをチェックして
(31)、そうであると判定データレジスタDΔHに
「1」を書込み(32)、そうでなければ判定データレジ
スタDΔHをクリアする(33)。コンピュータCMRは次
に、シャフト部圧力値が基準値よりも高い(「1」)か
否(「0」)を示すデータを格納しているテーブルMPM
(第2a図)の、列No.0、i=1(上段)のデータを読出
して、その中が「1」であるかをチェックする(34)。
すなわち、シャフト上段部の円周方向各位置(j=1〜
4)のいずれかのガス圧が、現在異常に高くなっている
(シャフト上段部のガス圧の異常上昇)かをチェックす
る。更に、レジスタDdL及びDΔHが「1」であるか、
つまり、現在、装入物表面レベルの降下速度が基準値以
上(降下異常)かをチェックし(35)かつ表面レベル偏
差が異常に高いかをチェックする(36)。そして、いず
れも「1」である。つまり、シャフト上段部のガス圧が
異常に高く、現在降下異常がありしかもレベル偏差が異
常に高いと、近い未来に吹抜けを生ずる可能性があると
して、吹抜け予防対処用の風量減指示データを生成して
これを入出力インターフェイスSPCを介して送風装置BRA
に与え(37)、かつCRTディスプレイDISの表示を、現在
の測定データ,判定データおよび送風装置の送風量デー
タならびに吹抜け傾向注意を示すものに更新する(3
8)。
Now referring to FIG. 2c. Next, the computer CMR calculates the deviation ΔH between the maximum value Lmax and the minimum value Lmin (30), checks whether the deviation ΔH is equal to or greater than the reference value ΔHs (0.5m) (31), and determines that it is. "1" is written in the data register DΔH (32), and otherwise, the judgment data register DΔH is cleared (33). The computer CMR then stores a table MPM that stores data indicating whether or not the shaft pressure value is higher than the reference value (“1”) (“0”).
The data in column No. 0, i = 1 (upper row) of (Fig. 2a) is read, and it is checked whether the data is "1" (34).
That is, each position in the circumferential direction of the upper part of the shaft (j = 1 to 1
It is checked whether any of the gas pressures in 4) is currently abnormally high (abnormal increase in gas pressure in the upper stage of the shaft). Furthermore, whether the registers DdL and DΔH are “1”,
That is, it is checked whether or not the descent speed of the surface level of the charged material is equal to or higher than the reference value (abnormal descent) (35) and whether the surface level deviation is abnormally high (36). And all are "1". In other words, if the gas pressure in the upper part of the shaft is abnormally high, there is a current descent abnormality, and the level deviation is abnormally high, it is possible that blow-through will occur in the near future, and air volume reduction instruction data for blow-through prevention measures will be generated. Then, this is sent to the blower device BRA via the input / output interface SPC.
(37) and update the display on the CRT display DIS to show the current measurement data, judgment data, air flow rate data of the air blower and blowout caution (3
8).

なお、上述のように吹抜けを生ずる可能性を判定した
ときには、前に説明した緊急対策要の場合と同様に吹抜
け予防用の送風量を演算して送風装置BRAに与えるが、
この場合の減風量は、少ない。すなわち緊急対策要の場
合よりも少し時間的予裕があるので、減風量を少量とし
て様子を見ることになる。なお、シャフト上段部のガス
圧と装入物表面レベルに基づいた上述の吹抜け予知は10
sec毎に実行され、引き続いて吹抜けの可能性を検知し
たときには、次第に減風量が大きくされる。
When determining the possibility of blow-by as described above, the blow-through prevention blow air amount is calculated and given to the blower BRA as in the case of the emergency measure described above.
The amount of wind reduction in this case is small. In other words, since there is a little time margin compared to the case where emergency measures are required, the situation will be seen with a small amount of wind reduction. It should be noted that the above-mentioned blow-through prediction based on the gas pressure in the upper part of the shaft and the surface level of the charge is 10
It is executed every sec, and when the possibility of blow-by is subsequently detected, the air reduction amount is gradually increased.

吹抜けを生ずる可能性を判定しなかったとき、つま
り、前記3者のいずれかのレジスタが「0」であるとき
には、そのとき定まっている現状維持の送風量算出値を
送風装置BRAに与え(39)、CRTディスプレイDISの表示
を、現在の測定データ,判定データおよび送風装置の送
風量データならびに吹抜けのないことを表示する(4
0)。
When the possibility of blow-by is not determined, that is, when one of the registers of the three parties is “0”, the blower amount BRA is given to the blower device BRA with the blown air amount calculation value that is determined at that time (39). ), The CRT display DIS display shows the current measurement data, judgment data, air flow rate data of the air blower and no blow-through (4
0).

〔第3,4番の発明の実施例〕 この実施例のコンピュータCMRの処理動作を第3a図〜
第3c図に示す。この実施例では、第3a図の1〜12は前記
実施例と同様であり、ここでは説明を省略する。10sec
の時間経過毎にコンピュータCMRは入出力インターフェ
イスSPCよりスキンフローガス温度を2秒間隔で読込む
(41)。この読込まれたスキンフローガス温度Tsj,j=
1〜4毎に、今回と前回の読込スキンフローガス温度の
中から最高値Tsmaxと最低値Tsminを摘出する(5A)。そ
して、この摘出したスキンフローガス温度Tsj,j=1〜
4毎の最高値Tsmaxと最低値Tsminの差、つまり、高炉円
周方向複数点位置における10secと間での温度変化量ΔT
sjを算出し(51)、温度変化量ΔTsjが基準値ΔTss(10
〜20℃)範囲内であるか(スキンフローガス温度Tsjに
円周方向に大きな温度変化が起ったか)をチェックし
(52)、それがあると、次に前記Tsjmaxが基準値Tss(3
00℃)以上であるかをチェックし(53)、それがあると
判定レジスタDTに「1」を書込み(54)、いずれかがな
いと判定レジスタDTをクリアする(55)。
[Embodiment of No. 3 and No. 4 Invention] FIG. 3a shows the processing operation of the computer CMR of this embodiment.
Shown in Figure 3c. In this embodiment, 1 to 12 in FIG. 3a are the same as those in the previous embodiment, and the description thereof is omitted here. 10 sec
The computer CMR reads the skin flow gas temperature from the input / output interface SPC at intervals of 2 seconds each time (41). This read skin flow gas temperature Tsj, j =
For every 1 to 4, the maximum value Tsmax and the minimum value Tsmin are extracted from the read skin flow gas temperatures of this time and the previous time (5A). Then, the extracted skin flow gas temperature Tsj, j = 1 to 1
The difference between the maximum value Tsmax and the minimum value Tsmin for each 4, that is, the temperature change ΔT between 10 seconds at multiple points in the blast furnace circumferential direction
sj is calculated (51), and the temperature change amount ΔTsj is the reference value ΔTss (10
Temperature range (~ 20 ° C) (whether a large temperature change occurs in the skin flow gas temperature Tsj in the circumferential direction) (52), and if there is, then the above Tsjmax becomes the reference value Tss (3
It is checked whether the temperature is 00 ° C or higher (53), if there is any, write "1" in the judgment register DT (54), and if there is no any, clear the judgment register DT (55).

また、10secの時間経過毎に、上昇管Ziの炉頂ガス温
度Tcjを読込んで、前回読込んだ炉頂ガス温度とにより1
0secの間の各炉頂ガス温度の低下変動量dTejを算出する
と共に今回読込んだ炉頂ガス温度データを、今回より6
回前までの算出データと共に行レジスタMTRjに書込み
(56,57)、今回算出した温度低下変動量dTejが基準値d
Te(20℃)以上であるか(異常低下変動があるか)をチ
ェックする(58)。異常低下変動があると判定レジスタ
DdTに「1」を書込み(59)、ないと判定レジスタDdTを
クリアする(60)。
Also, every time 10 seconds elapse, the top gas temperature Tcj of the riser Zi is read and
The decrease amount dTej of each furnace top gas temperature during 0 seconds was calculated, and the furnace top gas temperature data read this time was changed from this time to 6
Write to the row register MTRj together with the calculation data up to the previous time (56, 57), and the temperature drop fluctuation amount dTej calculated this time is the reference value d
Check whether it is Te (20 ℃) or higher (whether there is an abnormal decrease fluctuation) (58). Judgment register when there is abnormal change
Write "1" to DdT (59) and clear the judgment register DdT (60).

更には、10secの時間経過毎に、シャフト部圧力値が
基準値よりも高い(「1」)か否(「0」)を示すデー
タを格納しているテーブルMPM(第3b図)の、列No.0、
i=1(上段)のデータを読出して、それらの中に
「1」があるかをチェックする(34)。すなわち、シャ
フト上段部の円周方向各位置(j=1〜4)のいずれか
のガス圧が、現在異常に高くなっている(シャフト上段
部のガス圧の異常上昇)かをチェックする。異常上昇が
あると判定レジスタDMdに「1」を書込み(61)、ない
と判定レジスタDMdをクリアする(62)。また、行レジ
スタMTRj(第3b図)のデータ(60secの間の、10sec毎に
算出した上昇管内炉頂ガス温度dTej)から、回帰式によ
り炉頂ガス温度勾配を算出して(63a,63,64)、最高値d
Tjmaxが基準値Vp(7℃/分)以上であるかをチェック
し、かつ最低値dTjminが基準値Vn(3℃/分)以下であ
るかをチェックして(65,66)、両者が共にあるとき
(1つの上昇管でガス温度の上昇勾配が急激で、かつも
う1つの上昇管でガス温度が緩やかに上昇する。又は、
低下している場合)には、判定レジスタDRdに「1」を
書込み(67)、一方がないときには判定レジスタDRdを
クリアする(68)。
Furthermore, every 10 seconds, the column of the table MPM (Fig. 3b) that stores data indicating whether the shaft pressure value is higher than the reference value ("1") ("0") is stored. No.0,
The data of i = 1 (upper row) is read and it is checked whether there is a "1" in them (34). That is, it is checked whether the gas pressure at any of the circumferential positions (j = 1 to 4) of the upper shaft portion is abnormally high at present (abnormal increase in gas pressure of the upper shaft portion). If there is an abnormal rise, "1" is written in the judgment register DMd (61), and if there is not, the judgment register DMd is cleared (62). In addition, from the data of the row register MTRj (Fig. 3b) (upper pipe top gas temperature dTej calculated every 10 sec during 60 sec), the top gas temperature gradient was calculated by the regression equation (63a, 63, 64), the maximum value d
Check if Tjmax is greater than or equal to the reference value Vp (7 ° C / min) and if the minimum value dTjmin is less than or equal to the reference value Vn (3 ° C / min) (65,66). At some time (one riser has a steep rise in gas temperature and the other riser has a gradual rise in gas temperature.
If it has decreased, "1" is written to the judgment register DRd (67), and if there is no one, the judgment register DRd is cleared (68).

コンピュータCMRは更に、10secの時間経過毎に、判定
レジスタDMdの内容(シャフト上段部のガス圧が異常上
昇したか否か),判定レジスタDRdの内容(上昇管の1
つの炉頂ガス温度上昇が急激でかつ、もう1つのガス温
度上昇が緩やかか又は、低下、があるか否か),判定レ
ジスタDdTの内容(上昇管の炉頂ガス温度に異常低下変
動があるか否か)、および、判定レジスタDTの内容(ス
キンフローガス温度に円周方向における何れかの位置で
急激な温度低下変化があるか否か)をチェックして(69
〜71)全てが「1」である場合、つまり、シャフト上段
部のガス圧力が異常上昇し、しかも、上昇管の1つのガ
ス温度が異常上昇し、かつ、もう1つのガス温度が緩や
かに上昇又は、低下したのに加えて少くとも1つの上昇
管の炉頂ガス温度に異常低下変動がある場合、又は、シ
ャフト上段部のガス圧力が異常上昇し、しかも、スキン
フローガス温度に円周方向において、何れかの位置で急
激な温度変動がある場合には、近い未来に吹抜けを生ず
る可能性があるとして、吹抜け予防対処用の風量減指示
データを生成してこれを入出力インターフェイスSPCを
介して送風装置BRAに与え(37)、かつCRTディスプレイ
DISの表示を、現在の測定データ,判定データおよび送
風装置の送風量データならびに吹抜け傾向注意を示すも
のに更新する(38)。
The computer CMR further determines the contents of the judgment register DMd (whether or not the gas pressure in the upper stage of the shaft has abnormally increased) and the contents of the judgment register DRd (1 of the rising pipe) every 10 seconds.
Whether one furnace top gas temperature rises sharply and the other gas temperature rise is gentle or decreases), the contents of the judgment register DdT (abnormal fluctuation in the furnace top gas temperature of the rising pipe) Whether or not), and the contents of the judgment register DT (whether or not the skin flow gas temperature has a sudden temperature drop change at any position in the circumferential direction) (69
~ 71) When all are "1", that is, the gas pressure in the upper stage of the shaft abnormally rises, and the temperature of one gas in the riser pipe also abnormally rises, and the temperature of the other gas gradually rises. Or, in addition to the decrease, there is an abnormal decrease fluctuation in the furnace top gas temperature of at least one riser pipe, or the gas pressure in the upper stage part of the shaft increases abnormally, and the skin flow gas temperature increases in the circumferential direction. If there is a sudden temperature change at any of the positions, it is possible that blow-through may occur in the near future, and air-flow reduction instruction data for blow-through prevention measures is generated and this is sent via the input / output interface SPC. To blower device BRA (37) and CRT display
The DIS display is updated with the current measurement data, judgment data, air flow rate data of the air blower, and warning of blow-through tendency (38).

なお、上述のように吹抜けを生ずる可能性を判定した
ときには、前に説明した緊急対策要の場合と同様に吹抜
け予防用の送風量を演算して送風装置BRAに与える。
When the possibility of blow-through is determined as described above, the blow-through prevention blow amount is calculated and given to the blower BRA, as in the case of the emergency measure described above.

吹抜けを生ずる可能性を判定しなかったときには、そ
のとき定まっている正常操業用の送風量算出値を送風装
置BRAに与え(39)、CRTディスプレイDISの表示を、現
在の測定データ,判定データおよび送風装置の送風量デ
ータならびに吹抜けのないことを表示する(40)。
When the possibility of blow-by is not determined, the air flow rate calculation value for normal operation determined at that time is given to the air blower BRA (39), and the display of the CRT display DIS displays the current measurement data, determination data and The blower volume data of the blower and the absence of blow-through are displayed (40).

〔発明の効果〕〔The invention's effect〕

第1番目の発明によれば、吹抜け防止のための送風量
の低減が、吹抜けの可能性が高いときのみ行なわれ、吹
抜け防止の信頼性は高くしかも、過敏(高頻度)に送風
量を抑制することがなくなり操業の安定性が向上する。
According to the first aspect of the present invention, the amount of air blown to prevent blow-through is reduced only when the possibility of blow-through is high, and the reliability of blow-through prevention is high and the amount of blown air is suppressed with high sensitivity (high frequency). The stability of operation is improved.

第2番目の発明によれば、吹抜け予知の信頼性が更に
高く、操業の安定性が更に向上する。
According to the second aspect of the invention, the reliability of blow-through prediction is further high, and the stability of operation is further improved.

第3番目の発明によれば、炉頂ガス温度の円周方向の
分布異変検出をも加えて吹抜け予知を行なうのでその信
頼性が更に高く、操業の安定性が更に向上する。
According to the third aspect of the invention, since the blow-through prediction is performed by additionally detecting the variation in the distribution of the furnace top gas temperature in the circumferential direction, the reliability is further increased and the stability of the operation is further improved.

第4番目の発明によれば、スキンフローガス温度異変
検出をも加えて吹抜け予知を行なうのでその信頼性が更
に高く、操業の安定性が更に向上する。
According to the fourth aspect of the invention, since the blow-through prediction is performed by additionally detecting the skin flow gas temperature variation, the reliability thereof is further increased and the stability of the operation is further improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本願の発明を実施する装置の概要を示すブロ
ック図である。 第2a図,第2b図および第2c図は、本願の第1実施例の、
第1図に示すコンピュータCMRの処理動作を示すフロー
チャートである。 第3a図,第3b図および第3c図は、本願の第2実施例の、
コンピュータCMRの処理動作を示すフローチャートであ
る。 第4図は、吹抜けを生ずる場合の高炉シャフト部の上下
方向の炉内ガス圧変化を示すグラフである。
FIG. 1 is a block diagram showing an outline of an apparatus for carrying out the invention of the present application. 2a, 2b and 2c show the first embodiment of the present application,
3 is a flowchart showing the processing operation of the computer CMR shown in FIG. 1. 3a, 3b and 3c show a second embodiment of the present application,
It is a flow chart which shows processing operation of computer CMR. FIG. 4 is a graph showing changes in the in-furnace gas pressure in the vertical direction of the shaft portion of the blast furnace when blow-through occurs.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高炉シャフト部におけるストックライン下
方の炉壁高さ方向に位置が異なる複数点の炉内圧力のそ
れぞれが基準値以上であるかを所定時間間隔Tpsで検出
し、該複数点の内の最上位置以外の何れかの炉内圧力が
基準値以上になってから所定時間Td(Td>Tps)内に上
記最上位置の炉内圧力が基準値以上になったときに高炉
内への送風量を低減する、高炉操業における吹抜け防止
方法。
1. At a predetermined time interval Tps, it is detected whether or not the in-furnace pressure at a plurality of points at different positions in the furnace wall height direction below the stock line in the blast furnace shaft portion is at or above a reference value, and these plural points are detected. When the pressure in the furnace at the uppermost position becomes higher than the reference value within a predetermined time Td (Td> Tps) after the pressure in the furnace other than the highest position becomes higher than the reference value, A blow-through prevention method in blast furnace operation that reduces the amount of air blown.
【請求項2】高炉シャフト部におけるストックライン下
方の炉壁高さ方向で上段の炉内圧力を所定時間間隔Tpsa
で検出し、 高炉内装入物の、炉周方向複数点の上表面レベルの差が
基準値以上であるかを所定時間間隔Thsで検出すると共
に、 上表面レベルそれぞれの降下速度が基準値以上であるか
を所定時間間隔Tfsで検出し、 前記上段の炉内圧力が基準値以上で、かつ、炉周方向複
数点の上表面レベル差が基準値以上および上表面レベル
それぞれの降下速度の少くとも一者が基準値以上、が成
立したときに高炉内への送風量を低減する、高炉操業に
おける吹抜け防止方法。
2. The furnace pressure in the upper stage in the height direction of the furnace wall below the stock line in the shaft portion of the blast furnace is controlled at a predetermined time interval Tpsa.
It is detected at a predetermined time interval Ths whether the difference in the upper surface level at multiple points in the furnace circumferential direction in the blast furnace interior is more than the reference value, and the descent rate of each upper surface level is more than the reference value. It is detected at a predetermined time interval Tfs whether or not the upper furnace pressure is at or above a reference value, and the upper surface level difference at multiple points in the furnace circumferential direction is at or above the reference value and at least the descending speed of each of the upper surface levels. A method for preventing blow-through in blast furnace operation, in which the amount of air blown into the blast furnace is reduced when one person meets or exceeds a reference value.
【請求項3】高炉シャフト部におけるストックライン下
方の炉壁高さ方向で上段の炉内圧力を所定時間間隔Tpsa
で検出し、 高炉炉頂部の複数の上昇管の炉頂ガス温度のそれぞれの
変化量と、その変化勾配を所定時間間隔Tetsで検出し、 高炉シャフト上部の装入物表面直下の高炉円周方向複数
点のガス温度のそれぞれを所定時間間隔Titsで検出し、 上段の炉内圧力が基準値以上で、かつ、前記複数の上昇
管の炉頂ガス温度(Tej)の変化勾配の少なくとも一者
が基準値以上および他の少なくとも一者が基準値以下
で、かつ少なくとも前記炉頂ガスの一者が吹抜け予測基
準値以上の温度低下を示したときか、又は、前記高炉シ
ャフト上部の装入物表面直下の高炉円周方向複数点のい
ずれかの位置の炉内ガス温度(Tsj)の所定時間内にお
ける温度変化が基準値範囲内で、前記複数の炉内ガス温
度の少なくとも一者が基準以上を示すか、又は、前記複
数の上昇管の炉頂ガス温度の変化勾配の少なくとも一者
が基準値以上を示すときに、高炉内への送風量を低減す
る、高炉操業における吹抜け防止方法。
3. The furnace pressure in the upper stage in the height direction of the furnace wall below the stock line in the shaft portion of the blast furnace is controlled at a predetermined time interval Tpsa.
The temperature changes in the furnace top gas temperature of the multiple risers at the top of the blast furnace and their gradients are detected at a predetermined time interval Tets. Each of the gas temperatures at a plurality of points is detected at a predetermined time interval T its , the furnace pressure in the upper stage is equal to or higher than a reference value, and at least one of the gradients of the gas temperature (Tej) at the top of the riser pipes Is above the reference value and at least one other is below the reference value, and at least one of the furnace top gases shows a temperature drop above the blow-through prediction reference value, or the charge on the upper part of the blast furnace shaft. The temperature change in the furnace gas temperature (Tsj) at any of multiple points in the circumferential direction of the blast furnace immediately below the surface is within the reference value range, and at least one of the plurality of furnace gas temperatures is the reference or more. Or of the plurality of risers When at least one party of the change gradient of the top gas temperature indicates a higher reference value, it reduces the air volume into the blast furnace, blow prevention method in blast furnace operation.
JP29857290A 1990-11-02 1990-11-02 Blow-through prevention method in blast furnace operation Expired - Lifetime JP2503301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29857290A JP2503301B2 (en) 1990-11-02 1990-11-02 Blow-through prevention method in blast furnace operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29857290A JP2503301B2 (en) 1990-11-02 1990-11-02 Blow-through prevention method in blast furnace operation

Publications (2)

Publication Number Publication Date
JPH04173908A JPH04173908A (en) 1992-06-22
JP2503301B2 true JP2503301B2 (en) 1996-06-05

Family

ID=17861483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29857290A Expired - Lifetime JP2503301B2 (en) 1990-11-02 1990-11-02 Blow-through prevention method in blast furnace operation

Country Status (1)

Country Link
JP (1) JP2503301B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019117493A1 (en) * 2017-12-15 2019-06-20 주식회사 포스코 Blast control device of blast furnace and method therefor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6870693B2 (en) * 2018-04-03 2021-05-12 Jfeスチール株式会社 Blast furnace condition condition determination device, blast furnace operation method, and blast furnace condition condition determination method
JP6870694B2 (en) * 2018-04-03 2021-05-12 Jfeスチール株式会社 Blast furnace condition condition determination device, blast furnace operation method, and blast furnace condition condition determination method
CN115820952A (en) * 2022-09-30 2023-03-21 中冶赛迪信息技术(重庆)有限公司 Blast furnace state monitoring method and device, electronic equipment and storage medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019117493A1 (en) * 2017-12-15 2019-06-20 주식회사 포스코 Blast control device of blast furnace and method therefor
KR20190072114A (en) * 2017-12-15 2019-06-25 주식회사 포스코 Apparatus and method for controlling blow of blast furnace

Also Published As

Publication number Publication date
JPH04173908A (en) 1992-06-22

Similar Documents

Publication Publication Date Title
JP2503301B2 (en) Blow-through prevention method in blast furnace operation
JPH0999351A (en) Method for detecting blowoff in continuous casting and device therefor
JP6540636B2 (en) Blast furnace operation method
JPH0711018B2 (en) Blow-through prevention method in blast furnace operation
US4570230A (en) Method of measuring and controlling the level of liquid in a container
JPH0711019B2 (en) Blow-through prevention method in blast furnace operation
JPH0229419B2 (en) RENZOKUCHUZOIGATANIOKERUCHUZOKONOHADANKENSHUTSUHOHO
JP6940030B2 (en) Blast furnace abnormality judgment device, blast furnace abnormality judgment method, blast furnace operation method and hot metal manufacturing method
JP3488693B2 (en) Equipment for antigravity casting of metals
JP7307341B2 (en) Furnace gas pressure fluctuation detection method
JP2765456B2 (en) Pipeline leak detection method
JPH0751263B2 (en) Breakout prediction method in continuous casting mold
SE453014B (en) VETSKENIVAGIVARE
JPH10310807A (en) Operation of blast furnace
JP3299075B2 (en) How to detect water leakage from the tuyere
US5482106A (en) Process for the casting of metals in a continuous casting installation with continuous strand withdrawal
JP2678767B2 (en) Blast furnace operation method
JPS63207459A (en) Method for predicting breakout in continuous casting
JPH0617067Y2 (en) Thermal stress monitoring device for thick-walled tubular structures
JPH0399761A (en) Method for detecting breakout in continuous casting
JPS6324493A (en) Gas leak detector/alarm
JPH02147931A (en) Detection of leak for pipeline
JPS63256250A (en) Method for predicting breakout in continuous casting
JPH05322626A (en) Automatic level gauge
JPH02147932A (en) Leakage detection for pipeline