JP6631588B2 - Method for detecting deviation of charge descending speed and method for operating blast furnace - Google Patents

Method for detecting deviation of charge descending speed and method for operating blast furnace Download PDF

Info

Publication number
JP6631588B2
JP6631588B2 JP2017100497A JP2017100497A JP6631588B2 JP 6631588 B2 JP6631588 B2 JP 6631588B2 JP 2017100497 A JP2017100497 A JP 2017100497A JP 2017100497 A JP2017100497 A JP 2017100497A JP 6631588 B2 JP6631588 B2 JP 6631588B2
Authority
JP
Japan
Prior art keywords
furnace
charge
deviation
descending speed
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017100497A
Other languages
Japanese (ja)
Other versions
JP2018193599A (en
Inventor
佐藤 健
健 佐藤
晋之介 金山
晋之介 金山
山口 達也
達也 山口
西村 望
望 西村
泰志 小笠原
泰志 小笠原
和平 市川
和平 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017100497A priority Critical patent/JP6631588B2/en
Publication of JP2018193599A publication Critical patent/JP2018193599A/en
Application granted granted Critical
Publication of JP6631588B2 publication Critical patent/JP6631588B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Iron (AREA)

Description

本発明は、高炉における装入物の降下速度の円周方向の偏差を検出する装入物降下速度の偏差検出方法、および、当該円周方向の偏差が検出された場合において、これを是正する高炉操業方法に関する。   The present invention provides a method for detecting a deviation in the charge descending speed for detecting the circumferential deviation of the descending speed of the charge in the blast furnace, and corrects the deviation when the circumferential deviation is detected. It relates to a blast furnace operating method.

高炉操業では、コークスや鉱石の原料の降下状態が管理されている。高炉の炉下部から一定量の熱風を送ることで、炉上部から装入された原料は炉上部から安定的に降下する。高炉内を降下する間に、原料が段階的に昇温、還元、溶融等の各過程を経ることで、高炉内全体の熱的バランスが保たれている。   In blast furnace operation, the descent of coke and ore raw materials is controlled. By feeding a certain amount of hot air from the lower part of the blast furnace, the raw material charged from the upper part of the furnace stably descends from the upper part of the furnace. While the raw material descends in the blast furnace, the raw material goes through steps such as heating, reduction, and melting step by step, so that the entire thermal balance in the blast furnace is maintained.

高炉内では、堆積した原料の間隙を通り熱風が炉下部から上昇している。堆積した原料の間隙が大きい場合には多くの熱風が上昇し、間隙が小さい場合には相対的に少ない熱風が上昇する。高炉では、通常、炉中心軸側に粒径の大きいコークスが多く装入され、炉壁部側に粒径の小さい鉱石が多く装入されているので、炉中心軸側には、高温の上昇ガス流が形成される。そして、高炉の生産性を高く維持するために、熱風の送風量を増加させて、より多くのコークスを燃焼させ、鉱石の昇温、還元、溶融の促進を図っている。   In the blast furnace, hot air rises from the lower part of the furnace through the gap between the deposited raw materials. When the gap between the deposited materials is large, a large amount of hot air rises, and when the gap is small, relatively little hot air rises. In a blast furnace, usually, a large amount of coke having a large particle diameter is charged on the central axis side of the furnace, and a large amount of ore having a small particle diameter is charged on the furnace wall side. A gas flow is formed. Then, in order to maintain the productivity of the blast furnace at a high level, the amount of hot air blown is increased to burn more coke, thereby promoting the temperature rise, reduction, and melting of the ore.

しかしながら、円周方向におけるコークス消費量のバランスが崩れると、原料の下降速度が円周方向で均一にならず、原料の下降速度に円周方向の偏差が生じる。原料の下降速度に偏差が生じると、原料の堆積面に円周方向で高低差が生じる。原料は、高炉中心を軸として軸対象になるように装入されているが、原料の堆積面に円周方向の高低差が生じると、装入によって形成される鉱石/コークス層厚が円周方向で均一にならず、高温の上昇ガス流が炉中心軸からずれる。   However, if the balance of the coke consumption in the circumferential direction is lost, the lowering speed of the raw material is not uniform in the circumferential direction, and a circumferential deviation occurs in the lowering speed of the raw material. If a deviation occurs in the lowering speed of the raw material, a height difference occurs in the circumferential direction on the raw material deposition surface. The raw material is charged so as to be axially symmetrical about the center of the blast furnace, but if a height difference in the circumferential direction occurs on the deposition surface of the raw material, the thickness of the ore / coke layer formed by the charging is reduced. Direction and the hot ascending gas flow is offset from the furnace center axis.

また、原料の下降速度に円周方向の偏差が発生すると、原料の昇温、還元といった過程にも偏差が生じ、高炉内の熱バランスが円周方向でくずれ、これにより、出銑口毎に溶銑温度の異なる出銑口偏差が生じる。出銑口から出銑される溶銑温度には下限値が設けられ、当該下限値を下回らないように管理されている。このため、出銑口偏差が生じると、低温側の溶銑温度が下限値を下回らないように管理されるので、高温側の溶銑温度が高くなり過ぎ、高炉全体の還元材比が上昇する等の不経済の要因になる。   In addition, when a circumferential deviation occurs in the descending speed of the raw material, a deviation also occurs in the process of heating and reducing the raw material, and the heat balance in the blast furnace is disrupted in the circumferential direction. Tap hole deviations with different hot metal temperatures occur. A lower limit value is set for the temperature of the hot metal that is tapped from the tap hole, and the temperature is controlled so as not to fall below the lower limit value. For this reason, when a tap hole deviation occurs, the hot metal temperature on the low temperature side is managed so as not to fall below the lower limit, so that the hot metal temperature on the high temperature side becomes too high and the reducing material ratio of the entire blast furnace increases. It becomes a factor of uneconomic.

高温の上昇ガス流の炉中心軸からのずれを検出する装置としては、炉口部の径方向に複数の温度計が設置された装置が挙げられる。このような装置では、通常、小〜中型高炉ではある直径1方向、大型高炉ではある直径2方向の温度を、半径方向5〜6個の温度計で測定している。このような装置では、高温の上昇ガス流のずれ方向が、温度計が設置された方向である場合には高温の上昇ガス流のずれが検出できるが、高温の上昇ガス流のずれ方向が、温度計が設置されていない方向である場合には高温の上昇ガス流のずれが検出できないので、検出能力が低いという課題がある。   As a device for detecting a deviation of a high temperature rising gas flow from a furnace center axis, a device in which a plurality of thermometers are installed in a radial direction of a furnace port portion is exemplified. In such an apparatus, usually, the temperature in one direction of diameter in a small to medium blast furnace and the direction of two diameters in a large blast furnace are measured with 5 to 6 thermometers in the radial direction. In such a device, when the direction of the displacement of the high-temperature rising gas flow is the direction in which the thermometer is installed, the displacement of the high-temperature rising gas flow can be detected. In the case where the thermometer is not installed, the deviation of the high-temperature rising gas flow cannot be detected, so that there is a problem that the detection capability is low.

また、特許文献1には、高炉の炉口部に設けた暗視カメラを用いて、ストックラインの装入物表面の流動部を撮影し、その撮影画像を処理して流動部の重心位置を求め、当該重心位置と炉中心軸とのずれを検出する技術が開示されている。   Further, in Patent Document 1, using a night-vision camera provided at the furnace opening of a blast furnace, a flowing part on the surface of a charge in a stock line is photographed, and the photographed image is processed to determine the position of the center of gravity of the flowing part. A technique for detecting the deviation between the position of the center of gravity and the center axis of the furnace is disclosed.

特開平3−17210号公報JP-A-3-17210

清水正賢、他4名、「高炉の円周方向不均一条件下における固体流れ」、鉄と鋼、第73年(1987)、第15号 1996〜2003Masanori Shimizu and 4 others, "Solid flow under circulating non-uniform conditions in a blast furnace", Iron and Steel, 73 (1987), No. 15, 1996-2003 野村真、他6名、「ベルレス高炉における円周方向熱レベル偏差と装入物分布偏差との対応」、鉄と鋼、第68(1982)、S702Makoto Nomura and 6 others, "Correspondence between circumferential heat level deviation and charge distribution deviation in bellless blast furnace", Iron and Steel, No. 68 (1982), S702

特許文献1に開示された技術では、暗視カメラでストックラインの装入物表面を撮影して流動部の重心位置を求めているが、高炉の構造上、暗視カメラを炉中心軸上に設置できないので、斜め上方から装入物表面を撮影することになる。装入物は、すり鉢状に中心部が低くなるように装入されているので、斜め上方からでは、暗視カメラに対して手前側の装入物表面が撮影できない。このため、撮影画像を処理して求められた流動部の重心位置の位置精度が低く、流動部の重心位置と炉中心軸とのずれの検出能力が低い、という課題があった。   According to the technology disclosed in Patent Document 1, the center of gravity of the fluidized portion is obtained by photographing the surface of the charge in the stock line with a night vision camera. However, due to the structure of the blast furnace, the night vision camera is placed on the central axis of the furnace. Since it cannot be installed, the surface of the charge is photographed from obliquely above. Since the charge is placed in a mortar shape such that the center is lower, the surface of the charge on the near side cannot be photographed with respect to the night vision camera from diagonally above. For this reason, there has been a problem that the positional accuracy of the center of gravity of the fluidized portion obtained by processing the photographed image is low, and the ability to detect the deviation between the center of gravity of the fluidized portion and the furnace center axis is low.

本発明は、上述した課題を鑑みてなされたものであり、その目的は、装入物の下降速度に円周方向の偏差がどの方向に生じたとしても、その円周方向の偏差を検出できる検出能力の高い装入物降下速度の偏差検出方法を提供することにある。   The present invention has been made in view of the above-described problem, and an object of the present invention is to detect a circumferential deviation in a descending speed of a load, even if the descending speed in the circumferential direction occurs in any direction. It is an object of the present invention to provide a method of detecting a deviation of a load descending speed having a high detection capability.

このような課題を解決するための本発明の特徴は、以下の通りである。
(1)高炉炉口部の同一平面に設置された複数の超音波センサを用いて、炉口部平面内の複数の測定点の温度を測定して最高温部の位置を特定するとともに炉内の装入物の高さを同一円周上の4点以上の位置で測定し、前記最高温部の位置が炉中心軸からずれたことを検出し、且つ、前記最高温部の位置に対応した方向の前記装入物の高さが他の方向よりも低下した場合に、前記最高温部の位置に対応した位置の前記装入物の降下速度に偏差が生じたことを検出する、装入物降下速度の偏差検出方法。
(2)(1)に記載の装入物降下速度の偏差検出方法によって、前記装入物の降下速度に偏差が生じたことが検出された場合に、前記最高温部の位置に対応した位置に設けられた羽口から吹き込む微粉炭の量を他の位置よりも多くする、高炉操業方法。
(3)(1)に記載の装入物降下速度の偏差検出方法によって、前記装入物の降下速度に偏差が生じたことが検出された場合に、前記最高温部の位置に対応した位置に設けられた羽口から吹き込む送風流量を他の位置よりも少なくする、高炉操業方法。
(4)(1)に記載の装入物降下速度の偏差検出方法によって、前記装入物の降下速度に偏差が生じたことが検出された場合に、前記最高温部の位置に対応した位置に前記装入物を装入する炉頂ホッパーから装入するコークスを他の位置の炉頂ホッパーよりも多くする、高炉操業方法。
The features of the present invention for solving such a problem are as follows.
(1) Using a plurality of ultrasonic sensors installed on the same plane of the blast furnace mouth, the temperature of a plurality of measurement points in the furnace mouth plane is measured to specify the position of the highest temperature part and the inside of the furnace. The height of the charged material is measured at four or more positions on the same circumference, and it is detected that the position of the highest temperature part is deviated from the central axis of the furnace, and corresponds to the position of the highest temperature part. When the height of the charge in the direction indicated by the arrow is lower than that in the other direction, it is detected that a deviation has occurred in the descent speed of the charge at a position corresponding to the position of the hottest part. A method of detecting the deviation of incoming descent speed.
(2) A position corresponding to the position of the highest temperature portion when the deviation detection method of the load descending speed according to (1) detects that a deviation occurs in the descending speed of the load. A blast furnace operating method in which the amount of pulverized coal blown from the tuyeres provided in the blast furnace is made larger than in other positions.
(3) A position corresponding to the position of the highest temperature part when the deviation detection method of the charge descending speed according to (1) detects that a deviation occurs in the descending speed of the charge. A blast furnace operating method in which the flow rate of air blown from the tuyere provided in the blast furnace is made smaller than in other positions.
(4) A position corresponding to the position of the highest temperature part when the deviation detection method of the charged object descending speed according to (1) detects that a deviation occurs in the descending speed of the charged object. A blast furnace operating method, wherein the amount of coke charged from the top hopper for charging the charge is larger than that of the hopper at the other position.

本発明によれば、超音波センサを用いて炉口部平面内の複数の測定点の温度をほぼ連続的に測定できるので、炉口部平面における最高温部の位置を連続的に特定できる。このため、高温の上昇ガス流が炉中心軸からどの方向にずれたとしてもそのずれを検出し、当該最高温部に対応した位置において、装入物の降下速度に円周方向の偏差が生じたことを検出できる。   According to the present invention, since the temperatures of a plurality of measurement points in the furnace port plane can be measured almost continuously using the ultrasonic sensor, the position of the highest temperature part in the furnace port plane can be specified continuously. For this reason, regardless of the direction in which the high-temperature rising gas flow deviates from the furnace central axis, the deviation is detected, and at the position corresponding to the highest temperature portion, a circumferential deviation occurs in the descending speed of the charged material. Can be detected.

炉中心軸に沿って高温の上昇ガス流が形成されている状態のガス温度と高炉の断面を示す模式図である。It is a schematic diagram which shows the cross section of the gas temperature and the blast furnace in the state in which the high temperature rising gas flow is formed along the furnace center axis. 炉中心軸からずれた位置に高温の上昇ガス流が形成されている状態のガス温度と高炉の断面を示す模式図である。It is a schematic diagram which shows the cross section of the gas temperature and the blast furnace in the state where the high temperature rising gas flow is formed in the position deviated from the furnace center axis. 本実施形態に係る装入物降下速度の偏差検出方法が実施できる超音波温度計測システムの一例を示す図である。It is a figure showing an example of the ultrasonic temperature measurement system which can perform the deviation detection method of the charge descent speed concerning this embodiment. 炉口部に設置された機械式サウジング計の位置の一例を示す図である。It is a figure which shows an example of the position of the mechanical type sowing meter installed in the furnace opening. 最高温部が炉中心軸と一致した状態の炉口部平面内の温度分布を示す図である。It is a figure which shows the temperature distribution in the furnace opening part plane in the state where the highest temperature part coincided with the furnace center axis. 最高温部が炉中心軸からずれた状態の炉口部平面内の温度分布を示す図である。It is a figure which shows the temperature distribution in the furnace opening part plane in the state where the highest temperature part deviated from the furnace center axis. 3つの炉頂ホッパーを有する原料装入装置の上面図と、正面図を示す。FIG. 2 shows a top view and a front view of a raw material charging apparatus having three furnace hoppers.

図1は、炉中心軸に沿って高温の上昇ガス流が形成されている状態のガス温度と高炉の断面を示す模式図である。図1(a)は、高炉の断面位置とガス温度との関係を示す図であり、図1(b)は、高炉の断面を示す模式図である。   FIG. 1 is a schematic diagram showing a gas temperature and a cross section of a blast furnace in a state where a high-temperature rising gas flow is formed along a furnace central axis. FIG. 1A is a diagram illustrating a relationship between a cross-sectional position of the blast furnace and a gas temperature, and FIG. 1B is a schematic diagram illustrating a cross-section of the blast furnace.

高炉30のシャフト部では、炉頂から装入された鉱石32が下方から上昇する高温還元ガスにより昇温、還元されながら下方へ降下している。高炉30のシャフト部における鉱石32の降下を安定して実現するには、高炉30の炉中心軸36では強い上昇ガス流を形成させ、高炉の円周方向では均一なガス流を形成させることが良いとされている。   In the shaft portion of the blast furnace 30, the ore 32 charged from the furnace top is lowered while being heated and reduced by the high-temperature reducing gas rising from below. In order to stably realize the descent of the ore 32 in the shaft portion of the blast furnace 30, it is necessary to form a strong ascending gas flow in the furnace center axis 36 of the blast furnace 30 and to form a uniform gas flow in the circumferential direction of the blast furnace 30. It is good.

このため、図1(b)に示すように、高炉30の炉中心軸側に鉱石32より粒径が大きいコークス34を多く、円周方向側には鉱石32及びコークス34を均一に装入して、これらがすり鉢状に中心部が低くなるように装入物分布調整が行なわれている。これにより図1(a)に示すように、炉中心軸36に沿った高温の上昇ガス流が形成される。なお、本実施形態において、装入物とは、高炉炉頂から装入される鉱石およびコークスを意味する。   For this reason, as shown in FIG. 1 (b), more coke 34 having a larger particle diameter than the ore 32 is provided on the furnace central axis side of the blast furnace 30, and the ore 32 and coke 34 are uniformly charged on the circumferential side. Thus, the distribution of the charge is adjusted so that the central portions thereof are lowered in a mortar shape. Thereby, as shown in FIG. 1A, a high-temperature rising gas flow is formed along the furnace central axis 36. In the present embodiment, the charge means ore and coke charged from the blast furnace furnace top.

図2は、炉中心軸からずれた位置に高温の上昇ガス流が形成されている状態のガス温度と高炉の断面を示す模式図である。図2(a)は、高炉の断面位置とガス温度との関係を示す図であり、図2(b)は、高炉の断面を示す模式図である。   FIG. 2 is a schematic diagram showing a gas temperature and a cross section of a blast furnace in a state where a high-temperature rising gas flow is formed at a position shifted from the furnace center axis. FIG. 2A is a diagram illustrating a relationship between a cross-sectional position of the blast furnace and a gas temperature, and FIG. 2B is a schematic diagram illustrating a cross-section of the blast furnace.

高炉30の円周方向に複数設置されている羽口の送風量や微粉炭吹き込み量が、各羽口間で異なった場合や、羽口間のコークス消費量に偏差が生じた場合に、装入物の降下速度にも円周方向の偏差が生じ、装入物の堆積面に高低差が生じる。通常、高炉30の装入物は、すり鉢状に中心部が低く、堆積角は円周方向で同等になっており、同じ半径位置に落下した装入物が炉中心部へ流れ込む現象は円周方向で一様である。これに対し、装入物の堆積面に高低差が生じると円周方向で堆積角が異なり、同じ半径位置に落下したコークス34も円周方向で中心部への流れ込み現象が異なり、結果として最もコークス層厚が厚く、堆積面が低くなる箇所が炉中心軸36からずれる。この状態を示したのが図2(b)である。   If the amount of air blown or the amount of pulverized coal blown from the tuyeres installed in the circumferential direction of the blast furnace 30 differs between tuyeres, or if there is a deviation in the coke consumption between tuyeres, A circumferential deviation also occurs in the descending speed of the charge, and a height difference occurs in the accumulation surface of the charge. Normally, the charge of the blast furnace 30 has a low central portion in a mortar shape, the deposition angle is equal in the circumferential direction, and the phenomenon that the charge falling at the same radial position flows into the furnace center is a circumferential phenomenon. Uniform in direction. On the other hand, if there is a height difference on the stacking surface of the charge, the stacking angle differs in the circumferential direction, and the coke 34 that has dropped at the same radial position also has a different flow phenomenon into the center in the circumferential direction. The place where the coke layer thickness is large and the deposition surface is low is shifted from the furnace center axis 36. FIG. 2B shows this state.

上述したように、コークス層厚の厚い箇所には、高温の上昇ガス流が形成されるので、コークス層厚が厚い箇所が炉中心軸36からずれると、高温の上昇ガス流の位置も炉中心軸36からずれる。この状態を示したのが図2(a)である。このように、装入物の降下速度に円周方向の偏差が生じると、高温の上昇ガス流の位置も炉中心軸36から円周方向にずれるので、炉口部平面内の温度分布を略連続的に測定できれば、高温の上昇ガス流の炉中心軸36からのずれを早期に検出でき、これにより、装入物の降下速度に円周方向の偏差が生じたことを早期に検出できる可能性がある。   As described above, a high-temperature rising gas flow is formed at a portion where the coke layer thickness is large. Therefore, if the portion where the coke layer thickness is large is displaced from the furnace center axis 36, the position of the high-temperature rising gas flow is also changed to the center of the furnace. Deviates from the axis 36. FIG. 2A shows this state. As described above, when a circumferential deviation occurs in the descending speed of the charge, the position of the high-temperature rising gas flow also shifts in the circumferential direction from the furnace center axis 36, so that the temperature distribution in the furnace port plane is substantially reduced. If the measurement can be performed continuously, the deviation of the high-temperature rising gas flow from the furnace center axis 36 can be detected at an early stage, whereby it is possible to early detect that a circumferential deviation has occurred in the descent speed of the charge. There is.

一方、吹き抜けが発生しても高温の上昇ガス流が発生する。吹き抜けでは、図2(b)に示すようなコークス層厚が厚く、装入物の堆積面が低くなる箇所が炉中心軸36からずれることがないので、装入物の降下速度に円周方向の偏差が生じたか否かを判断するため、炉内の装入物の堆積面の高さも併せて測定する。そして、高温の上昇ガス流が炉中心軸36からずれたことが検出され、且つ、高温の上昇ガス流がずれた位置に対応した方向の装入物の堆積面の高さが他の方向よりも低下した場合に、当該位置における装入物の降下速度に円周方向の偏差が生じたことを検出する。このように、高温の上昇ガス流の位置と、装入物の堆積面の高さに基づいて円周方向の偏差が生じたことを検出することで、装入物の降下速度に円周方向の偏差が生じたことを高い精度で検出できることを見出して本発明を完成させた。以下、発明の実施形態を通じて本発明を説明する。   On the other hand, even if blow-by occurs, a high-temperature rising gas flow is generated. In the blow-through, since the coke layer thickness is large as shown in FIG. 2 (b) and the place where the charge accumulation surface is low does not deviate from the furnace center axis 36, the descending speed of the charge decreases in the circumferential direction. In order to determine whether or not a deviation has occurred, the height of the accumulation surface of the charge in the furnace is also measured. Then, it is detected that the high-temperature rising gas flow has shifted from the furnace center axis 36, and the height of the deposition surface of the charge in the direction corresponding to the position where the high-temperature rising gas flow has shifted is higher than in other directions. Is also detected, it is detected that a circumferential deviation has occurred in the descent speed of the charge at the position. As described above, by detecting that the deviation in the circumferential direction has occurred based on the position of the high-temperature rising gas flow and the height of the deposition surface of the charge, the descent speed of the charge in the circumferential direction is reduced. It has been found that the occurrence of the deviation can be detected with high accuracy, and the present invention has been completed. Hereinafter, the present invention will be described through embodiments of the present invention.

図3は、本実施形態に係る装入物降下速度の偏差検出方法が実施できる超音波温度計測システムの一例を示す。超音波温度計測システム10は、高炉30の炉口部に沿って同一平面上に等間隔で10個設けられた超音波センサ12と、処理装置14と、4つの機械式サウジング計22を備える。超音波センサ12は、超音波を発信する発信機と、発信された超音波を受信する受信機とを有する。また、処理装置14は、制御部16と、表示部18と、格納部20とを有する。   FIG. 3 shows an example of an ultrasonic temperature measurement system that can execute the method for detecting a deviation of the charge descending speed according to the present embodiment. The ultrasonic temperature measurement system 10 includes ten ultrasonic sensors 12 provided at equal intervals on the same plane along the furnace opening of the blast furnace 30, a processing device 14, and four mechanical sowing meters 22. The ultrasonic sensor 12 has a transmitter for transmitting an ultrasonic wave and a receiver for receiving the transmitted ultrasonic wave. Further, the processing device 14 includes a control unit 16, a display unit 18, and a storage unit 20.

処理装置14は、例えば、ワークステーションやパソコン等の汎用コンピュータである。制御部16は、例えば、CPU等であって、格納部20に保存されたプログラムやデータを用いて、超音波温度計測システム10の動作を制御し、所定の演算を実行する。表示部18は、例えば、LCDまたはCRTディスプレイ等である。格納部20は、例えば、更新記録可能なフラッシュメモリ、内蔵あるいはデータ通信端子で接続されたハードディスク、メモリーカード等の情報記録媒体およびその読み書き装置である。格納部20には、超音波温度計測システム10が有する種々の機能を実現するためのプログラムや、当該プログラム実行中に使用するデータ等が予め格納されている。   The processing device 14 is, for example, a general-purpose computer such as a workstation or a personal computer. The control unit 16 is, for example, a CPU or the like, and controls the operation of the ultrasonic temperature measurement system 10 using a program or data stored in the storage unit 20 and executes a predetermined calculation. The display unit 18 is, for example, an LCD or a CRT display. The storage unit 20 is, for example, a flash memory that can be updated and recorded, an information recording medium such as a hard disk or a memory card that is built-in or connected by a data communication terminal, and a read / write device therefor. In the storage unit 20, programs for realizing various functions of the ultrasonic temperature measurement system 10, data used during execution of the programs, and the like are stored in advance.

高炉操業中において、任意の超音波センサ12からの超音波を発信し、他の全ての超音波センサ12で当該超音波を受信する。超音波センサ12からの超音波の発信は、制御部16の制御によって、例えば、任意の超音波センサ12から時計回りに順番に繰り返し実行される。それぞれの超音波センサ12は、超音波を発信した発信時間、または、当該超音波を受信した受信時間を制御部16に出力する。   During the operation of the blast furnace, an ultrasonic wave is transmitted from an arbitrary ultrasonic sensor 12, and the ultrasonic waves are received by all the other ultrasonic sensors 12. Transmission of an ultrasonic wave from the ultrasonic sensor 12 is repeatedly executed, for example, clockwise from an arbitrary ultrasonic sensor 12 under the control of the control unit 16. Each ultrasonic sensor 12 outputs to the control unit 16 the transmission time at which the ultrasonic wave was transmitted or the reception time at which the ultrasonic wave was received.

1つの発信時間に対応した9つの受信時間を9つのデータとし、これら9つのデータを1セットのデータとすると、制御部16は、10個の超音波センサ12から10セットのデータを取得する。制御部16は、予め、格納部20に格納されているそれぞれの超音波センサ12間の距離を読み出し、発信時間、受信時間および超音波センサ12間の距離を用いて、それぞれの超音波センサ12間の音速を算出する。音速は、炉口部空間の温度により変化するので、以下の(1)式によりそれぞれの超音波センサ12間の温度を算出できる。   Assuming that nine reception times corresponding to one transmission time are nine data and these nine data are one set of data, the control unit 16 acquires ten sets of data from the ten ultrasonic sensors 12. The control unit 16 reads the distance between the respective ultrasonic sensors 12 stored in the storage unit 20 in advance, and uses the transmission time, the reception time, and the distance between the ultrasonic sensors 12 to store the respective ultrasonic sensors 12. Calculate the speed of sound between them. Since the sound speed changes depending on the temperature of the furnace port space, the temperature between the ultrasonic sensors 12 can be calculated by the following equation (1).

C=331.5×((273+T)/273)・・・(1)
但し、(1)式において、Cは、超音波センサ12間の音速(m/s)であり、Tは、超音波センサ12間の温度(℃)である。なお、(1)式の計算において、より精度を上げるために、炉頂ガスの成分や圧力による補正を加えてもよい。
C = 331.5 × ((273 + T) / 273) (1)
In the equation (1), C is the speed of sound (m / s) between the ultrasonic sensors 12, and T is the temperature (° C.) between the ultrasonic sensors 12. In addition, in the calculation of the expression (1), a correction based on the components and the pressure of the furnace top gas may be added in order to further increase the accuracy.

制御部16は、超音波センサ12間の温度を用いて、それぞれの超音波センサ12を接続した線が交差する複数の測定点の温度を算出する。制御部16は、例えば、複数の測定点の時間(温度の関数)と複数の測定点までの既知の距離とから算出される時間の和が、それぞれの超音波センサ12間の受信時間を再現できるように算出する。   The control unit 16 uses the temperature between the ultrasonic sensors 12 to calculate the temperatures at a plurality of measurement points where lines connecting the ultrasonic sensors 12 intersect. The control unit 16 may, for example, reproduce the reception time between the ultrasonic sensors 12 based on the sum of the times (functions of temperature) of the plurality of measurement points and the known distance to the plurality of measurement points. Calculate so that you can.

超音波センサ12からの超音波の発信および受信は、精度を保持できる範囲内でなるべく短時間に行うことが好ましい。本実施形態においては、例えば、1つの超音波センサ12から超音波を4秒間発信しながら他の超音波センサ12で当該超音波を受信する。その後、2秒間インタバルを置き、他の一つの超音波センサ12からの超音波の発信とその他の一つの超音波センサ12以外の超音波センサによる受信を行う、ということを同様に繰り返す。図1に示した例においては、10個の超音波センサ12を備えるので、制御部16は、60秒ごとに炉口部平面内の複数の測定点の温度を算出することになる。   It is preferable that the transmission and reception of the ultrasonic wave from the ultrasonic sensor 12 be performed in a short time as long as the accuracy can be maintained. In the present embodiment, for example, the ultrasonic wave is transmitted from one ultrasonic sensor 12 for 4 seconds while the other ultrasonic sensor 12 receives the ultrasonic wave. Thereafter, an interval of 2 seconds is set, and transmission of an ultrasonic wave from another ultrasonic sensor 12 and reception by an ultrasonic sensor other than the other ultrasonic sensor 12 are similarly repeated. In the example shown in FIG. 1, since ten ultrasonic sensors 12 are provided, the control unit 16 calculates the temperatures of a plurality of measurement points in the furnace port plane every 60 seconds.

制御部16は、炉口部平面内の複数の測定点の温度を算出すると、例えば、複数の測定点の間の温度はその距離に比例して変化するとして測定点間の温度を補間するとともに、炉口部平面内を100℃毎の温度領域に区分した温度分布を作成し、当該温度分布を表示部18に表示する。これにより、使用者は、炉口部平面内の温度分布を確認できる。また、制御部16は、上述した動作を繰り返し実行して炉口部平面内の温度を算出し、表示部18に表示した炉口部平面内の温度分布を更新する。このようにして、超音波温度計測システム10は、炉口部平面内の温度分布を略連続的に測定する。   When calculating the temperature of the plurality of measurement points in the furnace port plane, the control unit 16 interpolates the temperature between the measurement points assuming that the temperature between the plurality of measurement points changes in proportion to the distance. A temperature distribution is created by dividing the plane of the furnace opening into temperature regions of 100 ° C., and the temperature distribution is displayed on the display unit 18. Thereby, the user can confirm the temperature distribution in the furnace port plane. Further, the control unit 16 repeatedly executes the above-described operation to calculate the temperature in the furnace port plane, and updates the temperature distribution in the furnace port plane displayed on the display unit 18. In this manner, the ultrasonic temperature measurement system 10 measures the temperature distribution in the plane of the furnace opening substantially continuously.

本実施形態において、超音波温度計測システム10は、10個の超音波センサ12を備える。1つの超音波センサ12から4秒間発信ながら他の超音波センサ12で当該超音波を受信し、その後2秒間インタバルをおくので、制御部16は、60秒間で90個のデータを取得する。しかしながら、90個のデータのうち、45個のデータは、同じ超音波センサ12間を逆に測定した重複するデータになる。すなわち、1回目の測定で得られる1セットのデータには重複するものはないが、2回目以降の測定から1セットのデータに含まれる前の測定と重複するデータが1つずつ増える。   In the present embodiment, the ultrasonic temperature measurement system 10 includes ten ultrasonic sensors 12. While transmitting the ultrasonic wave from one ultrasonic sensor 12 for 4 seconds, the ultrasonic wave is received by the other ultrasonic sensor 12, and the interval is set for 2 seconds thereafter, the control unit 16 acquires 90 data in 60 seconds. However, of the 90 data, 45 data are duplicated data obtained by measuring the same ultrasonic sensor 12 in reverse. That is, one set of data obtained in the first measurement has no overlap, but data that overlaps with the previous measurement included in one set of data from the second and subsequent measurements increases by one.

このように、測定を繰り返すごとに重複するデータが増えるので、炉口部平面内の温度分布を更新する場合においては、一部前のデータを用いて、30秒ごとに炉口部平面内の温度分布を更新することが好ましく、さらには、制御部16が1セットのデータを取得するごとに、すなわち、6秒ごとに炉口部平面内の温度分布を更新することがより好ましい。   As described above, the overlapping data increases each time the measurement is repeated. Therefore, when updating the temperature distribution in the furnace opening plane, the data in the furnace opening plane is updated every 30 seconds using the previous data. It is preferable to update the temperature distribution, and it is more preferable to update the temperature distribution in the furnace port plane every time the control unit 16 acquires one set of data, that is, every 6 seconds.

図4は、炉口部に設置された機械式サウジング計の位置の一例を示す図である。4つの機械式サウジング計22は、例えば、炉口部平面における炉中心軸と、東(W)西(E)南(S)北(N)の炉周上の点とを結んだ線の中心にそれぞれ設けられ、炉内の装入物の堆積面の高さを同一円周上の4点以上の位置で測定する。なお、機械式サウジング計が設けられる位置は、上記中心に限らず、炉中心軸からそれぞれの機械式サウジング計までの距離が等しくなる同一の円周上であって、炉中心軸と円周方向に隣り合う2つの機械式サウジング計22とがなす角度が90°±20°の範囲内となる位置に設ければよい。   FIG. 4 is a diagram showing an example of the position of a mechanical sowing meter installed at the furnace opening. For example, the four mechanical souding meters 22 are arranged at the center of a line connecting the furnace center axis in the furnace opening plane and points on the furnace circumference of east (W) west (E) south (S) north (N). And the height of the deposition surface of the charge in the furnace is measured at four or more positions on the same circumference. In addition, the position where the mechanical Saudi meter is provided is not limited to the above center, and is located on the same circumference where the distance from the furnace central axis to each mechanical Saudi meter is equal, and is located in the circumferential direction with respect to the furnace central axis. May be provided at a position where an angle between two adjacent mechanical sowing meters 22 is within a range of 90 ° ± 20 °.

機械式サウジング計22による測定は、制御部16の制御によって、予め定められた時間ごとに実行される。機械式サウジング計22が測定する予め定められた時間は、炉口部平面内の温度分布を更新する時間と同じであることが好ましいが、短時間に炉口部平面内の温度分布が更新される場合には、必ずしも炉口部平面内の温度分布が更新される時間と同じでなくてもよい。   The measurement by the mechanical type sowing meter 22 is executed at predetermined time intervals under the control of the control unit 16. It is preferable that the predetermined time measured by the mechanical type sowing meter 22 is the same as the time for updating the temperature distribution in the furnace port plane, but the temperature distribution in the furnace port plane is updated in a short time. In this case, the temperature distribution may not necessarily be the same as the time at which the temperature distribution in the furnace opening plane is updated.

それぞれの機械式サウジング計22は、装入物の堆積面の高さを測定して、当該装入物の堆積面の高さを示すデータを、機械式サウジング計22の識別番号とともに制御部16に出力する。制御部16は、機械式サウジング計22から出力された装入物の高さを示すデータを取得すると、これらデータを比較し、装入物の堆積面の高さが最も低いデータを出力した機械式サウジング計22の識別番号を特定する。格納部20には、機械式サウジング計22の識別番号と、当該識別番号が割り振られた機械式サウジング計22が設置された方向とが対応付けられた表が予め格納されており、制御部16は、当該表を参照して、装入物の堆積面の高さが最も低いデータを出力した機械式サウジング計22が設けられた方向、すなわち、装入物の堆積面の高さが他の方向よりも低い方向を特定する。   Each of the mechanical sowing meters 22 measures the height of the accumulation surface of the charge, and outputs data indicating the height of the accumulation surface of the charge together with the identification number of the mechanical sowing meter 22 to the control unit 16. Output to When the control unit 16 obtains the data indicating the height of the charge output from the mechanical type sowing meter 22, the control unit 16 compares the data and outputs the data with the lowest height of the stacking surface of the charge. The identification number of the expression sawing meter 22 is specified. The storage unit 20 stores in advance a table in which the identification number of the mechanical sowing meter 22 is associated with the direction in which the mechanical sowing meter 22 to which the identification number is assigned is installed. Referring to the table, the direction in which the mechanical sawing meter 22 that outputs the data with the lowest height of the charged surface is provided, that is, the height of the stacked surface of the charged material is different from the other direction. Identify a direction that is lower than the direction.

制御部16は、炉口部平面内の温度分布を更新するごとに、炉口部平面内の温度分布における最も高い温度領域である最高温部の位置を特定する。制御部16は、当該位置が炉口部平面内における炉中心軸の位置にあるか否かを判断する。制御部16は、最高温部の位置が炉中心軸の位置である場合には、装入物の降下速度に円周方向の偏差が生じていないと判断する。   The control unit 16 specifies the position of the highest temperature portion, which is the highest temperature region in the temperature distribution in the furnace port plane, every time the temperature distribution in the furnace port plane is updated. The control unit 16 determines whether or not the position is at the position of the furnace center axis in the plane of the furnace opening. When the position of the highest temperature part is the position of the furnace center axis, the control unit 16 determines that there is no circumferential deviation in the descending speed of the charge.

また、特定された最高温部の位置が、最高温部の位置が炉中心軸の位置でない場合であって、最高温部のずれた位置の円周方向の方向と、装入物の堆積面の高さが他の方向よりも低いと特定された方向とが等しい場合に、制御部16は、最高温部の位置に対応した位置の装入物の降下速度に円周方向の偏差が生じたと判断する。この場合に、制御部16は、例えば、表示部18に装入物の降下速度に円周方向の偏差が生じたことを表示する。   In addition, the position of the specified highest temperature part is the case where the position of the highest temperature part is not the position of the furnace center axis, the circumferential direction of the position shifted from the highest temperature part, and the deposition surface of the charge. When the height specified is lower than the other direction and the direction specified is equal, the control unit 16 determines that a circumferential deviation occurs in the descending speed of the charge at the position corresponding to the position of the hottest part. Judge that In this case, the control unit 16 displays, for example, on the display unit 18 that a circumferential deviation has occurred in the descending speed of the load.

一方、特定された最高温部の位置が、最高温部の位置が炉中心軸の位置でない場合であっても、最高温部のずれた位置の円周方向の方向と、装入物の堆積面の高さが他の方向よりも低いと特定された方向とが異なる場合には、制御部16は、装入物の降下速度に円周方向の偏差が生じていないと判断する。   On the other hand, even if the specified position of the highest temperature part is not the position of the furnace center axis, the circumferential direction of the position shifted from the highest temperature part and the accumulation of the charge When the height of the surface is different from the direction specified as being lower than the other directions, the control unit 16 determines that there is no circumferential deviation in the descending speed of the load.

このように、本実施形態に係る装入物降下速度の偏差検出方法は、炉口部平面内の温度分布における最高温部の位置と、同一円周上の4点以上の位置の装入物の堆積面の高さとから装入物の降下速度に円周方向の偏差が生じたか否かを検出する。これにより、炉内の装入物の下降速度に円周方向の偏差がどの方向に生じたとしても、最高温部に対応した位置において装入物の降下速度に円周方向の偏差が生じたことを検出できる。また、炉口部平面内全体の温度分布を略連続的に測定でき、最高温部の位置の炉中心軸からのずれを略連続的に検出できるので、炉口部平面内全体で装入物の下降速度の円周方向の偏差を精度よく早期に検出できるようになる。   As described above, the method for detecting the deviation of the charged material descending speed according to the present embodiment includes the method of detecting the charged material at four or more points on the same circumference as the position of the highest temperature part in the temperature distribution in the furnace opening plane. It is detected whether or not the descending speed of the charged object has a deviation in the circumferential direction from the height of the accumulation surface. Due to this, no matter what direction the circumferential deviation occurs in the descending speed of the charge in the furnace, a circumferential deviation occurs in the descending speed of the charge at the position corresponding to the highest temperature part. Can be detected. In addition, the temperature distribution over the entire furnace opening plane can be measured almost continuously, and the deviation of the position of the highest temperature part from the furnace center axis can be detected almost continuously. , It is possible to accurately and early detect the deviation of the descending speed in the circumferential direction.

また、本実施形態に係る装入物降下速度の偏差検出方法によって、装入物の降下速度に円周方向の偏差が生じたことが検出された場合に、装入物の降下速度に偏差が生じた位置に微粉炭を吹き込む羽口から吹き込まれる微粉炭の量を他の位置よりも多くしてよい。非特許文献1に記載されているように、高炉では、コークス消費量の少ない方向に対向する側の装入物の降下速度が速くなる。この特性を利用し、装入物の降下速度に円周方向の偏差が生じた、すなわち、他の位置よりも装入物の降下速度が速くなった最高温部の位置に吹き込む微粉炭量を増やすことで、当該位置のコークス消費量を少なくすることができる。これにより、最高温部の位置に対向する側の装入物の降下速度を速めることができ、装入物の降下速度の円周方向の偏差を解消できる。   Further, when it is detected by the method of detecting a deviation of the charge descending speed according to the present embodiment that a circumferential deviation has occurred in the descending speed of the charge, the deviation is detected in the descending speed of the charge. The amount of the pulverized coal blown from the tuyere that blows the pulverized coal into the generated position may be larger than at other positions. As described in Non-Patent Literature 1, in a blast furnace, the lowering speed of the charge on the side opposite to the direction in which the coke consumption is small increases. Utilizing this characteristic, there was a deviation in the descending speed of the charge in the circumferential direction, that is, the amount of pulverized coal to be blown into the position of the hottest part where the lowering speed of the charge was faster than other positions By increasing, the coke consumption at the position can be reduced. This makes it possible to increase the descending speed of the charge on the side facing the position of the highest temperature portion, and eliminate the circumferential deviation of the decrease speed of the charge.

また、本実施形態に係る装入物降下速度の偏差検出方法によって、装入物の降下速度に円周方向の偏差が生じたことが検出された場合に、装入物の降下速度に偏差が生じた位置に設けられた羽口から吹き込まれる送風流量を他の位置よりも少なくしてもよい。装入物の降下速度に円周方向の偏差が生じた、すなわち、他の位置よりも装入物の降下速度が速くなった最高温部の位置に吹き込む送風流量を少なくすることで、当該位置のコークス消費量を少なくすることができる。これにより、最高温部の位置に対向する側の装入物の降下速度を速めることができ、装入物の降下速度の円周方向の偏差を解消できる。   Further, when it is detected by the method of detecting a deviation of the charge descending speed according to the present embodiment that a circumferential deviation has occurred in the descending speed of the charge, the deviation is detected in the descending speed of the charge. The flow rate of air blown from the tuyere provided at the position where the air flow occurs may be smaller than at other positions. A circumferential deviation occurred in the lowering speed of the charge, that is, by reducing the flow rate of air blown to the position of the hottest part where the lowering speed of the charge was faster than other positions, Coke consumption can be reduced. This makes it possible to increase the descending speed of the charge on the side facing the position of the highest temperature portion, and eliminate the circumferential deviation of the decrease speed of the charge.

さらに、本実施形態に係る装入物降下速度の偏差検出方法によって、装入物の降下速度に円周方向の偏差が生じたことが検出された場合に、最高温部の位置に対応した位置に原料を装入する炉頂ホッパーへ装入するコークス34を他の位置の炉頂ホッパーよりも多くして、最高温部の位置に装入されるコークス34を多くしてもよい。非特許文献2に記載されているように、高炉では、装入物のコークス比を高くすると、鉱石32が少ないので同じ送風量でも鉱石32の消費速度が遅くなり、装入物の降下速度も遅くなる。このため、最高温部の位置に装入されるコークス34を多くして、コークス比を高くすることで最高温部の位置の装入物の降下速度を遅くでき、これにより、装入物の降下速度の円周方向の偏差を解消できる。   Furthermore, when it is detected by the method of detecting a deviation of the charge descending speed according to the present embodiment that a circumferential deviation has occurred in the descending speed of the charge, the position corresponding to the position of the highest temperature part is detected. The coke 34 to be charged into the furnace top hopper for charging the raw materials into the furnace may be more than the furnace hoppers at other positions, and the coke 34 to be charged to the highest temperature part may be increased. As described in Non-Patent Document 2, in the blast furnace, when the coke ratio of the charge is increased, the consumption rate of the ore 32 is reduced even at the same blowing rate because the ore 32 is small, and the descent rate of the charge is also low. Become slow. For this reason, by increasing the coke 34 charged at the position of the hottest part and increasing the coke ratio, the descent speed of the charge at the position of the hottest part can be slowed down. The circumferential deviation of the descending speed can be eliminated.

以上、説明したように、本実施形態に係る装入物降下速度の偏差検出方法によって、装入物の降下速度に円周方向の偏差が生じたことを早期に検出できるので、円周偏差の影響が拡大する前に上述した是正手段を実施できる。これにより、早期に円周方向の原料還元状態を均一化させて、安定した高炉操業が実現できる。   As described above, the method for detecting the deviation of the charged object descending speed according to the present embodiment can early detect that the deviation in the circumferential direction has occurred in the descending speed of the charged object. The remedial measures described above can be implemented before the impact is magnified. As a result, the raw material reduction state in the circumferential direction can be made uniform at an early stage, and stable blast furnace operation can be realized.

次に、図5、図6を用いて、従来技術である炉口部の径方向に温度計が設置された装置を用いた場合と対比しながら、本実施形態に係る装入物降下速度の偏差検出方法を説明する。図5は、最高温部が炉中心軸と一致した状態の炉口部平面内の温度分布を示す図である。図6は、最高温部が炉中心軸からずれた状態の炉口部平面内の温度分布を示す図である。また、図5、図6に示した例では、線(1)、線(2)、線(3)、線(4)上に6個の温度計40を設け、当該温度計を用いて炉口部空間の温度を測定するとともに、図4に示した位置に4つの機械式サウジング計22を設け、炉内の装入物の堆積面の高さを同一円周上の4点以上の位置で測定している。   Next, referring to FIG. 5 and FIG. 6, the charge descending speed according to the present embodiment will be compared with a conventional device using a device in which a thermometer is installed in the radial direction of the furnace opening. A method of detecting a deviation will be described. FIG. 5 is a diagram showing a temperature distribution in a furnace port plane in a state where the highest temperature part is coincident with the furnace center axis. FIG. 6 is a diagram showing a temperature distribution in a furnace port plane in a state where the highest temperature part is shifted from the furnace center axis. In the examples shown in FIGS. 5 and 6, six thermometers 40 are provided on the line (1), the line (2), the line (3), and the line (4), and the furnace is used by using the thermometers. In addition to measuring the temperature of the mouth space, four mechanical sounding meters 22 are provided at the positions shown in FIG. 4, and the height of the stacking surface of the charge in the furnace is set at four or more points on the same circumference. It is measured in.

図5(a)は、炉口部平面内の温度分布と、温度計40で測温する測温点の位置を示す図である。また、図5(b)は、温度計40によって測定された線(1)〜線(4)の温度変化を示すグラフである。   FIG. 5A is a diagram showing the temperature distribution in the furnace port plane and the positions of the temperature measuring points measured by the thermometer 40. FIG. 5B is a graph showing the temperature changes of the lines (1) to (4) measured by the thermometer 40.

図5に示した例においては、最高温部である500℃以上の温度領域の位置が炉中心軸と一致している。このため、装入物の降下速度に円周方向の偏差は生じておらず、安定した高炉操業が実施されていることがわかる。この状態では装入物分布調整によって、炉中心軸側の鉱石32に対するコークス34の層厚比は高くされており、炉中心軸側には高温のガス流が形成され、炉壁部側には低温のガス流が形成される。この場合においては、図5(b)に示すように、温度計が設置された装置による測定であっても炉中心軸側の炉口部空間の温度が高く、炉壁側の炉口部空間の温度が低いことが線(1)〜線(4)のいずれにおいても確認されている。   In the example shown in FIG. 5, the position of the temperature region of 500 ° C. or higher, which is the highest temperature portion, coincides with the furnace center axis. For this reason, there is no deviation in the circumferential direction in the descending speed of the charge, which indicates that stable blast furnace operation is being performed. In this state, the layer thickness ratio of coke 34 to ore 32 on the furnace center axis side is increased by charge distribution adjustment, a high-temperature gas flow is formed on the furnace center axis side, and the furnace wall side is formed. A cold gas stream is formed. In this case, as shown in FIG. 5 (b), the temperature of the furnace port space on the furnace center axis side is high and the furnace port space on the furnace wall side is high even when measurement is performed by a device provided with a thermometer. Is low in all of the lines (1) to (4).

図6(a)は、炉口部平面内の温度分布と、温度計40が設けられた位置を示す図である。また、図6(b)は、温度計40によって測定された線(1)〜線(4)の温度変化を示すグラフである。   FIG. 6A is a diagram showing the temperature distribution in the plane of the furnace opening and the position where the thermometer 40 is provided. FIG. 6B is a graph showing temperature changes of the lines (1) to (4) measured by the thermometer 40.

図6に示した例においては、最高温部である500℃以上の温度領域の位置が炉中心軸からN方向にずれている。また、機械式サウジング計22によって測定されたN方向の装入物の堆積面の高さが最も低かったとする。このため、制御部16は、N方向にずれた最高温部の位置において、装入物の降下速度に円周方向の偏差が生じたと判断する。   In the example shown in FIG. 6, the position of the temperature region of 500 ° C. or higher, which is the highest temperature portion, is shifted in the N direction from the furnace center axis. Further, it is assumed that the height of the accumulation surface of the charge in the N direction measured by the mechanical type sowing meter 22 is the lowest. For this reason, the control unit 16 determines that a deviation in the circumferential direction has occurred in the descending speed of the charge at the position of the highest temperature part shifted in the N direction.

一方、温度計が設置された装置では、図6(b)に示すように、それぞれの方向ごとに若干の温度差はあるものの、炉中心軸側の炉口部空間の温度が安定した高炉操業時の温度(図5(a))よりも低いということが示されるだけである。炉中心軸側に炉口部空間の温度の低下は、中心流低下によっても起こるので、装入物の降下速度に円周方向の偏差と、周方向の偏差を伴わない中心流低下との判別が困難になる。ここで、中心流低下とは、炉中心軸側の上昇ガス流の勢いが低下する現象であり、鉱石32の堆積角低下等に起因した炉中心軸側の鉱石層厚増加によって発生すると考えられている。   On the other hand, in a device equipped with a thermometer, as shown in FIG. 6B, although there is a slight temperature difference in each direction, the blast furnace operation in which the temperature of the furnace opening space on the furnace central axis side is stable is stable. It only shows that it is lower than the temperature of the hour (FIG. 5 (a)). Since the decrease in the temperature of the furnace mouth space on the furnace central axis side also occurs due to the decrease in the central flow, discrimination between the circumferential deviation in the descending speed of the charge and the central flow decrease without circumferential deviation Becomes difficult. Here, the decrease in the central flow is a phenomenon in which the momentum of the ascending gas flow on the furnace central axis side decreases, and is considered to be caused by an increase in the ore layer thickness on the furnace central axis side due to a decrease in the deposition angle of the ore 32 and the like. ing.

中心流低下を是正するには、通常、原料の装入パターンを変更し、炉中心軸側に装入されるコークス34を多くして、炉中心軸側の通気性を向上させる。しかしながら、この対応では、装入物の降下速度の円周方向の偏差を解消できない。装入物の降下速度の円周方向の偏差が発生した場合において、炉中心軸側に装入されるコークス34を多くすると炉中心軸側のコークス層厚が厚くなり過ぎて炉中心側のガス流が過剰になり、炉全体のガス還元効率が低下して還元材比増加を招く場合がある。   In order to correct the decrease in the central flow, usually, the charging pattern of the raw material is changed, and the coke 34 charged on the furnace central axis side is increased to improve the air permeability on the furnace central axis side. However, this measure cannot eliminate the circumferential deviation of the descending speed of the charge. In the case where the circumferential deviation of the descending speed of the charged material occurs, if the coke 34 charged on the furnace central axis side is increased, the coke layer thickness on the furnace central axis side becomes too thick and the gas on the furnace central side becomes too thick. In some cases, the flow becomes excessive, the gas reduction efficiency of the entire furnace is reduced, and the reducing material ratio is increased.

これに対し、本実施形態に係る装入物降下速度の偏差検出方法では、炉口部平面内の温度分布を用いるので、最高温部が炉中心軸からどの方向にずれたとしても当該ずれを検出できる。中心流低下では最高温部の温度は低下するものの、最高温部の位置は炉中心軸からずれないので、最高温部の炉中心軸からのずれに基づいて装入物降下速度の円周方向の偏差を検出することで、装入物降下速度の円周方向の偏差と中心流低下とを容易に判別できるので、従来技術よりも高精度に装入物降下速度の円周方向の偏差を検出できる、といえる。   On the other hand, in the method for detecting the deviation of the charge descending speed according to the present embodiment, since the temperature distribution in the plane of the furnace opening is used, even if the highest temperature part is deviated from the furnace central axis in any direction, the deviation is detected. Can be detected. Although the temperature of the hottest part decreases when the central flow decreases, the position of the hottest part does not deviate from the furnace center axis. By detecting the deviation of the load descending speed, the circumferential deviation of the charge descending speed and the decrease of the central flow can be easily determined, so that the circumferential deviation of the load descending speed can be determined with higher accuracy than the prior art. It can be said that it can be detected.

また、図6に示した例において、本実施形態に係る装入物降下速度の偏差検出方法で装入物の降下速度に円周方向の偏差が生じたことが検出された場合に、最高温部の位置に対応した方向であるNE〜NW(90°)方向から微粉炭を吹き込む羽口の微粉炭吹き込み量を、他の方向に設置された羽口よりも多くする。具体的には、NE〜NW方向からの微粉炭吹き込み量を5.0質量%増加させ、炉全体の微粉炭吹き込み量が一定になるように、他の方向であるNW〜SW(90°)方向、SW〜SE(90°)方向およびNE〜SE(90°)方向に設けられた羽口から吹き込む微粉炭吹き込み量をそれぞれ1.7質量%減少させる。これにより、NE〜NW方向の装入物の降下速度の円周方向の偏差は解消され、N方向における装入物の高さの差も解消できる。   In the example shown in FIG. 6, when it is detected by the method for detecting a deviation of the charged object descending speed according to the present embodiment that a circumferential deviation has occurred in the descending speed of the charged object, the maximum temperature is detected. The amount of pulverized coal blown from the tuyere that blows pulverized coal from the NE to NW (90 °) direction, which is the direction corresponding to the position of the part, is made larger than the tuyere installed in other directions. Specifically, the pulverized coal injection amount from the NE to NW directions is increased by 5.0% by mass, and NW to SW (90 °) in the other direction is set so that the pulverized coal injection amount in the entire furnace becomes constant. The amount of pulverized coal blown from tuyeres provided in the direction, SW-SE (90 °) direction and NE-SE (90 °) direction is reduced by 1.7% by mass, respectively. Thereby, the deviation in the circumferential direction of the descending speed of the charge in the NE to NW directions is eliminated, and the difference in the height of the charge in the N direction can be eliminated.

コークス消費量に偏差が生じる原因は、炉内の通気抵抗に円周方向の偏差があり、通気抵抗の低い側の羽口の送風量が相対的に多くなり、これによりコークス消費量に偏差が生じたと考えられる。コークス消費量に円周方向の偏差が生じると、装入物降下速度に円周方向の偏差が生じる。このため、本実施形態に係る装入物降下速度の偏差検出方法で、装入物降下速度に円周方向の偏差が生じたことを検出するとともに羽口からの微粉炭の吹き込み量を調整しながら、コークス消費量に偏差がない状態を目指すことが好ましい。一方、羽口から吹き込む微粉炭量に円周方向の偏差をつけると、コークス消費量に円周方向の偏差が生じ、これが装入物降下速度の円周方向の偏差の原因となる。このため、微粉炭吹き込み量に円周方向の偏差をつけた後も、随時、本実施形態に係る装入物降下速度の偏差検出方法を適用しながら、全方向で微粉炭吹き込み量が均一となる状態を目指すのが望ましい。   The cause of the deviation in coke consumption is that there is a circumferential deviation in the ventilation resistance in the furnace, and the amount of air blown from the tuyere on the side with the lower ventilation resistance is relatively large. Probably caused. A circumferential deviation in coke consumption results in a circumferential deviation in the charge descent rate. For this reason, the method for detecting the deviation of the charge descending speed according to the present embodiment detects the occurrence of a circumferential deviation in the charge descending speed and adjusts the amount of pulverized coal blown from the tuyere. However, it is preferable to aim for a state in which there is no deviation in coke consumption. On the other hand, if there is a circumferential deviation in the amount of pulverized coal blown from the tuyeres, a circumferential deviation will occur in the coke consumption, which will cause a circumferential deviation in the charge descending speed. For this reason, even after applying a deviation in the circumferential direction to the pulverized coal injection amount, the pulverized coal injection amount is made uniform in all directions while applying the deviation detection method of the charge descending speed according to the present embodiment as needed. It is desirable to aim for a state.

また、図6に示した例において、本実施形態に係る装入物降下速度の偏差検出方法で装入物の降下速度に偏差が生じたことが検出された場合に、最高温部の位置に対応した方向であるNE〜NW方向からの送風量を他の方向よりも少なくしてもよい。送風量を他の方向よりも少なくすることで、NE〜NW方向のコークス消費量が少なくなり、NE〜NW方向に対向するSW〜SE方向の装入物の降下速度が速くなる。これにより、NE〜NW方向の装入物の降下速度の偏差を解消でき、N方向における装入物の高さの差も解消できる。   In the example shown in FIG. 6, when it is detected that a difference occurs in the descending speed of the charged object by the deviation detecting method of the charged object descending speed according to the present embodiment, the position of the highest temperature part is determined. The blowing amount from the corresponding directions NE to NW may be smaller than in other directions. By making the blowing amount smaller than in the other directions, the coke consumption in the NE to NW directions is reduced, and the descent speed of the charge in the SW to SE directions facing the NE to NW directions is increased. Thereby, the deviation of the descending speed of the charged object in the NE to NW directions can be eliminated, and the difference in the height of the charged object in the N direction can also be eliminated.

さらに、図6に示した例において、本実施形態に係る装入物降下速度の偏差検出方法で装入物の降下速度に偏差が生じたことが検出された場合に、最高温部の位置に対応した位置に原料を装入する炉頂ホッパーから装入するコークス34を他の位置の炉頂ホッパーよりも多くしてもよい。最高温部の位置に対応した位置に装入するコークス34を多くすることで、最高温部の位置に対応した装入物の位置のコークス比が高められる。装入物のコークス比を高くすると、鉱石32が少ないので同じ送風量でも鉱石32の消費速度が遅くなり、装入物の降下速度も遅くなる。これにより、NE〜NW方向の装入物の降下速度の偏差を解消でき、N方向における装入物の高さの差も解消できる。   Further, in the example shown in FIG. 6, when it is detected that a deviation occurs in the descending speed of the charged object by the deviation detection method of the charged object descending speed according to the present embodiment, the position of the highest temperature part is determined. The coke 34 charged from the top hopper for charging the raw material at the corresponding position may be larger than the coke 34 at the other positions. By increasing the coke 34 to be charged at the position corresponding to the position of the hottest part, the coke ratio of the position of the charge corresponding to the position of the hottest part is increased. If the coke ratio of the charge is increased, the consumption rate of the ore 32 is reduced even at the same blowing rate because the amount of the ore 32 is small, and the descent speed of the charge is also reduced. Thereby, the deviation of the descending speed of the charged object in the NE to NW directions can be eliminated, and the difference in the height of the charged object in the N direction can also be eliminated.

次に、図7を用いて、最高温部の位置に対応した位置に装入されるコークス34を多くする方法の一例について説明する。図7は、3つの炉頂ホッパーを有する原料装入装置の上面図と、正面図を示す。図7(a)は、原料装入装置50の上面図であり、図7(b)は、原料装入装置50の正面図である。図7に示すように、高炉30の上部には、3つの炉頂ホッパー52、54、56と、流量調整ゲート58と、集合ホッパー60と、分配シュート62とを有する原料装入装置50が設けられている。   Next, an example of a method of increasing the amount of coke 34 charged at a position corresponding to the position of the highest temperature portion will be described with reference to FIG. FIG. 7 shows a top view and a front view of a raw material charging apparatus having three furnace hoppers. 7A is a top view of the raw material charging device 50, and FIG. 7B is a front view of the raw material charging device 50. As shown in FIG. 7, a raw material charging device 50 having three furnace top hoppers 52, 54, 56, a flow rate adjusting gate 58, a collecting hopper 60, and a distribution chute 62 is provided above the blast furnace 30. Have been.

本実施形態に係る装入物降下速度の偏差検出方法で、炉頂ホッパー52が設けられている方向において、装入物の降下速度に偏差が生じたことが検出されたとする。通常は下記表1に示すように、コークス34と鉱石32とを交互に、炉頂ホッパー52、54、56の順に投入していたが、下記表2に示すように、炉頂ホッパー52にコークス34を投入し、他の炉頂ホッパー54、56に鉱石32を投入し、炉頂ホッパー52方向に装入される原料のコークス比を増加させた。この結果、炉頂ホッパー52の位置における装入物の降下速度が低下し、最高温部の位置は、炉中心軸に一致し、装入物の堆積面の高さの差も解消した。   It is assumed that in the method for detecting a deviation of the charge descending speed according to the present embodiment, it is detected that a deviation occurs in the descending speed of the charge in the direction in which the furnace top hopper 52 is provided. Normally, as shown in Table 1 below, coke 34 and ore 32 were charged alternately in the order of furnace top hoppers 52, 54 and 56, but as shown in Table 2 below, coke 34 The ore 32 was charged into the other top hoppers 54 and 56 to increase the coke ratio of the raw material charged in the direction of the top hopper 52. As a result, the descent speed of the charge at the position of the furnace top hopper 52 was reduced, the position of the highest temperature portion was coincident with the furnace central axis, and the difference in the height of the stacking surface of the charge was eliminated.

表2に示した例は、炉頂ホッパーの運用により円周方向にコークス比偏差を設ける方法であるが、これに限られず、例えば、コークス34を炉内に装入する場合に、装入物の降下速度の円周方向の偏差が発生した方向に分配シュート62が向いた場合に旋廻速度を遅くしてもよい。これにより、降下速度の円周方向の偏差が発生した方向に装入されるコークス34を相対的に増加させることができ、当該方向のコークス比を高めることができる。   The example shown in Table 2 is a method of providing a coke ratio deviation in the circumferential direction by operating the furnace top hopper, but is not limited thereto. For example, when charging the coke 34 into the furnace, The turning speed may be reduced when the distribution chute 62 is oriented in a direction in which the circumferential deviation of the descending speed occurs. This makes it possible to relatively increase the amount of coke 34 charged in the direction in which the circumferential speed deviation of the descent speed has occurred, and to increase the coke ratio in the direction.

また、炉頂ホッパーから装入物を炉内に装入する際に、降下速度の円周方向の偏差が発生した方向に分配シュート62が向いたタイミングで炉頂ホッパーの流量調整ゲート58の開度を調整して装入物の装入速度を制御してもよい。例えば、鉱石32を炉内に装入する場合に、降下速度の円周方向の偏差が発生した方向のみ流量調整ゲート58の開度を狭めれば、当該方向の鉱石32の装入量は相対的に減少し、当該方向のコークス比を高めることができる。そして、降下速度の円周方向の偏差が発生した方向のコークス比を高めることで、装入物の降下速度を遅くすることができ、これにより、装入物の降下速度の円周方向の偏差を解消できる。   Further, when charging the charge from the furnace top hopper into the furnace, the flow rate adjustment gate 58 of the furnace top hopper is opened at the timing when the distribution chute 62 is directed in the direction in which the circumferential deviation of the descent speed occurs. The charging speed of the charge may be controlled by adjusting the degree. For example, when charging the ore 32 into the furnace, if the opening degree of the flow rate adjusting gate 58 is narrowed only in the direction in which the circumferential deviation of the descent speed occurs, the charged amount of the ore 32 in the direction is relatively small. And the coke ratio in that direction can be increased. Then, by increasing the coke ratio in the direction in which the circumferential deviation of the descending speed occurs, the descending speed of the charge can be reduced, and thereby, the circumferential deviation of the descending speed of the charge can be reduced. Can be eliminated.

なお、本実施形態においては、装入物の堆積面の高さを、機械式サウジング計22を用いて測定する例を示したが、これに限られない。例えば、マイクロ波等を用いた非接触式の装置を用いて装入物の堆積面の高さを測定してもよい。また、機械式サウジング計の個数も4個以上であって、これらを用いて炉内の装入物の堆積面の高さを同一円周上の4点以上の位置で測定すればよい。また、4個以上の機械式サウジング計22を用いる場合においては、炉中心軸と円周方向に隣り合う2つの機械式サウジング計22とがなす角度が360°/(機械式サウジング計の個数)±20°の範囲内になるように機械式サウジング計22をそれぞれ設置すればよい。   Note that, in the present embodiment, an example is shown in which the height of the deposition surface of the charge is measured by using the mechanical-type sounding meter 22, but the present invention is not limited to this. For example, the height of the deposition surface of the charge may be measured using a non-contact type device using a microwave or the like. In addition, the number of the mechanical type sowing gauges is four or more, and the height of the deposition surface of the charge in the furnace may be measured at four or more positions on the same circumference using these. In the case where four or more mechanical sowing gauges 22 are used, the angle formed by the furnace central axis and the two mechanical sowing gauges 22 adjacent in the circumferential direction is 360 ° / (number of mechanical sowing gauges). What is necessary is just to install the mechanical type sowing meter 22 so that it may be in the range of +/- 20 degrees.

また、本実施形態においては、最高温部が、炉口部平面内の温度分布における最も高い温度領域である例を用いて説明したが、これに限られない。例えば、最高温部は、最も高い温度が算出された測定点であってもよい。この場合に制御部16は、最も高い温度が算出された測定点の位置を特定し、当該位置が炉口部平面内における炉中心軸の位置にあるか否かを判断する。   Further, in the present embodiment, an example has been described in which the highest temperature portion is the highest temperature region in the temperature distribution in the plane of the furnace port portion, but the present invention is not limited to this. For example, the highest temperature part may be a measurement point at which the highest temperature is calculated. In this case, the control unit 16 specifies the position of the measurement point at which the highest temperature is calculated, and determines whether or not the position is at the position of the furnace center axis in the furnace port plane.

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲に限定するものではない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者には明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。   As described above, the present invention has been described using the embodiments, but the technical scope of the present invention is not limited to the scope described in the above embodiments. It is apparent to those skilled in the art that various changes or improvements can be made to the above embodiment. It is apparent from the description of the appended claims that embodiments with such changes or improvements can be included in the technical scope of the present invention.

また、特許請求の範囲、明細書、および図面中に示した装置、システムおよび方法における動作の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるものでない限り、任意の順序で実現し得ることに留意すべきである。特許請求の範囲、明細書において、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。   In addition, the order of performing the operations in the devices, systems, and methods illustrated in the claims, the description, and the drawings is not particularly specified as “before”, “before”, and the like. It should be noted that as long as the output of this process is not used in a later process, it can be realized in any order. In the claims and the specification, the use of "first," "second," or the like for convenience does not imply that the steps must be performed in this order.

10 超音波温度計測システム
12 超音波センサ
14 処理装置
16 制御部
18 表示部
20 格納部
22 機械式サウジング計
30 高炉
32 鉱石
34 コークス
36 炉中心軸
40 温度計
50 原料装入装置
52 炉頂ホッパー
54 炉頂ホッパー
56 炉頂ホッパー
58 流量調整ゲート
60 集合ホッパー
62 分配シュート
DESCRIPTION OF SYMBOLS 10 Ultrasonic temperature measurement system 12 Ultrasonic sensor 14 Processing device 16 Control part 18 Display part 20 Storage part 22 Mechanical-type saudiment meter 30 Blast furnace 32 Ore 34 Coke 36 Furnace central axis 40 Thermometer 50 Raw material charging device 52 Furnace top hopper 54 Furnace hopper 56 Furnace hopper 58 Flow rate adjustment gate 60 Collective hopper 62 Distribution chute

Claims (4)

高炉炉口部の同一平面に設置された複数の超音波センサを用いて、前記複数の超音波センサを接続した線が交差する複数の測定点の温度を測定して最高温部の位置を特定するとともに炉内の装入物の高さを、炉中心軸を中心とする同一円周上の4点以上の位置で測定し、
前記最高温部の位置が炉中心軸からずれたことを検出し、且つ、前記最高温部の位置に対応した方向の前記装入物の高さが他の方向よりも低下した場合に、前記最高温部の位置に対応した位置の前記装入物の降下速度に偏差が生じたことを検出する、装入物降下速度の偏差検出方法。
Using a plurality of ultrasonic sensors installed on the same plane at the mouth of the blast furnace, measuring the temperature of a plurality of measurement points where lines connecting the plurality of ultrasonic sensors intersect to specify the position of the highest temperature part And measure the height of the charge in the furnace at four or more points on the same circumference centered on the furnace center axis .
Detecting that the position of the highest temperature portion is shifted from the furnace central axis, and, when the height of the charge in a direction corresponding to the position of the highest temperature portion is lower than other directions, A method for detecting a deviation in the charge descending speed, which detects that there is a deviation in the descending speed of the charge at a position corresponding to the position of the highest temperature part.
請求項1に記載の装入物降下速度の偏差検出方法によって、前記装入物の降下速度に偏差が生じたことが検出された場合に、前記最高温部の位置に対応した位置に設けられた羽口から吹き込む微粉炭の量を他の位置よりも多くする、高炉操業方法。   The method according to claim 1, wherein the method is provided at a position corresponding to the position of the highest temperature portion when it is detected that a deviation occurs in the descending speed of the charged object. A method of operating a blast furnace in which the amount of pulverized coal injected from the tuyere is larger than at other locations. 請求項1に記載の装入物降下速度の偏差検出方法によって、前記装入物の降下速度に偏差が生じたことが検出された場合に、前記最高温部の位置に対応した位置に設けられた羽口から吹き込む送風流量を他の位置よりも少なくする、高炉操業方法。   The method according to claim 1, wherein the method is provided at a position corresponding to the position of the highest temperature portion when it is detected that a deviation occurs in the descending speed of the charged object. A blast furnace operating method that reduces the flow rate of air blown from the tuyere that is blown from other locations. 請求項1に記載の装入物降下速度の偏差検出方法によって、前記装入物の降下速度に偏差が生じたことが検出された場合に、前記最高温部の位置に対応した位置に前記装入物を装入する炉頂ホッパーから装入するコークスを他の位置の炉頂ホッパーよりも多くする、高炉操業方法。   The method according to claim 1, wherein when a deviation in the descending speed of the charge is detected, the load is detected at a position corresponding to the position of the highest temperature part. A blast furnace operation method in which coke charged from a top hopper for charging a material is larger than that of a hopper at another position.
JP2017100497A 2017-05-22 2017-05-22 Method for detecting deviation of charge descending speed and method for operating blast furnace Active JP6631588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017100497A JP6631588B2 (en) 2017-05-22 2017-05-22 Method for detecting deviation of charge descending speed and method for operating blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017100497A JP6631588B2 (en) 2017-05-22 2017-05-22 Method for detecting deviation of charge descending speed and method for operating blast furnace

Publications (2)

Publication Number Publication Date
JP2018193599A JP2018193599A (en) 2018-12-06
JP6631588B2 true JP6631588B2 (en) 2020-01-15

Family

ID=64571369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017100497A Active JP6631588B2 (en) 2017-05-22 2017-05-22 Method for detecting deviation of charge descending speed and method for operating blast furnace

Country Status (1)

Country Link
JP (1) JP6631588B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114998326B (en) * 2022-07-19 2023-03-07 江苏瑞立环保工程股份有限公司 Method and system for detecting distribution condition of gas flow based on artificial intelligence

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4823762B1 (en) * 1968-08-08 1973-07-16
JPS5677306A (en) * 1979-11-30 1981-06-25 Sumitomo Metal Ind Ltd Operating method of blast furnace
JPH02190409A (en) * 1989-01-17 1990-07-26 Sumitomo Metal Ind Ltd Method for charging raw material in blast furnace
DE102008064142A1 (en) * 2008-12-19 2010-07-01 Z & J Technologies Gmbh Measuring device and measuring method for a blast furnace, blast furnace with such a device and pivoting device for at least one measuring probe

Also Published As

Publication number Publication date
JP2018193599A (en) 2018-12-06

Similar Documents

Publication Publication Date Title
JP7176561B2 (en) Blast furnace operation method
JP6540636B2 (en) Blast furnace operation method
JP6631588B2 (en) Method for detecting deviation of charge descending speed and method for operating blast furnace
JP6248550B2 (en) How to determine blast furnace operating conditions
CN103966377A (en) Blast-furnace temperature on-line detection and acquisition system and on-line detection method
JP6540654B2 (en) Blast furnace operation method
JP2017150035A (en) Display method for blast furnace profile meter, and method for charging material to be charged in blast furnace
JP6575467B2 (en) Blast furnace operation method
CN115896372A (en) Method for identifying collapsed furnace condition of blast furnace based on charge level thermal image
JP5387066B2 (en) Blast furnace gas flow distribution estimation method, blast furnace gas flow distribution estimation device, and blast furnace gas flow distribution estimation program
JP6870693B2 (en) Blast furnace condition condition determination device, blast furnace operation method, and blast furnace condition condition determination method
CN104537177A (en) Method and device for determining position of softening face of softening and melting band in blast furnace
JP6927461B1 (en) Operation method and operation system of production equipment
JP7307341B2 (en) Furnace gas pressure fluctuation detection method
JP7151228B2 (en) Blast furnace operation method
JP6870694B2 (en) Blast furnace condition condition determination device, blast furnace operation method, and blast furnace condition condition determination method
Jin et al. Throat Temperature Estimation for Blast Furnace based on Multi Layer Ore Coke Ratio Distribution Modelling
KR102574487B1 (en) Apparatus, method, and computer readable storage medium for monitoring refractory erosion condition in a melting furnace
JPH0913110A (en) Method for evaluating ventilation of charged material layer in vertical type furnace
KR102042698B1 (en) Apparatus for measuring discharged amount of slag and this method
CN113699291A (en) Method for calculating blast furnace material distribution drop point based on laser measurement data
JP2006265647A (en) Method for determining distribution state of charged material in blast furnace
JP2017128783A (en) Display method of blast furnace profile meter and charging method of charging material to blast furnace
JP2022137614A (en) Blast furnace operation method, charging method control device and charging method control program
JPH09287008A (en) Method for estimating distribution of layer thickness of charged material, in blast furnace

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191125

R150 Certificate of patent or registration of utility model

Ref document number: 6631588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250