JP7151228B2 - Blast furnace operation method - Google Patents

Blast furnace operation method Download PDF

Info

Publication number
JP7151228B2
JP7151228B2 JP2018133022A JP2018133022A JP7151228B2 JP 7151228 B2 JP7151228 B2 JP 7151228B2 JP 2018133022 A JP2018133022 A JP 2018133022A JP 2018133022 A JP2018133022 A JP 2018133022A JP 7151228 B2 JP7151228 B2 JP 7151228B2
Authority
JP
Japan
Prior art keywords
utilization rate
gas utilization
target operation
graph
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018133022A
Other languages
Japanese (ja)
Other versions
JP2020012127A (en
Inventor
航尚 松田
良諭 西河
正具 門脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018133022A priority Critical patent/JP7151228B2/en
Publication of JP2020012127A publication Critical patent/JP2020012127A/en
Application granted granted Critical
Publication of JP7151228B2 publication Critical patent/JP7151228B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Description

本発明は、高炉の操業方法に関する。 The present invention relates to a method of operating a blast furnace.

高炉操業では、鉄源として焼結鉱、還元材および熱源としてコークスを炉内に層状となるように装入して堆積させ、炉下部から熱源として熱風を吹き込むことで溶銑を生産している。
焼結鉱とコークスにより形成される堆積形状によりガス流れが変化するため、堆積形状を管理・制御することが高炉操業安定化のためには非常に重要である。
In blast furnace operation, sintered ore as an iron source, reducing agent, and coke as a heat source are charged and deposited in layers in the furnace, and hot air is blown from the bottom of the furnace as a heat source to produce hot metal.
Since the gas flow changes depending on the shape of the deposit formed by sintered ore and coke, it is very important to manage and control the shape of the deposit for stable blast furnace operation.

高炉は、計画された出銑量を安定して生産する必要があるため、出銑量や装入する原料性状の変化に応じて装入物堆積形状を変化させ、最適なガス流れ形成、安定生産を図っている。
特に、近年では高出銑・低コークス比の操業が進められており、炉内投入酸素量の増加にともない高炉内ガス量が増大しているため、それに応じた装入物堆積形状の造り込みが必須である。
Blast furnaces need to stably produce the planned amount of tapped iron. We are trying to produce.
In particular, in recent years, operations with high iron output and low coke ratio have been promoted, and the amount of gas in the blast furnace is increasing with the increase in the amount of oxygen introduced into the furnace. is required.

特許文献1には、低コークス比で安定した高炉操業を可能とするため、コークス堆積層の堆積形状が、コークステラスの長さ/炉口半径の比を0.3以下、コークス傾斜角が10~20°になるように高炉を操業する方法が記載されている。 In Patent Document 1, in order to enable stable blast furnace operation at a low coke ratio, the deposition shape of the coke deposit layer is such that the ratio of coke terrace length / furnace throat radius is 0.3 or less, and the coke inclination angle is 10. A method of operating a blast furnace to ∼20° is described.

特許文献2には、ベル式高炉のガス流分布の制御のための原料装入方法として、炉中心領域から中間領域で粉・細粒比率を1.0~2.5%とする旨が記載されている。 Patent Document 2 describes that as a raw material charging method for controlling the gas flow distribution of a bell-type blast furnace, the ratio of fine particles to fine particles is set to 1.0 to 2.5% in the middle region from the center region of the furnace. It is

特許文献3には、高PCI操業下でも安定な高炉操業を行える装入物の分布制御方法として、原料堆積層およびガス流れ分布に基づいて算出される炉内半径方向のガス組成分布と、炉上部で測定された炉内半径方向のガス組成分布との差を最小化する旨が記載されている。 Patent Document 3 discloses a charge distribution control method that enables stable blast furnace operation even under high PCI operation. It is described to minimize the difference from the in-furnace radial gas composition distribution measured at the top.

特許文献4には、所望の堆積物表面プロフィールを得るために、大ベル先端から高炉炉壁まで複数に区分した微小区間毎に、落下装入物の加速度を求めて位置を算定し、算定した位置から落下軌跡を求め、落下軌跡から炉内堆積表面プロフィールを推定し、推定プロフィールと目標プロフィールを比較して差を求め、差をもとに装入物の分布を調整する旨が記載されている。 In Patent Document 4, in order to obtain a desired sediment surface profile, the acceleration of the falling charge is calculated for each minute section divided into a plurality of sections from the tip of the large bell to the blast furnace wall, and the position is calculated. It states that the falling trajectory is obtained from the position, the deposition surface profile in the furnace is estimated from the falling trajectory, the difference is obtained by comparing the estimated profile and the target profile, and the distribution of the burden is adjusted based on the difference. there is

特開2008-208463号公報JP 2008-208463 A 特開2006-70353号公報JP-A-2006-70353 特開2000-8105号公報JP-A-2000-8105 特開平5-222416号公報JP-A-5-222416

しかしながら、特許文献1~4に記載の技術には、以下の点で改善の余地があった。
特許文献1に記載の技術では、堆積物の表面形状は局所的に凹凸を有する曲線であるため、堆積角は直線近似で求める。そのため、堆積角が特許文献1で規定する範囲を満たしていても、局所的な凹凸形状のガス流れへの影響を考慮できなかった。
特許文献2、4に記載の技術はベル式高炉の場合は有効であるが、ベルレス高炉には適用できなかった。
特許文献3に記載の技術は、高炉のガス流れ分布の制御の1手法としては有効であるが、具体的な操業改善アクションが堆積角の変更しかなく、特許文献1と同様に、局所的な凹凸形状のガス流れへの影響を考慮できなかった。
However, the techniques described in Patent Documents 1 to 4 have room for improvement in the following points.
In the technique described in Patent Literature 1, the surface shape of the deposit is a curved line having local unevenness, so the deposition angle is obtained by linear approximation. Therefore, even if the deposition angle satisfies the range specified in Patent Document 1, the influence of the local irregularities on the gas flow could not be considered.
The techniques described in Patent Documents 2 and 4 are effective in the case of a bell-type blast furnace, but could not be applied to a bell-less blast furnace.
The technique described in Patent Document 3 is effective as a method for controlling the gas flow distribution of a blast furnace, but the only specific action to improve operation is to change the deposition angle, and similar to Patent Document 1, local The influence of the uneven shape on the gas flow could not be considered.

本発明は上記課題に鑑みてなされたものであり、高炉構造を問わずに適用でき、堆積物の局所的な表面形状を考慮した最適なガス流れの制御が可能な高炉の操業方法を提供することを目的とする。 The present invention has been made in view of the above problems, and provides a blast furnace operating method that can be applied regardless of the blast furnace structure and that can optimally control the gas flow in consideration of the local surface shape of deposits. The purpose is to

本発明の高炉の操業方法は、炉頂から鉄鉱石とコークスを交互に装入する高炉の操業方法において、高炉内で、かつ装入物下方において、炉径方向の位置と%単位のガス利用率の関係を示す測定グラフを求める測定工程と、目標とする高炉操業における、炉径方向の位置と%単位のガス利用率の関係を示す目標操業グラフと、前記測定グラフとを比較し、ガス利用率の差が20%以上ある炉径方向位置を問題位置として特定する特定工程と、前記問題位置における鉄鉱石またはコークスの、次チャージにおける装入量を、ガス利用率の差が20%未満になるように調整して装入する装入工程と、を実施することを特徴とする。
本発明によれば、測定グラフと目標操業グラフの差からガス流れに影響する問題位置を特定する。
そのため、高炉構造を問わずに適用できる。
また、測定グラフと目標操業グラフの差から、ガス流れに影響する局所的な凹凸が存在する炉径方向位置を、問題位置として容易に特定できるため、局所的な凹凸の影響を考慮した操業改善アクションが可能である。
The blast furnace operating method of the present invention is a blast furnace operating method in which iron ore and coke are alternately charged from the top of the furnace. A measurement process for obtaining a measurement graph showing the relationship between the rate and the rate, a target operation graph showing the relationship between the position in the furnace radial direction and the gas utilization rate in % units in the target blast furnace operation, and the measurement graph. is compared, and a specific step of identifying a furnace radial position where the difference in gas utilization rate is 20% or more as a problem position, and the charging amount of iron ore or coke at the problem position in the next charge is determined as the gas utilization rate. and a charging step of adjusting and charging so that the difference is less than 20%.
According to the present invention, the problem location affecting the gas flow is identified from the difference between the measured graph and the target operating graph.
Therefore, it can be applied regardless of the blast furnace structure.
In addition, from the difference between the measurement graph and the target operation graph, it is possible to easily identify the location of the furnace radial direction where there is local unevenness that affects the gas flow as the problem location. action is possible.

本発明では、前記目標操業グラフは、炉の半径をR、炉径方向の半径位置をr、中心を0としたとき、r/R=0でのガス利用率が0%、0.4≦r/R≦0.9でのガス利用率が45%~60%の範囲で一定であり、0≦r/R≦0.4でのガス利用率が、0%から、45%~60%で一定の範囲まで単調増加するグラフであるのが好ましい。
本発明によれば、目標操業グラフとして、単調増加関数と直線を組み合わせた単純なグラフを用いるため、目標操業グラフを求めるのに必要な工数とコストを低減できる。
In the present invention, the target operation graph is such that when the radius of the furnace is R, the radial position in the furnace radial direction is r, and the center is 0, the gas utilization rate at r/R = 0 is 0%, and 0.4 ≤ The gas utilization rate at r/R ≤ 0.9 is constant in the range of 45% to 60%, and the gas utilization rate at 0 ≤ r/R ≤ 0.4 is from 0% to 45% to 60%. is preferably a graph that monotonically increases up to a certain range.
According to the present invention, since a simple graph combining a monotonically increasing function and a straight line is used as the target operation graph, it is possible to reduce man-hours and costs required to obtain the target operation graph.

本発明では、前記測定工程は、装入物上面から鉛直方向下向きに3000mm以上、5000mm以下の高さで、かつ、中心から炉壁までを結ぶ1本の水平直線上におけるガス利用率を求める工程であるのが好ましい。
本発明によれば、中心から炉壁までを結ぶ1本の水平直線上におけるガス利用率を求めればよいので、目標操業グラフを求めるのに必要な工数とコストを低減できる。
In the present invention, the measuring step is a step of determining the gas utilization rate on one horizontal straight line connecting the center to the furnace wall at a height of 3000 mm or more and 5000 mm or less vertically downward from the upper surface of the charged material. is preferred.
According to the present invention, it is only necessary to obtain the gas utilization rate on one horizontal straight line connecting the center to the furnace wall, so the man-hours and cost required to obtain the target operation graph can be reduced.

本発明では、前記装入工程は、装入物の径方向の堆積形状を測定する堆積形状測定工程と、測定した堆積形状を参照して、前記問題位置における鉄鉱石またはコークスの、次チャージにおける装入量を、ガス利用率の差が20%未満になるように調整して装入する工程であるのが好ましい。
本発明によれば、ガス流れに影響する局所的な凹凸が生じている位置に装入する鉄鉱石またはコークスの装入量を調整するので、局所的な凹凸形状のガス流れを的確に制御できる。
In the present invention, the charging step includes a pile shape measurement step of measuring the pile shape in the radial direction of the charge, and referring to the measured pile shape, the iron ore or coke at the problem position in the next charge It is preferable that the charging amount is adjusted so that the difference in gas utilization rate is less than 20%.
According to the present invention, since the charging amount of iron ore or coke to be charged to a position where local unevenness affecting the gas flow is adjusted, it is possible to accurately control the gas flow due to the local uneven shape. .

本発明では、前記装入工程は、前記問題位置におけるガス利用率が目標操業グラフのガス利用率よりも高い場合は次チャージにおける前記問題位置への鉄鉱石装入量を、相対的に前記目標操業グラフとの差分1%当たり、0.5~5質量%減らすか、またはコークス装入量を前記目標操業グラフとの差分1%当たり、0.5~5質量%相対的に増やす工程であるのが好ましい。
本発明によれば、ガス流れに影響する局所的な凹凸が生じている位置に装入する鉄鉱石またはコークスの装入量を、理想状態との差分1%単位で調整するので、局所的な凹凸形状のガス流れを、より的確に制御できる。
In the present invention, in the charging step, if the gas utilization rate at the problem position is higher than the gas utilization rate of the target operation graph, the iron ore charging amount to the problem position in the next charge is relatively increased to the target It is a step of reducing 0.5 to 5% by mass per 1% difference from the operation graph, or relatively increasing the coke charging amount by 0.5 to 5% by mass per 1% difference from the target operation graph. is preferred.
According to the present invention, the charging amount of iron ore or coke charged to a position where local unevenness affecting the gas flow is adjusted in units of 1% difference from the ideal state, so that local The uneven gas flow can be controlled more accurately.

本発明では、前記装入工程は、前記問題位置におけるガス利用率が理想操業グラフのガス利用率よりも低い場合は次チャージにおける前記問題位置への鉄鉱石装入量を、相対的に前記目標操業グラフとの差分1%当たり、0.5~5質量%増やすか、またはコークス装入量を前記目標操業グラフとの差分1%当たり、0.5~5質量%相対的に減らす工程であるのが好ましい。
本発明によれば、ガス流れに影響する局所的な凹凸が生じている位置に装入する鉄鉱石またはコークスの装入量を、理想状態との差分1%単位で調整するので、局所的な凹凸形状のガス流れを、より的確に制御できる。
In the present invention, in the charging step, if the gas utilization rate at the problem position is lower than the gas utilization rate of the ideal operation graph, the iron ore charging amount to the problem position in the next charge is relatively increased to the target Increase by 0.5 to 5% by mass per 1% difference from the operation graph, or relatively reduce the coke charging amount by 0.5 to 5% by mass per 1% difference from the target operation graph. is preferred.
According to the present invention, the charging amount of iron ore or coke charged to a position where local unevenness affecting the gas flow is adjusted in units of 1% difference from the ideal state, so that local The uneven gas flow can be controlled more accurately.

本発明の実施形態に係る高炉操業方法の概要を示すフロー図。BRIEF DESCRIPTION OF THE DRAWINGS The flowchart which shows the outline|summary of the blast-furnace operating method which concerns on embodiment of this invention. 前記実施形態および実施例1で、測定グラフと目標操業グラフを重ねた状態を示す例。The example which shows the state which overlapped the measurement graph and the target operation graph in the said embodiment and Example 1. FIG. 実施例1において、操業改善アクション前後の、装入物の表面のプロファイルを比較した図であって、図中の「調整前」は操業改善アクション前のプロファイルであり、「調整後」は操業改善アクション後のプロファイルである。また、図中ではプロファイルを、装入物の層厚に対する鉱石層厚の比で示している。 In Example 1, it is a diagram comparing the profile of the surface of the charge before and after the operation improvement action, and "before adjustment" in the figure is the profile before the operation improvement action, and "after adjustment" is the operation improvement. Post-action profile. In the figure, the profile is shown as the ratio of the ore layer thickness to the charge layer thickness .

以下、図面に基づき、本発明に好適な実施形態を詳細に説明する。
まず、本発明の実施形態に係る高炉操業方法について説明する。
Preferred embodiments of the present invention will be described in detail below with reference to the drawings.
First, a blast furnace operating method according to an embodiment of the present invention will be described.

最初に、図1を参照して、高炉操業方法の概要を説明する。
まず、高炉内で、かつ装入物下方において、炉径方向の位置と、ガス利用率の関係を示す、測定グラフを求める(図1のS1、測定工程)。
First, with reference to FIG. 1, the outline of the blast furnace operating method will be described.
First, a measurement graph showing the relationship between the position in the furnace radial direction and the gas utilization rate is obtained in the blast furnace and below the charge (S1 in FIG. 1, measurement step).

次に、測定グラフと、目標とする高炉操業における、炉径方向の位置と、ガス利用率の関係を示す、目標操業グラフを比較し、ガス利用率の差が20%以上ある炉径方向位置を問題位置として特定する(図1のS2、特定工程)。 Next, the measurement graph is compared with the target operation graph showing the relationship between the position in the furnace radial direction and the gas utilization rate in the target blast furnace operation, and the furnace radial position where the difference in the gas utilization rate is 20% or more is specified as the problem position (S2 in FIG. 1, specifying step).

次に、問題位置における鉄鉱石またはコークスの、次チャージにおける装入量を、ガス利用率の差が20%未満になるように調整して装入する(図1のS3、装入工程)。
以上が高炉操業方法の概要である。以下の説明では、ガス利用率を用いて測定グラフを求める実施形態とする。
Next, the charging amount of iron ore or coke at the problem location in the next charge is adjusted and charged so that the difference in gas utilization rate is less than 20% (S3 in FIG. 1, charging step).
The above is the outline of the blast furnace operating method. In the following description, it is assumed that the measurement graph is obtained using the gas utilization rate.

次に、図1および図2を参照して、本発明の実施形態に係る高炉の操業方法の詳細を説明する。
<対象高炉>
実施形態で対象とする高炉は、炉頂から鉄鉱石とコークスを交互に装入するものであれば、構造や容積は限定されない。原料の装入手段は、ベル式でもよいし、ベルレスでもよい。
原料も特に限定されない。鉄鉱石は焼結鉱、ペレット、還元鉄等の種々の鉄源を利用できる。
Next, with reference to FIGS. 1 and 2, the details of the blast furnace operating method according to the embodiment of the present invention will be described.
<Target blast furnace>
The blast furnace targeted by the present embodiment is not limited in structure or volume as long as iron ore and coke are alternately charged from the top of the furnace. The raw material charging means may be bell-type or bell-less.
The raw material is also not particularly limited. Various iron sources such as sintered ore, pellets and reduced iron can be used as iron ore.

<S1:測定工程>
S1では、炉径方向の位置と、ガス利用率ηの関係を示す、測定グラフを求める。
ガス利用率ηは、例えば以下の式(1)で求められる。
η(%)=[%CO2]/([%CO]+[%CO2])×100・・・(1)
式(1)における[%CO2]は、ガス中のCO2の体積%である。[%CO]は、ガス中のCOの体積%である。
<S1: Measurement step>
In S1, a measurement graph showing the relationship between the position in the furnace radial direction and the gas utilization rate η is obtained.
The gas utilization rate η is obtained, for example, by the following formula (1).
η(%)=[% CO2 ]/([%CO]+[% CO2 ])×100 (1)
[% CO 2 ] in equation (1) is the volume % of CO 2 in the gas. [%CO] is the volume % of CO in the gas.

ガス組成は、炉径方向に複数設けたゾンデを用いて測定できる。
測定位置は、装入物上面から鉛直方向下向きに3000mm以上、5000mm以下の高さで、かつ、中心から炉壁までを結ぶ1本の水平直線上におけるガス利用率ηを求める。
装入物上面から鉛直方向下向きに3000mm以上、5000mm以下とすることにより、還元後ガスの組成分布を測定することができ、炉内でのガス利用率を求めることができる。
1本の水平直線上におけるガス利用率ηを求めることにより、高炉の円周方向全域に渡って測定を行う必要がなくなる。ただし、複数の水平直線上におけるガス利用率ηを求めてもよい。
測定グラフ100の例を図2に示す。
The gas composition can be measured using a plurality of sondes provided in the radial direction of the furnace.
The measurement position is a height of 3000 mm or more and 5000 mm or less vertically downward from the upper surface of the charge, and the gas utilization rate η is obtained on one horizontal straight line connecting the center to the furnace wall.
The composition distribution of the post-reduction gas can be measured and the gas utilization rate in the furnace can be obtained by setting the vertical downward direction from the upper surface of the charge to 3000 mm or more and 5000 mm or less.
By obtaining the gas utilization rate η on one horizontal straight line, it becomes unnecessary to perform measurement over the entire circumference of the blast furnace. However, the gas utilization rate η may be obtained on a plurality of horizontal straight lines.
An example of a measurement graph 100 is shown in FIG.

<S2:特定工程>
S2では、測定グラフ100と、目標とする高炉操業における、炉径方向の位置と、ガス利用率ηの関係を示す、目標操業グラフを比較し、ガス利用率ηの差が20%以上ある炉径方向位置を問題位置として特定する。
<S2: Specific step>
In S2, the measurement graph 100 is compared with the target operation graph showing the relationship between the position in the furnace radial direction and the gas utilization rate η in the target blast furnace operation, and furnaces with a difference in the gas utilization rate η of 20% or more are compared. Identify the radial location as the problem location.

目標操業グラフは、目標とするガス流れが達成された状態での、炉径方向の位置とガス利用率ηの関係を示すグラフである。 The target operation graph is a graph showing the relationship between the position in the furnace radial direction and the gas utilization rate η when the target gas flow is achieved.

目標操業グラフは、高炉の構造、出銑比、コークス比等によって異なるため、操業条件毎に異なるが、以下の条件を満たすグラフであるのが好ましい。
まず、炉中心は通気性確保のために、鉱石の還元等の炉内反応が、他の領域と比べて進行しない方が好ましい。よってガス利用率ηは低い方が好ましい。炉中心では、理想的にはη=0である。
The target operation graph differs depending on the structure of the blast furnace, the tapping ratio, the coke ratio, etc., and thus differs for each operating condition, but it is preferable that the graph satisfies the following conditions.
First, in order to ensure air permeability in the center of the furnace, it is preferable that reactions in the furnace such as reduction of ore do not progress as compared to other regions. Therefore, it is preferable that the gas utilization rate η is low. At the furnace center, ideally η=0.

炉中心以外の領域は、炉内反応が均一に進行するのが好ましい。炉内反応が均一に進行しないと、ガス流れに偏りが生じ、局所的な操業変動により、所望の出銑比等が得られない可能性があるためである。 In a region other than the center of the furnace, it is preferable that the reaction in the furnace proceeds uniformly. This is because if the reaction in the furnace does not proceed uniformly, the gas flow will be uneven, and local fluctuations in operation may make it impossible to obtain a desired tapping ratio or the like.

このようなグラフとしては、図2の符号200に示すグラフが挙げられる。
具体的には、図2のグラフは、炉の半径をR、炉径方向の半径位置をr、中心を0としたとき、r/R=0でのガス利用率ηが0%、0.4≦r/R≦0.9でのガス利用率ηが45%~60%の範囲で一定である。また、0≦r/R≦0.4でのガス利用率ηが、0%から、45%~60%で一定の範囲まで単調増加する。炉壁近傍(R>0.9)は、原料の装入方法(1チャージ何バッチにするか等)によって好ましいガス利用率ηが異なるため、特に規定しないが、0.4≦r/R≦0.9でのガス利用率ηと同程度が望ましい。
Such graphs include the graph indicated by reference numeral 200 in FIG.
Specifically, in the graph of FIG. 2, when the radius of the furnace is R, the radial position in the furnace radial direction is r, and the center is 0, the gas utilization rate η at r/R=0 is 0%, 0 . The gas utilization rate η at 4≦r/R≦0.9 is constant in the range of 45% to 60%. Further, the gas utilization rate η at 0≦r/R≦0.4 monotonously increases from 0% to a certain range of 45% to 60%. In the vicinity of the furnace wall (R > 0.9), the preferred gas utilization rate η varies depending on the raw material charging method (how many batches per charge, etc.), so it is not specified, but 0.4 ≤ r / R ≤ It is desirable that the gas utilization rate η is about the same as 0.9.

目標操業グラフ200は、図2に示す形状には限定されない。実炉において、安定操業が達成された状態での炉径方向の位置とガス利用率ηの関係を実測して、目標操業グラフ200としてもよい。 The target operation graph 200 is not limited to the shape shown in FIG. In an actual furnace, the target operation graph 200 may be obtained by actually measuring the relationship between the position in the furnace radial direction and the gas utilization rate η when stable operation is achieved.

測定グラフ100と、目標操業グラフ200の比較は、図2に示すように、2つのグラフを重ね合わせて、炉径方向における差分を求めればよい。例えば図2では、相対距離0.0~0.45付近までは、目標操業グラフ200よりも測定グラフ100の方が、ガス利用率ηが小さく、0.45超では、測定グラフ100の方が、ガス利用率ηが大きいことがわかる。 The measurement graph 100 and the target operation graph 200 can be compared by superimposing the two graphs and obtaining the difference in the furnace radial direction, as shown in FIG. For example, in FIG. 2, the measurement graph 100 has a smaller gas utilization rate η than the target operation graph 200 until the relative distance is around 0.0 to 0.45, and the measurement graph 100 has a smaller gas utilization rate η than the target operation graph 200. , the gas utilization rate η is large.

問題位置は、ガス利用率ηの差が20%以上ある炉径方向位置である。例えば、図2では、相対距離0.1における目標操業グラフ200と測定グラフ100のガス利用率ηの差が20%以上あるため、相対距離0.1が問題位置である。 The problematic position is the furnace radial position where the difference in the gas utilization rate η is 20% or more. For example, in FIG. 2, since the difference between the target operation graph 200 and the measurement graph 100 in the gas utilization rate η at the relative distance of 0.1 is 20% or more, the relative distance of 0.1 is the problem position.

<S3:装入工程>
装入工程では、問題位置における鉄鉱石またはコークスの、次チャージにおける装入量を、ガス利用率ηの差が20%未満になるように調整して装入する。この際、装入物の径方向の堆積形状を測定し(堆積形状測定工程)と、測定した堆積形状を参照して、次チャージにおける装入量を調整するのが好ましい。
<S3: charging step>
In the charging process, the charging amount of iron ore or coke at the problem location in the next charge is adjusted so that the difference in gas utilization η is less than 20%. At this time, it is preferable to measure the deposition shape in the radial direction of the charged material (deposition shape measuring step) and refer to the measured deposition shape to adjust the charging amount in the next charge.

具体的には、問題位置におけるガス利用率ηが、目標操業グラフ200のガス利用率ηよりも高い場合は、次チャージにおける問題位置への鉄鉱石装入量を、相対的に目標操業グラフ200との差分1%当たり、0.5~5質量%減らす。またはコークス装入量を、目標操業グラフ200との差分1%当たり、0.5~5質量%相対的に増やす。 Specifically, when the gas utilization rate η at the problem position is higher than the gas utilization rate η in the target operation graph 200, the iron ore charging amount to the problem position in the next charge is relatively set to the target operation graph 200 Reduce by 0.5 to 5% by mass per 1% difference from. Alternatively, the coke charging amount is relatively increased by 0.5 to 5% by mass per 1% difference from the target operation graph 200.

問題位置におけるガス利用率ηが理想操業グラフのガス利用率ηよりも低い場合は、次チャージにおける問題位置への鉄鉱石装入量を、相対的に前記目標操業グラフ200との差分1%当たり、0.5~5%増やす。またはコークス装入量を、目標操業グラフ200との差分1%当たり、0.5~5質量%相対的に減らす。調整前後の堆積形状の例を図3に示す。
以上が、高炉操業方法の詳細の説明である。
If the gas utilization rate η at the problem position is lower than the gas utilization rate η of the ideal operation graph, the iron ore charging amount to the problem position in the next charge is relatively per 1% difference from the target operation graph 200 , increase by 0.5-5%. Alternatively, the coke charging amount is relatively reduced by 0.5 to 5% by mass per 1% difference from the target operation graph 200. FIG. 3 shows examples of deposition shapes before and after adjustment.
The above is the detailed description of the blast furnace operating method.

このように、実施形態によれば、測定グラフ100と目標操業グラフ200のガス利用率ηの差から、ガス流れに影響する局所的な凹凸の炉径方向位置を、問題位置として特定するため、局所的な凹凸の影響を考慮した操業改善アクションが可能である。 As described above, according to the present embodiment, from the difference in the gas utilization rate η between the measurement graph 100 and the target operation graph 200, the furnace radial position of the local unevenness that affects the gas flow is identified as the problem position. , it is possible to take action to improve operations considering the effects of local unevenness.

以下、実施例に基づき、本発明をより詳細に説明するが、本発明は実施例には限定されない。
(実施例1)
対象高炉は容積が4000~5000m級の大型の高炉であり、溶銑を出銑比1.8以上で製造していた。
EXAMPLES The present invention will be described in more detail below based on examples, but the present invention is not limited to the examples.
(Example 1)
The target blast furnace was a large blast furnace with a volume of 4000 to 5000 m3 class, and was producing hot metal at a tapping ratio of 1.8 or higher.

この高炉に対し、目標操業グラフ200として、図2に示すグラフを用意した。このグラフは、r/R=0でのガス利用率ηが0%、0.4≦r/R≦0.9でのガス利用率ηが50%であり、0≦r/R≦0.4でのガス利用率ηが、0%から、50%まで単調増加するグラフである。 A graph shown in FIG. 2 was prepared as a target operation graph 200 for this blast furnace. This graph shows that the gas utilization rate η is 0% at r/R=0, the gas utilization rate η is 50% at 0.4≦r/R≦0.9, and 0≦r/R≦0.9. 4 is a graph in which the gas utilization rate η at 4 monotonically increases from 0% to 50%.

次に、この高炉の装入物上面から鉛直方向下向きに3000mm以上、5000mm以下の高さで、かつ、中心から炉壁までを結ぶ1本の水平直線上におけるガス利用率ηを、ゾンデを用いて、COガスおよびCO2ガス濃度を測定することにより、求めた。 Next, the gas utilization rate η on one horizontal straight line connecting the center and the furnace wall at a height of 3000 mm or more and 5000 mm or less vertically downward from the upper surface of the charge of this blast furnace is measured using a sonde. was obtained by measuring the CO gas and CO 2 gas concentrations.

次に、求めたガス利用率ηと、炉径方向との関係を測定グラフ100として求め、測定グラフ100と目標操業グラフ200を重ね合わせた。
その結果、r/R=0.1において、ガス利用率ηの差が20%以上あったため、この位置を問題位置として検出した。
Next, the relationship between the obtained gas utilization rate η and the furnace radial direction was obtained as a measurement graph 100, and the measurement graph 100 and the target operation graph 200 were superimposed.
As a result, at r/R=0.1, the difference in the gas utilization rate η was 20% or more, so this position was detected as a problem position.

次に、ガス利用率ηを求めた水平線上における、装入物表面の形状を、プロファイルメータを用いて求めた。結果を図2に示す。
また、この時点での炉頂の圧力損失は1500~1550hPaであった。
Next, the shape of the charge surface on the horizontal line from which the gas utilization rate η was determined was determined using a profile meter. The results are shown in FIG.
Also, the pressure loss at the furnace top at this time was 1500 to 1550 hPa.

さらに、図3に示すように、装入物の表面プロファイルを調整した。具体的には、次チャージにおける問題位置への鉄鉱石装入量を、装入装置の傾動角度を調整することにより、相対的に目標操業グラフ200との差分10%減らす操業改善アクションを行った。 In addition, the surface profile of the charge was adjusted as shown in FIG. Specifically, by adjusting the tilting angle of the charging device, the amount of iron ore charged to the problem position in the next charge was relatively reduced by 10% from the target operation graph 200, and an operation improvement action was taken. .

次チャージ装入後、同じ条件で測定グラフ100を求めた。最後に、測定グラフ100を目標操業グラフ200に重ねた。その結果、前チャージ時に問題位置であった場所における、測定グラフ100と目標操業グラフ200のガス利用率ηの差は、10%以下となり、差分が20%以下になった。
この時点での炉頂の圧力損失は1400~1450hPaであった。
After charging the next charge, a measurement graph 100 was obtained under the same conditions. Finally, the measurement graph 100 was superimposed on the target operation graph 200. FIG. As a result, the difference in the gas utilization rate η between the measurement graph 100 and the target operation graph 200 at the problem location during the previous charging was 10% or less, and the difference was 20% or less.
The pressure loss at the furnace top at this time was 1400-1450 hPa.

この結果から、ガス利用率ηと、炉径方向との関係から、ガス流れを悪化させる局所的な位置を特定し、改善アクションが可能であることが分かった。 From this result, it was found that it is possible to identify the local position that deteriorates the gas flow from the relationship between the gas utilization rate η and the furnace radial direction, and to take improvement action.

100…測定グラフ、200…目標操業グラフ。 10 0... Measurement graph, 20 0... Target operation graph.

Claims (8)

炉頂から鉄鉱石とコークスを交互に装入する高炉の操業方法において、
高炉内で、かつ装入物下方において、炉径方向の位置と%単位のガス利用率との関係を示す測定グラフを求める測定工程と、
目標とする高炉操業における、炉径方向の位置と%単位のガス利用率との関係を示す目標操業グラフと、前記測定グラフとを比較し、ガス利用率の差が20%以上ある炉径方向位置を問題位置として特定する特定工程と、
前記問題位置における鉄鉱石またはコークスの、次チャージにおける装入量を、ガス利用率の差が20%未満になるように調整して装入する装入工程と、
を実施することを特徴とする、高炉の操業方法。
In a blast furnace operation method in which iron ore and coke are alternately charged from the top of the furnace,
a measurement step of obtaining a measurement graph showing the relationship between the position in the furnace radial direction and the gas utilization rate in % in the blast furnace and below the charge;
The target operation graph showing the relationship between the position in the furnace radial direction and the gas utilization rate in % units in the target blast furnace operation is compared with the measurement graph, and the difference in the gas utilization rate is 20% or more in the furnace radial direction. an identifying step of identifying the location as the problem location;
A charging step of adjusting and charging the charging amount of iron ore or coke at the problem location in the next charging so that the difference in gas utilization rate is less than 20%;
A method of operating a blast furnace, characterized by performing
前記目標操業グラフは、炉の半径をR、炉径方向の半径位置をr、中心を0としたとき、
r/R=0でのガス利用率が0%、0.4≦r/R≦0.9でのガス利用率が45%~60%の範囲で一定であり、0≦r/R≦0.4でのガス利用率が、0%から、45%~60%で一定の範囲まで単調増加するグラフであることを特徴とする、請求項1に記載の高炉の操業方法。
When the radius of the furnace is R, the radial position in the furnace radial direction is r, and the center is 0, the target operation graph is:
The gas utilization rate at r/R = 0 is 0%, the gas utilization rate at 0.4 ≤ r/R ≤ 0.9 is constant in the range of 45% to 60%, and 0 ≤ r/R ≤ 0 The method of operating a blast furnace according to claim 1, characterized in that the gas utilization rate at .4 is a graph that monotonically increases from 0% to a certain range from 45% to 60%.
前記測定工程は、装入物上面から鉛直方向下向きに3000mm以上、5000mm以下の高さで、かつ、中心から炉壁までを結ぶ1本の水平直線上におけるガス利用率を求める工程であることを特徴とする、請求項1または請求項2に記載の高炉の操業方法。 The measuring step is a step of determining the gas utilization rate on a horizontal straight line connecting the center and the furnace wall at a height of 3000 mm or more and 5000 mm or less vertically downward from the upper surface of the charge. A method for operating a blast furnace according to claim 1 or 2, characterized by the above. 前記装入工程は、
装入物の径方向の堆積形状を測定する堆積形状測定工程と、
測定した堆積形状を参照して、前記問題位置における鉄鉱石またはコークスの、次チャージにおける装入量を、ガス利用率の差が20%未満になるように調整して装入する工程であることを特徴とする、請求項1~請求項3までのいずれか一項に記載の高炉の操業方法。
The charging step is
a pile shape measuring step of measuring the pile shape in the radial direction of the charge;
With reference to the measured deposit shape, the charging amount of iron ore or coke at the problem position in the next charge is adjusted so that the difference in gas utilization rate is less than 20%. The method for operating a blast furnace according to any one of claims 1 to 3, characterized by:
前記装入工程は、
前記問題位置におけるガス利用率が前記目標操業グラフのガス利用率よりも高い場合は次チャージにおける前記問題位置への鉄鉱石装入量を、相対的に前記目標操業グラフとの差分1%当たり、0.5~5質量%減らすか、またはコークス装入量を前記目標操業グラフとの差分1%当たり、0.5~5質量%相対的に増やす工程であることを特徴とする、請求項1から請求項4までのいずれか一項に記載の高炉の操業方法。
The charging step is
If the gas utilization rate at the problem position is higher than the gas utilization rate of the target operation graph, the iron ore charging amount to the problem position in the next charge is relatively per 1% difference from the target operation graph, Claim 1, characterized in that it is a step of decreasing by 0.5 to 5% by mass or relatively increasing the coke charging amount by 0.5 to 5% by mass per 1% of the difference from the target operation graph. The method for operating a blast furnace according to any one of claims 1 to 4.
前記装入工程は、
前記問題位置におけるガス利用率が前記目標操業グラフのガス利用率よりも低い場合は次チャージにおける前記問題位置への鉄鉱石装入量を、相対的に前記目標操業グラフとの差分1%当たり、0.5~5質量%増やすか、またはコークス装入量を前記目標操業グラフとの差分1%当たり、0.5~5質量%相対的に減らす工程であることを特徴とする、請求項1から請求項4までのいずれか一項に記載の高炉の操業方法。
The charging step is
If the gas utilization rate at the problem position is lower than the gas utilization rate in the target operation graph, the iron ore charging amount to the problem position in the next charge is relatively per 1% difference from the target operation graph, Claim 1, characterized in that it is a step of increasing 0.5 to 5% by mass or relatively reducing the coke charging amount by 0.5 to 5% by mass per 1% of the difference from the target operation graph. The method for operating a blast furnace according to any one of claims 1 to 4.
前記装入工程は、
前記問題位置における温度が前記目標操業グラフの温度よりも高い場合は次チャージにおける前記問題位置への鉄鉱石装入量を、相対的に前記目標操業グラフとの差分1%当たり、0.5~5質量%増やすか、またはコークス装入量を前記目標操業グラフとの差分1%当たり、0.5~5質量%相対的に減らす工程であることを特徴とする、請求項1から請求項4までのいずれか一項に記載の高炉の操業方法。
The charging step is
If the temperature at the problem position is higher than the temperature in the target operation graph, the iron ore charging amount to the problem position in the next charge is relatively set to 0.5 to 0.5 per 1% difference from the target operation graph. Claims 1 to 4, characterized in that it is a step of increasing 5% by mass or relatively reducing the coke charging amount by 0.5 to 5% by mass per 1% of the difference from the target operation graph. The method for operating a blast furnace according to any one of .
前記装入工程は、
前記問題位置における温度が前記目標操業グラフの温度よりも低い場合は次チャージにおける前記問題位置への鉄鉱石装入量を、相対的に前記目標操業グラフとの差分1%当たり、0.5~5質量%減らすか、またはコークス装入量を前記目標操業グラフとの差分1%当たり、0.5~5質量%相対的に増やす工程であることを特徴とする、請求項1から請求項4までのいずれか一項に記載の高炉の操業方法。
The charging step is
If the temperature at the problem position is lower than the temperature in the target operation graph, the iron ore charging amount to the problem position in the next charge is relatively set to 0.5 to 0.5 per 1% difference from the target operation graph. Claims 1 to 4, characterized in that it is a step of decreasing by 5% by mass or relatively increasing the coke charging amount by 0.5 to 5% by mass per 1% of the difference from the target operation graph. The method for operating a blast furnace according to any one of .
JP2018133022A 2018-07-13 2018-07-13 Blast furnace operation method Active JP7151228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018133022A JP7151228B2 (en) 2018-07-13 2018-07-13 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018133022A JP7151228B2 (en) 2018-07-13 2018-07-13 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2020012127A JP2020012127A (en) 2020-01-23
JP7151228B2 true JP7151228B2 (en) 2022-10-12

Family

ID=69170393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018133022A Active JP7151228B2 (en) 2018-07-13 2018-07-13 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP7151228B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807468B (en) * 2022-04-02 2023-10-24 武汉钢铁有限公司 Blast furnace charge level monitoring-based method for improving blast furnace gas utilization rate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016065275A (en) 2014-09-24 2016-04-28 Jfeスチール株式会社 State in blast furnace estimation device and state in blast furnace estimation method
JP2016183373A (en) 2015-03-26 2016-10-20 Jfeスチール株式会社 Blast furnace operation method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437004A (en) * 1977-08-30 1979-03-19 Kawasaki Steel Co Controlling method for properly adjusting thickness of charging materials in blast furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016065275A (en) 2014-09-24 2016-04-28 Jfeスチール株式会社 State in blast furnace estimation device and state in blast furnace estimation method
JP2016183373A (en) 2015-03-26 2016-10-20 Jfeスチール株式会社 Blast furnace operation method

Also Published As

Publication number Publication date
JP2020012127A (en) 2020-01-23

Similar Documents

Publication Publication Date Title
JP6248550B2 (en) How to determine blast furnace operating conditions
JP7151228B2 (en) Blast furnace operation method
JP4971812B2 (en) Blast furnace operation method
JP4383313B2 (en) Method and apparatus for measuring surface shape of blast furnace interior
JP6167829B2 (en) Blast furnace operation method
JP3514120B2 (en) Distribution control method of blast furnace top charge
JP4759985B2 (en) Blast furnace operation method
JP4604788B2 (en) Blast furnace operation method
JPS58133329A (en) Method and apparatus for preparing sintered ore
JP3603776B2 (en) Blast furnace operation method
JPH0913110A (en) Method for evaluating ventilation of charged material layer in vertical type furnace
JP2904599B2 (en) Blast furnace charging method
JP2001049312A (en) Method for charging raw material in bell-less blast furnace
JP2023057594A (en) Blast furnace operation method, charging method control device, and charging method control program
CN113699291A (en) Method for calculating blast furnace material distribution drop point based on laser measurement data
JPH0953106A (en) Method for controlling distribution of charged material in blast furnace
JP3702008B2 (en) Blast furnace operation method
JPH0841511A (en) Control of blast furnace and device therefor
JP2921392B2 (en) Blast furnace operation method
JP2006131979A (en) Method for charging coke into bell-less blast furnace
JPH0610289B2 (en) Blast furnace operation method
JPS5910405B2 (en) How to operate a blast furnace
JPH02225608A (en) Method for operating blast furnace
JPH02225607A (en) Method for operating blast furnace
JPH04247816A (en) Method for operating blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220912

R151 Written notification of patent or utility model registration

Ref document number: 7151228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151