JP3514120B2 - Distribution control method of blast furnace top charge - Google Patents

Distribution control method of blast furnace top charge

Info

Publication number
JP3514120B2
JP3514120B2 JP17827498A JP17827498A JP3514120B2 JP 3514120 B2 JP3514120 B2 JP 3514120B2 JP 17827498 A JP17827498 A JP 17827498A JP 17827498 A JP17827498 A JP 17827498A JP 3514120 B2 JP3514120 B2 JP 3514120B2
Authority
JP
Japan
Prior art keywords
furnace
distribution
raw material
coke
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17827498A
Other languages
Japanese (ja)
Other versions
JP2000008105A (en
Inventor
公平 砂原
親司 上城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP17827498A priority Critical patent/JP3514120B2/en
Publication of JP2000008105A publication Critical patent/JP2000008105A/en
Application granted granted Critical
Publication of JP3514120B2 publication Critical patent/JP3514120B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、鉱石とコークス
を層状に装入する高炉操業において、炉頂部からの装入
物の分布を制御することにより高炉のガス流れ分布を適
正に制御し、操業の安定化を図るための高炉炉頂装入物
の分布制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blast furnace operation in which ores and coke are charged in layers, by appropriately controlling the gas flow distribution in the blast furnace by controlling the distribution of the charge from the top of the furnace. The present invention relates to a method for controlling the distribution of the blast furnace top charge for stabilizing the temperature.

【0002】[0002]

【従来の技術】高炉操業においては、鉄鉱石、焼結鉱な
どの鉄原料(以下、「鉱石」という)とコークスが炉頂
から交互に、層状に装入される。この装入物の分布を制
御して炉内半径方向における鉱石とコークスの存在比率
とガス流れ分布を適正化することが、炉内を上昇するガ
スと、炉内を降下するコークスおよび鉱石との熱交換な
らびに反応を効率よく行わせ、高炉を安定にしかも効率
よく操業するために不可欠である。
2. Description of the Related Art In a blast furnace operation, iron raw materials such as iron ore and sintered ore (hereinafter referred to as "ores") and coke are alternately charged in layers from the furnace top. Controlling the distribution of this charge to optimize the abundance ratio of ore and coke and the gas flow distribution in the radial direction of the furnace, the gas rising in the furnace and the coke and ore descending in the furnace It is essential for efficient heat exchange and reaction, and for stable and efficient operation of the blast furnace.

【0003】炉頂から原料(鉱石およびコークス)を装
入する際、一般的には、ムーバブル・アーマー、あるい
は旋回シュート等の装入装置を用い、原料を円周方向で
均一になるように炉内の周辺部に近い所定の領域に落下
させるため、炉内に堆積した原料の表面は炉中心部に向
かって下り勾配の傾斜をなす。
When charging raw materials (ores and cokes) from the top of the furnace, generally, a charging device such as a movable armor or a swirling chute is used to make the raw materials uniform in the circumferential direction. The surface of the raw material deposited in the furnace has a downward slope toward the central part of the furnace in order to drop it into a predetermined area near the inner peripheral part.

【0004】この傾斜の角度(以下、「堆積角」とい
う)は、原料の落下点の変移や原料粒径の変動などによ
って変化する。特に、鉱石の装入の直前に装入されたコ
ークスの層は鉱石の装入の際の落下衝撃によって崩れ込
みを起こし、また、さらには傾斜面に沿った流れ込みが
生じるので、炉内の中間部(炉内の中心部と周辺部の中
間の部分)でコークス層表面のプロフィール形状(コー
クスの堆積形状)が変動する。そのため、コークス層表
面がつくる堆積角(以下、単に「コークスの堆積角」と
いう)はそのコークスが装入された直後の堆積角より低
下する。しかも、この新たに形成された堆積角を検知す
ることは不可能であり、また、崩れや流れ込みの現象自
体が不安定であるため、コークス層表面の崩れと流れ込
み現象は装入物分布の制御性の精度を低下させる要因と
されている。
The angle of this inclination (hereinafter referred to as "deposition angle") changes depending on the change of the falling point of the raw material, the fluctuation of the raw material particle size, and the like. In particular, the layer of coke charged immediately before the charging of the ore collapses due to the drop impact during the charging of the ore, and further, the flow along the inclined surface occurs, so the middle of the furnace The profile shape (coke deposition shape) of the surface of the coke layer varies in the part (the middle part between the center part and the peripheral part in the furnace). Therefore, the deposition angle formed by the surface of the coke layer (hereinafter, simply referred to as “coke deposition angle”) is lower than the deposition angle immediately after the coke is charged. Moreover, it is impossible to detect the newly formed deposition angle, and the collapse and inflow phenomenon itself is unstable, so the collapse and inflow phenomenon of the coke layer surface control the distribution of the charge. It is said to be a factor that reduces the accuracy of sex.

【0005】一方、炉内の中心付近では、時に、コーク
スの流動化を伴うほどガス流速が大きくなることがある
ため、コークスの堆積角の変動が大きく、中心付近のガ
ス流分布が不安定となる。また、炉壁近傍では、原料、
特に鉱石の落下時の衝撃による原料(特に、鉱石)表面
の乱れが炉内周辺部におけるガス流を不安定化させる要
因となる。
On the other hand, in the vicinity of the center of the furnace, the gas flow velocity sometimes increases as the coke fluidizes, so that the coke deposition angle fluctuates greatly and the gas flow distribution near the center becomes unstable. Become. In the vicinity of the furnace wall, raw materials,
In particular, the turbulence of the surface of the raw material (particularly the ore) due to the impact when the ore falls causes a destabilization of the gas flow in the peripheral part of the furnace.

【0006】さらに、近年、高炉操業は、コークス比の
低減を狙い、羽口から熱風とともに多量の微粉炭を吹き
込む高PCI操業へ移行しており、炉頂から装入する鉱
石量はコークス量に比較して増加してきている。そのた
め、装入鉱石の落下点付近と炉内の中間部分におけるコ
ークス層表面のプロフィール形状の変化、および炉内中
心部付近の堆積角の変動幅の増大が助長される傾向にあ
り、装入物分布制御の精度向上がますます要求されてい
る。
Further, in recent years, the blast furnace operation has shifted to a high PCI operation in which a large amount of pulverized coal is blown from the tuyere along with the hot air in order to reduce the coke ratio, and the amount of ore charged from the furnace top corresponds to the amount of coke. It is increasing in comparison. Therefore, the change of the profile shape of the surface of the coke layer near the dropping point of the charged ore and the middle part of the furnace and the increase of the fluctuation range of the deposition angle near the center of the furnace tend to be promoted. There is an increasing demand for improved accuracy of distribution control.

【0007】高炉装入物の分布制御方法として、特許第
2608504号公報では、装入物の落下軌跡への炉頂
ガス流速の影響を考慮して装入物の落下軌跡を求め、こ
の落下軌跡から装入物の落下位置を求めて炉内堆積表面
形状を推定し、目標堆積表面形状との差に基づいて装入
物の分布を制御する方法が開示されている。
As a method for controlling the distribution of the blast furnace charge, Japanese Patent No. 2608504 discloses a drop trajectory of the charge in consideration of the influence of the top gas velocity on the fall trajectory of the charge. There is disclosed a method in which the dropping position of the charging material is obtained from the above to estimate the surface shape of the deposit in the furnace, and the distribution of the charging material is controlled based on the difference from the target surface shape of the deposit.

【0008】また、特公平6−63009号公報では、
高炉炉内半径方向のガス流や装入物の分布状況判断を行
うための知識ベースを備えた知識工学システムによりガ
ス流や装入物の分布状況を推論し、この分布状況が適正
領域から外れた場合、装入物分布予測モデル計算を行っ
て適正領域に戻すのに最適な装入物分布制御条件を求
め、それに基づいて装入物の分布を制御する方法が開示
されている。
In Japanese Patent Publication No. 6-63009,
The distribution status of the gas flow and the charge is deduced from the proper range by inferring the distribution status of the gas flow and the charge by the knowledge engineering system equipped with the knowledge base for judging the distribution status of the gas flow and the charge in the blast furnace radial direction In this case, a method for controlling the distribution of the charging material based on the optimum charging material distribution control condition for performing the charging material distribution prediction model calculation to return to the proper region is disclosed.

【0009】しかしながら、特許第2608504号公
報に記載の装入分布制御方法では、先に述べた、炉内の
中間部におけるコークス層の崩れ込みと流れ込み、炉内
中心付近の堆積角の変動(堆積後の表面形状の変化)、
鉱石の落下点付近の原料堆積層表面の乱れ(原料堆積層
表面のプロフィール形状の変動)等の不安定で、かつ検
知不能の現象を考慮することができず、目標とする装入
物分布にすることは不可能である。また、特公平6−6
3009号公報に記載の装入分布制御方法では、過去の
実績により構築された知識工学をベースにしているた
め、やはり上記の現象が生じた場合、炉内半径方向のガ
ス流および装入物分布の変動に対する予測精度が低下
し、最適な装入物分布制御条件を求めて目標のガス流れ
分布を得ることは困難である。
However, in the charging distribution control method described in Japanese Patent No. 2608504, collapse and inflow of the coke layer in the middle portion of the furnace described above, fluctuation of the deposition angle near the center of the furnace (deposition) Change of surface shape after),
Unstable and undetectable phenomena such as disturbance on the surface of the raw material deposit layer (change in profile shape of the raw material deposit layer) near the ore drop point cannot be taken into consideration, and the target charge distribution is It is impossible to do. In addition, Japanese Patent Fair 6-6
Since the charging distribution control method described in Japanese Patent No. 3009 is based on knowledge engineering constructed by past results, when the above phenomenon still occurs, the gas flow and charging distribution in the radial direction in the reactor The accuracy of prediction for fluctuations in V is decreased, and it is difficult to obtain the target gas flow distribution by obtaining the optimum charge distribution control conditions.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上記の従来
技術における問題を解決し、炉頂部からの装入物の分布
制御性の精度向上を図り、高炉のガス流れ分布を適正に
制御して、高PCI操業下においても安定な高炉操業を
行うことができる高炉炉頂装入物の分布制御方法を提供
することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above problems in the prior art, improves the accuracy of the distribution controllability of the charge from the top of the furnace, and appropriately controls the gas flow distribution in the blast furnace. It is therefore an object of the present invention to provide a method for controlling the distribution of blast furnace top charge, which enables stable blast furnace operation even under high PCI operation.

【0011】[0011]

【課題を解決するための手段】本発明の要旨は、下記
(1)および(2)の高炉炉頂装入物の分布制御方法に
ある。
The gist of the present invention resides in the following method (1) and (2) for controlling the distribution of blast furnace top charge.

【0012】(1)鉱石とコークスを層状に装入する高
炉操業において、原料装入条件、送風条件および原料堆
積層表面のプロフィール形状計測値から炉頂部の半径方
向の原料表面形状、 鉱石/コークス比および粒径分布
からなる原料堆積層の構造およびガス流れ分布を算出す
るに際し、前記炉頂部の原料堆積層の構造およびガス流
れ分布に基づいて算出された炉内半径方向のガス組成分
布と炉上部で測定された炉内半径方向のガス組成分布と
の差が最小になるように、炉内中間部における鉱石の装
入の直前に装入されたコークスの堆積角を修正しつつ算
出し、得られたガス流れ分布と予め設定した目標ガス流
れ分布との差に基づいて、ムーバブル・アーマーノッ
チ、大ベルストローク、旋回シュートの旋回数およびシ
ュート角度の少なくとも1つ以上を調整することによ
り、炉内装入物分布を制御することを特徴とする高炉炉
頂装入物の分布制御方法。
(1) In a blast furnace operation in which ores and coke are charged in layers, the radial direction of the furnace top is determined from the raw material charging conditions, the blowing conditions, and the profile shape measurement values of the raw material deposition layer surface.
Oriented Raw Material Surface Shape, Ore / Coke Ratio and Particle Size Distribution
When calculating the structure and gas flow distribution of the raw material deposit layer consisting of, the gas composition distribution in the furnace radial direction calculated based on the structure and the gas flow distribution of the raw material deposit layer at the top of the furnace and measured in the upper part of the furnace The gas flow obtained by correcting and calculating the deposition angle of the coke charged immediately before the charging of the ore in the middle part of the furnace so that the difference with the gas composition distribution in the furnace radial direction is minimized. Based on the difference between the distribution and the preset target gas flow distribution , the movable armor knock
C, large bell stroke, number of turns of turning chute and
By adjusting at least one or more of the
A method for controlling the distribution of the blast furnace top charge, which comprises controlling the distribution of the furnace interior charge.

【0013】(2)炉頂部の原料堆積層の構造およびガ
ス流れ分布を算出するに際して行う堆積角の修正を、さ
らに、炉内中心部におけるコークスの堆積角について行
い、続いて炉内周辺部における鉱石の堆積角について行
う上記(1)に記載の高炉炉頂装入物の分布制御方法。
(2) The correction of the deposition angle for calculating the structure and the gas flow distribution of the raw material deposition layer at the top of the furnace was further performed for the coke deposition angle at the center of the furnace, and then at the periphery of the furnace. The method for controlling the distribution of the blast furnace top charge according to (1) above, which is performed for the deposition angle of ore.

【0014】前記の「炉内中心部」とは、高炉の中心と
同じ中心を有する同心円で高炉の横断面を三つの領域に
区分したときの炉の中心を含む最も内側の領域をいい、
「炉内周辺部」とは、炉壁部近傍を含む最も外側の領域
をいい、「炉内中間部」とは、「炉内中心部」と「炉内
周辺部」の中間の領域をいう。
The above-mentioned "central part in the furnace" means the innermost area including the center of the furnace when the cross section of the blast furnace is divided into three areas by a concentric circle having the same center as the center of the blast furnace,
The “furnace inner peripheral part” means the outermost region including the vicinity of the furnace wall part, and the “furnace middle part” means the middle region between the “furnace central part” and the “furnace inner peripheral part”. .

【0015】[0015]

【発明の実施の形態】以下に、上記(1)および(2)
の発明の高炉炉頂装入物の分布制御方法について詳細に
説明する。なお、本発明の高炉炉頂装入物の分布制御方
法(本発明方法)という場合は、これら両方法を指す。
BEST MODE FOR CARRYING OUT THE INVENTION The following (1) and (2) are described below.
The distribution control method of the blast furnace top charge according to the invention will be described in detail. The method for controlling the distribution of the blast furnace top charge of the present invention (the method of the present invention) refers to both of these methods.

【0016】図1は、本発明方法で用いる装入物分布予
測シミュレーター(以下、「装入物分布予測モデル」、
または単に「モデル」という)の機能を説明するための
図で、本発明方法をベル式高炉に適用した場合である。
FIG. 1 is a simulator for predicting the distribution of charges used in the method of the present invention (hereinafter, "a model for predicting charges distribution",
Or, it is a diagram for explaining the function of "model"), which is a case where the method of the present invention is applied to a bell-type blast furnace.

【0017】図1において、大ベル1を介して炉内に装
入された原料2は落下途中でムーバブル・アーマー3に
衝突して落下方向が修正され、炉内周辺部に近い所定の
領域(図示した原料落下幅6の範囲内)に落下し、層状
に堆積する。符号4は鉄原料(鉱石)であり、符号5は
その直前に落下、堆積したコークスである。コークス5
の層は、装入された直後は破線で示したプロフィールを
有するが、その後に装入された鉄原料(鉱石)4の落下
衝撃により炉内の中間部でコークス層の崩れ7や流れ込
みが生じ、図中に実線で示したプロフィールに変化す
る。符号8は炉内の中心部付近でのコークス層表面の堆
積角の変動を示す。
In FIG. 1, the raw material 2 charged into the furnace through the large bell 1 collides with the movable armor 3 during the fall and the falling direction is corrected, and a predetermined area near the periphery of the furnace ( It falls in the range of the raw material falling width 6 shown in the drawing) and is deposited in layers. Reference numeral 4 is an iron raw material (ore), and reference numeral 5 is a coke that has fallen and accumulated immediately before. Coke 5
The layer of has a profile shown by a broken line immediately after being charged, but the falling impact of the iron raw material (ore) 4 charged after that causes collapse of the coke layer 7 and inflow in the middle part of the furnace. , Changes to the profile shown by the solid line in the figure. Reference numeral 8 shows the fluctuation of the deposition angle on the surface of the coke layer near the center of the furnace.

【0018】この装入物分布予測モデルは、原料装入条
件、送風条件、センサー(プロフィール計)により求め
た原料層の堆積角、および炉頂ガス組成分布から、高炉
半径方向における原料層(堆積層)の構造、およびガス
流れ分布を推定するシミュレーターであり、次の部分か
ら構成される。すなわち、 原料の落下軌跡計算 原料落下後の表面のプロフィール形状計算 半径方向の粒径偏析計算 原料層(堆積層)の構造に基づいたガス流れ分布計算 である。
This charge distribution distribution prediction model is used to calculate the raw material layer (deposition) in the radial direction of the blast furnace from the raw material charging condition, the blowing condition, the deposition angle of the raw material layer obtained by a sensor (profile meter), and the top gas composition distribution. It is a simulator for estimating the structure of the bed) and the gas flow distribution, and consists of the following parts. That is, the raw material falling trajectory calculation, the surface profile shape calculation after the raw material falling, the particle size segregation calculation in the radial direction, and the gas flow distribution calculation based on the structure of the raw material layer (deposited layer).

【0019】装入物分布を制御するための操作として、
原料の落下点を制御する場合は、ベル式装入装置を備え
た高炉ではムーバブル・アーマーの押し出し量を変更す
る操作を、ベルレス式装入装置を備えた高炉では旋回シ
ュートの傾動角を変更する操作を行う。また、原料の装
入速度を制御する場合は、ベル式高炉では大ベルのスト
ロークの変更操作、ベルレス式高炉では流量調整弁の変
更操作を行う。
As an operation for controlling the charge distribution,
When controlling the falling point of the raw material, the operation to change the extrusion amount of the movable armor is changed in the blast furnace equipped with the bell-type charging device, and the tilt angle of the swirling chute is changed in the blast furnace equipped with the bellless charging device. Do the operation. When controlling the charging rate of raw materials, the operation of changing the stroke of the large bell is performed in the bell type blast furnace, and the operation of changing the flow rate adjusting valve is performed in the bellless type blast furnace.

【0020】上記の原料の落下軌跡計算では、装入装
置からの原料の初速度を算出し、次いで、落下軌跡の計
算を行い、原料の落下点を求める。ムーバブル・アーマ
ーによる操作を行う場合は、アーマープレートによる反
発を考慮して原料落下点およびその近傍の原料落下幅を
算出し、次に述べるの原料落下後の表面のプロフィー
ル形状計算に反映させる。なお、この原料の落下軌跡お
よび落下点の計算値については、原料落下実験結果によ
りその妥当性を検証した。
In the above-mentioned raw material drop trajectory calculation, the initial velocity of the raw material from the charging device is calculated, and then the drop trajectory is calculated to obtain the raw material drop point. When the operation is performed by the movable armor, the raw material falling point and the raw material falling width in the vicinity thereof are calculated in consideration of the repulsion by the armor plate, and this is reflected in the surface profile shape calculation after the raw material is dropped as described below. In addition, the validity of the drop trajectory and the calculated value of the drop point of the raw material was verified by the raw material drop experiment result.

【0021】上記の原料落下後の表面のプロフィール
形状計算では、原料落下後、プロフィール計により求め
た各原料の半径方向における原料堆積層表面プロフィー
ル計測値(原料層の堆積角)に基づいて表面形状を決定
する。その際、鉱石の落下衝撃によってコークス斜面上
部での崩れと斜面下部への流れ込みが起こるので、高炉
火入れ時の炉内装入実験と充填調査時の測定に基づいた
コークス層崩れ時の一定の堆積角低下幅を用いて前記の
原料堆積層表面のプロフィール形状計測により得られた
堆積角を調整し、全体の表面形状を決定する。
In the above-mentioned calculation of the profile shape of the surface after the raw material is dropped, after the raw material is dropped, the surface shape is calculated based on the surface profile measurement value (deposition angle of the raw material layer) of the raw material deposited layer in the radial direction of each raw material obtained by the profile meter. To decide. At that time, the falling impact of the ore causes collapse at the upper part of the coke slope and inflow to the lower part of the slope. The deposition angle obtained by measuring the profile shape of the surface of the raw material deposition layer is adjusted using the reduction width to determine the overall surface shape.

【0022】上記の半径方向の粒径偏析計算では、粒
径分布の異なる各原料が斜面上に堆積する際の粒度偏析
を計算し、堆積した各原料の半径方向における層構造、
すなわち、鉱石/コークス比(以下、「O/C」と記
す)、粒径および空隙率の分布状態を算出する。
In the above-described radial grain size segregation calculation, the grain size segregation when each raw material having a different grain size distribution is deposited on the slope is calculated, and the layer structure in the radial direction of each deposited raw material is calculated.
That is, the distribution state of the ore / coke ratio (hereinafter referred to as “O / C”), the particle size and the porosity is calculated.

【0023】また、上記の原料層(堆積層)構造に基
づいたガス流れ分布計算では、送風条件により与えられ
る上昇ガス量を、上記ので得られた層構造分布に応じ
て分配し、ガス流れ分布を算出する。
Further, in the gas flow distribution calculation based on the above-mentioned raw material layer (deposited layer) structure, the rising gas amount given by the blowing condition is distributed according to the layer structure distribution obtained in the above, and the gas flow distribution is obtained. To calculate.

【0024】さらに、炉内の直接還元率を仮定すること
により、上記で得られた炉内半径方向におけるO/C
とで求めたガス流れ分布に基づいて、炉内半径方向に
おけるガス組成分布を算出することができる。
Further, by assuming the direct reduction rate in the furnace, the O / C in the radial direction in the furnace obtained above is obtained.
The gas composition distribution in the radial direction in the furnace can be calculated based on the gas flow distribution obtained by

【0025】このようにして算出された炉内半径方向に
おけるガス組成分布と、炉頂部の半径方向に取り付けら
れたガスサンプラーにより採取したガスを分析して求め
た実績のガス組成分布との差は、炉頂からプロフィール
計により求めた原料堆積層表面のプロフィール形状計測
値からは検知できない炉内の中間部におけるコークス層
の崩れや流れ込み、中心部および周辺部における原料堆
積層表面のプロフィール形状変化の度合いを意味する。
The difference between the gas composition distribution in the in-furnace radial direction calculated in this way and the actual gas composition distribution obtained by analyzing the gas sampled by the gas sampler installed in the radial direction of the furnace top is , Coke layer collapse and inflow in the middle part of the furnace that cannot be detected from the profile shape measurement value of the raw material deposit layer surface obtained from the furnace top, and profile profile change of the raw material deposit layer surface in the central and peripheral parts Means degree.

【0026】したがって、鉱石の装入の直前に装入され
たコークス層の崩れや流れ込みに起因する炉内の中間部
のコークスの堆積角を修正しながら、さらには、炉内の
中心部におけるコークスの堆積角および炉内周辺部にお
ける鉱石の堆積角を修正しながら、つまり、炉内の中間
部、中心部および周辺部のそれぞれの領域における堆積
角に種々の値を与えて、炉内半径方向におけるガス組成
分布の算出を繰り返し、実測のガス組成分布との差が最
小になるようにすれば、そのときの炉内各領域における
堆積角で表される層構造は炉頂部における装入物の層構
造を高精度で表しているといえる。なお、前記の「ガス
組成分布の計算値と実測値との差が最小」とは、一致す
るのが最も望ましいが、必ずしも一致せず、そのときの
状況に応じて操業者により最小と判断される状態であれ
ばよい。
Therefore, while correcting the deposition angle of the coke in the middle part of the furnace due to the collapse or flow of the coke layer charged immediately before the charging of the ore, the coke in the center part of the furnace is further corrected. While correcting the deposition angle of the ore and the deposition angle of the ore in the furnace periphery, that is, by giving different values to the deposition angle in the middle, center and peripheral regions of the furnace If the difference between the measured gas composition distribution and the measured gas composition distribution is minimized, the layer structure represented by the deposition angle in each region in the furnace at that time is It can be said that the layer structure is represented with high accuracy. The above-mentioned "minimum difference between the calculated value of the gas composition distribution and the measured value" is most preferably the same, but it is not always the same, and the operator judges that the difference is the minimum depending on the situation at that time. If it is in a state of

【0027】図2は、上記の計算で用いる装入物分布予
測モデルの計算手順を示すフローチャートである。上記
(1)の発明の方法を実施する場合は、図中の一点鎖線
で囲んだ部分を除いて計算を行い、(2)の発明の方法
を実施する場合は一点鎖線で囲んだ部分を含めて計算を
行う。なお、以下の説明では、一点鎖線で囲んだ部分を
含めて、つまり、上記(2)の発明の方法について述
べ、その上で(1)の発明の方法について言及する。
FIG. 2 is a flow chart showing the calculation procedure of the charge distribution prediction model used in the above calculation. When carrying out the method of the invention of (1) above, the calculation is performed excluding the portion surrounded by the dashed line in the figure, and when carrying out the method of the invention of (2), the portion surrounded by the dashed line is included. Calculate. In the following description, the method surrounded by the one-dot chain line, that is, the method of the invention of (2) above will be described, and then the method of the invention of (1) will be referred to.

【0028】図2において、送風条件、原料装入条件、
上記の〜の計算に基づいて求めた炉頂排ガス組成、
およびプロフィール計により求めた原料(コークス、鉱
石)層の堆積角分布、シャフトゾンデによる実測のガス
組成分布と温度分布が計算条件としてモデルに入力され
る。
In FIG. 2, blowing conditions, raw material charging conditions,
The top exhaust gas composition obtained based on the above calculation of
And the deposition angle distribution of the raw material (coke, ore) layer obtained by the profile meter, the gas composition distribution and the temperature distribution measured by the shaft sonde are input to the model as calculation conditions.

【0029】図2における「チューニングパラメータ仮
定」とは、蓄積された過去の装入物分布モデルのモデル
パラメータの中から選ばれた現在の操業状態に近いと考
えられるモデルパラメータである。
The "tuning parameter assumption" in FIG. 2 is a model parameter which is considered to be close to the current operating state selected from the accumulated model parameters of the past charge distribution model.

【0030】このモデルパラメータに対して、上記の計
算条件の下で装入物分布シミュレーションを行い、前述
した〜の手順にしたがって、まず、炉内の中間部に
おけるガス組成分布が算出される。それにより得られた
ガス組成分布(計算値)と、中間部の実測ガス組成分布
が一致するか否かの判断がなされ、その結果、中間部の
ガス組成分布の計算値と実測値が一致しなければ、中間
部におけるコークスの堆積角の変化量を修正しつつ繰り
返し計算を行う。なお、「一致する」と判断する際の基
準は、前述したように、一致した状態であるのが最も望
ましいが、そのときの状況に応じて操業者により最小と
判断される状態であればよい。
With respect to this model parameter, a charge distribution simulation is performed under the above-mentioned calculation conditions, and first, the gas composition distribution in the middle portion of the furnace is calculated according to the procedures (1) to (3) described above. It is judged whether the obtained gas composition distribution (calculated value) and the measured gas composition distribution in the middle portion match, and as a result, the calculated gas composition distribution in the middle portion and the measured value match. If not, the calculation is repeated while correcting the amount of change in the coke deposition angle in the middle part. As described above, the criterion for determining “match” is most preferably the matched state, but it may be the one determined to be the minimum by the operator according to the situation at that time. .

【0031】中間部の実測ガス組成分布と計算値が一致
すれば、再び装入物分布シミュレーションを行い、前記
の中心部のガス組成の実測値と計算値が一致するか否か
を判断する。一致しなければ、中心部におけるコークス
の堆積角を修正しつつ繰り返し計算を行う。
If the measured gas composition distribution in the middle portion agrees with the calculated value, the charge distribution simulation is performed again, and it is judged whether or not the measured value and calculated value of the gas composition in the central portion match. If they do not match, the calculation is repeated while correcting the deposition angle of coke in the center.

【0032】中心部の実測ガス組成分布と計算値が一致
すれば、さらに装入物分布シミュレーションを行って周
辺部のガス組成の実測値と計算値が一致するか否かを判
断する。一致しない場合は、周辺部における鉱石の堆積
角を修正しつつ繰り返し計算を行う。
If the measured gas composition distribution in the central portion matches the calculated value, a charge distribution simulation is further performed to determine whether the measured gas composition in the peripheral portion matches the calculated value. If they do not match, repeat the calculation while correcting the ore deposition angle in the peripheral area.

【0033】以上の手順で、炉内半径方向におけるガス
組成分布の計算値と実測値とが一致するまで繰り返し計
算を行い、一致すれば、その結果、すなわち中間部にお
けるコークスの堆積角、中心部におけるコークスの堆積
角および周辺部における鉱石の堆積角が出力される。な
お、上記のシミュレーションにより得られた装入物分布
モデルのモデルパラメータは、パラメータファイルに入
力され、更新、保管されて、次回のモデルパラメータ選
択の対象に加えられる。
By the above procedure, the calculation is repeated until the calculated value of the gas composition distribution in the furnace radial direction and the measured value match, and if they match, the result, that is, the coke deposition angle in the middle part, the central part The deposition angle of coke in and the deposition angle of ore in the peripheral area are output. The model parameters of the charge distribution model obtained by the above simulation are input to the parameter file, updated and stored, and added to the next model parameter selection target.

【0034】上記の装入物分布シミュレーションを、ま
ず、炉内中間部について行い、次いで、中心部、周辺部
の順に行うのは、装入物分布の制御性に対して、中間部
で生じる、鉱石の装入の直前に装入されたコークス層の
崩れや流れ込みに起因するコークスの堆積角の変動の影
響が最も大きいからである。すなわち、影響力の大きい
順にシミュレーションを行って、炉頂装入物の層構造を
制御するのである。
The above-mentioned charge distribution simulation is first carried out in the middle part of the furnace, and then in the central part and in the peripheral part, in order to control the charge distribution. This is because the influence of the fluctuation of the coke deposition angle caused by the collapse or inflow of the coke layer charged immediately before the charging of the ore is the largest. That is, the simulation is performed in order of increasing influence to control the layer structure of the furnace top charge.

【0035】したがって、装入物分布シミュレーション
を炉内の中間部についてだけ行ってもよく、これによっ
て、予測の精度は若干低下するものの、炉内装入物の層
構造の迅速な予測が可能となる。このようなシミュレー
ションの方法を採るのが、上記(1)の発明の方法であ
る。すなわち、図2において、一点鎖線で囲んだ部分を
除いて計算を行い、中間部におけるコークスの堆積角の
みを修正して装入物の層構造(分布状態)を予測するの
である。
Therefore, the charge distribution simulation may be carried out only in the middle part of the furnace, and although the prediction accuracy is slightly lowered, the layer structure of the furnace interior charge can be quickly predicted. . The method of the invention (1) above adopts such a simulation method. That is, in FIG. 2, the calculation is performed excluding the portion surrounded by the alternate long and short dash line, and only the deposition angle of the coke in the middle portion is corrected to predict the layer structure (distribution state) of the charge.

【0036】上記の装入物分布予測モデルによる計算の
結果、原料装入後の炉頂部における装入物の層構造(分
布状態)を精度よく予測することができ、それに基づい
て前記の計算を行って炉内半径方向におけるガス流れ
分布を算出することができる。そして、このガス流れ分
布と予め設定した目標ガス流れ分布との差に基づいてガ
ス流れ分布を適正に制御することが可能となり、操業の
安定化を図ることができる。なお、予め設定した目標ガ
ス流れ分布とは、操業の目標に応じて定めたガス流れ分
布であり、ガス流れ分布の制御は、ベル式高炉の場合は
ムーバブル・アーマーノッチや大ベルストロークを用
い、また、ベルレス式高炉の場合は旋回シュートの旋回
数とシュート角度を用いて行う。
As a result of the calculation by the above-mentioned charge distribution prediction model, it is possible to accurately predict the layer structure (distribution state) of the charge at the top of the furnace after charging the raw materials, and based on that, the above calculation is performed. It is possible to calculate the gas flow distribution in the radial direction of the furnace. Then, the gas flow distribution can be appropriately controlled based on the difference between this gas flow distribution and the preset target gas flow distribution, and the operation can be stabilized. Note that the preset target gas flow distribution is a gas flow distribution determined according to the operation target, and the gas flow distribution is controlled by using a movable armor notch or a large bell stroke in the case of a bell-type blast furnace, In the case of a bellless blast furnace, the number of turns of the swivel chute and the chute angle are used.

【0037】以下、実施例により本発明の効果を具体的
に説明する。
The effects of the present invention will be specifically described below with reference to examples.

【0038】[0038]

【実施例】炉内容積2700m3 の高炉による実施例を
以下に示す。
EXAMPLE An example of a blast furnace having an inner volume of 2700 m 3 is shown below.

【0039】表1の従来例は、微粉炭吹き込み量が15
0kg/銑鉄tレベルの通常操業で、装入物の分布を制
御することにより目標通りのガス流れ分布が得られてい
る場合である。
In the conventional example of Table 1, the amount of pulverized coal blown is 15
This is the case where the target gas flow distribution is obtained by controlling the distribution of the charge in the normal operation of 0 kg / pig t level.

【0040】比較例は、微粉炭吹き込み量を180kg
/銑鉄tに増加させた場合で、このときの装入O/Cの
変更操作に関しては、通気性を確保するべく融着帯部分
のコークス層厚を維持するために、1回あたりのコーク
ス装入量(コークスベース)は一定とし、装入鉱石量を
増加させた。しかし、炉壁下部のステーブ温度の低下お
よび静圧の低下が検知され、炉周辺部の局所的な荷下が
りの不安定(スリップ)が発生した。この操業状態の悪
化は、従来の装入物分布予測により、周辺ガス流れの不
足によるものと判断されたため、周辺部ガス流れを強化
することで操業状態の改善を図った。しかしながら、炉
下部温度と静圧は、さらに低下し、荷下がりの不安定度
合いは、ますます増大した。
In the comparative example, the amount of pulverized coal blown was 180 kg.
/ In the case of increasing the pig iron t, when changing the charging O / C at this time, in order to maintain the air permeability, in order to maintain the coke layer thickness of the cohesive zone part The input amount (coke base) was kept constant and the amount of ore charged was increased. However, a decrease in stave temperature and a decrease in static pressure in the lower part of the furnace wall were detected, and instability (slip) of local unloading in the peripheral part of the furnace occurred. This deterioration of the operating condition was determined by the conventional charge distribution prediction to be due to the shortage of the surrounding gas flow. Therefore, the operating condition was improved by strengthening the peripheral gas flow. However, the temperature and static pressure in the lower part of the furnace decreased further, and the instability of unloading increased further.

【0041】そこで、実施例において、本発明の装入物
分布制御方法を適用した。すなわち、第一に、炉内半径
方向のガス組成分布の計算値と実測値との差が最小にな
るように中間部のコークスの堆積角を変更し、次ぎに、
同じく計算値と実測値との差が最小になるように中心部
のコークスの堆積角を変更し、続いて周辺部の鉱石の堆
積角を変更して、それぞれの最適値を求めるために繰り
返し計算を行なった。その結果得られた炉頂部における
装入物の層構造に基づいて、再度、周辺部を強化した目
標ガス流れを得るための装入物分布制御を行った。
Therefore, the charging distribution control method of the present invention was applied to the examples. That is, firstly, the deposition angle of the coke in the middle part was changed so that the difference between the calculated value and the measured value of the gas composition distribution in the furnace radial direction was minimized, and then,
Similarly, the coke deposition angle in the center is changed so that the difference between the calculated value and the measured value is minimized, and then the deposition angle of the ore in the peripheral part is changed, and repeated calculation is performed to obtain the optimum value for each. Was done. Based on the resulting layered structure of the charge at the top of the furnace, the charge distribution control was performed again to obtain the target gas flow with the strengthened peripheral part.

【0042】その結果、炉下部のステーブ温度は上昇
し、荷下がりは安定し、周辺ガス流れの増加が検知で
き、操業状態は好転した。
As a result, the stave temperature in the lower part of the furnace increased, the unloading became stable, the increase in the peripheral gas flow was detected, and the operating condition improved.

【0043】比較例で操業状態を改善できなかったの
は、微粉炭吹き込み量を30kg/銑鉄t増加させたこ
とにより鉱石装入量が増加したため、コークス層の崩れ
が当初の予測より大きく、中心ガス流れが高めに出てい
たため、周辺部のO/Cが予想以上に高く、周辺ガス流
れが低めであったことによるものである。したがって、
周辺ガス流れを強化するために行った操作幅では、十分
な周辺ガス流れが得られず、むしろ、コークス層崩れ量
の増加により、結果的には周辺ガス流れを抑制した形と
なっていたため、炉下部ステーブ温度の低下が回避でき
ず、操業状態を好転させ得なかったと考えられる。
In the comparative example, the operation state could not be improved because the amount of ore charged increased due to the increase of the pulverized coal injection amount of 30 kg / pig iron t. This is because the O / C in the peripheral portion was higher than expected and the peripheral gas flow was low because the gas flow was high. Therefore,
With the operation width performed to strengthen the peripheral gas flow, a sufficient peripheral gas flow was not obtained, but rather, the amount of collapse of the coke layer increased, resulting in a shape that suppressed the peripheral gas flow. It is probable that the lower furnace stave temperature could not be avoided and the operating conditions could not be improved.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【発明の効果】本発明の高炉炉頂装入物の分布制御方法
を適用することにより、高炉のガス流れ分布を適正に制
御して、高PC操業下においても安定な高炉操業を行う
ことができる。
By applying the method for controlling the distribution of blast furnace top charge according to the present invention, the gas flow distribution of the blast furnace is properly controlled, and stable blast furnace operation can be performed even under high PC operation. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法で用いる装入物分布予測モデルの機
能を説明するための図である。
FIG. 1 is a diagram for explaining a function of a charge distribution prediction model used in the method of the present invention.

【図2】本発明方法で用いる装入物分布予測モデルの計
算手順を示すフローチャートである。
FIG. 2 is a flowchart showing a calculation procedure of a charge distribution prediction model used in the method of the present invention.

【符号の説明】[Explanation of symbols]

1:大ベル 2:原料 3:アーマー 4:鉄原料(鉱石) 5:コークス 6:原料落下幅 7:コークス層崩れ 8:中心部コークス堆積角 1: Large bell 2: Raw material 3: Armor 4: Iron raw material (ore) 5: Coke 6: Raw material falling width 7: Coke layer collapse 8: Center coke deposition angle

フロントページの続き (56)参考文献 特開 平9−111321(JP,A) 特開 平8−60212(JP,A) 特開 平11−106807(JP,A) 特開 平4−350108(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21B 5/00 311 Continuation of the front page (56) Reference JP-A-9-111321 (JP, A) JP-A-8-60212 (JP, A) JP-A-11-106807 (JP, A) JP-A-4-350108 (JP , A) (58) Fields investigated (Int.Cl. 7 , DB name) C21B 5/00 311

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】鉱石とコークスを層状に装入する高炉操業
において、原料装入条件、送風条件および原料堆積層表
面のプロフィール形状計測値から炉頂部の半径方向の原
料表面形状、鉱石/コークス比および粒径分布からなる
原料堆積層の構造およびガス流れ分布を算出するに際
し、前記炉頂部の原料堆積層の構造およびガス流れ分布
に基づいて算出された炉内半径方向のガス組成分布と炉
上部で測定された炉内半径方向のガス組成分布との差が
最小になるように、炉内中間部における鉱石の装入の直
前に装入されたコークスの堆積角を修正しつつ算出し、
得られたガス流れ分布と予め設定した目標ガス流れ分布
との差に基づいて、ムーバブル・アーマーノッチ、大ベ
ルストローク、旋回シュートの旋回数およびシュート角
度の少なくとも1つ以上を調整することにより、炉内装
入物分布を制御することを特徴とする高炉炉頂装入物の
分布制御方法。
1. In a blast furnace operation in which ores and coke are charged in layers, raw material charging conditions, air blowing conditions, and profile profile measurements on the surface of the raw material deposition layer are used to measure the radial direction of the furnace top.
Material surface shape, ore / coke ratio, and particle size distribution <br /> In calculating the structure and gas flow distribution of the raw material deposit layer, it was calculated based on the structure and gas flow distribution of the raw material deposit layer at the top of the furnace. In order to minimize the difference between the radial gas composition distribution in the furnace and the radial gas composition distribution measured in the upper part of the furnace, it was charged just before the charging of the ore in the middle part of the furnace. Calculated while correcting the deposition angle of coke,
Based on the difference between the obtained gas flow distribution and the preset target gas flow distribution , the movable armor notch
Stroke, number of turns of turning chute and shoot angle
A method for controlling the distribution of blast furnace top charge, which comprises controlling the furnace interior charge distribution by adjusting at least one of the degrees .
【請求項2】炉頂部の原料堆積層の構造およびガス流れ
分布を算出するに際して行う堆積角の修正を、さらに、
炉内中心部におけるコークスの堆積角について行い、続
いて炉内周辺部における鉱石の堆積角について行う請求
項1に記載の高炉炉頂装入物の分布制御方法。
2. The correction of the deposition angle performed when calculating the structure and gas flow distribution of the raw material deposition layer at the furnace top,
The method for controlling the distribution of blast furnace top charge according to claim 1, wherein the deposition angle of coke in the central portion of the furnace is performed, and then the deposition angle of ore in the peripheral portion of the furnace is performed.
JP17827498A 1998-06-25 1998-06-25 Distribution control method of blast furnace top charge Expired - Lifetime JP3514120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17827498A JP3514120B2 (en) 1998-06-25 1998-06-25 Distribution control method of blast furnace top charge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17827498A JP3514120B2 (en) 1998-06-25 1998-06-25 Distribution control method of blast furnace top charge

Publications (2)

Publication Number Publication Date
JP2000008105A JP2000008105A (en) 2000-01-11
JP3514120B2 true JP3514120B2 (en) 2004-03-31

Family

ID=16045616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17827498A Expired - Lifetime JP3514120B2 (en) 1998-06-25 1998-06-25 Distribution control method of blast furnace top charge

Country Status (1)

Country Link
JP (1) JP3514120B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101388019B1 (en) 2013-01-31 2014-04-22 현대제철 주식회사 Charging method of charging material in blast furnace
JP6248550B2 (en) * 2013-11-01 2017-12-20 新日鐵住金株式会社 How to determine blast furnace operating conditions
JP6311659B2 (en) * 2015-06-22 2018-04-18 Jfeスチール株式会社 Method for estimating layer thickness distribution in blast furnace, method for operating blast furnace, and apparatus for estimating layer thickness distribution in blast furnace

Also Published As

Publication number Publication date
JP2000008105A (en) 2000-01-11

Similar Documents

Publication Publication Date Title
WO2019189025A1 (en) Blast furnace facility and operation method for blast furnace
RU2753937C1 (en) Device for blast furnace and method for performing operation for blast furnace
JP3514120B2 (en) Distribution control method of blast furnace top charge
Pandey et al. Blast furnace performance as influenced by burden distribution
US4400206A (en) Process for estimating particle size segregation of burden layer in blast furnace top
JP6943339B2 (en) Raw material charging method and blast furnace operation method for bellless blast furnace
JP7151228B2 (en) Blast furnace operation method
JPH0860212A (en) Method for supporting distribution control of charged material in bell-less blast furnace
JP6601511B2 (en) Blast furnace operation method
JP4182660B2 (en) Blast furnace operation method
JP7436831B2 (en) Blast furnace operating method, pulverized coal injection control device, pulverized coal injection control program
JPH0913110A (en) Method for evaluating ventilation of charged material layer in vertical type furnace
JP5056563B2 (en) Blast furnace operation method
JPH01290709A (en) Operation of blast furnace
JPH08127822A (en) Operation of sintering
JP3794211B2 (en) Method for evaluating mud material at blast furnace outlet and opening method for outlet
EP4317462A1 (en) Pig iron production method
JP2020094283A (en) Operation method of blast furnace
JPH0953106A (en) Method for controlling distribution of charged material in blast furnace
JP2904599B2 (en) Blast furnace charging method
JPH07113108A (en) Operation of blast furnace
JP2001049312A (en) Method for charging raw material in bell-less blast furnace
JP2003096511A (en) Method for operating blast furnace
JP4211617B2 (en) Berles blast furnace ore charging method
JPH0694367A (en) Estimating method for depositing shape of material to be chaged in vertical furnace

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 10

EXPY Cancellation because of completion of term