JP2006265647A - Method for determining distribution state of charged material in blast furnace - Google Patents

Method for determining distribution state of charged material in blast furnace Download PDF

Info

Publication number
JP2006265647A
JP2006265647A JP2005086404A JP2005086404A JP2006265647A JP 2006265647 A JP2006265647 A JP 2006265647A JP 2005086404 A JP2005086404 A JP 2005086404A JP 2005086404 A JP2005086404 A JP 2005086404A JP 2006265647 A JP2006265647 A JP 2006265647A
Authority
JP
Japan
Prior art keywords
blast furnace
furnace
distribution state
gas temperature
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005086404A
Other languages
Japanese (ja)
Inventor
Takushi Kawamura
拓史 川村
Tadashi Hayashi
匡 林
Masayuki Ohashi
正幸 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005086404A priority Critical patent/JP2006265647A/en
Publication of JP2006265647A publication Critical patent/JP2006265647A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for determining the distribution state of charged materials in a blast furnace by which the flowing-in behavior of the charged material charged into the blast furnace can surely be obtained to stabilize a furnace operation. <P>SOLUTION: After charging the charging materials of coke or ore into the blast furnace 10, gas temperatures at the furnace top of the blast furnace are measured with a plurality of setting thermometers on the furnace diameter direction at the furnace top of the blast furnace, and the flowing-in distributing state of the charged materials in the furnace diameter direction of the blast furnace 10 is judged by comparing the measured gas temperature pattern and the preset gas temperature pattern, in the furnace diameter direction at the furnace top of the blast furnace. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高炉内に装入された装入物(コークス又は鉱石)の流れ込み分布状態を判定する方法に関する。 The present invention relates to a method for determining a flow distribution state of a charge (coke or ore) charged in a blast furnace.

高炉操業においては、鉄源である鉱石類とコークスを高炉炉頂から装入し、下方より上昇する高温還元ガスによって鉱石類の昇温還元を行うことで、高炉炉内に融着帯が形成される。融着帯は高炉操業上重要な指針となるため、この融着帯の形状及び形成位置が適正になるように、高炉炉頂から装入する鉱石類とコークスの装入物の装入分布の調整を行っている。
その調整方法として、高炉上部に設けた例えば、ムーバブルアーマー又は回転シュートで構成される装入装置を操作して、鉱石類とコークスの装入位置を調整する方法があるが、装入装置の操作時においては、予め装入された装入物の分布状態を把握する必要がある。
例えば、特許文献1には、炉上部の炉壁に設けた複数の温度計から温度データを集め、各バッチにおける温度の最高点及び最低点を用い、その差から炉内装入物の流れ込み挙動を検出し、この検出値に基づいて装入装置を制御する方法が開示されている。
In blast furnace operation, ore and coke, which are iron sources, are charged from the top of the blast furnace, and the ore is heated and reduced by the high-temperature reducing gas rising from below, thereby forming a cohesive zone in the blast furnace. Is done. Since the cohesive zone is an important guideline for blast furnace operation, the distribution of the ore and coke charge charged from the top of the blast furnace is adjusted so that the shape and position of the cohesive zone are appropriate. Adjustments are being made.
As an adjustment method, there is a method of adjusting the charging position of ore and coke by operating a charging device composed of, for example, a movable armor or a rotating chute provided in the upper part of the blast furnace. In some cases, it is necessary to grasp the distribution state of the charge charged in advance.
For example, Patent Document 1 collects temperature data from a plurality of thermometers provided on the furnace wall at the top of the furnace, uses the highest and lowest points of the temperature in each batch, and the flow behavior of the furnace interior contents from the difference. A method for detecting and controlling the charging device based on the detected value is disclosed.

特開平8−35003号公報Japanese Patent Laid-Open No. 8-35003

しかしながら、前記従来の方法には、未だ解決すべき以下のような問題があった。
各バッチにおける温度の最高点及び最低点を用いて、装入物の流れ込み挙動を把握しているが、装入物の炉径方向に渡る具体的な流れ込み挙動を明確に得ることができない問題があった。
また、炉上部の前記温度データは、炉径方向の平均的な温度であり、炉径方向の中央付近の流れ込みを代表して検出するのみで、炉径方向に渡る流れ込み挙動を明確に得ることができない問題もあった。
このため、高炉操業を安定に行うことができなかった。
However, the conventional method still has the following problems to be solved.
Although the highest and lowest temperature points in each batch are used to grasp the flow behavior of the charge, there is a problem that the specific flow behavior of the charge in the furnace radial direction cannot be clearly obtained. there were.
In addition, the temperature data of the upper part of the furnace is an average temperature in the furnace radial direction, and the flow behavior across the furnace radial direction can be clearly obtained only by detecting the flow around the center in the furnace radial direction. There was also a problem that could not be done.
For this reason, blast furnace operation could not be performed stably.

本発明はかかる事情に鑑みてなされたもので、高炉へ装入した装入物の流れ込み挙動を的確に得ることができ、高炉操業を安定に行うことができる高炉の装入物分布状態の判定方法を提供することを目的とする。 The present invention has been made in view of such circumstances, can accurately obtain the flow behavior of the charge charged to the blast furnace, and can determine the charge distribution state of the blast furnace that can stably perform the blast furnace operation. It aims to provide a method.

前記目的に沿う本発明に係る高炉の装入物分布状態の判定方法は、コークス又は鉱石の装入物を高炉内に装入した後、該高炉炉頂のガス温度を、該高炉炉頂の炉径方向に複数設置された温度計によって測定し、この測定した前記高炉炉頂の炉径方向におけるガス温度パターンと、予め設定したガス温度パターンとを比較して、前記高炉の炉径方向における前記装入物の流れ込み分布状態を判定する。
ここで、予め設定したガス温度パターンとは、安定操業時に装入物を高炉に装入してから、装入物が炉内に流れ込むまでの間に測定されるガス温度の最小値に基づいて形成される温度の回帰曲線を意味する。
The method for determining the charge distribution state of the blast furnace according to the present invention in accordance with the above object is to charge the gas temperature at the top of the blast furnace after charging the coke or ore charge into the blast furnace. Measured by a plurality of thermometers installed in the furnace radial direction, and compares the measured gas temperature pattern in the furnace radial direction at the top of the blast furnace furnace with a preset gas temperature pattern in the furnace radial direction of the blast furnace. The flow distribution state of the charge is determined.
Here, the preset gas temperature pattern is based on the minimum value of the gas temperature measured from when the charge is charged into the blast furnace during stable operation until the charge flows into the furnace. It means the regression curve of the temperature formed.

請求項1記載の高炉の装入物分布状態の判定方法は、高炉炉頂の炉径方向に複数設置された温度計によって高炉炉頂のガス温度を測定し、このガス温度パターンを予め設定したガス温度パターンと比較して、高炉の炉径方向における装入物の流れ込み分布状態を判定するので、高炉へ装入した装入物の炉径方向への流れ込み挙動を的確に得ることができ、高炉操業を安定に行うことができる。 According to the method for determining the charge distribution state of the blast furnace according to claim 1, the gas temperature at the top of the blast furnace is measured by a plurality of thermometers installed in the diameter direction of the top of the blast furnace, and the gas temperature pattern is set in advance. Compared with the gas temperature pattern, the flow distribution state of the charge in the blast furnace radial direction is judged, so the flow behavior in the furnace radial direction of the charge charged to the blast furnace can be accurately obtained, Blast furnace operation can be performed stably.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1(A)は本発明の一実施の形態に係る高炉の装入物分布状態の判定方法を適用する高炉炉頂の縦断面図、(B)〜(E)はそれぞれ高炉炉頂でのガス温度パターンを示す説明図、図2は本発明の一実施の形態に係る高炉の装入物分布状態の判定方法を適用した場合のCO還元効率の推移を示す説明図、図3は同判定方法を適用する高炉炉頂部の説明図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 (A) is a longitudinal sectional view of the top of the blast furnace to which the method of determining the charge distribution state of the blast furnace according to one embodiment of the present invention, and FIGS. FIG. 2 is an explanatory view showing a gas temperature pattern at the top, FIG. 2 is an explanatory view showing a transition of CO reduction efficiency when the method for determining a charge distribution state of a blast furnace according to an embodiment of the present invention is applied, and FIG. These are explanatory drawings of the top of the blast furnace to which the determination method is applied.

図1(A)、図3に示すように、本発明の一実施の形態に係る高炉の装入物分布状態の判定方法は、高炉10内に装入されたコークス又は鉱石の装入物の流れ込み分布状態を判定して、高炉操業を安定に行うための方法である。
まず、本発明の一実施の形態に係る高炉の装入物分布状態の判定方法を適用する高炉10について説明した後、判定方法について説明する。
As shown in FIG. 1 (A) and FIG. 3, the method for determining the charge distribution state of the blast furnace according to one embodiment of the present invention is the same as that of the coke or ore charge charged in the blast furnace 10. This is a method for determining the inflow distribution state and stably performing the blast furnace operation.
First, after describing the blast furnace 10 to which the method for determining a charge distribution state of a blast furnace according to an embodiment of the present invention is applied, the determination method will be described.

高炉炉頂には、装入物を炉内11に装入するための大ベル12が設けられている。また、大ベル12下方の炉壁13には、装入物の装入装置である複数(ここでは24台)のムーバブルアーマー(以下、単にMAともいう)14が、円周方向に沿って略等間隔に設置されている。このMA14は、軸部15を軸心とし、ガイド板16を炉壁13側又は大ベル12側へ傾動させる構成となったものであり、この傾斜角度α(例えば、60度以上90度以下程度)を調整することで、大ベル12に沿って落下してきた装入物を、目的とする分布状態に流れ込ませることができる。 At the top of the blast furnace furnace, a large bell 12 for charging the charge into the furnace 11 is provided. In addition, on the furnace wall 13 below the large bell 12, a plurality of (herein, 24) movable armor (hereinafter also simply referred to as MA) 14 which are charging devices for charging materials are substantially provided along the circumferential direction. It is installed at equal intervals. The MA 14 has a configuration in which the shaft portion 15 is an axis and the guide plate 16 is tilted toward the furnace wall 13 or the large bell 12 side. The tilt angle α (for example, about 60 degrees or more and 90 degrees or less). ) Can be adjusted to cause the charge that has fallen along the large bell 12 to flow into the intended distribution state.

ここで、MA14の調整にあたっては、装入物の装入毎に、1ノッチ(例えば、1ノッチが0.5度以上2度以下)ずつ、ガイド板16を炉壁13側又は大ベル12側へ傾動させて行うことが好ましいが、2以上のノッチ数で傾動させることも可能である。このとき、MA14のガイド板16上面17が傾動していない状態、即ち垂直な状態を0ノッチとする。なお、MA14のノッチ数が大きいほど、ガイド板16の傾斜角度αが大きいことを意味する。 Here, when adjusting the MA 14, the guide plate 16 is moved to the furnace wall 13 side or the large bell 12 side by one notch (for example, one notch is not less than 0.5 degrees and not more than 2 degrees) for each charge. However, it is also possible to incline with the number of notches of 2 or more. At this time, a state where the upper surface 17 of the guide plate 16 of the MA 14 is not tilted, that is, a vertical state is defined as 0 notch. In addition, it means that the inclination | tilt angle (alpha) of the guide plate 16 is so large that the number of notches of MA14 is large.

また、図1(A)に示すように、炉内11のMA14の下方には、複数(ここでは、例えば2本)の水冷式のゾンデ18が、炉壁13から炉内11中心部へ向けて放射状に装入されている。この各ゾンデ18は、内部に複数の温度計型熱電対(以下、単に熱電対ともいう)が設けられている。各熱電対先端19は、各ゾンデ18の下部から突出状態で、しかも長手方向に渡って略等間隔に設置されている。
ここで、熱電対先端19は、装入物を炉内11に最大限装入した場合でも埋没しない位置であって、可能な限り下方であることが好ましく、例えば、装入物との最短距離が50mm以上500mm以下程度となる位置に固定されている。
Further, as shown in FIG. 1A, below the MA 14 in the furnace 11, a plurality (for example, two in this case) of water-cooled sondes 18 are directed from the furnace wall 13 toward the center of the furnace 11. It is charged radially. Each of the sondes 18 is provided with a plurality of thermometer-type thermocouples (hereinafter also simply referred to as thermocouples). Each thermocouple tip 19 protrudes from the bottom of each sonde 18 and is installed at substantially equal intervals in the longitudinal direction.
Here, the thermocouple tip 19 is a position where the charge is not buried even when the charge is charged to the furnace 11 as much as possible, and is preferably as low as possible, for example, the shortest distance from the charge. Is fixed at a position where it is about 50 mm or more and 500 mm or less.

続いて、本発明の一実施の形態に係る高炉の装入物分布状態の判定方法について説明する。
図1(A)に示すように、高炉10への装入物の装入は、1バッチのコークス及び鉱石を各々2分割し、C1(1層目のコークス)、C2(2層目のコークス)、O1(1層目の鉱石)、及びO2(2層目の鉱石)の順で行い、これを1チャージとして、複数チャージ連続的又は断続的に行う。
これにより、炉内11に、コークスと鉱石の層が交互に形成される。
Then, the determination method of the charge distribution state of the blast furnace which concerns on one embodiment of this invention is demonstrated.
As shown in FIG. 1 (A), charging of the charge into the blast furnace 10 is performed by dividing one batch of coke and ore into two parts, C1 (first layer coke) and C2 (second layer coke). ), O1 (first layer ore), and O2 (second layer ore) in this order, and this is performed as one charge, and multiple charges are performed continuously or intermittently.
As a result, coke and ore layers are alternately formed in the furnace 11.

ここで、ゾンデ18で測定するガス温度について説明する。
ガス温度を測定する熱電対は、炉内11中心部に1個と、これを中心として炉径方向に5個ずつ、即ち高炉10の直径方向に合計11個設けられている。また、図1(B)はO1、及び図1(C)はO2のガス温度パターンをそれぞれ示している。
図1(B)及び(C)中の温度パターンbはそれぞれ、MA14を4ノッチに調整して1層目の鉱石(O1)を装入した後のガス温度パターン、及び、更にMA14を12ノッチに調整して2層目の鉱石(O2)を装入した後のガス温度パターンである。
これは、炉内への流れ込み状況に大きな変化があり、操業への影響も大きな鉱石について、ガス温度の検討を行うものである。
Here, the gas temperature measured by the sonde 18 will be described.
One thermocouple for measuring the gas temperature is provided in the center of the furnace 11 and five in the furnace radial direction around the center, that is, a total of 11 thermocouples in the diameter direction of the blast furnace 10. FIG. 1B shows a gas temperature pattern of O1, and FIG. 1C shows a gas temperature pattern of O2.
The temperature pattern b in FIGS. 1B and 1C is the gas temperature pattern after the MA14 is adjusted to 4 notches and the first layer ore (O1) is charged, and further, the MA14 is 12 notches. It is a gas temperature pattern after charging to 2nd layer ore (O2).
This is to examine the gas temperature for ores that have a large change in the flow into the furnace and have a large impact on operations.

なお、装入された鉱石の流れ込み分布状態が適切か否かの判断は、図1(B)、(C)において、予め設定したガス温度パターンa、即ち前述した安定操業時における1層目の鉱石(O1)が高炉10に装入された際に測定されたガス温度パターンと、今回1層目の鉱石(O1)及び2層目の鉱石(O2)を高炉10に装入した際にそれぞれ測定したガス温度パターンbとを比較して行う。
ここで、ガス温度パターンa及びガス温度パターンbは、前記ゾンデ18で測定され、制御部(図示しない)へ送られた各ガス温度に基づき形成される温度の回帰曲線であってもよい。
It should be noted that whether or not the flow distribution state of the charged ore is appropriate is determined based on the gas temperature pattern a set in advance in FIGS. 1B and 1C, that is, the first layer during the stable operation described above. The gas temperature pattern measured when ore (O1) was charged into the blast furnace 10, and when the first layer ore (O1) and the second layer ore (O2) were charged into the blast furnace 10 respectively. The measurement is performed by comparing with the measured gas temperature pattern b.
Here, the gas temperature pattern a and the gas temperature pattern b may be regression curves of temperatures formed based on the gas temperatures measured by the sonde 18 and sent to a control unit (not shown).

図1(B)及び(C)に示すように、炉内11の中央部、即ち熱電対No.5〜No.7で測定された温度が、熱電対No.1〜No.4、及びNo.8〜No.11で測定された温度より高くなっていることが分かる。更に、熱電対No.5〜No.7で測定された温度は、1層目の鉱石(O1)を装入した後、2層目の鉱石(O2)を装入した場合に、熱電対No.5及びNo.6で測定された温度が上昇し、熱電対No.7で測定された温度が略同等となっている。 As shown in FIGS. 1 (B) and (C), the center of the furnace 11, that is, the thermocouple No. 5-No. The temperature measured in 7 is the thermocouple no. 1-No. 4 and no. 8-No. It can be seen that the temperature is higher than the temperature measured at 11. Furthermore, thermocouple No. 5-No. 7 was measured when the first layer of ore (O1) was charged and then the second layer of ore (O2) was charged. 5 and no. The temperature measured at 6 increased, and the thermocouple no. The temperatures measured in 7 are substantially the same.

通常、鉱石を装入した場合、ガス温度は低下するが、このようにガス温度が上昇しているということは、2層目の鉱石(O2)の流れ込み分布状態が不適切、即ちMA14のガイド板16の傾斜角度αが適切でなかったことを意味する。
このように、高炉10の炉径方向における鉱石の流れ込み分布状態を判定できる。
このとき、高炉10内で還元反応が有効に進行しているか否かを示す指標、即ちCO還元効率ηCOについて検討したところ、図2に示すように、ηCOは48%前後を推移し、高炉10内での還元反応が有効に進行していないことが分かった。
なお、CO還元効率ηCOは以下の式で表される。
ηCO=(CO2 )/(CO2 +CO)
Normally, when ore is charged, the gas temperature decreases. However, the fact that the gas temperature is increased in this way indicates that the flow distribution state of the second-layer ore (O2) is inappropriate, that is, the guide of MA14 This means that the inclination angle α of the plate 16 is not appropriate.
In this way, it is possible to determine the flow distribution state of the ore in the blast furnace 10 radial direction.
At this time, when an index indicating whether or not the reduction reaction is proceeding effectively in the blast furnace 10, that is, CO reduction efficiency η CO was examined, as shown in FIG. 2, η CO changed around 48%, It was found that the reduction reaction in the blast furnace 10 did not proceed effectively.
The CO reduction efficiency η CO is expressed by the following formula.
η CO = (CO 2 ) / (CO 2 + CO)

以上のことから、鉱石の流れ込み分布状態が不適であると判定される。従って、鉱石の流れ込み分布状態を変えるため、次のチャージから、2層目の鉱石(O2)装入時におけるMA14のガイド板16の傾斜角度αを変更する。この傾斜角度αの変更の一例として、2層目の鉱石(O2)を装入するに際し、MA14を13ノッチ(前回までは12ノッチ)に調整した。 From the above, it is determined that the inflow distribution state of the ore is inappropriate. Therefore, in order to change the flow distribution state of the ore, the inclination angle α of the guide plate 16 of the MA 14 when the second ore (O2) is charged is changed from the next charge. As an example of the change in the inclination angle α, MA14 was adjusted to 13 notches (12 notches until the previous time) when charging the second layer of ore (O2).

そして、前記したように、予め設定したガス温度パターンaと測定したガス温度パターンbとの比較及びCO還元効率ηCOの推移の経過をみる。
その結果、2層目の鉱石(O2)装入後の温度パターンbが、温度パターンaに順次近づいて、図1(D)に示すようになり、更に、図2に示すように、CO還元効率ηCOが徐々に向上し、高炉10内での還元反応を有効に進行できていると判断できる。このため、そのMA14のノッチ数を継続する。なお、温度パターンbが温度パターンaに順次近づかず、還元反応が有効に進行できてないと判断される場合には、再度MA14のノッチを増加(14ノッチ)して、上記した方法と同様の方法にて経過をみて、場合によっては、MA14のノッチ数を更に増加させてその後の経過をみる。
Then, as described above, see the course of the comparison and CO reduction efficiency eta CO transition between the gas temperature pattern b and the measured gas temperature pattern a previously set.
As a result, the temperature pattern b after charging the second layer of ore (O2) gradually approaches the temperature pattern a and becomes as shown in FIG. 1 (D). Further, as shown in FIG. efficiency eta CO is gradually improved, it can be determined that can progress effectively the reduction reaction in the blast furnace 10. For this reason, the number of notches of the MA 14 is continued. If the temperature pattern b does not approach the temperature pattern a sequentially and it is determined that the reduction reaction cannot proceed effectively, the MA 14 is increased again (14 notches), and the same method as described above is used. The method is followed, and in some cases, the number of notches of the MA 14 is further increased and the subsequent process is observed.

図1(E)に示すように、炉内12の中央部の熱電対No.5〜No.7で測定された温度が、予め設定したガス温度パターンaと比べて低い状態となった場合、前述の2層目の鉱石(O2)の流れ込み分布状態が不適切であると判断される。従って、鉱石の流れ込み分布状態を変えるため、次のチャージから2層目の鉱石(O2)装入時におけるMA14を、14ノッチから13ノッチに減少させて調整し、2層目の鉱石(O2)を装入した。
その結果、2層目の鉱石(O2)装入後の温度パターンbが温度パターンaに順次近づいて、炉況が安定した。
As shown in FIG. 1 (E), the thermocouple no. 5-No. When the temperature measured in 7 is lower than the preset gas temperature pattern a, it is determined that the inflow distribution state of the second-layer ore (O2) is inappropriate. Therefore, in order to change the flow distribution state of the ore, the MA14 at the time of charging the second layer ore (O2) from the next charge is adjusted to decrease from 14 notches to 13 notches to adjust the second layer ore (O2). Was loaded.
As a result, the temperature pattern b after charging the second layer of ore (O2) gradually approached the temperature pattern a, and the furnace condition was stabilized.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の高炉の装入物分布状態の判定方法を構成する場合も本発明の権利範囲に含まれる。
また、前記実施の形態においては、流れ込み状況に変化が発生し易い鉱石を高炉に装入するときに、ガス温度パターンに基づきMAのガイド板の傾斜角度を調整した場合について説明したが、コークスを装入する場合についても、ガス温度パターンに基づきMAのガイド板の傾斜角度を調整することが可能である。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, the right scope of the present invention also includes the case where the method for determining the charge distribution state of the blast furnace according to the present invention is configured by combining some or all of the above-described embodiments and modifications.
In the above embodiment, the case where the inclination angle of the MA guide plate is adjusted based on the gas temperature pattern when ores that are likely to change in the flow-in state are charged into the blast furnace has been described. In the case of charging, the inclination angle of the MA guide plate can be adjusted based on the gas temperature pattern.

(A)は本発明の一実施の形態に係る高炉の装入物分布状態の判定方法を適用する高炉炉頂の縦断面図、(B)〜(E)はそれぞれ高炉炉頂でのガス温度パターンを示す説明図である。(A) is a longitudinal cross-sectional view of the top of the blast furnace to which the method for determining a charge distribution state of the blast furnace according to an embodiment of the present invention is applied, and (B) to (E) are gas temperatures at the top of the blast furnace, respectively. It is explanatory drawing which shows a pattern. 本発明の一実施の形態に係る高炉の装入物分布状態の判定方法を適用した場合のCO還元効率の推移を示す説明図である。It is explanatory drawing which shows transition of CO reduction | restoration efficiency at the time of applying the determination method of the charge distribution state of the blast furnace which concerns on one embodiment of this invention. 同判定方法を適用する高炉炉頂部の説明図である。It is explanatory drawing of the blast furnace top part to which the same determination method is applied.

符号の説明Explanation of symbols

10:高炉、11:炉内、12:大ベル、13:炉壁、14:ムーバブルアーマー、15:軸部、16:ガイド板、17:上面、18:ゾンデ、19:熱電対先端 10: Blast furnace, 11: Inside the furnace, 12: Large bell, 13: Furnace wall, 14: Moveable armor, 15: Shaft, 16: Guide plate, 17: Top surface, 18: Sonde, 19: Thermocouple tip

Claims (1)

コークス又は鉱石の装入物を高炉内に装入した後、該高炉炉頂のガス温度を、該高炉炉頂の炉径方向に複数設置された温度計によって測定し、この測定した前記高炉炉頂の炉径方向におけるガス温度パターンと、予め設定したガス温度パターンとを比較して、前記高炉の炉径方向における前記装入物の流れ込み分布状態を判定することを特徴とする高炉の装入物分布状態の判定方法。 After charging the coke or ore charge into the blast furnace, the gas temperature at the top of the blast furnace is measured by a plurality of thermometers installed in the diameter direction of the top of the blast furnace, and the measured blast furnace A blast furnace charging characterized by determining a flow distribution state of the charge in the furnace radial direction of the blast furnace by comparing a gas temperature pattern in the top furnace radial direction with a preset gas temperature pattern Judgment method of object distribution state.
JP2005086404A 2005-03-24 2005-03-24 Method for determining distribution state of charged material in blast furnace Pending JP2006265647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005086404A JP2006265647A (en) 2005-03-24 2005-03-24 Method for determining distribution state of charged material in blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005086404A JP2006265647A (en) 2005-03-24 2005-03-24 Method for determining distribution state of charged material in blast furnace

Publications (1)

Publication Number Publication Date
JP2006265647A true JP2006265647A (en) 2006-10-05

Family

ID=37201911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005086404A Pending JP2006265647A (en) 2005-03-24 2005-03-24 Method for determining distribution state of charged material in blast furnace

Country Status (1)

Country Link
JP (1) JP2006265647A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018035398A (en) * 2016-08-31 2018-03-08 Jfeスチール株式会社 Blast furnace operation method
JP2020066759A (en) * 2018-10-22 2020-04-30 日本製鉄株式会社 Blast furnace operation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822313A (en) * 1981-08-03 1983-02-09 Kawasaki Steel Corp Detecting method for flowing in of material charged into furnace in blast furnace operation
JPS62235404A (en) * 1986-04-05 1987-10-15 Kobe Steel Ltd Detection of behavior of charge in vertical type furnace
JPH0987711A (en) * 1995-09-26 1997-03-31 Kawasaki Steel Corp Method for adjusting charging quantity of small sized sintered ore

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822313A (en) * 1981-08-03 1983-02-09 Kawasaki Steel Corp Detecting method for flowing in of material charged into furnace in blast furnace operation
JPS62235404A (en) * 1986-04-05 1987-10-15 Kobe Steel Ltd Detection of behavior of charge in vertical type furnace
JPH0987711A (en) * 1995-09-26 1997-03-31 Kawasaki Steel Corp Method for adjusting charging quantity of small sized sintered ore

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018035398A (en) * 2016-08-31 2018-03-08 Jfeスチール株式会社 Blast furnace operation method
JP2020066759A (en) * 2018-10-22 2020-04-30 日本製鉄株式会社 Blast furnace operation method
JP7119891B2 (en) 2018-10-22 2022-08-17 日本製鉄株式会社 Blast furnace operation method

Similar Documents

Publication Publication Date Title
JP6248550B2 (en) How to determine blast furnace operating conditions
JP4383313B2 (en) Method and apparatus for measuring surface shape of blast furnace interior
JP2019535995A (en) Measuring device and measuring method of hot water surface height
JP2006265647A (en) Method for determining distribution state of charged material in blast furnace
JP7338335B2 (en) temperature measuring instrument
JP4288230B2 (en) Blast furnace operation method
JP7151228B2 (en) Blast furnace operation method
JP5854200B2 (en) Blast furnace operation method
JP2009242906A (en) Method for operating blast furnace
JP6575467B2 (en) Blast furnace operation method
JP2005226105A (en) Method and instrument for measuring level of molten material in blast furnace
JP7107050B2 (en) Blast furnace operation method
KR100376518B1 (en) Charge control method having function for compensating level variation of charge in blast furnace
WO2022168557A1 (en) Detection method and detection device for liquid level height of liquid, detection method and detection device for liquid level height of molten material, and operation method for vertical furnace
JP2008223121A (en) Method for repairing furnace wall surface at upper part of blast furnace shaft
JP4181075B2 (en) Early detection method for blast furnace hearth temperature level
JP4276565B2 (en) Blast furnace lower cooling control method and system
JP2000008105A (en) Control of distribution of charged material from furnace top of blast furnace
JPH0841511A (en) Control of blast furnace and device therefor
KR100931166B1 (en) Ventilation control method in blast furnace
JPS61217516A (en) Detection of slag level in converter
JP2021038447A (en) Mineral concentrate distribution estimation method inside burner cone and operation method of flash-smelting furnace
JP2016085202A (en) Life prediction method for refractory
JP2969250B2 (en) Blast furnace operation method
JP4276564B2 (en) Blast furnace operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070904

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A02 Decision of refusal

Effective date: 20100622

Free format text: JAPANESE INTERMEDIATE CODE: A02