JP2006112966A - Method and apparatus for measuring surface shape of charged material in blast furnace - Google Patents

Method and apparatus for measuring surface shape of charged material in blast furnace Download PDF

Info

Publication number
JP2006112966A
JP2006112966A JP2004301883A JP2004301883A JP2006112966A JP 2006112966 A JP2006112966 A JP 2006112966A JP 2004301883 A JP2004301883 A JP 2004301883A JP 2004301883 A JP2004301883 A JP 2004301883A JP 2006112966 A JP2006112966 A JP 2006112966A
Authority
JP
Japan
Prior art keywords
furnace
dimensional plane
interior
plane
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004301883A
Other languages
Japanese (ja)
Other versions
JP4383313B2 (en
Inventor
Hiroki Takeshita
博喜 竹下
Takushi Kawamura
拓史 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004301883A priority Critical patent/JP4383313B2/en
Publication of JP2006112966A publication Critical patent/JP2006112966A/en
Application granted granted Critical
Publication of JP4383313B2 publication Critical patent/JP4383313B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Blast Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for measuring the surface shape of a charged material in a blast furnace, capable of accurately measuring the surface shape of the charged material as a whole for a short time, which has been charged into the blast furnace and is in a reposed state. <P>SOLUTION: A laser range finder 12 which can rotate or stop at an angle pitch of 0.2-2 degrees on a two-dimensional plane (horizontal plane) and scan a laser beam 11, in a range of 0-180 degrees on a two-dimensional plane (vertical plane) at each stop position, is disposed at a furnace wall 4 located below a charging device 3 at the blast furnace top section. After an elapse of 30-90 seconds, after charging the material to be charged in the furnace, the laser beam is scanned on the two-dimensional plane (vertical plane) at each stop position on the two-dimensional plane (horizontal plane), and the values of the distance from a deposition surface 13f of the charged material 13 in the furnace are measured at an angle pitch of 0.2-2 degrees; and then the three-dimensional shape of the surface of the charged material in the furnace is estimated (determined) from these measured results, the angles of these measurement points on the two-dimensional plane (vertical plane) and angles in relation to respective stop positions on the two-dimensional plane (horizontal plane). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、原料装入装置から高炉炉内に装入された鉄鉱石(焼結鉱)、コークス等の装入物の堆積表面形状を測定する高炉内装入物の表面形状測定方法および測定装置に関するものである。   The present invention relates to a method for measuring the surface shape of a blast furnace interior charge and a measuring device for measuring the deposited surface shape of a charge such as iron ore (sintered ore) and coke charged from a raw material charge apparatus into a blast furnace furnace. It is about.

高炉操業においては、概念的には、炉頂に備えた原料装入装置によって、炉内に鉄鉱石(鉄鉱石と焼結鉱)とコークスを交互に装入した鉱石層とコークス層に、羽口から熱風を吹き込んでコークスと反応させてCOガスを生成し、このCOガスで鉄鉱石を加熱して酸化鉄から鉄を還元させ、軟化融着帯を形成後に鉄の溶滴すなわち溶銑を、副生したスラグとともに炉芯部(コークス層)経由で炉底部に滴下させて溜め、適時出銑口から出銑し、スラグを分離して溶銑を製造するものである。
この高炉操業の場合、高炉内に装入された各種原料の反応挙動は直接に観察することが困難であることから、一般には、操業の進行に伴い降下する炉内装入物の表面形状の変化と、炉内に装入した検出端によって装入物堆積表面の各部位から上昇するガス流の流量・流速、温度、成分の分布などを測定することによって炉況を判定し、熱風の吹き込み条件や鉱石とコークスの装入条件(鉄鉱石とコークスの層厚比、装入量、炉径方向の粒度分布、装入分布など)を調整することが行なわれている。
In blast furnace operation, conceptually, a raw material charging device installed at the top of the furnace causes iron ore (iron ore and sintered ore) and coke to be alternately charged into the ore layer and coke layer. Hot air is blown from the mouth to react with coke to produce CO gas, and iron ore is heated with this CO gas to reduce iron from iron oxide, and after forming a softened cohesive zone, iron droplets, that is, molten iron, It is dropped together with the slag produced as a by-product via the furnace core (coke layer) and collected at the bottom of the furnace.
In this blast furnace operation, it is difficult to directly observe the reaction behavior of various raw materials charged in the blast furnace, so in general, the change in the surface shape of the furnace interior that descends as the operation proceeds The condition of the furnace is determined by measuring the flow rate / velocity of the gas flow rising from each part of the charge accumulation surface, temperature, component distribution, etc. by the detection end charged in the furnace, and the hot air blowing conditions In addition, ore and coke charging conditions (such as iron ore and coke layer thickness ratio, charging amount, particle size distribution in the furnace radial direction, charging distribution, etc.) are being adjusted.

特に、高炉操業を安定維持するためには、炉内装入物の各部位から上昇するガス流の流量・流速、温度、成分などを適正範囲に制御することが重要であり、そのために、炉内装入物の堆積表面形状を適正範囲に管理することが必要である。
この炉内装入物の堆積表面形状は、ベル式高炉ではベルから落下する原料の落下軌跡をムーバブルアーマーにより調整することが一般的である。
また、ベルレス式高炉の場合では、旋回シュートの傾斜角度を変化させて調整することにより堆積表面形状をすり鉢状に形成したり、フラット形状に形成することも行われている。
このような炉内装入物の堆積表面形状を好ましい形状に調整するためには、炉内の装入物の堆積表面形状を把握することが重要であり、従来から各種の提案がある。
In particular, in order to maintain stable operation of the blast furnace, it is important to control the flow rate / velocity, temperature, components, etc. of the gas flow rising from each part of the furnace interior entry to an appropriate range. It is necessary to manage the deposit surface shape of the inclusion within an appropriate range.
In the bell-type blast furnace, it is common to adjust the dropping trajectory of the raw material falling from the bell with a movable armor as the shape of the deposit surface of the furnace interior.
In the case of a bell-less blast furnace, the deposition surface shape is formed into a mortar shape or a flat shape by changing and adjusting the inclination angle of the turning chute.
In order to adjust the deposition surface shape of the furnace interior charge to a preferable shape, it is important to grasp the deposition surface shape of the charge in the furnace, and various proposals have been conventionally made.

例えば特許文献1には、マイクロ波式あるいはレーザ式のプロフィール計を用いて、高炉炉頂部の炉内装入原料の堆積層表面までの深度を炉半径方向に沿って任意の間隔ごとに測定し、測定して得られた深度データを平滑化処理しかつ中心差分による一次近似処理してノイズを除去してテラス長さをコンピュータ処理により精度よく求めることが開示されている。
しかしこの方法では、炉の半径方向の一方向で最深部とテラスまでの傾斜角度とテラス長さを演算するもので、炉内全体の原料堆積層表面のプロフィールを演算できるものではない。また、マイクロ波プロフィール計を炉中心まで移動するため、測定のための所要時間が長くなり、原料堆積層の表面形状が測定開始時点と測定終了時点で変化して、測定精度が低下するという問題がある。また、高温の炉内ガスによりマイクロ波プロフィール計に対する熱負荷が大きくなるという問題もある。
For example, Patent Document 1 uses a microwave type or laser type profile meter to measure the depth to the deposition layer surface of the raw material inside the furnace at the top of the blast furnace at arbitrary intervals along the furnace radial direction, It is disclosed that the depth data obtained by the measurement is smoothed and subjected to a first-order approximation process based on the center difference to remove noise and accurately obtain the terrace length by computer processing.
However, in this method, the inclination angle to the deepest part and the terrace and the terrace length are calculated in one direction in the radial direction of the furnace, and the profile of the raw material deposition layer surface in the entire furnace cannot be calculated. In addition, since the microwave profile meter is moved to the furnace center, the time required for measurement becomes longer, and the surface shape of the raw material deposition layer changes at the start and end of measurement, resulting in a decrease in measurement accuracy. There is. There is also a problem that the heat load on the microwave profile meter is increased by the high-temperature furnace gas.

また特許文献2には、炉口側面から計測ランスを高炉の軸心に向けて挿入して、ランス内に収納した距離測定手段(ここではマイクロ波使用)で装入物表面までの距離を測定し、装入物表面のプロフィールを測定することが開示されている。
この測定方法では、炉口部側面から炉口半径の1.25倍の長さに至る範囲内を測定し、堆積した装入物の中央部の極小点の軸心からの偏心を精度よく検出でき、装入物の円周バランスおよび偏心の有無を常時追跡でき、装入物表面のプロフィール変化を正確に把握して高炉の炉況悪化を未然に防止して高炉操業を安定化できるとしている。また、高炉の軸心を中心として炉口半径の0.25倍の長さを半径とする円形の範囲内を測定して、装入物の中央部を面状に把握できるので、装入物の表面座標の極小点の偏心をさらに正確に検出できるとしている。
しかしこの方法では、炉口側面から計測ランスを高炉の軸心に向けて挿入して、炉径方向の炉口半径の1.25倍の長さ範囲を測定することにより、高炉の軸心を中心として0.25倍の長さの円形の範囲を測定するものであり、炉内全体の原料堆積層表面の形状を精度よく演算できるものではない。また、マイクロ波プロフィール計をランスに収納して炉中心まで移動するため、測定のための所要時間が長くなり、原料堆積層の表面形状が測定開始時点と測定終了時点で変化して、測定精度が低下するという問題がある。また、マイクロ波プロフィール計に対する熱負荷が大きくなるという問題もある。
In Patent Document 2, a measurement lance is inserted from the side of the furnace port toward the axis of the blast furnace, and the distance to the charge surface is measured by distance measuring means (here, using microwaves) housed in the lance. And measuring the profile of the charge surface.
This measurement method measures within the range from the side of the furnace port to a length of 1.25 times the radius of the furnace port, and accurately detects the eccentricity from the axis of the minimum point of the central part of the deposited charge. It is possible to constantly track the circumferential balance of the charge and the presence or absence of eccentricity, accurately grasp the profile change of the charge surface, and prevent the blast furnace from deteriorating in the blast furnace and stabilize the blast furnace operation. . In addition, since the center of the charge can be grasped in a planar shape by measuring the circular range with the radius of 0.25 times the furnace port radius centered on the blast furnace axis, It is said that the eccentricity of the minimum point of the surface coordinate can be detected more accurately.
However, in this method, the measurement lance is inserted from the side of the furnace port toward the axis of the blast furnace, and the length range of 1.25 times the radius of the furnace port in the furnace radial direction is measured. This is to measure a circular range having a length of 0.25 times as the center, and cannot accurately calculate the shape of the surface of the raw material deposition layer in the entire furnace. In addition, since the microwave profile meter is housed in the lance and moved to the furnace center, the time required for measurement becomes longer, and the surface shape of the raw material deposition layer changes at the start and end of measurement. There is a problem that decreases. There is also a problem that the heat load on the microwave profile meter becomes large.

さらに特許文献3には、高倍率ズームレンズおよびオートフォーカス機構を搭載した赤外線カメラを遮断ガラス、仕切り弁を介して炉外定位置に設置し、この赤外線カメラを電動雲台により円周方向および半径方向に走査し、オートフォーカス機構から得られる合焦距離データおよび電動雲台から得られる走査位置データを組み合わせてデータ処理して炉内装入物の表面プロフィールを測定することが開示されている。
この測定方法では、炉内全体を観察でき、炉内装入物の表面全体のプロフィールを測定することができるとしている。
しかしこの測定方法では、遮断ガラス、仕切り弁を介して炉外定位置に設置した赤外線カメラで炉内領域を走査する構造であり、高倍率ズームレンズを用い、かつ炉外位置にあるため走査距離が長いこともあり、浮遊粉塵の多い炉内では、この浮遊粉塵の影響が大きく測定精度が大きく低下することは避けられない。特に原料装入直後の炉内状態では、浮遊粉塵の影響が顕著である。また、測定所要時間が長くなり、原料堆積層の表面形状が測定開始時点と測定終了時点で変化して、測定精度が低下するなどの問題がある。
特開2003−73716号公報 特開2002−115008号公報 特開平10−103934号公報
Further, in Patent Document 3, an infrared camera equipped with a high-magnification zoom lens and an autofocus mechanism is installed at a fixed position outside the furnace through a shut-off glass and a gate valve. It is disclosed that the surface profile of the furnace interior is measured by combining the in-focus distance data obtained from the autofocus mechanism and the scan position data obtained from the electric pan head, and processing the data.
In this measurement method, the entire interior of the furnace can be observed, and the profile of the entire surface of the furnace interior can be measured.
However, in this measurement method, the area inside the furnace is scanned by an infrared camera installed at a fixed position outside the furnace through a shut-off glass and a gate valve, and a high-power zoom lens is used and the position is located outside the furnace. However, in a furnace with a lot of airborne dust, it is inevitable that the influence of airborne dust is large and the measurement accuracy is greatly reduced. In particular, in the furnace state immediately after charging the raw material, the influence of suspended dust is significant. In addition, there is a problem that the time required for measurement becomes long, the surface shape of the raw material deposition layer changes at the measurement start time and the measurement end time, and the measurement accuracy decreases.
JP 2003-73716 A JP 2002-115008 A Japanese Patent Laid-Open No. 10-103934

本発明は、高炉内に装入され、安息状態になった装入物の堆積表面形状を、短時間に、高精度で高炉内装入物の表面形状を測定可能な高炉内装入物の表面形状測定方法および測定装置を提供するものである。   The present invention is a surface shape of a blast furnace interior charge that can measure a surface shape of a blast furnace interior charge with high accuracy in a short time, with respect to a deposited surface shape of the charge charged in a blast furnace and in a repose state. A measuring method and a measuring apparatus are provided.

本発明は、上記課題を有利に解決するために、以下の(1)〜(4)を要旨とする。
(1) 高炉炉頂部の装入装置下の炉壁部に、水平方向の2次元平面上で回転・停止を繰り返し、各停止位置で鉛直方向の2次元平面上でレーザビーム走査が可能なレーザー距離計を炉内へ進退自在に設置し、原料装入装置から原料を炉内に装入した後、前記水平方向の2次元平面上の各停止位置毎に、前記鉛直方向の2次元平面上をレーザビーム走査して、0.2〜2度の角度ピッチで炉内装入物の堆積表面までの距離を測定し、この測定値と測定点の鉛直面方向の2次元平面上の角度と水平方向の2次元平面上の各停止位置までの角度から炉内装入物の堆積表面全体の3次元形状を求めることを特徴とする高炉内装入物の表面形状測定方法。
ここで、鉛直方向の2次元平面(以下「2次元平面(鉛直面)」と称す。)上での角度ピッチが0.2度未満の場合は、測定点密度が必要以上に大きくなる。2度超では、レーザー距離計から遠い領域で測定点の密度が不十分で測定精度を安定確保できない。
また、水平方向の2次元平面(以下「2次元平面(水平面)」と称す。)上での回転・停止の角度ピッチについては、0.2〜2度の範囲で選択することが好ましい。0.2度未満では測定点密度が必要以上に大きく、炉内全体の測定所要時間が長くなるため、炉内装入物の堆積形状が測定中に大きく経時変化し測定精度が低下する懸念がある。また、測定装置に対する熱負荷が大きくなる。2度超では、レーザー距離計から遠い領域で測定点密度が不十分で測定精度を安定確保できない。
なお、堆積表面形状の測定タイミングとしては、通常操業の場合には、炉内に装入物を装入すると初期は炉内装入物の流動および炉内粉塵の充満が顕著であるため、十分な測定精度が得られない。しかし、測定開始が遅れると、装入物の装入完了から測定終了までの時間が長くなり、装入物の堆積表面形状の経時変化が顕著になり、目的とする装入分布を精度よく測定することができない。この懸念を解消するためには、装入物の装入後、装入物表面形状のデータを見ながら、30〜90秒の範囲内で測定を開始することが好ましい。
The present invention is summarized as the following (1) to (4) in order to advantageously solve the above problems.
(1) A laser capable of repeatedly rotating and stopping on a two-dimensional plane in the horizontal direction on the furnace wall section under the charging device at the top of the blast furnace, and performing laser beam scanning on the two-dimensional plane in the vertical direction at each stop position A distance meter is installed in the furnace so that it can be moved back and forth. After the raw material is charged into the furnace from the raw material charging device, the vertical direction two-dimensional plane is displayed at each stop position on the horizontal two-dimensional plane. Is scanned with a laser beam, and the distance to the deposition surface of the furnace interior is measured at an angle pitch of 0.2 to 2 degrees, and the measured value and the angle of the measurement point on the two-dimensional plane in the vertical plane direction and the horizontal A method for measuring the surface shape of an interior of a blast furnace interior, wherein a three-dimensional shape of the entire deposition surface of the interior of the furnace interior is obtained from an angle to each stop position on a two-dimensional plane in the direction.
Here, when the angular pitch on the two-dimensional plane in the vertical direction (hereinafter referred to as “two-dimensional plane (vertical plane)”) is less than 0.2 degrees, the measurement point density becomes larger than necessary. If it exceeds 2 degrees, the density of measurement points is insufficient in a region far from the laser distance meter, and the measurement accuracy cannot be secured stably.
The angular pitch of rotation / stop on the horizontal two-dimensional plane (hereinafter referred to as “two-dimensional plane (horizontal plane)”) is preferably selected in the range of 0.2 to 2 degrees. If it is less than 0.2 degrees, the measurement point density is larger than necessary, and the time required for measurement in the entire furnace becomes longer. Therefore, there is a concern that the accumulation shape of the furnace interior greatly changes over time during the measurement and the measurement accuracy decreases. . In addition, the heat load on the measuring device increases. If it exceeds 2 degrees, the measurement point density is insufficient in a region far from the laser distance meter, and the measurement accuracy cannot be secured stably.
As for the measurement timing of the deposited surface shape, in normal operation, if the charge is charged into the furnace, the flow of the furnace internal charge and the fullness of the dust in the furnace are significant at the initial stage. Measurement accuracy cannot be obtained. However, if the start of measurement is delayed, the time from the completion of charging the charge to the end of the measurement becomes longer, and the time-dependent change in the shape of the deposited surface of the charge becomes noticeable, and the target charge distribution is accurately measured. Can not do it. In order to eliminate this concern, it is preferable to start the measurement within a range of 30 to 90 seconds while watching the data of the charge surface shape after charging the charge.

(2) 前記(1)において、前記レーザー距離計の炉内進退距離を炉壁面から50〜450mmの炉内位置までにしたことを特徴とする高炉内装入物の表面形状測定方法。
ここで、レーザー距離計(中心)が炉壁面から50mm未満の炉内位置にある場合、測定結果を表示するメッシュによって異なるが、レーザー距離計設置側の炉壁面近傍部の測定が難しくなる場合がある。また、炉壁面から450mm超の炉内位置にある場合、レーザー距離計の移動距離が長くなり測定所要時間が長くなることから、堆積装入物の表面形状の経時変化が顕著になり、目的とする装入分布を精度よく測定することができない。また、レーザー距離計などの機器や装置部位に対する熱負荷が大きくなり好ましくない。
本発明では、このような条件を満足できるように、炉径、炉内装入物の基準装入レベルおよび堆積表面形状に応じて、レーザー距離計の設置高さおよび炉内位置を考慮する。
(3) 前記(1)又は(2)において、前記レーザー距離計を複数配置して、炉内装入物の堆積表面の測定領域を分担したことを特徴とする高炉内装入物の表面形状測定方法。
(2) The method for measuring the surface shape of a blast furnace interior entry according to (1), wherein the laser distance meter is moved in and out of the furnace from the furnace wall surface to a position in the furnace of 50 to 450 mm.
Here, when the laser distance meter (center) is in the furnace position less than 50 mm from the furnace wall surface, depending on the mesh displaying the measurement result, it may be difficult to measure the vicinity of the furnace wall surface on the laser distance meter installation side. is there. In addition, when it is in the furnace position more than 450 mm from the furnace wall surface, the moving distance of the laser distance meter becomes long and the time required for measurement becomes long. It is impossible to accurately measure the charging distribution. Moreover, the thermal load with respect to apparatus and apparatus parts, such as a laser distance meter, becomes large and is not preferable.
In the present invention, in order to satisfy such conditions, the installation height of the laser distance meter and the position in the furnace are taken into account according to the furnace diameter, the reference charging level of the furnace interior contents, and the deposition surface shape.
(3) In the method (1) or (2), a plurality of the laser distance meters are arranged to share the measurement area of the deposition surface of the furnace interior material, and the surface shape measurement method for the blast furnace interior material .

(4) 高炉炉頂部の原料装入装置下の炉壁部に、遮蔽装置により炉内と遮断・連通可能な空間部を設け、この空間部に、炉内に進退自在なスライドアームを備えた固定台と、スライドアーム先端部に配置され水平方向の2次元平面上で設定角度ピッチ毎に回転・停止可能で各停止位置で鉛直方向の2次元平面上をレーザビーム走査して設定角度ピッチ毎に装入物堆積表面までの距離を測定するレーザー距離計と、遮蔽装置、スライドアーム、レーザー距離計を制御する駆動制御装置と、炉内でのレーザー距離計による鉛直方向の2次元平面の各測定点での装入物堆積表面までの距離情報と各測定点の角度情報および水平方向の2次元平面上の各停止位置の角度情報を処理して炉内装入物の堆積表面全体の3次元形状を求めて表示するコンピュータを備えたことを特徴とする高炉内装入物の表面形状測定装置。 (4) A space part that can be cut off and communicated with the inside of the furnace by a shielding device is provided in the furnace wall part under the raw material charging device at the top of the blast furnace furnace, and a slide arm that can move forward and backward in the furnace is provided in this space part. The fixed base and the tip of the slide arm are disposed at the tip of the slide arm and can be rotated / stopped at a set angle pitch on the horizontal two-dimensional plane. At each stop position, the laser beam is scanned on the vertical two-dimensional plane at each set angle pitch. Each of the two-dimensional plane in the vertical direction by a laser distance meter that measures the distance to the charged material accumulation surface, a shielding device, a slide arm, a drive control device that controls the laser distance meter, and a laser distance meter in the furnace Processing the distance information to the charge accumulation surface at the measurement point, the angle information of each measurement point, and the angle information of each stop position on the horizontal two-dimensional plane, and processing the three-dimensional whole accumulation surface of the furnace interior charge Compile for finding and displaying shapes Profilometer of the blast furnace interior container, characterized in that it comprises a chromatography data.

本発明によれば、炉内浮遊粉塵の影響を受けにくい、レーザビーム走査機能を備えたレーザー距離計を用いて、炉内堆積装入物表面を、レーザビームで2次元平面(鉛直面)上および2次元平面(水平面)上を走査可能であり、炉内装入物堆積表面全体の表面形状を精度よく測定可能である。
また、レーザー距離計の移動距離を最小限にしており、2次元平面(鉛直面)上では数秒、2次元平面(水平面)上を含む全体領域では数分と短時間で測定可能であり、炉内に装入物を装入直後、30〜90秒の範囲内で開始し、堆積形状が大きく変化しない間に全体の測定を完了できる。
また、レーザー距離計を含む測定装置の先端部を炉内に臨ませるものの、各部位に対する高温の炉内ガスによる熱負荷を大幅に軽減でき、測定装置の寿命を延長可能である。
According to the present invention, using a laser rangefinder with a laser beam scanning function that is not easily affected by dust floating in the furnace, the surface of the furnace charge is placed on a two-dimensional plane (vertical surface) with a laser beam. In addition, it is possible to scan on a two-dimensional plane (horizontal plane), and it is possible to accurately measure the surface shape of the entire furnace interior inclusion deposition surface.
In addition, the distance traveled by the laser rangefinder is minimized, and it can be measured in a few seconds on the entire area including the two-dimensional plane (horizontal plane) in a few seconds on the two-dimensional plane (vertical plane). Immediately after charging the charged material, it starts within the range of 30 to 90 seconds, and the entire measurement can be completed while the deposition shape does not change greatly.
Moreover, although the tip of the measuring device including the laser distance meter faces the furnace, the thermal load caused by the high-temperature furnace gas on each part can be greatly reduced, and the life of the measuring device can be extended.

本発明を図1〜図2に基づいて説明する。
図1は、ベル式高炉に適用した本発明の高炉内装入物の表面形状測定装置の構造例とレーザー距離計からの2次元平面(鉛直面)でのレーザビーム走査例を概念的に示した側断面説明図、図2は、図1におけるレーザー距離計から炉壁内周方向のレーザビーム走査例を概念的に示した部分平面説明図である。
ここで用いた本発明の高炉内装入物の表面形状測定装置1は、図1に示すように、高炉2の炉頂部の原料装入装置の大ベル3下方の炉壁部4に設置した、炉内5と遮蔽する開閉自在な耐熱性の遮蔽装置7を備えたマンホール6内に設置したものである。この設置部位の炉径は約11mである。
The present invention will be described with reference to FIGS.
FIG. 1 conceptually shows an example of the structure of the surface shape measuring apparatus for the interior of a blast furnace interior according to the present invention applied to a bell type blast furnace and a laser beam scanning example on a two-dimensional plane (vertical plane) from a laser distance meter. FIG. 2 is a side sectional explanatory view, and FIG. 2 is a partial plan explanatory view conceptually showing an example of laser beam scanning in the furnace wall inner circumferential direction from the laser distance meter in FIG.
As shown in FIG. 1, the surface shape measuring apparatus 1 for the blast furnace interior entrance of the present invention used here was installed on the furnace wall 4 below the large bell 3 of the raw material charging apparatus at the top of the blast furnace 2. It is installed in a manhole 6 provided with a heat-resistant shielding device 7 that can be opened and closed to shield the inside of the furnace 5. The furnace diameter of this installation site is about 11 m.

この例では、炉壁部4内から炉内5に進退自在なスライドアーム9を備えた固定台8と、炉内に移動させたスライドアーム先端部で2次元平面(水平面)上を、基準位置から0〜360度の範囲内で回転可能で任意の角度ピッチ(β)で停止可能な回転台10と、この回転台に支持され回転台10とともに回転(回転中心12c)し2次元平面(水平面)上で0〜360度の範囲内をレーザビーム11で走査可能であり、前記停止位置で2次元平面(鉛直面)上の0〜180度の範囲内の炉内装入物13の堆積表面13fをレーザビーム11で任意の角度ピッチ(α)で走査して、回転中心c(鉛直面)から炉内装入物13の堆積表面13fの複数の測定点xまでの距離Lxを測定するレーザビーム装置を耐熱ガラス(図示省略)で保護した構造のレーザー距離計12を備えている。   In this example, a reference position on a two-dimensional plane (horizontal plane) is determined by a fixed base 8 having a slide arm 9 that can move forward and backward from the furnace wall 4 to the furnace 5 and the tip of the slide arm moved into the furnace. And a rotary table 10 that can rotate within a range of 0 to 360 degrees and can be stopped at an arbitrary angle pitch (β), and is supported by the rotary table and rotates together with the rotary table 10 (rotation center 12c) to form a two-dimensional plane (horizontal plane). ) Can be scanned with a laser beam 11 within a range of 0 to 360 degrees, and the deposition surface 13f of the furnace interior charge 13 within a range of 0 to 180 degrees on a two-dimensional plane (vertical plane) at the stop position. Is scanned with a laser beam 11 at an arbitrary angular pitch (α), and a distance Lx from the rotation center c (vertical surface) to a plurality of measurement points x on the deposition surface 13f of the furnace interior charge 13 is measured. With a heat-resistant glass (not shown) A built-in laser rangefinder 12 is provided.

このレーザー距離計12の回転中心cの位置レベルの水平面Bfは、大ベル3下面位置の下方、ここでは、炉内装入物13の堆積表面の最上面レベルstの約2m上方にある。 耐熱遮蔽装置7、スライドアーム9、回転台10、レーザー距離計12は、それぞれ駆動装置(図示省略)を備え、この駆動は駆動制御装置15によって駆動制御可能であり、原料装入装置の装入操作と連動させて駆動することもできる。
また、レーザー距離計12、回転台10には、信号処理装置16を介して、レーザー距離計12、回転台10からの各情報を処理して炉内装入物13の堆積表面13fの3次元形状を求め表示するコンピュータ14が接続されている。
The horizontal plane Bf at the position level of the rotation center c of the laser distance meter 12 is below the position of the lower surface of the large bell 3, here, about 2 m above the uppermost surface level st of the deposition surface of the furnace interior charge 13. The heat-resistant shielding device 7, the slide arm 9, the turntable 10, and the laser distance meter 12 are each provided with a drive device (not shown), and this drive can be controlled by the drive control device 15, and the raw material charging device is charged. It can be driven in conjunction with the operation.
Further, the laser distance meter 12 and the turntable 10 are processed through the signal processing device 16 to process each information from the laser distance meter 12 and the turntable 10 to obtain a three-dimensional shape of the deposition surface 13f of the furnace interior entrance 13. Is connected to a computer 14 for displaying and displaying the information.

レーザー距離計12を支持して回転する回転台10は、スライドアーム9の移動により、その回転中心12cが表面形状測定装置の設置側の炉壁部4内周面から炉心方向に距離L(ここでは450mm)の炉内位置に移動し、この回転台10に支持されたレーザー距離計12は、図1に示すように、回転中心cからレーザビーム11で2次元平面(鉛直面)上の0〜180度の範囲内を角度ピッチ(α)の複数の測定点で炉内装入物13の堆積表面13fまでの距離Lxを測定する。
この角度ピッチ(α)は、2次元平面(鉛直面)上の表面形状測定精度を左右する測定点密度を決めるものであり、小さい程測定精度を高められるが、測定所要時間を短かくすることも重要である。満足できる測定精度と測定所要時間を確保する条件としては、レーザー距離計12の回転中心cから遠い領域の測定点例えばx1 −x2 間の距離aが100mm以内の範囲内であることが好ましい。この条件を満足する角度ピッチ(α)として、ここでは1度を選択している。
The rotating table 10 that rotates while supporting the laser distance meter 12 is moved by a distance L (here, the center of rotation 12c from the inner peripheral surface of the furnace wall portion 4 on the installation side of the surface shape measuring device by the movement of the slide arm 9). In this case, the laser distance meter 12 supported by the turntable 10 is 0 on the two-dimensional plane (vertical plane) with the laser beam 11 from the rotation center c as shown in FIG. The distance Lx to the deposition surface 13f of the furnace interior charge 13 is measured at a plurality of measurement points with an angular pitch (α) within a range of ˜180 degrees.
This angular pitch (α) determines the measurement point density that affects the surface shape measurement accuracy on a two-dimensional plane (vertical surface). The smaller the pitch, the higher the measurement accuracy, but the shorter the time required for measurement. It is also important. As a condition for ensuring satisfactory measurement accuracy and required measurement time, it is preferable that a measurement point in a region far from the rotation center c of the laser distance meter 12, for example, a distance a between x1 and x2 is within a range of 100 mm or less. Here, 1 degree is selected as the angle pitch (α) that satisfies this condition.

一方、レーザー距離計12は、図2に示すように、炉内位置で、回転台10の回転により2次元平面(水平面)上で360度の範囲を回転(回転中心12c)し、角度ピッチ (β)で複数位置で停止可能で、各停止位置で、レーザビーム11で2次元平面(鉛直面)上の0〜180度の範囲内を角度ピッチ(α)で走査し、複数の測定点xで炉内装入物13の堆積表面13fまでの距離Lxを測定するものである。
この角度ピッチ(β)は、2次元平面(水平面)方向の表面形状測定精度を左右する測定点密度を決めるものであり、レーザー距離計12の回転中心12cから遠い領域での測定点例えばy1 −y2 間の距離bが100mm以内の範囲内であることが好ましい。この条件を満足する角度ピッチ(β)として、ここでは1度を選択している。
On the other hand, as shown in FIG. 2, the laser distance meter 12 rotates a range of 360 degrees on the two-dimensional plane (horizontal plane) by the rotation of the turntable 10 at the position in the furnace (rotation center 12 c), and the angular pitch ( β) can be stopped at a plurality of positions, and at each stop position, the laser beam 11 scans within a range of 0 to 180 degrees on a two-dimensional plane (vertical plane) with an angular pitch (α), and a plurality of measurement points x The distance Lx to the deposition surface 13f of the furnace interior charge 13 is measured.
This angle pitch (β) determines the density of measurement points that affects the surface shape measurement accuracy in the two-dimensional plane (horizontal plane) direction, and is a measurement point in a region far from the rotation center 12c of the laser rangefinder 12 such as y1 −. The distance b between y2 is preferably within a range of 100 mm or less. Here, 1 degree is selected as the angle pitch (β) that satisfies this condition.

回転台10(レーザー距離計12)の2次元平面(水平面)の回転基点から回転終点までの角度範囲(例えば0〜360度の範囲)、回転速度および角度ピッチ(β)、角度ピッチ(β)毎の停止時間、レーザー距離計12の2次元平面(鉛直面)上のレーザビーム11の走査基点(ここではレーザー距離計12の回転中心cと同じ高さレベルの水平面Bf位置にある0度位置)、走査基点から走査終点までの角度範囲、走査速度および角度ピッチ(α)、角度ピッチ(α)毎の停止時間(0.5秒程度)等の駆動(走査)条件はコンピュター14と駆動制御装置15により設定制御することができる。
この設定条件で回転台10を回転しレーザー距離計12を駆動させて、レーザビーム11で炉内装入物13の堆積表面13fに対して、2次元平面(水平面)と2次元平面(鉛直面)に走査し、レーザー距離計12の回転中心cから炉内装入物13の堆積表面13fの各測定点xまでの距離Lxを測定する。
レーザー距離計12の回転基点からの2次元平面(水平面)上の角度情報とレーザー距離計12のレーザビーム11による2次元平面(鉛直面)上の各測定点までの距離測定情報、各測定点の角度情報を、信号処理装置16で処理してコンピュータ14に入力して、予め設定された計算プログラムにより、炉内装入物13の堆積表面13fの各測定点xの角度と距離Lxの測定結果から、水平面Bfから各測定点までの垂直距離hxを算定し、炉内装入物13の堆積表面13f全体領域の3次元形状を求め表示するものである。
Angle range (for example, a range of 0 to 360 degrees) from a rotation base point to a rotation end point on a two-dimensional plane (horizontal plane) of the turntable 10 (laser distance meter 12), a rotation speed, an angle pitch (β), and an angle pitch (β). Each stop time, the scanning base point of the laser beam 11 on the two-dimensional plane (vertical plane) of the laser rangefinder 12 (here, the 0 degree position at the horizontal plane Bf position at the same height level as the rotation center c of the laser rangefinder 12) ), Driving (scanning) conditions such as the angular range from the scanning base point to the scanning end point, the scanning speed and the angular pitch (α), and the stop time (about 0.5 seconds) for each angular pitch (α) are controlled by the computer 14 and the drive control. Settings can be controlled by the device 15.
Under this set condition, the turntable 10 is rotated to drive the laser distance meter 12, and the two-dimensional plane (horizontal plane) and the two-dimensional plane (vertical plane) with respect to the deposition surface 13f of the furnace interior 13 by the laser beam 11. The distance Lx from the rotation center c of the laser rangefinder 12 to each measurement point x on the deposition surface 13f of the furnace interior 13 is measured.
Angle information on the two-dimensional plane (horizontal plane) from the rotation base point of the laser distance meter 12, distance measurement information to each measurement point on the two-dimensional plane (vertical plane) by the laser beam 11 of the laser distance meter 12, and each measurement point Is processed by the signal processing device 16 and input to the computer 14, and the measurement result of the angle and the distance Lx of each measurement point x on the deposition surface 13f of the furnace interior charge 13 is determined by a preset calculation program. Thus, the vertical distance hx from the horizontal plane Bf to each measurement point is calculated, and the three-dimensional shape of the entire region of the deposition surface 13f of the furnace interior charge 13 is obtained and displayed.

図1に示したような高炉内装入物の表面形状測定装置により、原料装入装置(大ベル)3から装入物を炉内に装入を完了して30秒経過後、高炉内装入物の表面形状測定を行った。
この実施例では、装入物を炉内に装入を完了して30秒経過後に、遮蔽装置6の開操作、スライドアーム9の移動操作して、回転台10(レーザー距離計12)の位置を炉壁部4から距離L450mmの炉内位置に移動し、この位置で、基点0度位置から2次元平面(水平面)上の360度の範囲を1度の角度ピッチ(β)毎に回転・停止させ、この各停止位置で2次元平面(鉛直面)上の走査角度θの範囲(ここでは基点0度位置から20度の位置を基点として90度の範囲)をレーザビーム11で走査して、1度の角度ピッチ (α)毎の測定点xで、レーザー距離計12の回転中心cから炉内装入物13の堆積表面13fまでの距離Lxを測定し、この各測定点xまでの距離Lxと、各測定点の2次元平面(鉛直面)上の基点0度位置からの角度から各測定点xから水平面Bfまでの垂直距離hxを求め、炉内装入物13の堆積表面13f全体の3次元形状を推定(測定)した。
なお、ここでは炉壁内周方向の各角度ピッチ(β)毎の停止時間を1.3秒以内として360度領域を4分で走査できるようにし、2次元平面(鉛直面)上での走査角度θ(ここでは180度まで拡大)の範囲を、2次元平面(水平面)上の各角度ピッチ(β)毎の停止時間内に走査して、炉内装入物13の堆積表面13f全体の3次元形状を約4分で測定できるように各条件を設定した。
With the surface shape measuring device for the blast furnace interior as shown in FIG. 1, after 30 seconds have elapsed after the charge is completely charged into the furnace from the raw material charging device (large bell) 3, the blast furnace interior is filled. The surface shape was measured.
In this embodiment, after 30 seconds have passed since the charged material was charged into the furnace, the opening of the shielding device 6 and the movement of the slide arm 9 were performed, and the position of the rotary table 10 (laser rangefinder 12). Is moved from the furnace wall portion 4 to a position in the furnace at a distance of L450 mm, and at this position, a range of 360 degrees on the two-dimensional plane (horizontal plane) from the position of the base point 0 degrees is rotated every angular pitch (β). The laser beam 11 scans the range of the scanning angle θ on the two-dimensional plane (vertical plane) (here, the range of 90 degrees from the position of 0 degrees to the position of 20 degrees as a base point) at each stop position. The distance Lx from the rotation center c of the laser rangefinder 12 to the deposition surface 13f of the furnace interior charge 13 is measured at each measurement point x for each angular pitch (α), and the distance to each measurement point x. From Lx and the base 0 degree position on the two-dimensional plane (vertical plane) of each measurement point From each angle, a vertical distance hx from each measurement point x to the horizontal plane Bf was obtained, and the three-dimensional shape of the entire deposition surface 13f of the furnace interior charge 13 was estimated (measured).
Here, the 360 ° region can be scanned in 4 minutes by setting the stop time for each angular pitch (β) in the furnace wall inner circumferential direction within 1.3 seconds, and scanning on a two-dimensional plane (vertical plane). The range of the angle θ (enlarged up to 180 degrees here) is scanned within the stop time for each angular pitch (β) on the two-dimensional plane (horizontal plane), and 3 of the entire deposition surface 13f of the furnace interior charge 13 is scanned. Each condition was set so that the dimensional shape could be measured in about 4 minutes.

この実施例で得られた炉内装入物13の堆積表面13f全体の3次元形状は、概念的には図3(a)、(b)、(c)に示す通りである。
ここで、図3の(a)図は、炉内装入物13の堆積表面13fの平面図による等高線図を示す説明図、(b)図は(a)図のAa−Ab矢視断面説明図、(c)図は(a)図のBa−Bb矢視断面説明図である。
図3(a)の等高線の一部に付した数字は、レーザー距離計12の回転中心cの位置レベルの水平面Bfからの距離(m)を示す。
(実験例)
The three-dimensional shape of the entire deposition surface 13f of the furnace interior charge 13 obtained in this example is conceptually as shown in FIGS. 3 (a), 3 (b), and 3 (c).
Here, FIG. 3A is an explanatory diagram showing a contour map by a plan view of the deposition surface 13f of the furnace interior charge 13, and FIG. 3B is a sectional explanatory view taken along the arrow Aa-Ab in FIG. (C) is a cross-sectional explanatory view taken along the line Ba-Bb of (a).
The numbers attached to a part of the contour lines in FIG. 3A indicate the distance (m) from the horizontal plane Bf of the position level of the rotation center c of the laser rangefinder 12.
(Experimental example)

本発明による炉内装入物13の堆積表面13f全体の3次元形状の推定(測定)結果を評価するために、鉱石を装入して図3(a)〜(c)と類似の堆積表面形状をつくり、実施例で示すような表面形状測定装置1を用い、同様(ただし、角度ピッチ(α)、角度ピッチ(β)は、0.5度にした。)にして、この装入物堆積表面の3次元形状を測定(推定)し、この結果を他の方法による実測値と比較した。
ここで他の方法とは、本発明によるレーザー距離計12の回転中心cの位置レベルの水平面Bfから測定点xまでの垂直距離を実測する装置による距離実測法(比較法)であり、本発明による各測定点の中から選択した各測定点で、本発明による垂直距離と、比較法による実測値と比較した。
その結果、本発明による垂直距離の測定(推定)値は、比較法による実測値に対して±1.7%の誤差範囲に納まっており、十分に満足できるものであった。
In order to evaluate the estimation (measurement) result of the three-dimensional shape of the entire deposition surface 13f of the furnace interior charge 13 according to the present invention, the deposition surface shape similar to that shown in FIGS. And using the surface shape measuring apparatus 1 as shown in the examples, the same (however, the angle pitch (α) and the angle pitch (β) were set to 0.5 degrees) The three-dimensional shape of the surface was measured (estimated), and the result was compared with the actually measured value by another method.
Here, the other method is a distance measurement method (comparison method) using a device that measures the vertical distance from the horizontal plane Bf at the position level of the rotation center c of the laser rangefinder 12 according to the present invention to the measurement point x. The vertical distance according to the present invention was compared with the actual measurement value obtained by the comparison method at each measurement point selected from the measurement points according to the above.
As a result, the measured (estimated) value of the vertical distance according to the present invention was within an error range of ± 1.7% with respect to the actually measured value by the comparison method, and was sufficiently satisfactory.

本発明は、上記の実施例に限定されるものではない。上記の実施例ではベル式高炉に適用しているが、ベルレス式高炉に適用することもでき、炉内装入物の堆積表面形状がすり鉢形状の場合だけではなく、フラット形状などの他の形状の場合にも適用可能であり、設置位置の最適位置選択が可能である。
また、表面形状測定装置の構造、レーザー距離計の炉内位置、レーザビームの走査条件(走査角度範囲、走査方向、走査速度、測定点密度を決める角度ピッチ(α)、(β)など)、測定時間などは、対象高炉の形式、炉頂部構造、装入方式、装入条件、炉内装入物の堆積表面形状などに応じて変更のあるものである。
The present invention is not limited to the above embodiments. In the above embodiment, it is applied to a bell type blast furnace, but it can also be applied to a bellless type blast furnace, not only in the case where the deposition surface shape of the furnace interior is a mortar shape, but also in other shapes such as a flat shape. This is also applicable to cases, and the optimum position of the installation position can be selected.
Also, the structure of the surface shape measuring device, the position of the laser rangefinder in the furnace, the laser beam scanning conditions (scanning angle range, scanning direction, scanning speed, angle pitch (α), (β), etc. that determine the measurement point density), The measurement time and the like vary depending on the type of the target blast furnace, the furnace top structure, the charging method, the charging conditions, the surface shape of the deposit in the furnace interior, and the like.

本発明の高炉の炉内装入物表面の表面形状測定装置の構造例およびレーザー距離計からの2次元平面(鉛直面)でのレーザビーム走査例を概念的に示す側断面説明図。Side cross-section explanatory drawing which shows notionally the structural example of the surface shape measuring apparatus of the furnace interior entrance surface of the blast furnace of this invention, and the laser beam scanning example in the two-dimensional plane (vertical surface) from a laser rangefinder. 図1でのレーザー距離計から2次元平面(水平面)でのレーザビーム走査例を概念的に示した部分平面説明図。FIG. 2 is a partial plan explanatory view conceptually showing a laser beam scanning example on a two-dimensional plane (horizontal plane) from the laser distance meter in FIG. 1. 本発明の実施例で得られた高炉の炉内装入物表面の3次元形状を概念的に示す説明図で、(a)図は平面図で示す等高線説明図、(b)図は(a)図のAa−Ab矢視断面説明図、(c)図は(a)図のBa−Bb矢視断面説明図。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which shows notionally the three-dimensional shape of the furnace interior entrance surface of the blast furnace obtained in the Example of this invention, (a) A figure is a contour-line explanatory drawing shown with a top view, (b) A figure is (a). Aa-Ab arrow section explanatory drawing of a figure, (c) A figure is Ba-Bb arrow cross-section explanatory drawing of (a) figure.

符号の説明Explanation of symbols

1:表面形状測定装置 2:高炉
3:原料装入装置(大ベル) 4:炉壁部
5:炉内 6:マンホール
7:遮蔽装置 8:固定台
9:スライドアーム 10:回転台
11:レーザビーム 12:レーザー距離計
12c:回転中心(水平面) 13:欠番
c:回転中心(鉛直面) 14:コンピュータ
15:駆動制御装置 16:信号処理装置
1: Surface shape measuring device 2: Blast furnace 3: Raw material charging device (large bell) 4: Furnace wall part 5: In the furnace 6: Manhole 7: Shielding device 8: Fixing base 9: Slide arm 10: Turntable 11: Laser Beam 12: Laser distance meter 12c: Center of rotation (horizontal plane) 13: Missing number c: Center of rotation (vertical plane) 14: Computer 15: Drive control device 16: Signal processing device

Claims (4)

高炉炉頂部の装入装置下の炉壁部に、水平方向の2次元平面上で回転・停止を繰り返し、各停止位置で鉛直方向の2次元平面上でレーザビーム走査が可能なレーザー距離計を炉内へ進退自在に設置し、原料装入装置から原料を炉内に装入した後、前記水平方向の2次元平面上の各停止位置毎に、前記鉛直方向の2次元平面上をレーザビーム走査して、0.2〜2度の角度ピッチで炉内装入物の堆積表面までの距離を測定し、この測定値と測定点の鉛直面方向の2次元平面上の角度と水平方向の2次元平面上の各停止位置までの角度から炉内装入物の堆積表面全体の3次元形状を求めることを特徴とする高炉内装入物の表面形状測定方法。 A laser rangefinder that can be rotated and stopped on a horizontal two-dimensional plane on the furnace wall under the charging device at the top of the blast furnace, and capable of laser beam scanning on the vertical two-dimensional plane at each stop position. A laser beam is installed on the two-dimensional plane in the vertical direction at each stop position on the two-dimensional plane in the horizontal direction after the raw material is placed in the furnace from the raw material charging device. Scan and measure the distance to the deposition surface of the furnace interior inclusions at an angle pitch of 0.2 to 2 degrees, and the measured value and the measurement point on the two-dimensional plane in the vertical plane direction and 2 in the horizontal direction. A method for measuring the surface shape of a blast furnace interior, wherein a three-dimensional shape of the entire deposition surface of the interior of the furnace interior is obtained from an angle to each stop position on a three-dimensional plane. 前記レーザー距離計の炉内進退距離を炉壁面から50〜450mmの炉内位置までにしたことを特徴とする請求項1に記載の高炉内装入物の表面形状測定方法。 The method for measuring the surface shape of a blast furnace interior entrance according to claim 1, wherein the distance of the laser rangefinder in the furnace is set to a position in the furnace of 50 to 450 mm from the furnace wall surface. 前記レーザー距離計を複数配置して、炉内装入物の堆積表面の測定領域を分担したことを特徴とする請求項1または2に記載の高炉内装入物の表面形状測定方法。 The method for measuring a surface shape of a blast furnace interior entrance according to claim 1 or 2, wherein a plurality of the laser distance meters are arranged to share a measurement area of a deposition surface of the interior interior of the furnace interior. 高炉炉頂部の原料装入装置下の炉壁部に、遮蔽装置により炉内と遮断・連通可能な空間部を設け、この空間部に、炉内に進退自在なスライドアームを備えた固定台と、スライドアーム先端部に配置され水平方向の2次元平面上で設定角度ピッチ毎に回転・停止可能で各停止位置で鉛直方向の2次元平面上をレーザビーム走査して設定角度ピッチ毎に装入物堆積表面までの距離を測定するレーザー距離計と、遮蔽装置、スライドアーム、レーザー距離計を制御する駆動制御装置と、炉内でのレーザー距離計による鉛直方向の2次元平面の各測定点での装入物堆積表面までの距離情報と各測定点の角度情報および水平方向の2次元平面上の各停止位置の角度情報を処理して炉内装入物の堆積表面全体の3次元形状を求めて表示するコンピュータを備えたことを特徴とする高炉内装入物の表面形状測定装置。
A space that can be shut off and communicated with the inside of the furnace by a shielding device is provided in the furnace wall under the raw material charging device at the top of the blast furnace furnace, and in this space, a fixed base having a slide arm that can be moved back and forth in the furnace, , Placed at the tip of the slide arm, can be rotated / stopped at a set angle pitch on a horizontal two-dimensional plane, and loaded at a set angle pitch by scanning a laser beam on the vertical two-dimensional plane at each stop position. At each measurement point on a vertical two-dimensional plane by a laser distance meter that measures the distance to the object deposition surface, a shield control device, a slide arm, a drive control device that controls the laser distance meter, and a laser distance meter in the furnace The distance information to the charge accumulation surface, the angle information of each measurement point, and the angle information of each stop position on the horizontal two-dimensional plane are processed to obtain the three-dimensional shape of the entire deposit surface of the furnace interior charge. Display the computer Profilometer of the blast furnace interior container, characterized in that there was e.
JP2004301883A 2004-10-15 2004-10-15 Method and apparatus for measuring surface shape of blast furnace interior Active JP4383313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004301883A JP4383313B2 (en) 2004-10-15 2004-10-15 Method and apparatus for measuring surface shape of blast furnace interior

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004301883A JP4383313B2 (en) 2004-10-15 2004-10-15 Method and apparatus for measuring surface shape of blast furnace interior

Publications (2)

Publication Number Publication Date
JP2006112966A true JP2006112966A (en) 2006-04-27
JP4383313B2 JP4383313B2 (en) 2009-12-16

Family

ID=36381586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004301883A Active JP4383313B2 (en) 2004-10-15 2004-10-15 Method and apparatus for measuring surface shape of blast furnace interior

Country Status (1)

Country Link
JP (1) JP4383313B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069446A (en) * 2006-09-12 2008-03-27 China Steel Corp Method for measuring profile of reacting material layer, and supplying route of reacting material to blast furnace
US7879133B2 (en) 2007-05-25 2011-02-01 China Steel Corporation Method for measuring an outline of a stratum of a reactant and a path of charging the reactant in a blast furnace
CN102312031A (en) * 2010-06-29 2012-01-11 鞍钢股份有限公司 Device and method for measuring furnace top charge level of bell-less blast furnace
JP2012093337A (en) * 2010-10-28 2012-05-17 China Steel Corp Method for measuring width of flow of materials
JP2014080687A (en) * 2008-12-19 2014-05-08 Z & J Technologies Gmbh Measuring device and method for furnace, furnace with the same and inclination device for at least one measuring probe
TWI450971B (en) * 2011-05-24 2014-09-01 China Steel Corp Method for measuring material trajectory in blast furnace
CN105483305A (en) * 2016-01-12 2016-04-13 北京科技大学 Material bed distribution visualization method based on blast furnace radar data
JP2017512300A (en) * 2014-01-20 2017-05-18 ティエムティ − タッピング メジャーリング テクノロジー エスエイアールエル Surface shape measuring device for blast furnace interior
KR20180009781A (en) * 2016-03-25 2018-01-29 가부시키가이샤 와데코 Blast furnace charge-material surface detection device and detection method
JP2020008430A (en) * 2018-07-09 2020-01-16 株式会社ミツトヨ Optical measuring device
CN114008448A (en) * 2019-04-28 2022-02-01 应达公司 Electrical induction heating furnace refractory life cycle wear imaging and processing
KR20220032707A (en) * 2020-09-08 2022-03-15 주식회사 포스코 Raw material metering system and metering method thereof
CN114854917A (en) * 2022-03-29 2022-08-05 马鞍山钢铁股份有限公司 Blast furnace burden surface shape measuring and analyzing method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069446A (en) * 2006-09-12 2008-03-27 China Steel Corp Method for measuring profile of reacting material layer, and supplying route of reacting material to blast furnace
JP4691068B2 (en) * 2006-09-12 2011-06-01 中國鋼鐵股▲ふん▼有限公司 Method for measuring the outer shape of the reactant layer and the supply path of the reactant to the blast furnace
US7879133B2 (en) 2007-05-25 2011-02-01 China Steel Corporation Method for measuring an outline of a stratum of a reactant and a path of charging the reactant in a blast furnace
JP2014080687A (en) * 2008-12-19 2014-05-08 Z & J Technologies Gmbh Measuring device and method for furnace, furnace with the same and inclination device for at least one measuring probe
CN102312031A (en) * 2010-06-29 2012-01-11 鞍钢股份有限公司 Device and method for measuring furnace top charge level of bell-less blast furnace
JP2012093337A (en) * 2010-10-28 2012-05-17 China Steel Corp Method for measuring width of flow of materials
TWI450971B (en) * 2011-05-24 2014-09-01 China Steel Corp Method for measuring material trajectory in blast furnace
JP2017512300A (en) * 2014-01-20 2017-05-18 ティエムティ − タッピング メジャーリング テクノロジー エスエイアールエル Surface shape measuring device for blast furnace interior
CN105483305A (en) * 2016-01-12 2016-04-13 北京科技大学 Material bed distribution visualization method based on blast furnace radar data
KR20180009781A (en) * 2016-03-25 2018-01-29 가부시키가이샤 와데코 Blast furnace charge-material surface detection device and detection method
KR102074877B1 (en) * 2016-03-25 2020-02-07 가부시키가이샤 와데코 Blast furnace charge-material surface detection device and detection method
JP2020008430A (en) * 2018-07-09 2020-01-16 株式会社ミツトヨ Optical measuring device
JP7074400B2 (en) 2018-07-09 2022-05-24 株式会社ミツトヨ Optical measuring device
CN114008448A (en) * 2019-04-28 2022-02-01 应达公司 Electrical induction heating furnace refractory life cycle wear imaging and processing
KR20220032707A (en) * 2020-09-08 2022-03-15 주식회사 포스코 Raw material metering system and metering method thereof
KR102463017B1 (en) * 2020-09-08 2022-11-03 주식회사 포스코 Raw material metering system and metering method thereof
CN114854917A (en) * 2022-03-29 2022-08-05 马鞍山钢铁股份有限公司 Blast furnace burden surface shape measuring and analyzing method
CN114854917B (en) * 2022-03-29 2024-04-12 马鞍山钢铁股份有限公司 Blast furnace burden surface shape measurement and analysis method

Also Published As

Publication number Publication date
JP4383313B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
JP4383313B2 (en) Method and apparatus for measuring surface shape of blast furnace interior
JP5412947B2 (en) Apparatus and method for measuring profile of blast furnace interior
JP7176560B2 (en) Blast furnace operation method
RU2753937C1 (en) Device for blast furnace and method for performing operation for blast furnace
JP5220690B2 (en) Apparatus and method for measuring profile of blast furnace interior
JP6447470B2 (en) Charge distribution control method in blast furnace
JP2015178930A (en) Furnace refractory product life prediction method
JP6848652B2 (en) Converter refractory profile measuring device and converter refractory profile measuring method
JP3855639B2 (en) Profile measurement method of blast furnace interior entrance surface
JP6327383B1 (en) Charge distribution control method in blast furnace
JPH10103934A (en) Profile measuring method and apparatus for charge
JP5633121B2 (en) Method for producing sintered ore
JP7151228B2 (en) Blast furnace operation method
JPH07179916A (en) Bell-less type furnace top charging device for vertical furnace
JP4155229B2 (en) Method for measuring lining brick thickness of chaotic vehicle, measuring device and method for operating chaotic vehicle
JP2006265647A (en) Method for determining distribution state of charged material in blast furnace
JP2017128783A (en) Display method of blast furnace profile meter and charging method of charging material to blast furnace
JP2008116219A (en) Apparatus and method for measuring displacement of furnace wall of carbonization chamber in chamber type coke furnace
JPH10237517A (en) Instrument for measuring profile of furnace wall and measuring using the instrument
JP2022173810A (en) Deposition shape measurement device for blast furnace burden, and blast furnace
JPH09235606A (en) Method for measuring profile of inner wall of blast furnace
JPS62224608A (en) Operating method for bell-less type blast furnace
JP2000008105A (en) Control of distribution of charged material from furnace top of blast furnace
JP2022137869A (en) Blast furnace operation method, charging method control device and charging method control program
JP2023057594A (en) Blast furnace operation method, charging method control device, and charging method control program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4383313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350