TWI450971B - Method for measuring material trajectory in blast furnace - Google Patents

Method for measuring material trajectory in blast furnace Download PDF

Info

Publication number
TWI450971B
TWI450971B TW100118155A TW100118155A TWI450971B TW I450971 B TWI450971 B TW I450971B TW 100118155 A TW100118155 A TW 100118155A TW 100118155 A TW100118155 A TW 100118155A TW I450971 B TWI450971 B TW I450971B
Authority
TW
Taiwan
Prior art keywords
blast furnace
grid
trajectory
coordinates
image
Prior art date
Application number
TW100118155A
Other languages
Chinese (zh)
Other versions
TW201247880A (en
Inventor
Yenting Chen
Shanwen Du
Shihkang Kuo
Jiashyan Shiau
Original Assignee
China Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Steel Corp filed Critical China Steel Corp
Priority to TW100118155A priority Critical patent/TWI450971B/en
Publication of TW201247880A publication Critical patent/TW201247880A/en
Application granted granted Critical
Publication of TWI450971B publication Critical patent/TWI450971B/en

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

高爐之落料軌跡的量測方法Measuring method for blanking trajectory of blast furnace

本發明是有關於一種量測方法,且特別是有關於一種高爐(Blast Furnace)之落料軌跡的量測方法。The invention relates to a measuring method, and in particular to a measuring method of a blanking trajectory of a blast furnace (Blast Furnace).

高爐的佈料操作模式會影響料層結構與爐氣的分佈。因此,若能提供佈料槽在各角度落料時,料流之外緣與內緣曲線,即可定義出料流的中心線。而後,可從所定義出之料流中心線了解料流的落點資訊,藉此可有助於現場操作人員控制料面的幾何形狀,進而改善料面的透氣性、增加氣體的使用率、穩定高爐壁的熱負荷。因此,高爐佈料時之料流軌跡對於提升高爐之生產效率而言係相當重要的資訊。The fabric operation mode of the blast furnace affects the distribution of the layer structure and the furnace gas. Therefore, if the outer edge of the stream and the inner edge curve can be provided when the material groove is filled at each angle, the center line of the stream can be defined. The information on the flow point of the stream can then be obtained from the defined centerline of the stream, which can help the field operator to control the geometry of the material surface, thereby improving the gas permeability of the material surface and increasing the gas utilization rate. Stabilize the thermal load on the blast furnace wall. Therefore, the flow path of the blast furnace fabric is a very important information for improving the production efficiency of the blast furnace.

目前,有數種量測高爐之落料軌跡的方式。第一種方式係由Gao,Z.K.等人在2001年煉鋼會議論文集(Ironmaking Conference Proceedings)中的第179-184頁中所提出之“The Blowin Charging Measurement of 2500M3 BF at Shanghai No. 1 Iron & Steel(Group) Co. Ltd.”。此種方式係一種接觸式的量測方式。此方法係在高爐內架設十字網格,來當作座標基準,藉以了解高爐內落料的位置。然而,由於此種方式需設支撐架來固定十字網格,因此當佈料槽橫越支撐架時,落料會與支撐架直接碰觸,而會影響現場預測的落點位置。At present, there are several ways to measure the trajectory of the blast furnace. The first method is “The Blowin Charging Measurement of 2500M3 BF at Shanghai No. 1 Iron &> by Gao, ZK et al., 2001, Ironmaking Conference Proceedings. Steel (Group) Co. Ltd.". This method is a contact measurement method. This method is to set up a cross grid in the blast furnace to serve as a coordinate reference to understand the position of the blank in the blast furnace. However, since this method requires a support frame to fix the cross grid, when the cloth groove traverses the support frame, the blanking will directly contact the support frame, which will affect the predicted landing position on the spot.

第二種方式係由Matsui,Y.等人在2002年日本鐵鋼協會講演論文集(ISIJ International)第43卷第1159-1166頁中所提出之“Stabilizing Burden Trajectory into Blast Furnace Top under High Ore to Coke Ratio Operation”。此種方式也是一種接觸式的量測方式,其係在高爐零料位線的位置設置一接料盒,以此接料盒所承接的料重來決定爐料軌跡。然而,類似地,佈料槽落料時,落料會與接料盒碰觸,進而影響現場預測的落點位置。The second method is “Stabilizing Burden Trajectory into Blast Furnace Top under High Ore to” by Matsui, Y. et al., 2002, IEIJ International, Vol. 43, pp. 1159-1166. Coke Ratio Operation". This method is also a contact type measuring method, which is to set a receiving box at the position of the blast furnace zero material level line, and the material weight of the receiving box determines the material trajectory. However, similarly, when the fabric trough is blanked, the blanking material will touch the receiving box, thereby affecting the predicted landing position on the spot.

第三種方式係由Steyls,D.等人在法國Sollac鋼鐵公司之技術資料中所提出之“Measurement of Material Trajecties in Bell-less Top Charging”。此種方式同樣也是一種接觸式的量測方式。在此方式中,量測桿於高爐外連接一荷重元與相關之記錄系統。佈料時,爐料會撞擊到高爐內之量測桿,不同位置將會產生不同強度的荷重信號。操作人員依此來決定爐料落點,進而模擬出料流軌跡。然而,同樣地,佈料層落料時,爐料會撞擊到高爐內的量測桿,進而影響現場預測的落點位置。The third method is "Measurement of Material Trajecties in Bell-less Top Charging" proposed by Steyls, D. et al. in the technical data of Sollac Steel, France. This method is also a contact measurement method. In this manner, the measuring rod is connected to a load cell and associated recording system outside the blast furnace. When the cloth is clothed, the charge will hit the measuring rod in the blast furnace, and different positions will generate load signals of different strengths. The operator then determines the point at which the charge falls and simulates the flow path. However, similarly, when the cloth layer is blanked, the charge will hit the measuring rod in the blast furnace, thereby affecting the spot position predicted on the spot.

第四種方式係由北京神網創新科技有限公司之高征鎧與高泰於2010年所提出之「中龍一號高爐開爐落料量測初步報告」。此種方式係一種非接觸式的雷射網格法。在此方式中,以料流通過雷射網格平面時,雷射光束打在料流上的亮點,來做為料流外型量測的依據。The fourth method is the “Preliminary Report on the Opening and Unloading Measurement of Zhonglong No. 1 Blast Furnace” proposed by Gao Zhengyu and Gaotai of Beijing Shenwang Innovation Technology Co., Ltd. in 2010. This method is a non-contact laser grid method. In this way, when the stream passes through the plane of the laser grid, the laser beam hits the bright spot on the stream as the basis for the measurement of the flow profile.

請參照第1A圖與第1B圖,其係分別繪示一種高爐內之雷射網格影像、以及對應於第1A圖之高爐雷射網格影像的高爐機械圖。在第四種方式之高爐落料軌跡的非接觸量測方法中,係使用雷射網格來進行高爐內料流軌跡的量測。此非接觸量測方法係先將二台雷射發射器102與104分別裝設在高爐108之東人孔110與西人孔112中。接著,將一台攝影機(未繪示)裝設於高爐108之北邊人孔(未繪示)中。Please refer to FIG. 1A and FIG. 1B , which respectively show a laser grid image in a blast furnace and a blast furnace mechanical diagram corresponding to the blast furnace laser grid image of FIG. 1A . In the fourth method of the non-contact measurement method of the blast furnace blanking trajectory, the laser grid is used to measure the flow trajectory in the blast furnace. The non-contact measurement method first installs two laser emitters 102 and 104 in the east hole 110 and the west hole 112 of the blast furnace 108, respectively. Next, a camera (not shown) is installed in a manhole (not shown) in the north side of the blast furnace 108.

此二雷射發射器102與104分別從東人孔110與西人孔112發射雷射光束114與116,再利用設置於北邊人孔中的攝影機進行取像,所取得之影像如第1A圖之雷射網格影像100a。這些雷射光束114與116相互交叉而在高爐108內部形成參考座標118,如第1A圖之雷射網格影像100a與第1B圖之對應高爐機械圖100b所示。此參考座標118垂直地面,且通過高爐108之中心線。The two laser emitters 102 and 104 respectively emit laser beams 114 and 116 from the east hole 110 and the west hole 112, and then take images by using a camera disposed in the north hole, and the obtained image is as shown in FIG. 1A. Laser grid image 100a. These laser beams 114 and 116 intersect each other to form a reference coordinate 118 inside the blast furnace 108, as shown in the laser grid image 100a of Fig. 1A and the corresponding blast furnace mechanical diagram 100b of Fig. 1B. This reference coordinate 118 is perpendicular to the ground and passes through the centerline of the blast furnace 108.

當高爐108之佈料槽106從高爐108之上方佈料時,佈料槽106會以同心圓的方式旋轉,料流120會切斷雷射光束114與116所形成之雷射網格。此時,雷射光束114與116會打在料流120上,因而形成數個亮點122,如第1A圖所示。此方法接著藉由人工判斷的方式,將第1A圖之雷射網格影像100a上的亮點122位置,對應地描繪至第1B圖的高爐機械圖100b上,而完成高爐108之料流120的軌跡量測程序。When the fabric trough 106 of the blast furnace 108 is clothed from above the blast furnace 108, the fabric trough 106 rotates in a concentric manner, and the stream 120 cuts off the laser grid formed by the laser beams 114 and 116. At this point, the laser beams 114 and 116 will strike the stream 120, thereby forming a plurality of bright spots 122, as shown in FIG. 1A. The method then manually traces the position of the bright spot 122 on the laser grid image 100a of FIG. 1A to the blast furnace mechanical diagram 100b of FIG. 1B, and completes the stream 120 of the blast furnace 108. Track measurement procedure.

然而,由於將料流120之軌跡從雷射網格影像100a描繪至高爐機械圖100b上的座標轉換步驟完全由人為判斷,因此這樣的方式不僅耗時,而且由不同人所進行之描繪結果可能不一致,故精確性不佳。However, since the coordinate conversion process of drawing the trajectory of the stream 120 from the laser grid image 100a to the blast furnace mechanical diagram 100b is entirely artificially determined, such a method is not only time consuming, but also the rendering result by different people may be Inconsistent, so the accuracy is not good.

因此,本發明之一態樣就是在提供一種高爐之落料軌跡的量測方法,其係利用平面轉換的方式進行影像之網格座標與高爐機械圖之座標之間的轉換。故,將影像上之料流軌跡座標對應至高爐機械圖上的時間可獲得大幅縮減。Therefore, one aspect of the present invention is to provide a measuring method for the blanking trajectory of a blast furnace, which uses a plane conversion method to convert between the grid coordinates of the image and the coordinates of the mechanical map of the blast furnace. Therefore, the time required to map the flow path coordinates on the image to the blast furnace mechanical map can be greatly reduced.

本發明之另一態樣是在提供一種高爐之落料軌跡的量測方法,其可有效提升高爐之料流軌跡量測的精確性。Another aspect of the present invention is to provide a measuring method for the blanking trajectory of a blast furnace, which can effectively improve the accuracy of the trajectory measurement of the blast furnace.

本發明之又一態樣是在提供一種高爐之落料軌跡的量測方法,可提供高準確度之料流外緣曲線與料流內緣曲線,而可協助高爐之現場工作人員設定所需之料面形狀,進而可提升高爐之生產效率。Another aspect of the present invention is to provide a measuring method for a blanking trajectory of a blast furnace, which can provide a high-accuracy flow curve of the outer edge of the flow and a curve of the inner edge of the flow, and can assist the field staff of the blast furnace to set the required The shape of the material surface can further improve the production efficiency of the blast furnace.

根據本發明之上述目的,提出一種高爐之落料軌跡的量測方法,其包含下列步驟。利用複數個光束在高爐內形成一網格平面,其中此網格平面包含至少四網格交點。利用一攝影機拍攝高爐內部,以獲得前述之網格平面之影像。在高爐之一機械圖上定義出複數個交點分別對應於前述影像中之網格平面的網格交點。計算這些交點之座標與對應之網格交點之座標之間之一對應參數。從前述之影像中取得光束打在一料流之複數個外緣亮點座標與複數個內緣亮點座標。利用前述之對應參數,分別計算這些外緣亮點座標與內緣亮點座標在機械圖中之複數個對應外緣亮點座標與複數個對應內緣亮點座標。分別對這些對應外緣亮點座標與對應內緣亮點座標進行一曲線擬合處理,以獲得前述料流之一外緣軌跡曲線與一內緣軌跡曲線。According to the above object of the present invention, a measuring method of a blanking trajectory of a blast furnace is proposed, which comprises the following steps. A plurality of beams are used to form a grid plane in the blast furnace, wherein the grid plane contains at least four grid intersections. The inside of the blast furnace is photographed by a camera to obtain an image of the aforementioned grid plane. A plurality of intersection points are defined on a mechanical map of the blast furnace corresponding to grid intersections of the grid planes in the image. Calculate one of the parameters between the coordinates of these intersections and the coordinates of the corresponding grid intersection. From the foregoing image, a plurality of outer edge bright point coordinates and a plurality of inner edge bright point coordinates of the light beam are struck in a stream. Using the aforementioned corresponding parameters, a plurality of corresponding outer edge bright point coordinates and a plurality of corresponding inner edge bright point coordinates of the outer edge bright point coordinates and the inner edge bright point coordinates in the mechanical map are respectively calculated. A curve fitting process is performed on the corresponding outer edge bright point coordinates and the corresponding inner edge bright point coordinates to obtain an outer edge track curve and an inner edge track curve of the foregoing stream.

依據本發明之一實施例,上述之光束係由至少二強光光源提供。According to an embodiment of the invention, the beam of light is provided by at least two strong light sources.

依據本發明之另一實施例,上述之強光光源包含雷射發射器。According to another embodiment of the invention, the above-described intense light source comprises a laser emitter.

依據本發明之又一實施例,上述之曲線擬合處理係利用一電腦設備進行。According to still another embodiment of the present invention, the curve fitting process described above is performed using a computer device.

依據本發明之再一實施例,上述之曲線擬合處理係利用一二次曲線方程式進行擬合。According to still another embodiment of the present invention, the curve fitting process described above is performed using a quadratic curve equation.

請一併參照第2圖、第3A圖與第3B圖,其係分別繪示依照本發明一實施方式的一種高爐之落料軌跡的量測方法的流程圖、依照本發明一實施方式的一種高爐內之網格影像、以及對應於第3A圖之高爐網格影像的高爐機械圖。在本實施方式中,進行高爐之落料軌跡的量測方法200時,先如步驟202所述,利用例如至少二強光光源302與304,分別在高爐308內形成數個光束314與316,如第3A圖與第3B圖所示。這些光束314與316相互交叉而在高爐308內部定義出網格平面320。在一示範實施例中,強光光源302與304可例如為雷射發射器。Referring to FIG. 2, FIG. 3A and FIG. 3B together, FIG. 2 is a flow chart showing a method for measuring a blanking trajectory of a blast furnace according to an embodiment of the present invention, and a flow chart according to an embodiment of the present invention. The grid image in the blast furnace and the blast furnace mechanical map corresponding to the blast furnace grid image in Fig. 3A. In the present embodiment, when the measurement method 200 of the blanking trajectory of the blast furnace is performed, first, as described in step 202, a plurality of light beams 314 and 316 are respectively formed in the blast furnace 308 by using, for example, at least two strong light sources 302 and 304. As shown in Figures 3A and 3B. These beams 314 and 316 intersect each other to define a grid plane 320 within the blast furnace 308. In an exemplary embodiment, intense light sources 302 and 304 can be, for example, laser emitters.

接著,如量測方法200之步驟204所述,在高爐308之可拍攝到此網格平面320之全景的位置上,裝設攝影機(未繪示)。並利用此攝影機來拍攝高爐308之內部,藉此獲得光束314與316、及這些光束314與316所構成之網格平面320的影像。Next, as described in step 204 of the metrology method 200, a camera (not shown) is mounted at a location where the blast furnace 308 can capture a panoramic view of the grid plane 320. The camera is used to capture the interior of the blast furnace 308, thereby obtaining images of the beams 314 and 316, and the grid planes 320 formed by the beams 314 and 316.

接下來,在第3A圖之網格影像300a的網格平面320中標示出至少四點的網格交點318。在第3A圖所示之實施例中,於網格影像300a的網格平面320中共標示出十三個網格交點318。而後,如量測方法200之步驟206所述,在高爐308之機械圖300b上標示並定義出數個交點322,如第3B圖所示。其中,這些交點322之位置分別對應於網格影像300a中之網格平面320上的網格交點318。Next, at least four grid intersections 318 are marked in the grid plane 320 of the grid image 300a of FIG. 3A. In the embodiment illustrated in FIG. 3A, thirteen grid intersections 318 are collectively indicated in the grid plane 320 of the grid image 300a. Then, as described in step 206 of the metrology method 200, a plurality of intersections 322 are labeled and defined on the mechanical map 300b of the blast furnace 308, as shown in FIG. 3B. The positions of the intersections 322 correspond to the grid intersections 318 on the grid plane 320 in the grid image 300a, respectively.

接著,如測方法200之步驟208所述,計算機械圖300b的這些交點322之座標與其所對應之網格影像300a上之網格交點318的座標之間的對應參數。在此計算步驟中,可先令網格影像300a上之網格交點318的平面座標為,其中i=1~N,而N為網格交點318的個數。在第3A圖之示範實施例中,網格交點318的個數為十三個,因此N為13。再令高爐308之機械圖300b上的對應交點322的座標為,其中由於交點322對應於網格交點318,因此i=1~N,N為網格交點318的個數,同樣也為交點322之個數。網格交點318之座標與交點322之座標之間的對應關係可表示為a i b i 。網格交點318之座標與交點322之座標中每一組對應可以下列數學方程式(1)表示:Next, as described in step 208 of method 200, the corresponding parameters between the coordinates of the intersections 322 of the mechanical map 300b and the coordinates of the grid intersections 318 on the corresponding grid image 300a are calculated. In this calculation step, the plane coordinates of the grid intersection point 318 on the grid image 300a may be first determined as Where i = 1~N and N is the number of grid intersections 318. In the exemplary embodiment of FIG. 3A, the number of grid intersections 318 is thirteen, so N is 13. The coordinates of the corresponding intersection 322 on the mechanical map 300b of the blast furnace 308 are again Since the intersection 322 corresponds to the grid intersection 318, i=1~N, where N is the number of grid intersections 318, which is also the number of intersections 322. The correspondence between the coordinates of the grid intersection 318 and the coordinates of the intersection 322 can be expressed as a i b i . The coordinates of the grid intersection 318 and the coordinates of the intersection 322 can be represented by the following mathematical equation (1):

b i =Ha i  (1)b i =Ha i (1)

其中,由於a i 與b i 均為一3×1矩陣,因此H係一3×3矩陣,且H即係用以表示a i b i 之間轉換的對應參數。在一些實施例中,此對應參數H可以一般之直接線性轉換法(Direct Linear Transformation;DLT)或其他非線性最佳化的方式來求解。Wherein, since a i and b i are both a 3×1 matrix, H is a 3×3 matrix, and H is used to represent a i Corresponding parameters for conversion between b i . In some embodiments, this corresponding parameter H can be solved in a general direct linear transformation (DLT) or other non-linear optimization.

接下來,請參照第4A圖與第4B圖,其係分別繪示依照本發明一實施方式的一種佈料槽佈料時之高爐內的網格影像、以及對應於第4A圖之高爐網格影像的高爐機械圖。當高爐308之佈料槽306從高爐308之上方佈料時,佈料槽306會以同心圓的方式旋轉,料流324會切斷光束314與316所形成之網格平面320。此時,光束314與316會打在料流324上,因而形成數個外緣亮點310與數個內緣亮點326,如第3A圖所示。量測方法200接著如步驟210所述,根據網格影像300a,擷取光束314與316打在料流324所形成之數個外緣亮點310與內緣亮點326,並找出這些外緣亮點310與內緣亮點326在網格平面320上的座標。Next, please refer to FIG. 4A and FIG. 4B , which respectively illustrate a grid image in a blast furnace and a blast furnace grid corresponding to FIG. 4A according to an embodiment of the present invention. Image of the blast furnace mechanical map. When the fabric trough 306 of the blast furnace 308 is clothed from above the blast furnace 308, the fabric trough 306 will rotate in a concentric manner, and the stream 324 will cut the grid plane 320 formed by the beams 314 and 316. At this point, beams 314 and 316 are struck on stream 324, thereby forming a plurality of outer edge bright spots 310 and a plurality of inner edge bright spots 326, as shown in FIG. 3A. The measurement method 200 then, as described in step 210, according to the grid image 300a, the captured beams 314 and 316 strike the plurality of outer edge bright spots 310 and inner edge bright spots 326 formed by the stream 324, and find out the outer edge bright spots. The coordinates of 310 and inner edge highlight 326 on grid plane 320.

接著,如量測方法200之步驟212所述,透過方程式(1)b i =Ha i ,並利用步驟208所計算出之對應參數H、以及外緣亮點310與內緣亮點326在網格平面320上的座標(即方程式(1)b i =Ha i 中的a i ),而分別計算出網格平面320上之外緣亮點310與內緣亮點326之座標在第4B圖之高爐308之機械圖300b中之對應外緣亮點312與對應內緣亮點328的座標。Next, as described in step 212 of the metrology method 200, pass the equation (1) b i =Ha i , and use the corresponding parameter H calculated in step 208, and the outer edge bright spot 310 and the inner edge bright spot 326 in the grid plane. coordinates in 320 (i.e., equation (1) b i = Ha i is a i), respectively calculate the highlight edge 310 and the inner edge 326 of the highlight coordinate plane 320 outside the grid of Figure 4B in the blast furnace 308 The corresponding outer edge bright spot 312 in the mechanical map 300b and the coordinate corresponding to the inner edge bright spot 328.

然後,如量測方法200之步驟214所述,利用例如電腦設備分別對機械圖300b中之對應外緣亮點312的座標與對應內緣亮點328的座標進行曲線擬合處理,藉以獲得料流324之外緣軌跡曲線330與內緣軌跡曲線332,如第4B圖所示。在一實施例中,可利用二次曲線方程式來進行料流324之外緣軌跡曲線330與內緣軌跡曲線332的擬合處理。因此,之外緣軌跡曲線330與內緣軌跡曲線332可分別以一個拋物線的二次多項式來加以表示。Then, as described in step 214 of the metrology method 200, the coordinates of the corresponding outer edge bright spot 312 in the mechanical map 300b and the coordinates of the corresponding inner edge bright spot 328 are respectively subjected to curve fitting processing by using, for example, a computer device, to obtain a stream 324. The outer edge trajectory curve 330 and the inner edge trajectory curve 332 are as shown in FIG. 4B. In an embodiment, the quadratic equation can be used to perform the fitting process of the outer edge trajectory curve 330 and the inner edge trajectory curve 332 of the stream 324. Therefore, the outer edge trajectory curve 330 and the inner edge trajectory curve 332 can be represented by a parabolic quadratic polynomial, respectively.

由上述本發明之實施方式可知,本發明之一優點為本發明之高爐之落料軌跡的量測方法係利用平面轉換的方式進行影像之網格座標與高爐機械圖之座標之間的轉換。因此,將影像上之料流軌跡座標對應至高爐機械圖上的時間可獲得大幅縮減。It can be seen from the above embodiments of the present invention that one of the advantages of the present invention is that the measurement method of the blanking trajectory of the blast furnace of the present invention uses a plane conversion method to convert between the grid coordinates of the image and the coordinates of the mechanical map of the blast furnace. Therefore, the time required to map the flow path coordinates on the image to the blast furnace mechanical map can be greatly reduced.

由上述本發明之實施方式可知,本發明之另一優點為在本發明之高爐之落料軌跡的量測方法中,座標轉換係利用平面轉換方式,可有效避免人為判斷的誤差,因此運用本發明之方法可有效提升高爐之料流軌跡量測的精確性。According to the embodiment of the present invention, another advantage of the present invention is that in the measuring method of the blanking trajectory of the blast furnace of the present invention, the coordinate conversion system uses the plane conversion method, which can effectively avoid the error of human judgment, so the application of the present invention The method of the invention can effectively improve the accuracy of the trajectory measurement of the blast furnace.

由上述本發明之實施方式可知,本發明之又一優點為本發明之高爐之落料軌跡的量測方法可提供高準確度之料流外緣曲線與料流內緣曲線,而利用料流外緣曲線與料流內緣曲線可協助高爐之現場工作人員設定所需之料面形狀,進而可提升高爐之生產效率。According to the embodiment of the present invention, another advantage of the present invention is that the measurement method of the blanking trajectory of the blast furnace of the present invention can provide a high-accuracy flow curve of the outer edge of the flow and the inner edge of the flow, and utilize the flow. The outer edge curve and the inner curve of the flow line can assist the field staff of the blast furnace to set the required material surface shape, thereby improving the production efficiency of the blast furnace.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何在此技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the present invention has been described above by way of example, it is not intended to be construed as a limitation of the scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

100a...雷射網格影像100a. . . Laser grid image

100b...高爐機械圖100b. . . Blast furnace mechanical drawing

102...雷射發射器102. . . Laser transmitter

104...雷射發射器104. . . Laser transmitter

106...佈料槽106. . . Cloth trough

108...高爐108. . . blast furnace

110...東人孔110. . . East manhole

112...西人孔112. . . Western manhole

114...雷射光束114. . . Laser beam

116...雷射光束116. . . Laser beam

118...參考座標118. . . Reference coordinates

120...料流120. . . Stream

122...亮點122. . . Highlight

200...量測方法200. . . Measurement method

202...步驟202. . . step

204...步驟204. . . step

206...步驟206. . . step

208...步驟208. . . step

210...步驟210. . . step

212...步驟212. . . step

214...步驟214. . . step

300a...網格影像300a. . . Grid image

300b...機械圖300b. . . Mechanical drawing

302...強光光源302. . . Strong light source

304...強光光源304. . . Strong light source

306...佈料槽306. . . Cloth trough

308...高爐308. . . blast furnace

310...外緣亮點310. . . Outer edge highlight

312...對應外緣亮點312. . . Corresponding to the outer edge highlights

314...光束314. . . beam

316...光束316. . . beam

318...網格交點318. . . Grid intersection

320...網格平面320. . . Grid plane

322...交點322. . . Intersection

324...料流324. . . Stream

326...內緣亮點326. . . Inner edge highlights

328...對應內緣亮點328. . . Corresponding to the inner edge highlights

330...外緣軌跡曲線330. . . Rim trajectory curve

332...內緣軌跡曲線332. . . Inner edge trajectory curve

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:The above and other objects, features, advantages and embodiments of the present invention will become more apparent and understood.

第1A圖係繪示一種高爐內之雷射網格影像。Figure 1A shows a laser grid image in a blast furnace.

第1B圖係繪示對應於第1A圖之高爐雷射網格影像的高爐機械圖。Fig. 1B is a blast furnace mechanical diagram corresponding to the blast furnace laser grid image of Fig. 1A.

第2圖係繪示依照本發明一實施方式的一種高爐之落料軌跡的量測方法的流程圖。2 is a flow chart showing a method for measuring a blanking trajectory of a blast furnace according to an embodiment of the present invention.

第3A圖係繪示依照本發明一實施方式的一種高爐內之網格影像。FIG. 3A is a view showing a grid image in a blast furnace according to an embodiment of the present invention.

第3B圖係繪示對應於第3A圖之高爐網格影像的高爐機械圖。Fig. 3B is a mechanical view of the blast furnace corresponding to the blast furnace grid image of Fig. 3A.

第4A圖係繪示依照本發明一實施方式的一種佈料槽佈料時之高爐內的網格影像。Fig. 4A is a view showing a mesh image in a blast furnace in the case of a cloth groove cloth according to an embodiment of the present invention.

第4B圖係繪示對應於第4A圖之高爐網格影像的高爐機械圖。Figure 4B is a blast furnace mechanical diagram corresponding to the blast furnace grid image of Figure 4A.

200...量測方法200. . . Measurement method

202...步驟202. . . step

204...步驟204. . . step

206...步驟206. . . step

208...步驟208. . . step

210...步驟210. . . step

212...步驟212. . . step

214...步驟214. . . step

Claims (5)

一種高爐之落料軌跡的量測方法,包含:利用複數個光束在該高爐內形成一網格平面,其中該網格平面包含至少四網格交點;利用一攝影機拍攝該高爐內部,以獲得該網格平面之一影像;在該高爐之一機械圖上定義出複數個交點分別對應於該影像中之該網格平面的該些網格交點;計算該些交點之座標與對應之該些網格交點之座標之間之一對應參數;從該影像中取得該些光束打在一料流之複數個外緣亮點座標與複數個內緣亮點座標;利用該對應參數,分別計算該些外緣亮點座標與該些內緣亮點座標在該機械圖中之複數個對應外緣亮點座標與複數個對應內緣亮點座標;以及分別對該些對應外緣亮點座標與該些對應內緣亮點座標進行一曲線擬合處理,以獲得該料流之一外緣軌跡曲線與一內緣軌跡曲線。A method for measuring a blanking trajectory of a blast furnace, comprising: forming a grid plane in the blast furnace by using a plurality of beams, wherein the grid plane comprises at least four grid intersections; and photographing the interior of the blast furnace by using a camera to obtain the An image of a grid plane; defining, at a mechanical map of the blast furnace, a plurality of intersection points respectively corresponding to the grid intersections of the grid planes in the image; calculating coordinates of the intersection points and corresponding to the meshes Corresponding parameters between the coordinates of the intersection point; obtaining a plurality of outer edge bright point coordinates and a plurality of inner edge bright point coordinates of the light beams in the image from the image; using the corresponding parameters, respectively calculating the outer edges a plurality of corresponding outer edge bright point coordinates and a plurality of corresponding inner edge bright point coordinates of the bright point coordinates and the inner edge bright point coordinates in the mechanical figure; and the corresponding outer edge bright point coordinates and the corresponding inner edge bright point coordinates respectively A curve fitting process is performed to obtain an outer edge trajectory curve and an inner edge trajectory curve of the stream. 如請求項1所述之高爐之落料軌跡的量測方法,其中該些光束係由至少二強光光源提供。A method of measuring a blanking trajectory of a blast furnace according to claim 1, wherein the beams are provided by at least two strong light sources. 如請求項2所述之高爐之落料軌跡的量測方法,其中該些強光光源包含雷射發射器。A method of measuring a blanking trajectory of a blast furnace according to claim 2, wherein the strong light sources comprise a laser emitter. 如請求項1所述之高爐之落料軌跡的量測方法,其中該曲線擬合處理係利用一電腦設備進行。The measuring method of the blanking trajectory of the blast furnace according to claim 1, wherein the curve fitting processing is performed by using a computer device. 如請求項1所述之高爐之落料軌跡的量測方法,其中該曲線擬合處理係利用一二次曲線方程式進行擬合。The method for measuring a blanking trajectory of a blast furnace according to claim 1, wherein the curve fitting process is performed by using a quadratic curve equation.
TW100118155A 2011-05-24 2011-05-24 Method for measuring material trajectory in blast furnace TWI450971B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100118155A TWI450971B (en) 2011-05-24 2011-05-24 Method for measuring material trajectory in blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100118155A TWI450971B (en) 2011-05-24 2011-05-24 Method for measuring material trajectory in blast furnace

Publications (2)

Publication Number Publication Date
TW201247880A TW201247880A (en) 2012-12-01
TWI450971B true TWI450971B (en) 2014-09-01

Family

ID=48138543

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100118155A TWI450971B (en) 2011-05-24 2011-05-24 Method for measuring material trajectory in blast furnace

Country Status (1)

Country Link
TW (1) TWI450971B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030053374A (en) * 2001-12-22 2003-06-28 주식회사 포스코 Damage detecting apparatus for blast furnace rotating chute
KR20040083637A (en) * 2003-03-24 2004-10-06 주식회사 포스코 Method for filling a blast furnace with charging materials
JP2006112966A (en) * 2004-10-15 2006-04-27 Nippon Steel Corp Method and apparatus for measuring surface shape of charged material in blast furnace
CN200946155Y (en) * 2006-06-23 2007-09-12 北京神网创新科技有限公司 Blast furnace laser detecting instrument
TW200813233A (en) * 2006-09-12 2008-03-16 China Steel Corp Method for measuring blast furnace material surface shape and material flow track by laser ranging technology
TW200837320A (en) * 2007-03-12 2008-09-16 xian-wen Du Apparatus of laser detection for in-stove information and method of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030053374A (en) * 2001-12-22 2003-06-28 주식회사 포스코 Damage detecting apparatus for blast furnace rotating chute
KR20040083637A (en) * 2003-03-24 2004-10-06 주식회사 포스코 Method for filling a blast furnace with charging materials
JP2006112966A (en) * 2004-10-15 2006-04-27 Nippon Steel Corp Method and apparatus for measuring surface shape of charged material in blast furnace
CN200946155Y (en) * 2006-06-23 2007-09-12 北京神网创新科技有限公司 Blast furnace laser detecting instrument
TW200813233A (en) * 2006-09-12 2008-03-16 China Steel Corp Method for measuring blast furnace material surface shape and material flow track by laser ranging technology
TW200837320A (en) * 2007-03-12 2008-09-16 xian-wen Du Apparatus of laser detection for in-stove information and method of the same

Also Published As

Publication number Publication date
TW201247880A (en) 2012-12-01

Similar Documents

Publication Publication Date Title
CN104792274B (en) A kind of measuring method of circular tunnel convergent deformation
JP5235719B2 (en) Pattern measuring device
WO2011080873A1 (en) Pattern measuring condition setting device
WO2011090111A1 (en) Method of extracting contour lines of image data obtained by means of charged particle beam device, and contour line extraction device
CN108007374A (en) A kind of building deformation laser point cloud data grid deviation analysis method
WO2010061516A1 (en) Image formation method and image formation device
CN103500722A (en) Electron beam defect detection method
CN109636849A (en) A kind of workpiece localization method, device, computer and computer readable storage medium
TWI450971B (en) Method for measuring material trajectory in blast furnace
Zeng et al. Vision-based high-precision intelligent monitoring for shield tail clearance
CN115203778A (en) Tunnel overbreak and underexcavation detection method and device, terminal equipment and storage medium
CN114612631A (en) High-precision loopless DSM extraction method based on InSAR technology
WO2022126339A1 (en) Method for monitoring deformation of civil structure, and related device
CN111752308B (en) Method for correcting moving scanning posture in circular shield tunnel
JP2011221350A (en) Mask inspection device and image generation method
CN109670204B (en) Carrier rocket video image interpretation error correction method
CN102853820A (en) Material falling trajectory measurement method for blast furnace
CN114964176B (en) Topography mapping method for moon permanent shadow area
CN114346528A (en) Method for high-precision identification of plate pipe welding seam and acquisition of welding track based on laser scanning
JP5767033B2 (en) Charged particle beam drawing apparatus and charged particle beam drawing method
JP2015099054A (en) Overlay measuring method and overlay measuring apparatus
Ma et al. Experimental investigation of stereocamera's error to optimize dust observation on HL-2A tokamak
CN109798875B (en) Method for marking mining range line in mining area video system in real time
TWI431119B (en) Method of measuring the width of material
He et al. A new laser-based monitoring method for the cryomodule components alignment

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees