JP2014219299A - Method of processing profile measurement data on charge in blast furnace - Google Patents

Method of processing profile measurement data on charge in blast furnace Download PDF

Info

Publication number
JP2014219299A
JP2014219299A JP2013099206A JP2013099206A JP2014219299A JP 2014219299 A JP2014219299 A JP 2014219299A JP 2013099206 A JP2013099206 A JP 2013099206A JP 2013099206 A JP2013099206 A JP 2013099206A JP 2014219299 A JP2014219299 A JP 2014219299A
Authority
JP
Japan
Prior art keywords
measurement
data
blast furnace
microwave
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013099206A
Other languages
Japanese (ja)
Other versions
JP6220150B2 (en
Inventor
徹 万仲
Toru Manchu
徹 万仲
哲哉 秋元
Tetsuya Akimoto
哲哉 秋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nittetsu Hokkaido Control Systems Co Ltd
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Nittetsu Hokkaido Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp, Nittetsu Hokkaido Control Systems Co Ltd filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2013099206A priority Critical patent/JP6220150B2/en
Publication of JP2014219299A publication Critical patent/JP2014219299A/en
Application granted granted Critical
Publication of JP6220150B2 publication Critical patent/JP6220150B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/04Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring contours or curvatures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of processing measurement data for measuring a profile of a charge in a blast furnace of an arbitrary shape.SOLUTION: Two measuring devices A1 and A2 each measuring a distance to a measuring target in accordance with transmission/reception of a microwave are installed at each symmetrical position about a central axis of a blast furnace 2 in a furnace top portion of the blast furnace 2. The measuring devices A1 and A2 each emits a microwave to scan a surface of a charge 4 in a blast furnace in a direction of a diameter passing through a central axis of the blast furnace 2 to measure distance data to the charge 4. The distance data is subjected to coordinate transform based on scan angle data on the microwave at a time of measuring the distance data, and a surface profile of the charge 4 is computed. In the measuring of the profile of the charge 4 in the blast furnace, an incident angle of the microwave on the surface of the charge 4 is calculated at each measuring point by the two measuring devices A1 and A2, and the measuring data for which the incident angle is closer to 90° is adopted. The profile of the charge 4 in the blast furnace is computed by a combination of the measuring data of the two measuring devices A1 and A2.

Description

本発明は、高炉内装入物の表面の形状(プロフィル)の測定データの処理方法に関するものである。   The present invention relates to a method for processing measurement data of the shape (profile) of the surface of a blast furnace interior.

一般に、銑鉄の製造における高炉には、炉頂から装入物として、粉鉄鉱石を焼き固めた焼結鉱や塊状鉄鉱石等(以下では単に鉄鉱石または鉱石と記す)及びコークスが交互に装入されて堆積し、炉内に鉱石層およびコークス層が形成される。高炉下方にある羽口から吹き込まれる熱風とコークスとの反応によって生じるCOガスにより、鉄鉱石は加熱、還元され(間接還元)、また、一部はコークスにより直接的に還元されて、軟化融着帯を形成した後、溶滴となる。溶滴、すなわち溶銑は、コークス層の間を通過して炉底部に溜まる。炉内に形成された鉱石層およびコークス層は、炉内を徐々に降下する。   In general, blast furnaces in the production of pig iron are alternately charged with sintered ore or lump iron ore (hereinafter simply referred to as iron ore or ore) and coke as a charge from the top of the furnace. As a result, the ore layer and the coke layer are formed in the furnace. The iron ore is heated and reduced (indirect reduction) by the CO gas generated by the reaction between the hot air blown from the tuyere below the blast furnace and coke, and part of the iron ore is reduced directly by the coke and softened and fused. After forming the band, it becomes a droplet. The droplets, that is, the molten iron, pass between the coke layers and accumulate at the bottom of the furnace. The ore layer and coke layer formed in the furnace gradually descend in the furnace.

以上の工程において、高炉に装入された鉄鉱石及びコークスによって形成される炉頂部の装入物分布を調整し、適正なガス分布を得ることは非常に重要である。高炉内炉頂部における装入物のプロフィル(表面形状)は、ベル式装入装置ではムーバブルアーマを、また、ベルレス式装入装置では分配シュートを介する装入物の落下軌跡により決定される。通常装入時は、炉頂部の装入物のプロフィルは、高炉の中心鉛直方向(軸心)を軸として中央部が低い略逆円錘形状をなしている。高炉内装入物のプロフィルは、高炉の操業にとって重要な情報であり、従来から炉内に装入され堆積した装入物のプロフィルを測定する方法が開発され、実用化されてきた。   In the above process, it is very important to adjust the charge distribution at the top of the furnace formed by the iron ore and coke charged in the blast furnace to obtain an appropriate gas distribution. The profile (surface shape) of the charge at the top of the furnace in the blast furnace is determined by the moving armor in the bell-type charging device and the fall trajectory of the charge through the distribution chute in the bell-less charging device. At the time of normal charging, the profile of the charge at the top of the furnace has a substantially inverted conical shape whose center is low with the center vertical direction (axial center) of the blast furnace as the axis. The profile of the blast furnace interior is important information for the operation of the blast furnace, and a method for measuring the profile of the charge charged and deposited in the furnace has been developed and put into practical use.

従来、例えば特許文献1等に記載されているように、炉体の炉口部側面から、高炉の軸心に向けて、マイクロ波距離計を備えた計測ランスを挿入し、マイクロ波を高炉内装入物へ向けて発信して、高炉内装入物の表面までの距離を測定する方式が行われてきた。この方式は、炉体内の高濃度の粉塵中でも、マイクロ波の減衰が小さいために距離測定が可能であるという利点があるものの、装置が大型かつ高価で、操作が複雑である。また、原料の装入時には、計測ランスを炉体の外へ退避させなければならないため、多くても一日に数回程度しか測定できないという問題がある。   Conventionally, as described in, for example, Patent Document 1 and the like, a measurement lance equipped with a microwave distance meter is inserted from the side surface of the furnace port of the furnace body toward the axis of the blast furnace, and the microwave is placed inside the blast furnace. There has been a method of transmitting to the entry and measuring the distance to the surface of the blast furnace interior entry. Although this method has the advantage that distance measurement is possible because of the small attenuation of microwaves even in high-concentration dust in the furnace, the apparatus is large and expensive, and the operation is complicated. In addition, when the raw material is charged, the measurement lance must be evacuated from the furnace body, so that there is a problem that it can be measured only several times a day at most.

そこで、マイクロ波の長所を維持し、原料の装入を長時間停止させることなくレベル測定が行える測定方法が、例えば特許文献2および特許文献3に記載されている。これらは、マイクロ波の送受信が行えるマイクロ波距離計と、マイクロ波放射方向を走査する走査駆動装置とを備えたプロフィル測定装置を、原料装入装置よりも上方の高炉の炉頂部に設置し、マイクロ波を高炉内に走査させ、マイクロ波距離計から入力された距離データおよび走査駆動装置から入力された走査角度データを組み合わせて、データ処理部で高炉内装入物の表面プロフィルを演算するものである。   Thus, for example, Patent Document 2 and Patent Document 3 describe measurement methods that can maintain the advantages of microwaves and perform level measurement without stopping the charging of raw materials for a long time. These installed a profile measuring device equipped with a microwave rangefinder capable of transmitting and receiving microwaves and a scanning drive device that scans the microwave radiation direction at the top of the blast furnace above the raw material charging device, A microwave is scanned into the blast furnace, and the surface profile of the blast furnace interior is calculated by the data processing unit by combining the distance data input from the microwave rangefinder and the scanning angle data input from the scanning drive unit. is there.

高炉の炉頂部に設置した測定装置からマイクロ波を発信する場合、マイクロ波の装入物への入射角度が小さくなると、測定精度が低下し、場合によっては測定不能となる。そのため、特許文献2では、高炉の中心軸を挟んでマイクロ波距離計の設置位置と反対側にある高炉内装入物まで、あるいは、マイクロ波の入射角度が50度よりも小さくならない範囲であらかじめ定めた走査角度範囲内の距離を測定する測定方法が開示されている。また、特許文献3では、高炉の中心部を除いたマイクロ波距離計の対向側のあらかじめ定めた走査角度範囲内を測定し、直線近似を行って高炉内装入物の表面形状を推定して分岐箇所を決定し、それに基づいて距離データを選択する方法が開示されている。   When microwaves are transmitted from the measuring device installed at the top of the blast furnace, if the incident angle of the microwaves on the charge becomes small, the measurement accuracy decreases, and in some cases, the measurement becomes impossible. For this reason, in Patent Document 2, it is determined in advance up to the blast furnace interior entrance on the opposite side of the installation position of the microwave distance meter across the central axis of the blast furnace or in a range where the incident angle of the microwave does not become smaller than 50 degrees. A measuring method for measuring a distance within a scanning angle range is disclosed. Further, in Patent Document 3, a measurement is performed within a predetermined scanning angle range on the opposite side of the microwave rangefinder excluding the central portion of the blast furnace, and a straight line approximation is performed to estimate the surface shape of the blast furnace interior entrance and branch. A method for determining a location and selecting distance data based thereon is disclosed.

実公平1−12216号公報Japanese Utility Model Publication No. 1-2216 特開2010−174371号公報JP 2010-174371 A 特開2011−2241号公報Japanese Patent Application Laid-Open No. 2011-2241

しかしながら、上記特許文献2および3の測定方法は、高炉の中央または中央付近が装入物の最下点となっているすり鉢状のプロフィルを測定する場合に限られる。そのため、例えば中心装入時のように中央部が盛り上がっている場合や、複雑な形状のプロフィルを測定する際には、特許文献2および3の方法のように、単に対向部の測定データを採用する方法では、必ずしも高精度な測定結果が得られないという問題がある。   However, the measurement methods of Patent Documents 2 and 3 are limited to measuring a mortar-shaped profile in which the center of the blast furnace or the vicinity of the center is the lowest point of the charge. For this reason, for example, when the central part is raised as in the case of center insertion or when measuring a profile having a complicated shape, the measurement data of the facing part is simply used as in the methods of Patent Documents 2 and 3. However, there is a problem that a highly accurate measurement result cannot always be obtained.

本発明の目的は、任意の形状の高炉内装入物のプロフィルを高精度に求める測定データの処理方法を提供することにある。   The objective of this invention is providing the processing method of the measurement data which calculates | requires the profile of the blast furnace interior inclusion of arbitrary shapes with high precision.

上記問題を解決するため、本発明は、マイクロ波の送受信により測定対象物までの距離を測定する測定装置を、高炉の炉頂部に、前記高炉の中心軸に対して対称位置に2つ設置し、前記測定装置から、マイクロ波放射方向を、高炉内装入物の表面において前記高炉の中心軸を通る直径方向にそれぞれ走査させて前記装入物までの距離データを測定し、前記距離データ測定時のマイクロ波の走査角度データに基づいて前記距離データを座標変換し、前記高炉内装入物の表面プロフィルを演算する高炉内装入物のプロフィル測定において、前記2つの測定装置による測定点ごとに、前記装入物の表面に対するマイクロ波の入射角度を算出して、前記入射角度が90°に近い方の測定データを採用し、前記2つの測定装置による測定データを組み合わせて前記装入物のプロフィルを演算することを特徴とする、高炉内装入物のプロフィル測定データの処理方法を提供する。   In order to solve the above-described problem, the present invention provides two measuring devices that measure the distance to the measurement object by transmitting and receiving microwaves at the top of the blast furnace at symmetrical positions with respect to the central axis of the blast furnace. From the measuring device, the microwave radiation direction is scanned in the diameter direction passing through the central axis of the blast furnace on the surface of the blast furnace interior, and the distance data to the charge is measured. The distance data is coordinate-transformed based on the microwave scanning angle data, and in the blast furnace interior profile measurement for calculating the surface profile of the blast furnace interior input, for each measurement point by the two measuring devices, Calculate the incident angle of the microwave on the surface of the charge, adopt the measurement data with the incident angle close to 90 °, and combine the measurement data from the two measuring devices Was characterized by calculating the profile of the charge in provides a method of processing a profile measurement data of the blast furnace interior container.

前記高炉内装入物のプロフィル測定データの処理方法において、前記装入物の表面に対するマイクロ波の入射角度が90°に近い方の測定データを採用することに代えて、前記2つの測定装置による測定データのうち、隣接する測定点との距離が小さい方の測定データを採用してもよい。あるいは、前記入射角度が90°に近い方のマイクロ波距離計による測定データを採用して、データの欠損個所がある場合に、前記欠損個所について、前記2つの測定装置による測定データのうち、隣接する測定点との距離が小さい方の測定データを採用してもよい。   In the method for processing the profile measurement data of the blast furnace interior material, instead of adopting the measurement data having a microwave incident angle close to 90 ° with respect to the surface of the charge, measurement by the two measurement devices is performed. Of the data, measurement data having a smaller distance from the adjacent measurement point may be employed. Alternatively, when measurement data obtained by a microwave distance meter having an incident angle closer to 90 ° is adopted and there is a missing portion of the data, the missing portion is adjacent to the measured data obtained by the two measuring devices. Measurement data having a smaller distance from the measurement point to be measured may be employed.

また、ある測定点とその前後の測定点とがなす角度と、隣接する測定点とその前後の測定点とがなす角度との変化量が、予め設定したしきい値を超えたときに、当該測定点の測定データを異常値と判断してその測定点の測定結果を除去してもよい。または、隣接する測定点との測定点間距離が、予め設定したしきい値を超えたときに、当該測定点の測定データを異常値と判断してその測定点の測定結果を除去してもよい。   In addition, when the amount of change between the angle formed by a certain measurement point and the measurement point before and after that and the angle formed by the adjacent measurement point and the measurement point before and after that exceeds a preset threshold, The measurement data at the measurement point may be determined as an abnormal value and the measurement result at the measurement point may be removed. Alternatively, when the distance between measurement points with adjacent measurement points exceeds a preset threshold value, the measurement data at the measurement point may be judged as an abnormal value and the measurement result at that measurement point may be removed. Good.

本発明によれば、複雑な形状でも、より正確な測定データが得られた方を採用するため、高精度なプロフィルを得ることができる。   According to the present invention, a highly accurate profile can be obtained because more accurate measurement data is obtained even with a complicated shape.

炉頂部にプロフィル測定装置を備えた高炉炉頂部の例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the example of the blast furnace top part provided with the profile measuring apparatus in the furnace top part. プロフィル測定装置の一例を示す構成図である。It is a block diagram which shows an example of a profile measuring apparatus. 本発明にかかる測定データの処理手順の例を示すフローチャートである。It is a flowchart which shows the example of the process sequence of the measurement data concerning this invention. 異常点検出方法の説明図である。It is explanatory drawing of the abnormal point detection method. マイクロ波の入射角度の求め方の例を示す説明図である。It is explanatory drawing which shows the example of how to obtain | require the incident angle of a microwave. 測定装置ごとの炉内x座標と入射角度との関係の例を示すグラフである。It is a graph which shows the example of the relationship between the x coordinate in a furnace and incident angle for every measuring apparatus. 測定装置ごとの炉内x座標と入射角度との関係の異なる例を示すグラフである。It is a graph which shows the example from which the relationship between the in-furnace x coordinate and incident angle for every measuring apparatus differs. 図6に基づいて得られたプロフィルを示すグラフである。It is a graph which shows the profile obtained based on FIG. 図7に基づいて得られたプロフィルを示すグラフである。It is a graph which shows the profile obtained based on FIG. 本発明にかかる測定データの処理手順の異なる例を示すフローチャートである。It is a flowchart which shows the example from which the process sequence of the measurement data concerning this invention differs.

以下、本発明の実施の形態を、図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、プロフィル測定装置を高炉2に設置した例を示す。2つのプロフィル測定装置A1、A2は、炉頂部付近の、炉体3よりも外側に、炉体3の中心軸に対して対称位置に設置されている。炉体3の炉口部にはベルレス式装入装置5が設けられ、鉄鉱石やコークス等の装入物4が、分配シュート6を通って炉内に装入される。   FIG. 1 shows an example in which a profile measuring device is installed in a blast furnace 2. The two profile measuring devices A1 and A2 are installed on the outer side of the furnace body 3 in the vicinity of the top of the furnace and at symmetrical positions with respect to the central axis of the furnace body 3. A bell-less charging device 5 is provided at the furnace port of the furnace body 3, and a charge 4 such as iron ore or coke is charged into the furnace through the distribution chute 6.

図2は、プロフィル測定装置A1、A2の構成の一例を示す拡大図である。プロフィル測定装置A1、A2は、図2に示すように、アンテナ11および反射板12と、アンテナ11および反射板12をそれぞれ支持、駆動、制御する導波管13、マイクロ波送受信器14、駆動軸15、反射板駆動装置16を有する。アンテナ11および反射板12は、耐圧容器20の内部に収容されている。耐圧容器20は、底面に、炉内に向けた開口部21を有し、開口部21には、マイクロ波を通過可能な仕切板22、シャッター23、保護ネット24等が設けられている。   FIG. 2 is an enlarged view showing an example of the configuration of the profile measuring apparatuses A1 and A2. As shown in FIG. 2, the profile measuring apparatuses A1 and A2 include an antenna 11 and a reflecting plate 12, a waveguide 13 that supports, drives, and controls the antenna 11 and the reflecting plate 12, respectively, a microwave transceiver 14, and a drive shaft. 15 and a reflector driving device 16. The antenna 11 and the reflection plate 12 are accommodated in the pressure resistant container 20. The pressure vessel 20 has an opening 21 on the bottom surface facing the inside of the furnace, and the opening 21 is provided with a partition plate 22 that can pass microwaves, a shutter 23, a protective net 24, and the like.

アンテナ11は、例えばφ250〜φ360mm程度のパラボラアンテナであり、導波管13を介して、マイクロ波送受信器14に連結されている。マイクロ波送受信器14は、周波数が一定範囲で連続的に時間変化するマイクロ波を発生し、当該マイクロ波の発信および受信が可能なものである。マイクロ波送受信器14には、データ処理部18が信号線19で接続されている。   The antenna 11 is a parabolic antenna having a diameter of about φ250 to φ360 mm, for example, and is connected to the microwave transceiver 14 via the waveguide 13. The microwave transmitter / receiver 14 generates a microwave whose frequency continuously changes in a certain range and can transmit and receive the microwave. A data processor 18 is connected to the microwave transceiver 14 by a signal line 19.

マイクロ波送受信器14で発生した、周波数が連続的に変化するマイクロ波は、アンテナ11から放射されて反射板12で反射され、高炉2内の測定対象である装入物4の表面に照射される。照射されたマイクロ波は装入物4の表面で反射し、この反射波をマイクロ波送受信器14で受信して検出する。データ処理部18では、アンテナ11でのマイクロ波の放射から受信までの間の周波数の変化分ΔFから、アンテナ11から測定対象(装入物4の表面)までのマイクロ波の往復時間ΔTが求められ、アンテナ11から測定対象までの距離が算出される。この測定は、マイクロ波を発射する電気信号と、装入物表面からの反射波を受信して得られる電気信号とをミキシングして測定するFMCW(Frequency Modulated Continuous Wave)方式(周波数変調連続波方式)と呼ばれる。当該方式のマイクロ波距離計は、市販の装置を用いてもよい。   The microwave generated in the microwave transmitter / receiver 14 and continuously changing in frequency is radiated from the antenna 11, reflected by the reflector 12, and irradiated on the surface of the charge 4 to be measured in the blast furnace 2. The The irradiated microwave is reflected by the surface of the charge 4, and this reflected wave is received and detected by the microwave transceiver 14. In the data processing unit 18, the round-trip time ΔT of the microwave from the antenna 11 to the measurement target (the surface of the charge 4) is obtained from the change in frequency ΔF from the emission to reception of the microwave at the antenna 11. The distance from the antenna 11 to the measurement target is calculated. This measurement is based on the FMCW (Frequency Modulated Continuous Wave) method (Frequency Modulated Continuous Wave method) that mixes and measures the electrical signal that emits the microwave and the electrical signal that is obtained by receiving the reflected wave from the charged surface. ). A commercially available apparatus may be used for the microwave distance meter of this type.

測定に用いるマイクロ波の発信周波数帯域は、10GHz以上、好ましくは24GHz程度とし、周波数を高くするほど、アンテナ11を小型化できる。マイクロ波を用いることにより、温度や粉塵等の環境の影響を受けにくく、高炉2内のプロフィルを正確に測定できる。また、パラボラアンテナは指向性が高いため、所望する位置に向けて高精度にマイクロ波を放射できる。さらに、放射時のマイクロ波の広がりが抑制されるために、炉内に向けた開口部21を小さくすることができる。   The transmission frequency band of the microwave used for measurement is 10 GHz or more, preferably about 24 GHz. The higher the frequency, the smaller the antenna 11 can be made. By using the microwave, the profile in the blast furnace 2 can be accurately measured without being affected by the environment such as temperature and dust. Moreover, since the parabolic antenna has high directivity, microwaves can be radiated with high accuracy toward a desired position. Furthermore, since the spread of the microwave at the time of radiation | emission is suppressed, the opening part 21 toward the inside of a furnace can be made small.

図2に示すように、アンテナ11のマイクロ波の送受信方向(中心軸線方向)の延長上に、反射板12と反射板駆動装置16とを連結する駆動軸15が設けられている。すなわち、駆動軸15の中心軸線が、アンテナ11の中心軸線と一致するように、駆動軸15が設けられている。図2に示すように、反射板12は、アンテナ11の中心軸線に対して略45°の角度で駆動軸15に固定されている。反射板12は、例えばステンレスの板材からなり、アンテナ11の正面側から見た面積が、アンテナ11よりも少し大きいものとする。形状は限定しないが、操作性の上では円形が好ましい。反射板駆動装置16により駆動軸15をその中心軸の周りに回転させることで、アンテナ11からその中心軸方向に放射されたマイクロ波を、反射板12で高炉2の炉内側へ向けて反射し、高炉2の直径方向に走査する。反射板12によるマイクロ波の反射方向は、図2の紙面に対して垂直方向に移動する。反射板12は、マイクロ波が炉の中心軸を通るように配置する。   As shown in FIG. 2, a drive shaft 15 that connects the reflector 12 and the reflector driving device 16 is provided on an extension of the antenna 11 in the microwave transmission / reception direction (center axis direction). That is, the drive shaft 15 is provided so that the center axis of the drive shaft 15 coincides with the center axis of the antenna 11. As shown in FIG. 2, the reflector 12 is fixed to the drive shaft 15 at an angle of approximately 45 ° with respect to the central axis of the antenna 11. The reflector 12 is made of, for example, a stainless steel plate, and the area viewed from the front side of the antenna 11 is slightly larger than the antenna 11. Although the shape is not limited, a circular shape is preferable in terms of operability. By rotating the drive shaft 15 around its central axis by the reflector driving device 16, the microwave radiated from the antenna 11 toward the central axis is reflected by the reflector 12 toward the inside of the blast furnace 2. The blast furnace 2 is scanned in the diameter direction. The reflection direction of the microwaves by the reflecting plate 12 moves in a direction perpendicular to the paper surface of FIG. The reflector 12 is arranged so that the microwave passes through the central axis of the furnace.

耐圧容器20の開口部21は、高炉2の炉内に連通し、反射板12で反射したマイクロ波が、炉内の所定範囲に照射されるように形成される。   The opening 21 of the pressure vessel 20 communicates with the inside of the blast furnace 2 and is formed so that the microwave reflected by the reflecting plate 12 is irradiated to a predetermined range in the furnace.

耐圧容器20の内面は、炉内側開口部21および反射板12の反射面側を除いて、発信周波数帯域に対応した電波吸収体で覆い、耐圧容器20内でのマイクロ波の乱反射や多重反射に起因する測定ノイズを抑制することが好ましい。   The inner surface of the pressure vessel 20 is covered with a radio wave absorber corresponding to the transmission frequency band except for the inner opening 21 of the furnace and the reflection surface side of the reflector 12, so that the microwave can be diffusely reflected and multiple reflected in the pressure vessel 20. It is preferable to suppress the measurement noise caused.

また、プロフィル測定時には、高炉2内部のガスや粉塵等が耐圧容器20内に侵入するのを防ぎ、さらに耐圧容器20を介して外部へ高炉2内のガス等が漏洩するのを防止する目的で、耐圧容器20内に、例えば炉内圧の1.1倍程度の圧力になるように、窒素ガス等の不活性ガスで加圧を行うとよい。   Further, at the time of measuring the profile, for the purpose of preventing the gas or dust inside the blast furnace 2 from entering the pressure vessel 20 and further preventing the gas inside the blast furnace 2 from leaking to the outside through the pressure vessel 20. The pressure vessel 20 may be pressurized with an inert gas such as nitrogen gas so that the pressure is about 1.1 times the furnace pressure.

マイクロ波は、アンテナ11から発信された後、一定角度、例えば2°程度広がって照射されるため、装入物4に到達するときには、ある程度の広がりを有している。したがって、装入物4に対する入射角度が小さい場合、マイクロ波の照射範囲内に含まれる装入物4の分布範囲が広くなり、測定結果にばらつきが生じる。一方、装入物4への入射角度が90°に近ければ、マイクロ波の照射範囲内にある装入物4の分布範囲が狭く、より精度の高い測定結果が得られる。さらに、入射角度が小さくなると、反射波の強度が弱くなり、測定精度が低下し、場合によっては測定不能となる。したがって、本発明では、2つのプロフィル測定装置A1、A2のそれぞれの測定データのうち、マイクロ波の入射角度が90°に近い方のプロフィル測定装置の測定結果を採用して組み合わせることにより、高精度なプロフィル測定結果を得る。   Since the microwave is emitted from the antenna 11 and spreads at a certain angle, for example, about 2 °, the microwave has a certain extent when reaching the charge 4. Therefore, when the incident angle with respect to the charge 4 is small, the distribution range of the charge 4 included in the microwave irradiation range becomes wide, and the measurement results vary. On the other hand, if the incident angle to the charge 4 is close to 90 °, the distribution range of the charge 4 within the microwave irradiation range is narrow, and a more accurate measurement result can be obtained. Further, when the incident angle is reduced, the intensity of the reflected wave is weakened, the measurement accuracy is lowered, and in some cases, measurement is impossible. Therefore, in the present invention, by using and combining the measurement results of the profile measurement apparatus having the microwave incident angle close to 90 ° out of the measurement data of each of the two profile measurement apparatuses A1 and A2, high accuracy is achieved. A good profile measurement result.

以下、本実施形態にかかる高炉内装入物のプロフィル測定データの処理手順の例を、図3にしたがって説明する。   Hereinafter, an example of the processing procedure of the profile measurement data of the blast furnace interior according to the present embodiment will be described with reference to FIG.

<データ取得(S1)>
先ず、高炉2の中心軸に対して対称位置にそれぞれ設置した2つのプロフィル測定装置A1、A2のそれぞれの反射板12の向きを初期位置に向けて、マイクロ波送受信器14からマイクロ波を発信する。マイクロ波は、導波管13、アンテナ11を介して、反射板12により反射され、高炉内装入物4に照射された後、装入物4からの反射波をマイクロ波送受信器14で受信して、装入物4までの距離を測定する。その際、反射板12を、炉の内径方向の一端側から他端側の測定位置までの間、反射板駆動装置16により回転させる。所望の空間分解能に応じて予め設定した角度ごとに、装入物4までの距離を測定してその距離データが、また、反射板駆動装置16からはそのときの走査角度データが、データ処理部18へ送られる。
<Data acquisition (S1)>
First, microwaves are transmitted from the microwave transmitter / receiver 14 with the reflecting plates 12 of the two profile measuring apparatuses A1 and A2 installed at symmetrical positions with respect to the central axis of the blast furnace 2 being directed to the initial positions. . The microwave is reflected by the reflector 12 via the waveguide 13 and the antenna 11 and irradiated to the blast furnace interior entrance 4, and then the reflected wave from the charge 4 is received by the microwave transceiver 14. Then, the distance to the charge 4 is measured. At that time, the reflecting plate 12 is rotated by the reflecting plate driving device 16 from one end side in the inner diameter direction of the furnace to the measurement position on the other end side. For each angle preset according to the desired spatial resolution, the distance to the charge 4 is measured, the distance data is obtained, and the current scanning angle data from the reflector driving device 16 is the data processing unit. 18 is sent.

<座標変換(S2)>
2つのプロフィル測定装置A1、A2のそれぞれのデータ処理部18は、取得した走査角度データおよびそのときの距離データに基づいて直交座標系のデータに座標変換し、高炉内の各位置の装入物プロフィルを算出する。
<Coordinate transformation (S2)>
The data processing unit 18 of each of the two profile measuring apparatuses A1 and A2 performs coordinate conversion into orthogonal coordinate system data based on the acquired scanning angle data and the distance data at that time, and the charge at each position in the blast furnace. Calculate the profile.

<異常点除去(S3)>
炉内に存在する障害物などによって異常点が認められたときには、そのデータを除去する。異常点の検出は、例えば前後の測定点との角度の変化量や、測定点間距離により行う。図4は、測定点Pnにおける測定値が異常点である例を示す。図4に示すように、測定点Pnの1つ前の測定点P(n−1)と測定点Pnとを結ぶ直線と、1つ後の測定点P(n+1)と測定点Pnとを結ぶ直線とがなす角度をθnとする。同様に、測定点Pnの1つ前の測定点P(n−1)と測定点P(n−1)の1つ前の測定点P(n−2)とを結ぶ直線と、1つ後の測定点Pnとを結ぶ直線とがなす角度をθ(n−1)、測定点Pnの1つ後の測定点P(n+1)とその前後の測定点とを結ぶ直線がなす角度をθ(n+1)、・・・として、
|θ(n−1)−θn|>Δθa
または
|θ(n)−θ(n+1)|>Δθa
ただし、Δθaは予め設定した角度の変化量のしきい値
となる場合、すなわち、測定点Pnとその前後の測定点とを結ぶ直線がなす角度と、測定点P(n−1)または測定点P(n+1)とその前後の測定点とを結ぶ直線がなす角度の変化量が、予め設定したしきい値Δθaを超えたときに、測定点Pnの測定データが異常であると判定して、そのデータを除去する。
<Abnormal point removal (S3)>
When an abnormal point is recognized due to an obstacle present in the furnace, the data is removed. The detection of the abnormal point is performed by, for example, the amount of change in angle with the previous and subsequent measurement points and the distance between the measurement points. FIG. 4 shows an example in which the measurement value at the measurement point Pn is an abnormal point. As shown in FIG. 4, a straight line connecting the measurement point P (n−1) immediately before the measurement point Pn and the measurement point Pn, and the next measurement point P (n + 1) and the measurement point Pn are connected. The angle formed by the straight line is defined as θn. Similarly, a straight line connecting a measurement point P (n-1) immediately before the measurement point Pn and a measurement point P (n-2) immediately before the measurement point P (n-1), and one after Θ (n−1) is an angle formed by a straight line connecting the measurement point Pn, and θ (n−1) is an angle formed by a straight line connecting the measurement point P (n + 1) immediately after the measurement point Pn and the measurement point before and after the measurement point Pn. n + 1),...
| Θ (n−1) −θn |> Δθa
Or | θ (n) −θ (n + 1) |> Δθa
However, when Δθa becomes a threshold value for the amount of change of the preset angle, that is, the angle formed by the straight line connecting the measurement point Pn and the measurement points before and after it, the measurement point P (n−1) or the measurement point. When the amount of change in the angle formed by the straight line connecting P (n + 1) and the measurement points before and after it exceeds a preset threshold value Δθa, it is determined that the measurement data at the measurement point Pn is abnormal, Remove the data.

また、異常点の検出は、測定点間距離によって行ってもよい。すなわち、
|P(n−1)Pn|>Δda
または
|PnP(n+1)|>Δda
ただし、Δdaは予め設定した測定点間距離のしきい値
となる場合、すなわち、測定点Pnとその前の測定点P(n−1)または次の測定点P(n+1)との距離が、予め設定したしきい値Δdaを超えたときに、測定点Pnの測定データが異常であると判定して、そのデータを除去する。異常点の検出は、上記の入射角度θの変化量、または測定点間距離のいずれかが、それぞれ予め設定したしきい値を超えたときに、行われる。
Moreover, you may perform the detection of an abnormal point by the distance between measurement points. That is,
| P (n−1) Pn |> Δda
Or | PnP (n + 1) |> Δda
However, Δda is a threshold value of the distance between measurement points set in advance, that is, the distance between the measurement point Pn and the previous measurement point P (n−1) or the next measurement point P (n + 1) is When the preset threshold value Δda is exceeded, it is determined that the measurement data at the measurement point Pn is abnormal, and the data is removed. The detection of the abnormal point is performed when either the amount of change in the incident angle θ or the distance between measurement points exceeds a preset threshold value.

<降下量補正(S4)>
次に、測定した距離データについて、炉内反応等のための装入物の降下による補正量を求める。降下速度の求め方としては、例えば、炉内位置によらず降下速度Vが一定であると仮定して求めてもよい。すなわち、マイクロ波を直下に向けた位置などの任意の位置において、予め設定した同一走査角度時の1回目の距離データD1と、時間T後に測定した2回目の距離データD2から、
V=(D2−D1)/T
で求める。降下速度Vの求め方は、その他任意の方法で行うことができ、炉内の半径方向について連続して求めれば、更に高精度に求められる。
<Descent amount correction (S4)>
Next, with respect to the measured distance data, a correction amount due to the fall of the charge for the reaction in the furnace or the like is obtained. As a method of obtaining the descending speed, for example, it may be obtained assuming that the descending speed V is constant regardless of the position in the furnace. That is, at an arbitrary position such as a position where the microwave is directed directly below, from the first distance data D1 at the same scanning angle set in advance and the second distance data D2 measured after time T,
V = (D2-D1) / T
Ask for. The descending speed V can be obtained by any other method. If it is continuously obtained in the radial direction in the furnace, it can be obtained with higher accuracy.

<スムージング(S5)>
以上により得られた測定データについて、平均化などの処理を行って滑らかな曲線とし、2つのプロフィル測定装置A1、A2ごとに、それぞれの測定データを用いたプロフィルを作成する。
<Smoothing (S5)>
About the measurement data obtained by the above, the process of averaging etc. is performed, it is set as a smooth curve, and the profile using each measurement data is created for every two profile measurement apparatuses A1 and A2.

<入射角演算(S6)>
次に、これら2つのプロフィル測定装置A1、A2による測定に関して、本実施形態では、各測定点におけるマイクロ波の入射角度を演算する。
<Incident angle calculation (S6)>
Next, regarding the measurement by these two profile measuring apparatuses A1 and A2, in this embodiment, the incident angle of the microwave at each measurement point is calculated.

入射角度の求め方の一例を説明する。図5に示すように、プロフィル測定装置A1、A2のマイクロ波照射位置をSm(m=1,2)、測定点をPmn(n=1,2,3,4,・・・)とする。mは、プロフィル測定装置のA1側(m=1)またはA2側(m=2)を表す。測定点Pmnの座標は、炉内半径方向をx軸、上下方向をz軸として、(xmn,zmn)で表される。S5でスムージングした後の一方のプロフィル測定装置によるプロフィルの曲線をLmとし、曲線Lmと直線SmPmnとの交点をQmnとする。曲線Lmを微分して交点Qmnにおける曲線Lmの接線を求め、その接線と直線SmPmnとのなす角度(0<θmn<90°)を、マイクロ波の入射角度θmnとする。そして、プロフィル測定装置ごとに、各測定点について、入射角度θmnを求める。尚、入射角度θmnの求め方は、上記の例には限らず、例えば、測定点Pmnの前後の測定点を結ぶ直線P(mn−1)P(mn+1)と直線SmPmnとの角度としてもよい。   An example of how to determine the incident angle will be described. As shown in FIG. 5, the microwave irradiation positions of the profile measuring apparatuses A1 and A2 are Sm (m = 1, 2), and the measurement points are Pmn (n = 1, 2, 3, 4,...). m represents the A1 side (m = 1) or A2 side (m = 2) of the profile measuring apparatus. The coordinates of the measurement point Pmn are represented by (xmn, zmn), where the radial direction in the furnace is the x axis and the vertical direction is the z axis. The profile curve by one of the profile measuring devices after smoothing in S5 is Lm, and the intersection of the curve Lm and the straight line SmPmn is Qmn. The curve Lm is differentiated to obtain the tangent line of the curve Lm at the intersection Qmn, and the angle (0 <θmn <90 °) between the tangent line and the straight line SmPmn is defined as the microwave incident angle θmn. Then, for each profile measuring apparatus, the incident angle θmn is obtained for each measurement point. The method of obtaining the incident angle θmn is not limited to the above example, and may be, for example, an angle between a straight line P (mn−1) P (mn + 1) connecting the measurement points before and after the measurement point Pmn and the straight line SmPmn. .

<採用点決定(S7)>
2つのプロフィル測定装置A1、A2のうち、一方の装置(m側)について、S6で求めた入射角度θmnと半径方向位置xとの関係を、
θ=fm(x)
とする。そして、炉内の半径方向x座標を横軸、入射角度θを縦軸として、折れ線グラフを作成する。ここで、データ取得区間は、各入射角度θmnを線分で結んだ折れ線とし、データ測定区間以外はθ=0とする。図6は、通常装入時、図7は中心装入時のプロフィル測定における炉内の半径方向x座標と入射角度θとの関係を示すグラフの例である。各測定点P1n,P2nに対し、以下のようにf1(x)とf2(x)の大きさを比較して、測定点ごとに、いずれの測定装置の入射角度が大きいか、つまり90°に近いかを比較し、採用するデータを決定する。すなわち、測定点P1n、P2nについて、
f1(x1n)≧f2(x1n)
のときには、P1nを採用し、
f1(x2n)<f2(x2n)
のときには、P2nを採用する。図6の例では、区間(1)および区間(3)は、測定装置A1側の方が入射角度が90°に近いので、測定装置A1の測定データを採用し、区間(2)および区間(4)は、測定装置A2側の方が入射角度が90°に近いので、測定装置A2の測定データを採用する。図7の場合は、区間(1)、(3)、(5)は測定装置A1側、区間(2)、(4)、(6)は測定装置A2側の測定データを採用する。
<Decision of recruitment points (S7)>
For one of the two profile measuring devices A1 and A2 (m side), the relationship between the incident angle θmn obtained in S6 and the radial position x is
θ = fm (x)
And Then, a line graph is created with the x-coordinate in the radial direction in the furnace as the horizontal axis and the incident angle θ as the vertical axis. Here, the data acquisition section is a polygonal line connecting the incident angles θmn with line segments, and θ = 0 except in the data measurement section. 6 is an example of a graph showing the relationship between the x-coordinate in the radial direction in the furnace and the incident angle θ in the profile measurement during normal charging and FIG. 7 in the profile measurement during central charging. For each measurement point P1n, P2n, the magnitudes of f1 (x) and f2 (x) are compared as follows, and for each measurement point, which measurement device has a large incident angle, that is, 90 °. Compare the closeness and determine the data to be adopted. That is, for the measurement points P1n and P2n,
f1 (x1n) ≧ f2 (x1n)
In the case of, adopt P1n,
f1 (x2n) <f2 (x2n)
In this case, P2n is adopted. In the example of FIG. 6, since the incident angle is closer to 90 ° on the measuring device A1 side in the section (1) and the section (3), the measurement data of the measuring apparatus A1 is adopted, and the section (2) and the section ( 4) adopts the measurement data of the measuring device A2 because the incident angle is closer to 90 ° on the measuring device A2 side. In the case of FIG. 7, the measurement data on the measurement apparatus A1 side is used for the sections (1), (3), and (5), and the measurement data on the measurement apparatus A2 side is used for the sections (2), (4), and (6).

<両側データ合成処理(S8)>
S7で採用した両側の測定装置からのデータを組み合わせ、段差が出ないようスムーズに繋ぎ合わせることにより、図8(通常装入時)または図9(中心装入時)に示すような装入物のプロフィルが得られる。
<Both-side data composition processing (S8)>
Charges as shown in Fig. 8 (normal charging) or Fig. 9 (central charging) by combining the data from the measuring devices on both sides used in S7 and connecting them smoothly so that there is no step. Is obtained.

以上のように、測定点ごとにマイクロ波の入射角度を算出し、2つのプロフィル測定装置のうち入射角度が90°に近い方の測定データを採用することで、高精度なプロフィルが得られる。   As described above, a high-accuracy profile can be obtained by calculating the incident angle of the microwave for each measurement point and adopting measurement data having an incident angle close to 90 ° out of the two profile measuring devices.

図10は、本発明の異なる実施形態にかかる高炉内装入物のプロフィル測定データの処理手順を示し、マイクロ波の入射角度を演算する代わりに、測定点間距離により採用するデータを選択する方法である。   FIG. 10 shows a processing procedure of profile measurement data of blast furnace interior according to a different embodiment of the present invention, and a method of selecting data to be adopted according to the distance between measurement points instead of calculating the incident angle of microwaves. is there.

図10において、データ取得(S1)、座標変換(S2)、異常点除去(S3)、降下量補正(S4)、スムージング(S5)までの手順は、前述の図3の実施形態と同様であるため、説明を省略する。   In FIG. 10, the procedures up to data acquisition (S1), coordinate transformation (S2), abnormal point removal (S3), descent amount correction (S4), and smoothing (S5) are the same as those in the embodiment of FIG. Therefore, the description is omitted.

<測定点間距離の演算(S9)>
ある測定点Pmnについて、xz平面上における測定点P(mn−1)、P(mn+1)からの距離d(mn−1),d(mn+1)を求め、d(mn−1)、d(mn+1)のうち、より小さい方をdmnとする。
<Calculation of distance between measurement points (S9)>
For a certain measurement point Pmn, distances d (mn-1) and d (mn + 1) from the measurement points P (mn-1) and P (mn + 1) on the xz plane are obtained, and d (mn-1) and d (mn + 1) are obtained. ) Is smaller than dmn.

<採用点決定(S10)>
2つの測定装置A1、A2の測定データにおいて、S9で求めたdmnと高炉内半径方向位置xとの関係を、
d=gm(x)
とする。そして、炉内の半径方向x座標を横軸、測定点間距離dを縦軸として、折れ線グラフを作成する。ここで、gm(x)は各dmnを結んだ折れ線とする。各測定点P1n,P2nに対し、以下のようにg1(x)とg2(x)の大きさを比較して、測定点ごとに、いずれの測定装置の測定点間距離が小さいかを比較し、採用するデータを決定する。すなわち、測定点P1n、P2nについて、
g1(x1n)≦g2(x1n)
のときには、P1nを採用し、
g1(x2n)≧g2(x2n)
のときには、P2nを採用する。
<Adopting point determination (S10)>
In the measurement data of the two measuring devices A1 and A2, the relationship between the dmn obtained in S9 and the radial direction position x in the blast furnace is
d = gm (x)
And Then, a line graph is created with the x-coordinate in the radial direction in the furnace as the horizontal axis and the distance d between the measurement points as the vertical axis. Here, gm (x) is a broken line connecting each dmn. For each measurement point P1n, P2n, the magnitudes of g1 (x) and g2 (x) are compared as follows, and for each measurement point, which measurement device has a smaller distance between measurement points is compared. , Determine the data to adopt. That is, for the measurement points P1n and P2n,
g1 (x1n) ≦ g2 (x1n)
In the case of, adopt P1n,
g1 (x2n) ≧ g2 (x2n)
In this case, P2n is adopted.

<両側データ合成処理(S11)>
図3のS8と同様に、S10で採用した両側の測定装置からのデータを組み合わせ、段差が出ないようスムーズに繋ぎ合わせることにより、装入物のプロフィルが得られる。
<Both-side data composition processing (S11)>
Similar to S8 of FIG. 3, the profile of the charge can be obtained by combining the data from the measurement devices on both sides employed in S10 and smoothly connecting them so as not to produce a step.

隣接する測定点との間隔が小さいのは、測定点の分布密度が高いということであり、その区間の測定データを採用すれば、多くの測定点のデータが採用されるため、分解能の高いプロフィルが得られる。また、一定速度でマイクロ波を走査した場合、隣接する測定点同士の間隔が近い区間は、マイクロ波の入射角度が90°に近い区間ということになる。したがって、測定点間距離が小さい方の測定データを採用することにより、マイクロ波の入射角度が90°に近い方のデータを採用していることとなる。なお、十分な測定点数が得られる場合は、入射角度を求める方法が、精度が高く有効であるが、プロフィル形状の影響や炉内に障害物がある場合等によりデータに欠損個所が生じ、十分な測定点数が得られないときは、測定点間隔によりデータの採用を選択する図10の方法が有効である。   The distance between adjacent measurement points is small because the distribution density of the measurement points is high. If the measurement data for that interval is used, the data for many measurement points is used, so the profile with high resolution is used. Is obtained. Further, when the microwave is scanned at a constant speed, a section where the interval between adjacent measurement points is close is a section where the incident angle of the microwave is close to 90 °. Therefore, by adopting measurement data having a smaller distance between measurement points, data having a microwave incident angle close to 90 ° is adopted. If a sufficient number of measurement points can be obtained, the method of obtaining the incident angle is highly accurate and effective, but there are missing points in the data due to the influence of the profile shape and when there are obstacles in the furnace. When a sufficient number of measurement points cannot be obtained, the method of FIG. 10 is effective in selecting the use of data by the measurement point interval.

また、上記の例えば図3に示す方法を実施してプロフィルを得た後、高炉内のプロフィル全体をマイクロ波のビーム径でカバーできているか、すなわち、各測定点のマイクロ波のビームの範囲に重なり部があるかどうかを計算することが好ましい。これは、マイクロ波を放射するアンテナ径と、マイクロ波の広がる角度(例えば2°)により計算する。マイクロ波のビーム径で全体がカバーできている場合は、入射角度によってデータを選択する図3の方法で得られたプロフィル形状がそのまま測定結果となる。カバーできていない部分がある場合には、その区間について、測定点間距離が小さい方の測定装置のデータを採用する図10の方法を併用し、データを合成してプロフィル形状を求める。これにより、例えば異常点が検出されてデータが除去された区間のプロフィルを、図10の方法でカバーして、装入物の形状や炉内状況に応じた最適なデータの合成を行い、高精度なプロフィルを得ることができる。   Further, after obtaining the profile by carrying out the method shown in FIG. 3, for example, the entire profile in the blast furnace is covered with the microwave beam diameter, that is, within the range of the microwave beam at each measurement point. It is preferable to calculate whether there is an overlap. This is calculated from the diameter of the antenna that radiates the microwave and the angle at which the microwave spreads (eg, 2 °). When the whole can be covered with the beam diameter of the microwave, the profile shape obtained by the method of FIG. 3 in which data is selected according to the incident angle becomes the measurement result as it is. When there is a portion that cannot be covered, the profile shape is obtained by synthesizing the data in the section using the method of FIG. 10 that employs the data of the measuring device having the smaller distance between the measuring points. Thus, for example, the profile of the section in which the abnormal point is detected and the data is removed is covered by the method of FIG. 10, and optimum data is synthesized according to the shape of the charge and the in-furnace situation. An accurate profile can be obtained.

以上、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described, this invention is not limited to this example. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.

例えば、本発明によるプロフィル測定を行う測定装置は、図2に示す構造には限らず、上記特許文献2に記載されたような、マイクロ波距離計とホーン形のアンテナおよびアンテナを駆動する走査駆動装置からなる測定装置でもよい。   For example, the measuring apparatus for measuring a profile according to the present invention is not limited to the structure shown in FIG. 2, but a microwave rangefinder, a horn-shaped antenna, and a scanning drive for driving the antenna as described in Patent Document 2 above. The measuring device which consists of apparatus may be sufficient.

本発明は、容器内のさまざまな形状の堆積物の表面形状の測定に適用できる。   The present invention can be applied to the measurement of the surface shape of various shapes of deposits in a container.

2 高炉
3 炉体
4 装入物
5 ベルレス式装入装置
6 分配シュート
11 アンテナ
12 反射板
13 導波管
14 マイクロ波送受信器
15 駆動軸
16 反射板駆動装置
18 データ処理部
20 耐圧容器
21 開口部
A1、A2 プロフィル測定装置
2 Blast Furnace 3 Furnace 4 Charge 5 Bellless Charging Device 6 Distribution Chute 11 Antenna 12 Reflector 13 Waveguide 14 Microwave Transceiver 15 Drive Shaft 16 Reflector Drive 18 Data Processing Unit 20 Pressure Vessel 21 Opening A1, A2 Profile measuring device

Claims (5)

マイクロ波の送受信により測定対象物までの距離を測定する測定装置を、高炉の炉頂部に、前記高炉の中心軸に対して対称位置に2つ設置し、前記測定装置から、マイクロ波放射方向を、高炉内装入物の表面において前記高炉の中心軸を通る直径方向にそれぞれ走査させて前記装入物までの距離データを測定し、前記距離データ測定時のマイクロ波の走査角度データに基づいて前記距離データを座標変換し、前記高炉内装入物の表面プロフィルを演算する高炉内装入物のプロフィル測定において、
前記2つの測定装置による測定点ごとに、前記装入物の表面に対するマイクロ波の入射角度を算出して、前記入射角度が90°に近い方の測定データを採用し、前記2つの測定装置による測定データを組み合わせて前記装入物のプロフィルを演算することを特徴とする、高炉内装入物のプロフィル測定データの処理方法。
Two measuring devices that measure the distance to the measurement object by transmitting and receiving microwaves are installed at the top of the blast furnace at symmetrical positions with respect to the central axis of the blast furnace, and the microwave radiation direction is set from the measuring device. , The distance data to the charge is measured by scanning in the diameter direction passing through the central axis of the blast furnace on the surface of the blast furnace interior charge, and based on the scanning angle data of the microwave at the time of the distance data measurement In coordinate measurement of the blast furnace interior, the distance data is transformed and the surface profile of the blast furnace interior is calculated.
For each measurement point by the two measuring devices, the incident angle of the microwave with respect to the surface of the charge is calculated, the measurement data with the incident angle close to 90 ° is adopted, and the two measuring devices are used. A method for processing profile measurement data of a blast furnace interior input, wherein the profile of the charge is calculated by combining measurement data.
前記装入物の表面に対するマイクロ波の入射角度が90°に近い方の測定データを採用することに代えて、前記2つの測定装置による測定データのうち、隣接する測定点との距離が小さい方の測定データを採用することを特徴とする、請求項1に記載の高炉内装入物のプロフィル測定データの処理方法。   Instead of adopting measurement data having a microwave incident angle close to 90 ° with respect to the surface of the charge, one having a smaller distance to an adjacent measurement point among the measurement data obtained by the two measurement devices The method for processing profile measurement data of blast furnace interior entrance according to claim 1, wherein the measurement data is used. 前記入射角度が90°に近い方のマイクロ波距離計による測定データを採用して、データの欠損個所がある場合に、前記欠損個所について、前記2つの測定装置による測定データのうち、隣接する測定点との距離が小さい方の測定データを採用することを特徴とする、請求項1に記載の高炉内装入物のプロフィル測定データの処理方法。   When the measurement data obtained by the microwave rangefinder with the incident angle close to 90 ° is adopted and there is a missing portion of the data, the adjacent measurement of the measured data obtained by the two measuring devices is measured for the missing portion. 2. The method for processing profile measurement data of blast furnace interior inclusions according to claim 1, wherein measurement data having a smaller distance from the point is adopted. ある測定点とその前後の測定点とがなす角度と、隣接する測定点とその前後の測定点とがなす角度との変化量が、予め設定したしきい値を超えたときに、当該測定点の測定データを異常値と判断してその測定点の測定結果を除去することを特徴とする、請求項1〜3のいずれかに記載の高炉内装入物のプロフィル測定データの処理方法。   When the amount of change between the angle between a measurement point and the measurement point before and after that and the angle between the adjacent measurement point and the measurement point before and after that exceeds a preset threshold, the measurement point The method of processing profile measurement data of blast furnace interior according to any one of claims 1 to 3, wherein the measurement data is determined as an abnormal value and the measurement result at the measurement point is removed. 隣接する測定点との測定点間距離が、予め設定したしきい値を超えたときに、当該測定点の測定データを異常値と判断してその測定点の測定結果を除去することを特徴とする、請求項1〜3のいずれかに記載の高炉内装入物のプロフィル測定データの処理方法。   When the distance between adjacent measurement points exceeds a preset threshold value, the measurement data at the measurement point is judged as an abnormal value and the measurement result at that measurement point is removed. The processing method of the profile measurement data of the blast furnace interior entrance according to any one of claims 1 to 3.
JP2013099206A 2013-05-09 2013-05-09 Processing method for profile measurement data of blast furnace interior Active JP6220150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013099206A JP6220150B2 (en) 2013-05-09 2013-05-09 Processing method for profile measurement data of blast furnace interior

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013099206A JP6220150B2 (en) 2013-05-09 2013-05-09 Processing method for profile measurement data of blast furnace interior

Publications (2)

Publication Number Publication Date
JP2014219299A true JP2014219299A (en) 2014-11-20
JP6220150B2 JP6220150B2 (en) 2017-10-25

Family

ID=51937876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013099206A Active JP6220150B2 (en) 2013-05-09 2013-05-09 Processing method for profile measurement data of blast furnace interior

Country Status (1)

Country Link
JP (1) JP6220150B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016102226A (en) * 2014-11-27 2016-06-02 株式会社ワイヤーデバイス Detecting apparatus of charging material in blast furnace

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240260A (en) * 1988-03-22 1989-09-25 Okuma Mach Works Ltd Non-contact type digitizer
JPH09318870A (en) * 1996-05-24 1997-12-12 Ricoh Co Ltd Range finder, photographing device, and background processor
JP2001159506A (en) * 1999-12-03 2001-06-12 Sony Corp Three-dimensional shape measuring device and method and recording medium
JP2010048629A (en) * 2008-08-20 2010-03-04 Pulstec Industrial Co Ltd Three-dimensional shape measuring device and three-dimensional shape measuring method
JP2010174371A (en) * 2008-12-29 2010-08-12 Nippon Steel Corp Apparatus and method for measuring profile of charged material in blast furnace

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240260A (en) * 1988-03-22 1989-09-25 Okuma Mach Works Ltd Non-contact type digitizer
JPH09318870A (en) * 1996-05-24 1997-12-12 Ricoh Co Ltd Range finder, photographing device, and background processor
JP2001159506A (en) * 1999-12-03 2001-06-12 Sony Corp Three-dimensional shape measuring device and method and recording medium
JP2010048629A (en) * 2008-08-20 2010-03-04 Pulstec Industrial Co Ltd Three-dimensional shape measuring device and three-dimensional shape measuring method
JP2010174371A (en) * 2008-12-29 2010-08-12 Nippon Steel Corp Apparatus and method for measuring profile of charged material in blast furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016102226A (en) * 2014-11-27 2016-06-02 株式会社ワイヤーデバイス Detecting apparatus of charging material in blast furnace

Also Published As

Publication number Publication date
JP6220150B2 (en) 2017-10-25

Similar Documents

Publication Publication Date Title
JP5412947B2 (en) Apparatus and method for measuring profile of blast furnace interior
JP5787607B2 (en) Profile measuring device for blast furnace interior
JP5674542B2 (en) Profile measurement method for blast furnace interior
US7861600B2 (en) Apparatus for ascertaining and/or monitoring fill level and/or flow of a medium
JP5220690B2 (en) Apparatus and method for measuring profile of blast furnace interior
JP5441730B2 (en) Profile measuring device for blast furnace interior
KR101978906B1 (en) Apparatus for measuring level using millimeter wave and method of measuring level using the same
JP2016211897A (en) Measurement method and underground rader device
JP6033690B2 (en) Profile measuring device for blast furnace interior
JP6220150B2 (en) Processing method for profile measurement data of blast furnace interior
JP6147602B2 (en) Profile measurement method for blast furnace interior
CN106702060A (en) Blast furnace material flowing track measuring device and method based on radar
JP3855639B2 (en) Profile measurement method of blast furnace interior entrance surface
JP6447470B2 (en) Charge distribution control method in blast furnace
US20140140176A1 (en) Local positioning system for refractory lining measuring
JP2016006419A (en) Detection method for surface shape of lining refractory of molten metal processing container, and system
JP6327383B1 (en) Charge distribution control method in blast furnace
JP6706296B2 (en) Measuring method and underground radar device
JP5673092B2 (en) Scrap surface profile measurement method
JP4969929B2 (en) Blast furnace interior entry behavior detection device
JP5482369B2 (en) Gas flow velocity measuring method and gas flow velocity measuring device
KR102438958B1 (en) level measuring device
JP2005233783A (en) Position telemetering method using electromagnetic-wave radar
JP6497181B2 (en) Level meter and level measurement method
JPH0552737A (en) Grain-size measuring method for granular substance

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170929

R150 Certificate of patent or registration of utility model

Ref document number: 6220150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350