JP5660157B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP5660157B2
JP5660157B2 JP2013091985A JP2013091985A JP5660157B2 JP 5660157 B2 JP5660157 B2 JP 5660157B2 JP 2013091985 A JP2013091985 A JP 2013091985A JP 2013091985 A JP2013091985 A JP 2013091985A JP 5660157 B2 JP5660157 B2 JP 5660157B2
Authority
JP
Japan
Prior art keywords
light emitting
light
emitting device
glass film
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013091985A
Other languages
Japanese (ja)
Other versions
JP2013191860A (en
Inventor
林 忠雄
忠雄 林
玉置 寛人
寛人 玉置
昌治 細川
昌治 細川
泰典 清水
泰典 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2013091985A priority Critical patent/JP5660157B2/en
Publication of JP2013191860A publication Critical patent/JP2013191860A/en
Application granted granted Critical
Publication of JP5660157B2 publication Critical patent/JP5660157B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Description

本発明は、発光素子が透光性封止部材にて封止されてなる発光装置に関するものである
The present invention relates to a light emitting device in which a light emitting element is sealed with a translucent sealing member.

発光素子を光源とする発光装置は、これまで種々提案されている。例えば、特許文献1
では、発光素子の近傍をガラス材料にて被覆した発光装置が提案されている。
Various light-emitting devices using a light-emitting element as a light source have been proposed so far. For example, Patent Document 1
Proposed a light-emitting device in which the vicinity of a light-emitting element is covered with a glass material.

特開2000−299503号公報JP 2000-299503 A

しかしながら、特許文献1に記載されたゾルーゲル法の加水分解重合により形成されて
なるガラス封止体は、発光素子の厚みよりもはるかに厚く形成されていることから、形成
過程の収縮によりクラックが生じていると考えられ、このようなガラス膜のガスバリア性
は極めて低い。
However, the glass encapsulant formed by the sol-gel hydrolysis polymerization described in Patent Document 1 is formed much thicker than the thickness of the light-emitting element, and therefore cracks are generated due to shrinkage of the formation process. Such a glass film has extremely low gas barrier properties.

また、厳しい環境下にて使用される発光装置の場合、樹脂の材料として耐熱性・耐候性
に優れた樹脂材料を用いること多い。しかしながら、このような耐熱性・耐候性に優れた
樹脂材料は、ガスバリア性が低い傾向にある。特に、車載用の発光装置において、発光素
子の実装部が金属反射部材で構成されている場合、実装部が発光素子からの発熱と外部の
高温高湿の影響により硫化黒変し、発光装置の出力が著しく低下してしまう。
In the case of a light emitting device used in a severe environment, a resin material having excellent heat resistance and weather resistance is often used as a resin material. However, such resin materials having excellent heat resistance and weather resistance tend to have low gas barrier properties. In particular, in a vehicle-mounted light emitting device, when the mounting portion of the light emitting element is made of a metal reflecting member, the mounting portion turns black due to heat generated from the light emitting element and external high temperature and high humidity. The output is significantly reduced.

そこで本発明は、上記問題を解消することを課題とし、厳しい使用環境下においても高
出力を保持することが可能な発光装置を提供することを目的とする。
Therefore, an object of the present invention is to provide a light-emitting device that can maintain a high output even under severe usage environments.

本発明の発光装置は、金属反射部材と、前記金属反射部材に固定された発光素子と、前
記金属反射部材を覆いSi−N結合を必須とするガラス膜と、前記ガラス膜を覆う透光性
樹脂と、を有することを特徴とする。また、前記発光素子は、前記ガラス膜および前記透
光性樹脂により順次覆われていることが好ましい。
The light-emitting device of the present invention includes a metal reflecting member, a light-emitting element fixed to the metal reflecting member, a glass film that covers the metal reflecting member and requires Si—N bonds, and a translucency that covers the glass film. And a resin. Moreover, it is preferable that the said light emitting element is sequentially covered with the said glass film and the said translucent resin.

さらに、前記ガラス膜は、Si−H結合を有していることが好ましく、厚みは、0.0
5μm以上5μm以下であることが好ましい。
Furthermore, the glass film preferably has a Si—H bond, and the thickness is 0.0
It is preferably 5 μm or more and 5 μm or less.

また、前記金属反射部材は、銀を有する材料にて構成されていることが好ましい。   Moreover, it is preferable that the said metal reflective member is comprised with the material which has silver.

また、前記発光素子は、前記金属反射部材と金属材料により固定されていることが好ま
しい。
Moreover, it is preferable that the said light emitting element is being fixed with the said metal reflective member and metal material.

本発明の発光装置は、発光素子の発熱の影響を直接受ける部位に設けられた金属反射部
材と透光性樹脂との間に、ガスバリア性の高いSi−N結合を必須とするガラス膜を有し
ていることから、厳しい環境下にて使用しても金属反射部材の光反射機能が劣化すること
なく、長期にわたり高出力に発光することが可能である。
The light-emitting device of the present invention has a glass film that requires a Si—N bond having a high gas barrier property between a metal reflecting member provided at a portion directly affected by the heat generation of the light-emitting element and the translucent resin. Therefore, even when used in a severe environment, the light reflecting function of the metal reflecting member is not deteriorated, and it is possible to emit light with high output over a long period of time.

本発明を実施するための最良の形態を、以下に図面を参照しながら説明する。ただし、
以下に示す形態は、本発明の技術思想を具体化するための発光装置を例示するものであっ
て、本発明の発光装置を以下に限定するものではない。
The best mode for carrying out the present invention will be described below with reference to the drawings. However,
The embodiments described below exemplify a light emitting device for embodying the technical idea of the present invention, and the light emitting device of the present invention is not limited to the following.

また、本明細書は特許請求の範囲に示される部材を、実施の形態の部材に特定するもの
では決してない。実施の形態に記載されている構成部品の寸法、材質、形状、その相対的
配置等は、特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨では
なく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明
を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符
号については同一もしくは同質の部材を示しており、詳細な説明を適宜省略する。さらに
、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素
を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現するこ
ともできる。
Further, the present specification by no means specifies the members shown in the claims to the members of the embodiments. The dimensions, materials, shapes, relative arrangements, and the like of the components described in the embodiments are not intended to limit the scope of the present invention only to the description unless otherwise specified. It is just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Further, in the following description, the same name and reference sign indicate the same or the same members, and detailed description will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.

以下に、本発明の発光装置の実施の形態を図面に基づいて詳細に説明する。
図1に示すように、本実施の形態の発光装置は、発光素子11と、発光素子11が電気的
および機械的に固定されてなる金属反射部材12と、を有し、これらはSi−N結合を必
須とするガラス膜15および透光性樹脂16により順次覆われている。
Embodiments of a light emitting device according to the present invention will be described below in detail with reference to the drawings.
As shown in FIG. 1, the light-emitting device of this Embodiment has the light emitting element 11 and the metal reflective member 12 to which the light emitting element 11 is fixed electrically and mechanically, These are Si-N. The glass film 15 and the translucent resin 16 that are essential for bonding are sequentially covered.

(発光素子11)
発光素子11は、表面に複数の電極(図示せず)が形成されており、各電極が一対の金
属反射部材14と導電性ワイヤ14にて電気的に接続されている。本実施の形態で用いら
れている発光素子11は、同一面側に正および負の電極が形成されているが、対応する面
に正および負の電極がそれぞれ形成されているものであってもよい。また、正および負の
電極は、必ずしも1つずつ形成されていなくてもよく、それぞれ2つ以上形成されていて
もよい。また、蛍光物質を備えた発光装置とする場合、その蛍光物質を励起する光を発光
可能な半導体発光素子が好ましい。このような半導体発光素子として、ZnSeやGaN
など種々の半導体を挙げることができるが、蛍光物質を効率良く励起できる短波長が発光
可能な窒化物半導体(InAlGa1−X−YN、0≦X、0≦Y、X+Y≦1)が
好適にあげられる。半導体層の材料やその混晶度によって発光波長を種々選択することが
できる。本実施の形態の発光素子11は、金属反射部材12の表面に接合部材(図示して
いない)を用いて固定されているが、これに限定されるものではなく、後述する支持体1
3の表面に直接固定されていてもよいし、これらの固定場所との間にヒートシンクを介し
て固定してもよい。
(Light emitting element 11)
The light emitting element 11 has a plurality of electrodes (not shown) formed on the surface thereof, and each electrode is electrically connected to the pair of metal reflecting members 14 and the conductive wires 14. The light emitting element 11 used in the present embodiment has positive and negative electrodes formed on the same surface side, but the positive and negative electrodes may be formed on the corresponding surfaces. Good. Further, the positive and negative electrodes do not necessarily have to be formed one by one, and two or more each may be formed. In the case of a light emitting device including a fluorescent material, a semiconductor light emitting element capable of emitting light that excites the fluorescent material is preferable. As such a semiconductor light emitting device, ZnSe or GaN
Examples of the semiconductor include nitride semiconductors that can emit light with a short wavelength and can efficiently excite a fluorescent material (In X Al Y Ga 1-XY N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1) is preferable. Various emission wavelengths can be selected depending on the material of the semiconductor layer and the degree of mixed crystal. Although the light emitting element 11 of this Embodiment is being fixed to the surface of the metal reflective member 12 using the joining member (not shown), it is not limited to this, The support body 1 mentioned later
3 may be directly fixed to the surface of 3, or may be fixed via a heat sink between these fixed locations.

本実施の形態のように、Si−N結合を必須とするガラス膜が、発光素子11との界面
にまで形成されている場合、発光素子の水分および腐食性ガスによる劣化を防止すること
ができる。より具体的には、発光素子の劣化には2種類ある。まずひとつは、水分により
発光素子の構成元素が溶出し、出力が低下する場合がある。もうひとつは、高湿条件や窒
素酸化物、硫黄酸化物等の腐食性ガスによって発光素子の電極部に腐食が発生し、Vfが
悪化する問題がある。これらの問題は素子表面に上記ガラス膜が形成される事で回避する
ことができる。これにより本実施の形態の発光装置は、発光素子11として、外部からの
水分により劣化しやすいGaAs系、GaP系の発光素子を用いた場合においても、透光
性樹脂の材料や使用環境にかかわらず、光取り出し効率の高い発光装置を実現することが
できる。
In the case where the glass film indispensable for Si—N bonds is formed up to the interface with the light emitting element 11 as in this embodiment mode, the light emitting element can be prevented from being deteriorated by moisture and corrosive gas. . More specifically, there are two types of deterioration of the light emitting element. First, the constituent elements of the light-emitting element are eluted by moisture, and the output may decrease. Another problem is that corrosion occurs in the electrode portion of the light emitting element due to high humidity conditions and corrosive gases such as nitrogen oxide and sulfur oxide, and Vf is deteriorated. These problems can be avoided by forming the glass film on the element surface. As a result, the light-emitting device of the present embodiment is not affected by the material of the translucent resin and the usage environment even when a GaAs-based or GaP-based light-emitting element that easily deteriorates due to moisture from the outside is used as the light-emitting element 11. Therefore, a light emitting device with high light extraction efficiency can be realized.

(金属反射部材12)
本発明に用いられる金属反射部材12とは、搭載する発光素子12からの光を70%以
上反射することが可能な材料にて構成されたものを言う。また、本実施の形態の金属反射
部材12は、電気極性を有しているが、これに限定されるものではなく、電気極性を有さ
ず導電性部材から独立したものでもよい。また、金属反射部材12は、別の部材の最表面
にメッキなどで形成されたものでもよい。導電性部材の基体に金属反射膜12が形成され
ている場合、発光素子との電気的に接続に用いる部材との接着性及び電気伝導性が良いこ
とが求められる。具体的な電気抵抗としては、300μΩ−cm以下が好ましく、より好
ましくは3μΩ−cm以下である。具体的には、銅、アルミニウム、金、銀、タングステ
ン、鉄、ニッケル等の金属又は鉄−ニッケル合金、燐青銅等の合金等があげられる。
(Metal reflecting member 12)
The metal reflecting member 12 used in the present invention refers to a member made of a material capable of reflecting 70% or more of light from the mounted light emitting element 12. Moreover, although the metal reflective member 12 of this Embodiment has an electric polarity, it is not limited to this, The thing which does not have an electric polarity but became independent from the electroconductive member may be used. The metal reflecting member 12 may be formed on the outermost surface of another member by plating or the like. When the metal reflective film 12 is formed on the base of the conductive member, it is required to have good adhesiveness and electrical conductivity with a member used for electrical connection with the light emitting element. The specific electric resistance is preferably 300 μΩ-cm or less, more preferably 3 μΩ-cm or less. Specific examples include metals such as copper, aluminum, gold, silver, tungsten, iron, and nickel, and alloys such as iron-nickel alloys and phosphor bronze.

本発明の金属反射部材12は、発光素子11の近傍に存在する。このため、金属反射部
材の劣化は、発光装置の光出力、色に大きく影響を与える。このため、本実施の形態では
、金属反射部材12と後述する樹脂16との界面にSi−N結合を必須とするガラス膜を
設け、これにより金属反射部材の変色に起因する発光装置の出力低下を防止し、光反射率
の波長依存性を保持するとともに、発光色の変化を防止している。特に、少なくとも最表
面が銀または銀を必須とする合金により構成されてなる金属反射部材12は、ガスによる
劣化が著しいことから、従来高温高湿下で使用される発光装置には不向きであったが、本
発明に適用することにより、後述する樹脂の材料や使用環境にかかわらず、光取り出し効
率の高い発光装置を実現することができる。
The metal reflecting member 12 of the present invention exists in the vicinity of the light emitting element 11. For this reason, the deterioration of the metal reflecting member greatly affects the light output and color of the light emitting device. For this reason, in this Embodiment, the glass film which makes a Si-N bond essential is provided in the interface of the metal reflective member 12 and the resin 16 mentioned later, and, thereby, the output fall of the light-emitting device resulting from discoloration of a metal reflective member , The wavelength dependency of the light reflectance is maintained, and the change in the emission color is prevented. In particular, the metal reflecting member 12 having at least the outermost surface made of silver or an alloy indispensable to silver is not suitable for a light-emitting device conventionally used under high temperature and high humidity because of its remarkable deterioration due to gas. However, by applying to the present invention, a light emitting device with high light extraction efficiency can be realized regardless of the resin material and usage environment described later.

また、金属反射部材12の最表面は、搭載される発光素子からの光を効率よく外部へ取
り出すために、凹凸を有していることが好ましい。また、金属反射部材12の最表面に凹
凸を有している場合、後述するガラス膜との密着性が向上されるとともにガラス膜15の
形成時の収縮応力を緩和することができる。これにより、金属反射部材12の表面にクラ
ックがほとんど無い防食性に優れたガラス膜15を形成することができる。さらに、金属
反射部材12の表面は、後述する絶縁性の支持体13の表面より突出していることが好ま
しい。これにより、ガラス膜15を金属反射部材12の表面に形成する際、過剰なガラス
膜形成材料を後述する絶縁性の支持体13の表面に流入し、導電性部材12の表面には適
切な膜厚のガラス膜を形成することができる。これにより、金属反射部材12の表面にク
ラックがほとんど無いガラス膜15を容易に形成できる。本実施の形態では、発光素子を
単独で導電性部材に固定した発光装置について説明するが、発光素子を単独で配置させる
形態に限定されることなく、受光素子、静電保護素子(ツェナーダイオード、コンデンサ
等)、あるいはそれらを少なくとも二種以上組み合わせたものを搭載した半導体装置とす
ることができる。なお、静電保護素子は、発光素子との極性を考慮して、発光素子と同一
の導電性部材あるいは異なる導電性部材のいずれに配置してもよい。
Moreover, it is preferable that the outermost surface of the metal reflecting member 12 has irregularities in order to efficiently extract light from the light emitting element to be mounted to the outside. Further, in the case where the outermost surface of the metal reflecting member 12 has irregularities, adhesion with a glass film to be described later can be improved and shrinkage stress during the formation of the glass film 15 can be reduced. Thereby, the glass film 15 excellent in anticorrosion property with almost no cracks on the surface of the metal reflecting member 12 can be formed. Furthermore, it is preferable that the surface of the metal reflecting member 12 protrudes from the surface of an insulating support 13 described later. Thereby, when the glass film 15 is formed on the surface of the metal reflecting member 12, excess glass film forming material flows into the surface of the insulating support 13 described later, and an appropriate film is formed on the surface of the conductive member 12. A thick glass film can be formed. Thereby, the glass film 15 with few cracks on the surface of the metal reflecting member 12 can be easily formed. In this embodiment mode, a light-emitting device in which a light-emitting element is independently fixed to a conductive member is described. However, the light-emitting element is not limited to a mode in which the light-emitting element is disposed independently, and a light-receiving element, an electrostatic protection element (a Zener diode, A capacitor or the like) or a combination of at least two of them can be used as a semiconductor device. Note that the electrostatic protection element may be disposed on either the same conductive member as the light emitting element or a different conductive member in consideration of the polarity with the light emitting element.

(支持体13)
支持体13は、表面に金属反射部材12を保持することが可能であれば、どのような材
料によって形成されていてもよい。なかでも、セラミック、乳白色の樹脂等、絶縁性およ
び遮光性を有する材料であることが好ましい。また、発光素子11、12等から生じた熱
によりガラス膜15が膨張したときでも密着性を維持できるように、ガラス膜15との熱
膨張係数の差が小さい材料から形成されることが好ましい。
(Support 13)
The support 13 may be made of any material as long as the metal reflecting member 12 can be held on the surface. Especially, it is preferable that it is a material which has insulation and light-shielding properties, such as a ceramic and milky white resin. Moreover, it is preferable to form from the material with a small difference of a thermal expansion coefficient with the glass film 15 so that adhesiveness can be maintained even when the glass film 15 expand | swells with the heat | fever generated from the light emitting elements 11 and 12 grade | etc.,.

(接合部材)
ここで、発光素子11を金属反射部材12に固定するための接合部材は、金属材料を用
いることが好ましい。これにより、発光素子からの光照射や発熱による接合部剤の劣化変
色および劣化変色に伴う光吸収を防止することができる。具体的には、Au−Sn合金、
SnAgCu合金、SnPb合金、InSn合金、Ag、SnAgを用いることができる
。図1に示すように、同一面側に正および負の電極を有する発光素子を用い、電極が形成
されていない側の面を導電性部材と固定する場合、発光素子の電極が形成されていない面
に予め金属膜をスパッタ、蒸着、メッキ等により成膜したものを用いて導電性部材と固定
することが好ましい。これにより、放熱性に優れた発光装置とすることができる。具体的
には、金属材料とフラックスが混合されたペーストを導電性部材上にディスペンス、ピン
転写、印刷等により塗布する。そのペースト上に予め金属膜が形成された発光素子を設置
し、リフローにて金属材料を加熱溶融することで接合することができる。発光素子として
、対向する面にそれぞれ正および負の電極を有する発光素子を用いる場合は、電極の表面
にNi、Ti、Au、Pt、Pd、W等の金属又は合金の単層膜又は積層膜を施し、前記
と同様の方法にて金属材料にて金属反射部材と金属接合することが好ましい。
(Joining member)
Here, the joining member for fixing the light emitting element 11 to the metal reflecting member 12 is preferably made of a metal material. As a result, it is possible to prevent deterioration of the bonding agent due to light irradiation or heat generation from the light emitting element and light absorption accompanying the deterioration discoloration. Specifically, Au-Sn alloy,
SnAgCu alloy, SnPb alloy, InSn alloy, Ag, SnAg can be used. As shown in FIG. 1, when a light emitting element having positive and negative electrodes on the same surface side is used and the surface on which the electrode is not formed is fixed to the conductive member, the electrode of the light emitting element is not formed. It is preferable to fix the conductive member on the surface using a metal film previously formed by sputtering, vapor deposition, plating, or the like. Thereby, it can be set as the light-emitting device excellent in heat dissipation. Specifically, a paste in which a metal material and a flux are mixed is applied onto the conductive member by dispensing, pin transfer, printing, or the like. The light emitting element in which a metal film is formed in advance is placed on the paste, and the metal material can be bonded by heating and melting by reflow. When a light-emitting element having positive and negative electrodes on the opposing surfaces is used as the light-emitting element, a single-layer film or a laminated film of a metal or alloy such as Ni, Ti, Au, Pt, Pd, or W on the surface of the electrode It is preferable to perform metal bonding to the metal reflecting member with a metal material by the same method as described above.

(導電性ワイヤ14)
発光素子11、12の電極面と導電性部材とを対向させずに電気的に接続する場合、導
電性ワイヤ14を用いる。導電性ワイヤ14は、発光素子の電極とのオーミック性、機械
的接続性、電気伝導性及び熱伝導性がよいものが求められる。このような導電性ワイヤと
して具体的には、金、銅、白金、アルミニウム等の金属及びそれらの合金を用いた導電性
ワイヤがあげられる。
(Conductive wire 14)
When the electrode surfaces of the light emitting elements 11 and 12 and the conductive member are electrically connected without facing each other, the conductive wire 14 is used. The conductive wire 14 is required to have good ohmic properties, mechanical connectivity, electrical conductivity, and thermal conductivity with the electrode of the light emitting element. Specific examples of such conductive wires include conductive wires using metals such as gold, copper, platinum, and aluminum, and alloys thereof.

(ガラス膜15)
本発明の金属反射部材12は、ガスバリア性が高いSi−N結合を必須とするガラス膜
15にて覆われている。本実施の形態のガラス膜15は、金属反射部材12と透光性樹脂
16の双方に接するように配置されているが、これに限定されるものではなく、少なくと
も金属反射部材12と透光性樹脂16との間に存在していれば本発明の効果を発揮するこ
とができる。ここで、本明細書においてSi−N結合を必須とするガラス材料とは、具体
的にはパーヒドロポリシラザンの転化状態を不完全な状態とし、未反応基のSi−N結合
を存在させたものである。
(Glass film 15)
The metal reflecting member 12 of the present invention is covered with a glass film 15 that has an essential Si—N bond with high gas barrier properties. Although the glass film 15 of this Embodiment is arrange | positioned so that both the metal reflective member 12 and the translucent resin 16 may be contacted, it is not limited to this, At least the metal reflective member 12 and the translucent If it exists between the resin 16, the effect of the present invention can be exhibited. Here, in this specification, the glass material which essentially requires Si-N bonds specifically refers to a material in which the converted state of perhydropolysilazane is incomplete and Si-N bonds of unreacted groups are present. It is.

このようなガラス膜15は、以下の工程により得ることができる。まず、パーヒドロポ
リシラザンをキシレン等の水分を含まない溶剤に濃度0.1〜10%程度で希釈した材料
を、スプレーにより金属反射部材12および発光素子11の表面に塗布する。塗布厚はパ
ーヒドロポリシラザンの濃度および膜形成面の構造により硬化処理後に膜厚が0.05μ
m以上5μm以下となるよう適宜選択する必要がある。塗布後に常温にて5時間程度静置
した溶剤を揮発させた後、200℃の大気オーブンにて5時間加熱し、ガラス化反応を進
行させる。ここで、本発明のガラス膜を得るための製造方法は、ガラス主材料を無水溶剤
に希釈する第一の工程と、第一の工程で得られた溶液を塗布し25℃以上90℃以下の温
度にて前記溶剤成分を揮発させる第二の工程と、100℃以上300℃以下の温度にて硬
化させる第三の工程と、を有していることを特徴とする。これにより、ガラス膜は完全な
無機膜とはならず、Si−N結合を必須とする収縮応力の増大に対して柔軟性を備えた保
護膜となる。
具体的には、前記第一の工程を有することにより、溶剤の分膜厚を減らすことができ、前
記第二の工程を有することにより、膜厚が均一な膜を形成できる。これら第一の工程およ
び第二の工程の後に第三の工程を施すことにより、Si−N結合を必須とするガラス膜を
得ることができる。
Such a glass film 15 can be obtained by the following steps. First, a material obtained by diluting perhydropolysilazane in a solvent not containing water such as xylene at a concentration of about 0.1 to 10% is applied to the surfaces of the metal reflecting member 12 and the light emitting element 11 by spraying. The coating thickness is 0.05 μm after the curing treatment depending on the concentration of perhydropolysilazane and the structure of the film forming surface.
It is necessary to select appropriately so that it may become m or more and 5 micrometers or less. After the application, the solvent which has been allowed to stand at room temperature for about 5 hours is volatilized, and then heated in an atmospheric oven at 200 ° C. for 5 hours to advance the vitrification reaction. Here, in the production method for obtaining the glass film of the present invention, the first step of diluting the glass main material in an anhydrous solvent and the solution obtained in the first step are applied and the temperature is 25 ° C. or higher and 90 ° C. or lower. It has the 2nd process of volatilizing the said solvent component at temperature, and the 3rd process hardened | cured at the temperature of 100 to 300 degreeC. As a result, the glass film does not become a complete inorganic film but a protective film having flexibility against an increase in shrinkage stress that requires Si—N bonds.
Specifically, the thickness of the solvent can be reduced by having the first step, and the film having a uniform thickness can be formed by having the second step. By applying the third step after the first step and the second step, a glass film having an essential Si-N bond can be obtained.

本発明のガラス膜15は、さらにSi−H結合を有していることが好ましく、これによ
り、さらに信頼性の高い発光装置を得ることができる。また、本発明のガラス膜15の厚
みは、0.05μm以上5μm以下であることが好ましく、これにより高いガスバリア性
を有する共に発光素子からの光を外部へ効率よく取り出すことが可能なガラス膜とするこ
とができる。0.05μmより薄い場合、発光素子や導電性部材の保護効果が不十分とな
り好ましくない。また5μmより厚い場合、製造時や点灯時においてクラックが発生し、
ガスバリア性を失ってしまう。ハイパワー系の発光装置を形成する場合、発光素子からの
発熱量を考慮し、ガラス膜の厚みは0.1μm以上2μm以下であることが好ましい。こ
こで、本明細書において、膜の厚みとは、平面方向における膜厚の平均値示す。
The glass film 15 of the present invention preferably further has a Si—H bond, whereby a highly reliable light-emitting device can be obtained. The thickness of the glass film 15 of the present invention is preferably 0.05 μm or more and 5 μm or less. With this, the glass film 15 has a high gas barrier property and can efficiently extract light from the light emitting element to the outside. can do. When it is thinner than 0.05 μm, the protective effect of the light emitting element and the conductive member is insufficient, which is not preferable. If it is thicker than 5 μm, cracks will occur during production and lighting,
The gas barrier property is lost. In the case of forming a high-power light emitting device, it is preferable that the glass film has a thickness of 0.1 μm or more and 2 μm or less in consideration of the amount of heat generated from the light emitting element. Here, in this specification, the thickness of the film indicates an average value of the film thickness in the planar direction.

(透光性樹脂16)
本発明の透光性樹脂16は、ガラス膜15を覆うように形成されている。透光性樹脂1
6は、搭載する発光素子の光に対して透光性であればどのような樹脂材料によって形成さ
れていてもよい。たとえば、シリコーン樹脂、ポリフタルアミド(PPA)、ポリカーボ
ネート樹脂、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)、ABS
樹脂、エポキシ樹脂、フノール樹脂、アクリル樹脂、PBT樹脂等の樹脂等があげられる
。これらの材料には、着色剤として、種々の染料または顔料等を混合して用いてもよい。
たとえば、Cr、MnO、Fe、カーボンブラック等があげられる。更に
また、封止樹脂の光出射面側は、所望の形状にすることによってレンズ効果を持たせるこ
とができる。具体的には、凸レンズ形状、凹レンズ形状さらには、発光観測面から見て楕
円形状やそれらを複数組み合わせた形状にすることができる。なお、本明細書において透
光性とは、発光素子から出射された光を70%程度以上透過させる性質を意味する。
(Translucent resin 16)
The translucent resin 16 of the present invention is formed so as to cover the glass film 15. Translucent resin 1
6 may be formed of any resin material as long as it is translucent to the light of the light emitting element to be mounted. For example, silicone resin, polyphthalamide (PPA), polycarbonate resin, polyphenylene sulfide (PPS), liquid crystal polymer (LCP), ABS
Examples thereof include resins such as resins, epoxy resins, funol resins, acrylic resins, and PBT resins. In these materials, various dyes or pigments may be mixed and used as a colorant.
Examples thereof include Cr 2 O 3 , MnO 2 , Fe 2 O 3 , carbon black and the like. Furthermore, the light emitting surface side of the sealing resin can have a lens effect by making it a desired shape. Specifically, a convex lens shape, a concave lens shape, an elliptical shape as viewed from the light emission observation surface, or a shape obtained by combining a plurality of them can be used. Note that in this specification, translucency means a property of transmitting about 70% or more of light emitted from a light emitting element.

透光性樹脂16には、光拡散材や波長変換部材を含有させてもよい。光拡散材は、光を
拡散させるものであり、発光素子からの指向性を緩和させ、視野角を増大させることがで
きる。波長変換部材は、発光素子からの光を変換させるものであり、発光素子から封止部
材の外部へ出射される光の波長を変換することができる。波長変換部材としては、例えば
、蛍光物質があげられる。発光素子からの光がエネルギーの高い短波長の可視光の場合、
有機蛍光物質であるペリレン系誘導体、ZnCdS:Cu、YAG:Ce、Euおよび/
またはCrで賦活された窒素含有CaO−Al−SiO等の無機蛍光物質等、種
々好適に用いられる。本発明において、白色光を得る場合、特にYAG:Ce蛍光物質を
利用すると、その含有量によって青色発光素子からの光と、その光を一部吸収して補色と
なる黄色系が発光可能となり白色系が比較的簡単に信頼性良く形成できる。同様に、Eu
および/またはCrで賦活された窒素含有CaO−Al−SiO蛍光物質を利用
した場合は、その含有量によって青色発光素子からの光と、その光を一部吸収して補色と
なる赤色系が発光可能であり白色系が比較的簡単に信頼性よく形成できる。これらの蛍光
物質の他に、たとえば、特開2005−19646号公報、特開2005−8844号公
報等に記載の公知の蛍光物質のいずれをも用いることができる。また、本発明では金属反
射部材12がガラス膜によって強固に保護されている為、安価な硫化物蛍光体を使用する
事もできる。硫化物蛍光体としてはアルカリ土類系、チオガレート系、チオシリケート系
、硫化亜鉛系、酸硫化物系があり、アルカリ土類系蛍光体としてはMS:Rn(Mは、M
g、Ca、Sr、Baから選ばれる1種以上であり、ReはEu、Ceから選ばれる1種
以上)等があり、チオガレート系蛍光体としてはMN2S4:Rn(MはMg、Ca、S
r、Baから選ばれる1種以上、Nは、Al、Ga、In、Yから選ばれる1種以上、R
eはEu、Ceから選ばれる1種以上)等があり、チオシリケート系蛍光体としてはM
LS(Mは、Mg、Ca、Ba、Sr、Baから選ばれる1種以上、LはSi、Ge、
Snから選ばれる1種以上、ReはEu、Ceから選ばれる1種以上)等があり、硫化亜
鉛系蛍光体としてはZnS:K(KはAg、Cu、Alから選ばれる1種以上)等があり
、酸硫化物系蛍光体としてはLnS:Re(LnはY、La、Gdから選ばれる1
種以上)等がある。
The translucent resin 16 may contain a light diffusing material or a wavelength conversion member. The light diffusing material diffuses light, can reduce the directivity from the light emitting element, and can increase the viewing angle. The wavelength conversion member converts light from the light emitting element, and can convert the wavelength of light emitted from the light emitting element to the outside of the sealing member. An example of the wavelength conversion member is a fluorescent material. When the light from the light emitting element is high energy short wavelength visible light,
Perylene derivatives which are organic fluorescent substances, ZnCdS: Cu, YAG: Ce, Eu and / or
Alternatively, various inorganic fluorescent materials such as nitrogen-containing CaO—Al 2 O 3 —SiO 2 activated by Cr are suitably used. In the present invention, when white light is obtained, in particular, when a YAG: Ce fluorescent material is used, light from the blue light emitting element and a yellow color which is a complementary color by partially absorbing the light can be emitted depending on the content. The system can be formed relatively easily and reliably. Similarly, Eu
When a nitrogen-containing CaO—Al 2 O 3 —SiO 2 fluorescent material activated with Cr and / or Cr is used, light from the blue light-emitting element and a part of the light are absorbed depending on the content, thereby becoming a complementary color. The red color can emit light, and the white color can be formed relatively easily and reliably. In addition to these fluorescent materials, any of the known fluorescent materials described in, for example, JP-A-2005-19646, JP-A-2005-8844, and the like can be used. In the present invention, since the metal reflecting member 12 is firmly protected by the glass film, an inexpensive sulfide phosphor can be used. The sulfide phosphor includes alkaline earth, thiogallate, thiosilicate, zinc sulfide, and oxysulfide. As the alkaline earth phosphor, MS: Rn (M is M
1 or more selected from g, Ca, Sr and Ba, Re is one or more selected from Eu and Ce), etc., and MN2S4: Rn (M is Mg, Ca, S) as a thiogallate phosphor
one or more selected from r and Ba, N is one or more selected from Al, Ga, In and Y, R
e is one or more selected from Eu and Ce), and M 2 is a thiosilicate phosphor.
LS 4 (M is one or more selected from Mg, Ca, Ba, Sr, Ba, L is Si, Ge,
1 or more kinds selected from Sn, Re is one or more kinds selected from Eu and Ce), etc., and ZnS: K (K is one or more kinds selected from Ag, Cu and Al) as the zinc sulfide phosphor As the oxysulfide phosphor, Ln 2 O 2 S: Re (Ln is 1 selected from Y, La, and Gd)
More than species).

本発明の発光装置は、照明用光源、各種インジケーター用光源、車載用光源、ディスプ
レイ用光源、液晶のバックライト用光源、センサー用光源、信号機、車載部品、看板用チ
ャンネルレター等、種々の光源に使用することができる。
The light-emitting device of the present invention can be used for various light sources such as illumination light sources, various indicator light sources, in-vehicle light sources, display light sources, liquid crystal backlight light sources, sensor light sources, traffic lights, in-vehicle components, signboard channel letters, etc. Can be used.

図1は、本発明の一実施の形態である発光装置の模式的断面図である。FIG. 1 is a schematic cross-sectional view of a light emitting device according to an embodiment of the present invention. 図2は、本発明の一実施の形態である発光装置の模式的断面図である。FIG. 2 is a schematic cross-sectional view of a light emitting device according to an embodiment of the present invention.

10、20・・・発光装置、
11・・・発光素子
12・・・導電性部材
13・・・支持体、
14・・・導電性ワイヤ、
15・・・ガラス膜
16・・・透光性樹脂
10, 20 ... light emitting device,
11 ... Light emitting element 12 ... Conductive member 13 ... Support,
14 ... conductive wire,
15 ... Glass film 16 ... Translucent resin

Claims (12)

金属反射部材と、前記金属反射部材に固定された発光素子と、前記金属反射部材を覆いSi−N結合を必須とするガラス膜と、前記ガラス膜を覆う透光性樹脂と、を有し、前記発光素子はヒートシンクを介して固定されていることを特徴とする発光装置。 A metal reflective member, a light emitting element fixed to said metal reflecting member, and a glass film containing, as essential Si-N bonds covering the metal reflecting member, and a translucent resin to cover the glass film possess, The light emitting device, wherein the light emitting element is fixed via a heat sink . 前記ガラス膜は、前記金属反射部材と前記透光性樹脂との界面に存在することを特徴とする請求項1に記載の発光装置。 The light emitting device according to claim 1, wherein the glass film is present at an interface between the metal reflecting member and the translucent resin. 前記発光素子は、前記ガラス膜および前記透光性樹脂により順次覆われていることを特徴とする請求項1または2に記載の発光装置。 The light emitting device according to claim 1, wherein the light emitting element is sequentially covered with the glass film and the translucent resin. 前記ガラス膜は、さらにSi−H結合を有していることを特徴とする請求項1乃至3のいずれか一項に記載の発光装置。 The light emitting device according to claim 1, wherein the glass film further has a Si—H bond. 前記ガラス膜は、厚みが0.05μm以上5μm以下であることを特徴とする請求項1乃至4のいずれか一項に記載の発光装置。 5. The light emitting device according to claim 1, wherein the glass film has a thickness of 0.05 μm or more and 5 μm or less. 前記金属反射部材は、銀を有する材料にて構成されていることを特徴とする請求項1乃至5のいずれか一項に記載の発光装置。 The light emitting device according to claim 1, wherein the metal reflecting member is made of a material containing silver. 前記金属反射部材は、支持体の表面に保持されており、前記金属反射部材の表面は、前記支持体の表面より突出していることを特徴とする、請求項1乃至6のいずれか一項に記載の発光装置。The said metal reflecting member is hold | maintained on the surface of the support body, The surface of the said metal reflecting member protrudes from the surface of the said support body, The Claim 1 thru | or 6 characterized by the above-mentioned. The light-emitting device of description. 金属反射部材に発光素子を固定する工程と、Fixing the light emitting element to the metal reflecting member;
前記金属反射部材を覆いSi−N結合を必須とするガラス膜を形成する工程と、Forming a glass film that covers the metal reflecting member and essentially requires a Si-N bond;
前記ガラス膜を覆う透光性樹脂を形成する工程と、を有し、Forming a translucent resin covering the glass film,
前記発光素子はヒートシンクを介して固定されていることを特徴とする、発光装置の製造方法。The method for manufacturing a light emitting device, wherein the light emitting element is fixed via a heat sink.
前記ガラス膜を形成する工程において、パーヒドロポリシラザンを希釈した材料をスプレーにより金属反射部材の表面に塗布することを特徴とする、請求項8に記載の発光装置の製造方法。9. The method of manufacturing a light emitting device according to claim 8, wherein in the step of forming the glass film, a material diluted with perhydropolysilazane is applied to the surface of the metal reflecting member by spraying. 前記パーヒドロポリシラザンは無水溶剤で希釈されており、前記ガラス膜を形成する工程は、前記溶剤を揮発させる工程と、硬化させる工程とを含む、請求項9に記載の発光装置の製造方法。The method for manufacturing a light-emitting device according to claim 9, wherein the perhydropolysilazane is diluted with an anhydrous solvent, and the step of forming the glass film includes a step of volatilizing the solvent and a step of curing. 前記ガラス膜は、厚みが0.05μm以上5μm以下であることを特徴とする請求項8乃至10のいずれか一項に記載の発光装置の製造方法。The method for manufacturing a light emitting device according to claim 8, wherein the glass film has a thickness of 0.05 μm or more and 5 μm or less. 前記金属反射部材は、支持体の表面に保持されており、前記金属反射部材の表面は、前記支持体の表面より突出していることを特徴とする、請求項8乃至11のいずれか一項に記載の発光装置の製造方法。The metal reflective member is held on a surface of a support, and the surface of the metal reflective member protrudes from the surface of the support. The manufacturing method of the light-emitting device of description.
JP2013091985A 2007-07-04 2013-04-25 Light emitting device Active JP5660157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013091985A JP5660157B2 (en) 2007-07-04 2013-04-25 Light emitting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007176288 2007-07-04
JP2007176288 2007-07-04
JP2013091985A JP5660157B2 (en) 2007-07-04 2013-04-25 Light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008112189A Division JP5630948B2 (en) 2007-07-04 2008-04-23 Light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014244583A Division JP2015053525A (en) 2007-07-04 2014-12-03 Light emitting device

Publications (2)

Publication Number Publication Date
JP2013191860A JP2013191860A (en) 2013-09-26
JP5660157B2 true JP5660157B2 (en) 2015-01-28

Family

ID=40403245

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2008112189A Active JP5630948B2 (en) 2007-07-04 2008-04-23 Light emitting device
JP2013091985A Active JP5660157B2 (en) 2007-07-04 2013-04-25 Light emitting device
JP2014244583A Pending JP2015053525A (en) 2007-07-04 2014-12-03 Light emitting device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008112189A Active JP5630948B2 (en) 2007-07-04 2008-04-23 Light emitting device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2014244583A Pending JP2015053525A (en) 2007-07-04 2014-12-03 Light emitting device

Country Status (1)

Country Link
JP (3) JP5630948B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096793A (en) * 2009-10-29 2011-05-12 Nichia Corp Light-emitting device
JP2012019062A (en) 2010-07-08 2012-01-26 Shin Etsu Chem Co Ltd Light emitting semiconductor device, mounting board, and method for manufacturing the light emitting semiconductor device and the mounting board
JP5864089B2 (en) 2010-08-25 2016-02-17 日亜化学工業株式会社 Method for manufacturing light emitting device
JP2015062261A (en) * 2010-08-25 2015-04-02 日亜化学工業株式会社 Light-emitting device
JP5563440B2 (en) * 2010-12-24 2014-07-30 株式会社朝日ラバー Resin lens, LED device with lens, and manufacturing method of LED device with lens
JP5661552B2 (en) * 2010-12-24 2015-01-28 シチズンホールディングス株式会社 Semiconductor light emitting device and manufacturing method thereof
US10490712B2 (en) 2011-07-21 2019-11-26 Cree, Inc. Light emitter device packages, components, and methods for improved chemical resistance and related methods
US10686107B2 (en) 2011-07-21 2020-06-16 Cree, Inc. Light emitter devices and components with improved chemical resistance and related methods
US10211380B2 (en) 2011-07-21 2019-02-19 Cree, Inc. Light emitting devices and components having improved chemical resistance and related methods
JP5849602B2 (en) * 2011-10-20 2016-01-27 日亜化学工業株式会社 Light emitting device
JP5938912B2 (en) 2012-01-13 2016-06-22 日亜化学工業株式会社 Light emitting device and lighting device
JPWO2013187067A1 (en) * 2012-06-15 2016-02-04 コニカミノルタ株式会社 LED device and manufacturing method thereof
JP2013175751A (en) * 2013-04-05 2013-09-05 Shin Etsu Chem Co Ltd Light-emitting semiconductor device, mounting substrate, and method of manufacturing the same
DE102013215650B4 (en) * 2013-08-08 2021-10-28 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelectronic component and process for its production
TWI648878B (en) * 2018-05-15 2019-01-21 東貝光電科技股份有限公司 Led light source, manufacturing method of led light source and direct display thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3307471B2 (en) * 1993-02-24 2002-07-24 東燃ゼネラル石油株式会社 Composition for ceramic coating and coating method
JPH11249168A (en) * 1998-03-04 1999-09-17 Seiko Epson Corp Active matrix substrate and its production, liquid crystal panel
JP3667125B2 (en) * 1998-12-07 2005-07-06 日亜化学工業株式会社 Optical semiconductor device and manufacturing method thereof
JP3503131B2 (en) * 1999-06-03 2004-03-02 サンケン電気株式会社 Semiconductor light emitting device
JP2001111076A (en) * 1999-10-08 2001-04-20 Tdk Corp Coated body and solar cell module
JP4040850B2 (en) * 2000-07-24 2008-01-30 Tdk株式会社 Light emitting element
JP2003179270A (en) * 2002-11-07 2003-06-27 Sanken Electric Co Ltd Semiconductor light emitting device
JP2004319939A (en) * 2003-02-25 2004-11-11 Kyocera Corp Package for housing light emitting element and light emitting device
JP2005093700A (en) * 2003-09-17 2005-04-07 Seiko Epson Corp Thin film transistor, method for manufacturing the same and method for manufacturing electronic device
JP2007109915A (en) * 2005-10-14 2007-04-26 Stanley Electric Co Ltd Light emitting diode

Also Published As

Publication number Publication date
JP2013191860A (en) 2013-09-26
JP2009033107A (en) 2009-02-12
JP5630948B2 (en) 2014-11-26
JP2015053525A (en) 2015-03-19

Similar Documents

Publication Publication Date Title
JP5660157B2 (en) Light emitting device
US7967476B2 (en) Light emitting device including protective glass film
JP4962270B2 (en) Light emitting device and method of manufacturing the same
US9018664B2 (en) Semiconductor device and production method therefor
JP5119917B2 (en) Light emitting device
JP4826470B2 (en) Light emitting device
WO2011099384A1 (en) Light emitting device and method for manufacturing light emitting device
JP5413137B2 (en) Light emitting device and method for manufacturing light emitting device
JP2006156704A (en) Resin molding and surface-mounted light emitting device, and manufacturing method thereof
JP2011216875A (en) Light-emitting device
JP5169185B2 (en) Light emitting device
JP2011146480A (en) Light-emitting device and manufacturing method of light-emitting device
JP5125060B2 (en) Light emitting device
US9755123B2 (en) Light emitting device and method of manufacturing the light emitting device
JP2011253846A (en) Light emitting device and method for manufacturing the same
JP6521032B2 (en) Optical semiconductor device and method of manufacturing the same
JP5482293B2 (en) Optical semiconductor device and manufacturing method thereof
JP6102116B2 (en) Method for manufacturing light emitting device
JP5628475B2 (en) Manufacturing method of surface mounted light emitting device
JP5849691B2 (en) Mounting method of light emitting element
KR20130112596A (en) Light emitting device package
JP4720943B1 (en) Package for semiconductor device and light emitting device using the same
JP2017017162A (en) Light-emitting device
JP2008198962A (en) Light emitting device and its manufacturing method
JP2009152059A (en) Linear light source and plane light-emitting device using it

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141117

R150 Certificate of patent or registration of utility model

Ref document number: 5660157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250