JP2015062261A - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
JP2015062261A
JP2015062261A JP2015001027A JP2015001027A JP2015062261A JP 2015062261 A JP2015062261 A JP 2015062261A JP 2015001027 A JP2015001027 A JP 2015001027A JP 2015001027 A JP2015001027 A JP 2015001027A JP 2015062261 A JP2015062261 A JP 2015062261A
Authority
JP
Japan
Prior art keywords
light emitting
protective film
light
reflective film
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015001027A
Other languages
Japanese (ja)
Inventor
若木 貴功
Takakatsu Wakagi
貴功 若木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2015001027A priority Critical patent/JP2015062261A/en
Publication of JP2015062261A publication Critical patent/JP2015062261A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating

Landscapes

  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a light-emitting device capable of suppressing discoloration or the like of a reflection film and maintaining high output.SOLUTION: A manufacturing method of a light-emitting device sequentially includes: a conductive member preparation step of preparing a conductive member 1 having a reflection film 1b; a light-emitting device disposition step of disposing a light-emitting device 3 on the reflection film; and a protective film formation step of forming a protective film 5 on the reflection film by an atomic layer deposition method.

Description

本発明は、導電部材上に発光素子が設けられた発光装置に関するものである。   The present invention relates to a light emitting device in which a light emitting element is provided on a conductive member.

発光素子を光源とする発光装置において、発光素子の周囲に銀等を含む反射膜を設けて出力を向上させ、さらに反射膜の上にスパッタ、CVD等により無機材料からなる保護膜を形成して反射膜の変色等を抑制する試みがなされている(例えば特許文献1)。   In a light-emitting device using a light-emitting element as a light source, a reflective film containing silver or the like is provided around the light-emitting element to improve output, and a protective film made of an inorganic material is formed on the reflective film by sputtering, CVD, or the like. Attempts have been made to suppress discoloration of the reflective film (for example, Patent Document 1).

特開2009−224538JP2009-224538A

しかしながら、従来の方法では、反射膜により一旦出力を向上させることができるものの、使用時等において、出力が低下するという問題があった。つまり、スパッタ、CVD等では、材料成分がある程度の直進性をもって目的物に当たることで保護膜が形成されるので、例えば、発光素子の近傍では発光素子自体が障害物となり良質な保護膜を形成することができなかった。そのため、時間の経過に伴いそれらの部分から優先的に反射膜が劣化し変色してしまう等の問題があった。   However, in the conventional method, although the output can be once improved by the reflection film, there is a problem that the output is lowered during use. That is, in sputtering, CVD, etc., a protective film is formed when the material component hits the target with a certain degree of straightness. For example, in the vicinity of the light emitting element, the light emitting element itself becomes an obstacle and forms a high quality protective film. I couldn't. For this reason, there is a problem that the reflective film deteriorates and discolors preferentially from those portions as time passes.

そこで本発明は、反射膜の変色等を抑制し高い出力を維持することができる発光装置の製造方法を提供することを目的とする。   In view of the above, an object of the present invention is to provide a method for manufacturing a light emitting device capable of suppressing discoloration of a reflective film and maintaining high output.

一実施態様に係る発光装置の製造方法は、反射膜を備える導電部材を準備する導電部材準備工程と、反射膜上に発光素子を配置する発光素子配置工程と、原子層堆積法により反射膜上に保護膜を形成する保護膜形成工程と、を順に有する。   A method of manufacturing a light emitting device according to an embodiment includes a conductive member preparing step of preparing a conductive member including a reflective film, a light emitting element arranging step of arranging a light emitting element on the reflective film, and an atomic layer deposition method on the reflective film. And a protective film forming step of forming a protective film in order.

他の実施形態に係る発光装置の製造方法は、導電部材を準備する導電部材準備工程と、導電部材上に発光素子を配置する発光素子配置工程と、導電部材と発光素子とをワイヤーにて電気的に接続するワイヤー接続工程と、導電部材及びワイヤーの表面に反射膜を形成する反射膜形成工程と、原子層堆積法により反射膜の表面に保護膜を形成する保護膜形成工程と、を順に有する。   A method for manufacturing a light emitting device according to another embodiment includes a conductive member preparing step of preparing a conductive member, a light emitting element arranging step of arranging a light emitting element on the conductive member, and electrically connecting the conductive member and the light emitting element with a wire. Wire connecting step for connecting the conductive member, a reflective film forming step for forming a reflective film on the surface of the conductive member and the wire, and a protective film forming step for forming a protective film on the surface of the reflective film by atomic layer deposition. Have.

図1は、一実施形態の発光装置の製造方法を説明するための模式図である。Drawing 1 is a mimetic diagram for explaining a manufacturing method of a light emitting device of one embodiment. 図2は、図1(f)の破線枠における拡大図である。FIG. 2 is an enlarged view of a broken line frame in FIG. 図3は、他の実施形態の発光装置の製造方法を説明するための模式図である。FIG. 3 is a schematic diagram for explaining a method for manufacturing a light emitting device according to another embodiment. 図4は、一実施形態の発光装置の製造方法の作用効果を説明するためのものである。FIG. 4 is a view for explaining the operational effects of the method for manufacturing a light emitting device according to an embodiment.

本発明を実施するための形態を、以下に図面を参照しながら説明する。ただし、以下に示す形態は、本発明の技術思想を具体化するための発光装置の製造方法を例示するものであって、本発明を以下に限定するものではない。また、実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り、本発明の範囲をそれのみに限定する趣旨ではなく、単なる例示にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするために誇張していることがある。   A mode for carrying out the present invention will be described below with reference to the drawings. However, the form shown below illustrates the manufacturing method of the light-emitting device for actualizing the technical idea of this invention, Comprising: This invention is not limited to the following. In addition, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the embodiments are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Only. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation.

[実施の形態1]
図1(a)〜(f)に、本実施の形態の発光装置の製造方法の各工程を示す。図2は、図1(f)における破線枠部の拡大模式図である。
[Embodiment 1]
1A to 1F show each step of the method for manufacturing the light emitting device of the present embodiment. FIG. 2 is an enlarged schematic view of a broken-line frame portion in FIG.

(導電部材準備工程)
先ず、図1(a)に示すように、母材1a上に反射膜1bが設けられた導電部材1を準備する(導電部材準備工程)。ここでは、母材1aだけでなく反射膜1bも導電性を有している。本実施の形態では、導電部材は母材と反射膜とで構成されている。
(Conductive member preparation process)
First, as shown in FIG. 1A, a conductive member 1 having a reflective film 1b provided on a base material 1a is prepared (conductive member preparation step). Here, not only the base material 1a but also the reflective film 1b has conductivity. In the present embodiment, the conductive member is composed of a base material and a reflective film.

母材1aは導電性を備えていればよく、その材料は限定されない。母材1aとしては、例えば、銅又は銅合金を使用することができる。   The base material 1a should just have electroconductivity, The material is not limited. As the base material 1a, for example, copper or a copper alloy can be used.

反射膜1bは、発光素子3からの光を反射することができればよく、その材料は限定されない。反射膜1bとしては、例えば、銀、アルミニウムを用いることができ、特に反射率の高い銀を含む材料とすることが好ましい。   The reflective film 1b only needs to reflect the light from the light emitting element 3, and the material thereof is not limited. As the reflective film 1b, for example, silver or aluminum can be used, and a material containing silver having a particularly high reflectance is preferable.

なお、図1(b)〜(f)については、説明の便宜上、母材1a及び反射膜1bは個別に図示しておらず、それらをまとめて導電部材1としている。また、導電部材は反射膜のみからなっていてもよいし、母材1a及び反射膜1bの間に他の部材を介していてもよい。さらに、反射膜1bは母材1aの全面に形成されている必要はなく、例えば発光素子3近傍の領域(領域A(図2))に形成されていれば良い。   1B to 1F, for convenience of explanation, the base material 1a and the reflective film 1b are not individually illustrated, and they are collectively referred to as the conductive member 1. In addition, the conductive member may be composed only of the reflective film, or another member may be interposed between the base material 1a and the reflective film 1b. Furthermore, the reflective film 1b does not need to be formed on the entire surface of the base material 1a, and may be formed, for example, in a region in the vicinity of the light emitting element 3 (region A (FIG. 2)).

(パッケージ形成工程)
次に、図1(b)に示すように、例えば、導電部材1に基部2a及び側壁2bを有するパッケージ2を形成することができる(パッケージ形成工程)。
(Package formation process)
Next, as shown in FIG. 1B, for example, a package 2 having a base 2a and a side wall 2b can be formed on the conductive member 1 (package forming step).

パッケージの材料について限定はなく、例えば樹脂、セラミックで形成することができる。樹脂からなるパッケージの場合、導電部材1をパッケージ形成金型(図示せず)に配置して、そこにパッケージ材料となる樹脂を流し込み固めることで、パッケージ2を導電部材1と一体に形成することができる。パッケージの凹部底面には導電部材1の一部が露出している。   There is no limitation on the material of the package, and it can be formed of, for example, resin or ceramic. In the case of a package made of resin, the package 2 is formed integrally with the conductive member 1 by placing the conductive member 1 in a package forming mold (not shown) and pouring and hardening the resin as the package material there. Can do. A part of the conductive member 1 is exposed on the bottom surface of the recess of the package.

パッケージ2は、導電部材1と一体に形成されるものであり、絶縁性であればその材料は限定されない。パッケージ2の材料としては、耐光性、耐熱性に優れた電気絶縁性のものが好適に用いられ、例えばポリフタルアミドなどの熱可塑性樹脂、エポキシ樹脂などの熱硬化性樹脂、ガラスエポキシ、セラミックスを用いることができる。また、本実施の形態ではパッケージ2が側壁2bを有する構成としたが、側壁を必ず設ける必要はない。   The package 2 is formed integrally with the conductive member 1 and its material is not limited as long as it is insulative. As the material of the package 2, an electrically insulating material having excellent light resistance and heat resistance is suitably used. For example, a thermoplastic resin such as polyphthalamide, a thermosetting resin such as an epoxy resin, glass epoxy, or ceramics is used. Can be used. In the present embodiment, the package 2 has the side wall 2b. However, the side wall is not necessarily provided.

(発光素子配置工程)
次に、図1(c)に示すように、反射膜1b上に発光素子3を配置する(発光素子配置工程)。具体的には、接着部材(図示せず)を介して、発光素子3を反射膜1bに配置することができる。接着部材は導電性であっても良いし、絶縁性であっても良い。
(Light emitting element arrangement process)
Next, as shown in FIG.1 (c), the light emitting element 3 is arrange | positioned on the reflective film 1b (light emitting element arrangement | positioning process). Specifically, the light emitting element 3 can be disposed on the reflective film 1b via an adhesive member (not shown). The adhesive member may be conductive or insulative.

接着部材は、発光素子3を導電部材1に配置し固定するためのものであり、その材料は特に限定されない。例えば、接着部材3を絶縁性とする場合は、エポキシ樹脂、シリコーン樹脂を用いることができ、接着部材3を導電性とする場合はAu−Sn合金、SnAgCu合金、SnPb合金、InSn合金、Ag、Sn、Agを用いることができる。   The adhesive member is for arranging and fixing the light emitting element 3 on the conductive member 1, and the material thereof is not particularly limited. For example, when the adhesive member 3 is made insulating, an epoxy resin or a silicone resin can be used. When the adhesive member 3 is made conductive, an Au—Sn alloy, a SnAgCu alloy, a SnPb alloy, an InSn alloy, Ag, Sn and Ag can be used.

発光素子3は公知のものを用いることができ、例えば青色発光や緑色発光が可能な窒化物半導体(InAlGa1−X−YN、0≦X、0≦Y、X+Y≦1)からなるLEDとすることができる。 The light-emitting element 3 may be a known, for example, blue light emission and green light emission can be a nitride semiconductor (In X Al Y Ga 1- X-Y N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1) It can be set as LED which consists of.

(ワイヤー接続工程)
次に、図1(d)に示すように、発光素子3と反射膜1bとを導電性のワイヤー4にて電気的に接続することもできる(ワイヤー接続工程)。ここでは、導電性の反射膜1bを介して、発光素子3と母材1aとが電気的に接続されている。
(Wire connection process)
Next, as shown in FIG.1 (d), the light emitting element 3 and the reflecting film 1b can also be electrically connected with the electroconductive wire 4 (wire connection process). Here, the light emitting element 3 and the base material 1a are electrically connected via the conductive reflective film 1b.

発光素子3が同一面側に一対の電極を有しており(図示せず)、その側を上(発光観測面側)にして発光素子3を配置する場合は、同図に示すように、ワイヤー4もそれぞれ必要になる。この場合、発光素子3の導電部材側が絶縁性を有していれば、接着部材は必ずしも絶縁性部材である必要はなく、熱伝導率を考慮して金属等の導電性部材とすることもできる。他の形態として、発光素子が反対となる両面にそれぞれ電極を有する場合は、一方の電極は導電性の接着部材を介して通電することになるのでワイヤーは一本でよい。一方、発光素子が同一面側に一対の電極を有しておりその側を下(発光観測面側と反対側(導電部材1に対向する側))にして発光素子を配置する場合は、両電極はそれぞれ導電性の接着部材を介して通電することができるのでワイヤーは不要となる。   When the light emitting element 3 has a pair of electrodes on the same surface side (not shown) and the light emitting element 3 is disposed with the side facing up (the light emission observation surface side), as shown in FIG. Each wire 4 is also required. In this case, if the conductive member side of the light emitting element 3 has an insulating property, the adhesive member does not necessarily need to be an insulating member, and may be a conductive member such as a metal in consideration of thermal conductivity. . As another form, when the light emitting element has electrodes on both sides opposite to each other, one electrode is energized through a conductive adhesive member, so that one wire is sufficient. On the other hand, when the light emitting element has a pair of electrodes on the same surface side, and the light emitting element is disposed with the side facing down (opposite side to the light emission observation surface side (side facing the conductive member 1)), Since the electrodes can be energized through conductive adhesive members, no wires are required.

ワイヤー4は、発光素子3と母材1aとを電気的に接続するためのものであり、その材料は限定されない。ワイヤー4の材料としては、例えば、金、銅、白金、アルミニウム、銀の少なくともいずれか1つを含む材料を用いることができる。   The wire 4 is for electrically connecting the light emitting element 3 and the base material 1a, and the material is not limited. As the material of the wire 4, for example, a material containing at least one of gold, copper, platinum, aluminum, and silver can be used.

(保護膜形成工程)
次に、図1(e)に示すように、原子層堆積法(以下、単に「ALD」(Atomic Layer Deposition)ともいう))により反射膜1b上に保護膜5を形成する。つまり、発光観測面側から保護膜5を形成する。スパッタ等の従来の方法と異なり、ALDは反応成分の層を1原子層ごと形成する方法である。以下に、TMA(トリメチルアルミニウム)及び水(HO)を用いて、酸化アルミニウム(Al)の保護膜を形成する場合について説明する。
(Protective film formation process)
Next, as shown in FIG. 1E, a protective film 5 is formed on the reflective film 1b by an atomic layer deposition method (hereinafter also simply referred to as “ALD” (Atomic Layer Deposition)). That is, the protective film 5 is formed from the emission observation surface side. Unlike conventional methods such as sputtering, ALD is a method in which a layer of reaction components is formed for each atomic layer. The case where a protective film of aluminum oxide (Al 2 O 3 ) is formed using TMA (trimethylaluminum) and water (H 2 O) will be described below.

先ず、TMAガスを導入して、目的物である反射膜の表面のOH基とTMAとを反応させる(第1反応)。次に、余剰ガスを排気する。その後、HOガスを導入して、第1反応でOH基と結合したTMAとHOとを反応させる(第2反応)。次に、余剰ガスを排気する。そして、第1反応、排気、第2反応及び排気を1サイクルとして、これを繰り返すことにより、所定の膜厚のAlを形成することができる。 First, TMA gas is introduced to react the OH groups on the surface of the reflective film, which is the target, with TMA (first reaction). Next, the surplus gas is exhausted. Thereafter, H 2 O gas is introduced to react TMA bonded to the OH group in the first reaction with H 2 O (second reaction). Next, the surplus gas is exhausted. Then, by repeating the first reaction, exhaust, second reaction, and exhaust as one cycle, Al 2 O 3 having a predetermined film thickness can be formed.

スパッタ、CVD等と異なり、ALDでは反応成分の直進性が低いので、障害物近傍であっても、反応成分が同等に供給され反応成分が単分子層ごとに形成される。その結果、障害物近傍の領域も障害物のない他の領域と同様に、より均一な膜厚及び膜質でより良質な保護膜を形成することができる。   Unlike sputtering, CVD, and the like, ALD has low rectilinearity of the reaction component, so that even in the vicinity of an obstacle, the reaction component is supplied equally and a reaction component is formed for each monomolecular layer. As a result, a high-quality protective film can be formed with a more uniform film thickness and film quality in the area in the vicinity of the obstacle as in the other areas without the obstacle.

ALDにより得られる保護膜は、従来の方法で得られる保護膜に比較して良質であり保護力に優れる。したがって、従来の方法で得られる保護膜は障害物のない領域であっても一定の割合で部分的に変色等が生じるが、ALDで得られる保護膜は障害物の有無にかかわらずほとんど変色は見られない。さらに、ALDにより得られる保護膜は膜厚が薄くても十分に反射膜を保護することができるので、従来の方法で得られる保護膜よりも薄く保護膜を形成することができる。これにより、保護膜における光の吸収が抑制できるので、初期特性において光出力の高い発光装置とすることができる。   The protective film obtained by ALD is superior in quality and protective power as compared with the protective film obtained by the conventional method. Therefore, although the protective film obtained by the conventional method is partially discolored at a certain rate even in an area without an obstacle, the protective film obtained by ALD is hardly discolored regardless of the presence or absence of an obstacle. can not see. Furthermore, even if the protective film obtained by ALD is thin, the reflective film can be sufficiently protected, so that the protective film can be formed thinner than the protective film obtained by the conventional method. Accordingly, since light absorption in the protective film can be suppressed, a light emitting device with high light output in the initial characteristics can be obtained.

発光素子3の配置後に保護膜5を形成する場合、従来の方法では発光素子3自体が障害物となり、その周囲近傍には保護膜5の材料成分が十分に届かないという問題があった。その結果、保護膜5の質が低下したり膜厚が薄くなったりして、発光素子3近傍の領域(領域A(図2))の反射膜が劣化し変色等していた。保護膜の質が低下等した部分は他の部分に比較してピンホールが多く発生しており、それが原因となって反射膜が硫化、臭化等してしまい変色するものと考えられる。発光素子の周囲近傍は光出力が強いので、発光素子周囲近傍の反射膜の変色により、発光装置の光出力は大きく低下してしまう。   When the protective film 5 is formed after the light emitting element 3 is disposed, the conventional method has a problem that the light emitting element 3 itself becomes an obstacle, and the material component of the protective film 5 does not reach the vicinity in the vicinity. As a result, the quality of the protective film 5 was lowered or the film thickness was reduced, and the reflective film in the area near the light emitting element 3 (area A (FIG. 2)) was deteriorated and discolored. The portion where the quality of the protective film is lowered has more pinholes than the other portions, and it is considered that the reflective film is sulphurized, brominated, etc., causing discoloration. Since the light output is strong in the vicinity of the light emitting element, the light output of the light emitting device is greatly reduced due to the discoloration of the reflective film in the vicinity of the light emitting element.

そこで、ALDを採用することにより、発光素子近傍の領域(領域A(図2))であっても、膜質等に優れた保護膜5を形成することができる。これにより、領域Aにおける反射膜1bの変色等を抑制することができる。   Therefore, by employing ALD, the protective film 5 having excellent film quality and the like can be formed even in the region (region A (FIG. 2)) in the vicinity of the light emitting element. Thereby, discoloration etc. of the reflective film 1b in the area | region A can be suppressed.

特に、一断面視において、接着部材が発光素子側面まで至らずにその内側にのみ位置する場合は、発光素子底面の周縁部と反射膜との間に間隙が形成されることになる。このような場合であっても、ALDによれば、その間隙における反射膜にも保護膜を形成することができる。   In particular, in a cross-sectional view, when the adhesive member is located only on the inner side of the light emitting element without reaching the side of the light emitting element, a gap is formed between the peripheral edge of the bottom surface of the light emitting element and the reflective film. Even in such a case, according to ALD, a protective film can also be formed on the reflective film in the gap.

ワイヤー接続工程の後で従来の方法により保護膜を形成する場合、ワイヤー4の存在により(ワイヤー4が障害物となり)、ワイヤー4の下部の反射膜1bには保護膜5の材料成分が十分に届かないという問題があった。その結果、保護膜5の質が低下したり膜厚が薄くなったりして、その部分の反射膜1bが変色等していた。特に、ワイヤー4の下部領域のうちワイヤー4と反射膜1bとの接続部近傍の領域(領域B(図2))においては、従来の方法では反射膜1bの変色だけでなく、反射膜1bが腐食されてしまい最終的にワイヤー4が切れてしまうという問題もあった。   When the protective film is formed by the conventional method after the wire connecting step, due to the presence of the wire 4 (the wire 4 becomes an obstacle), the reflective film 1b below the wire 4 has sufficient material components of the protective film 5 There was a problem of not reaching. As a result, the quality of the protective film 5 deteriorates or the film thickness decreases, and the reflective film 1b in that portion is discolored. In particular, in the region near the connecting portion between the wire 4 and the reflective film 1b (region B (FIG. 2)) in the lower region of the wire 4, the conventional method not only changes the color of the reflective film 1b but also the reflective film 1b. There was also a problem that the wire 4 was eventually broken due to corrosion.

ところが、ALDであれば、ワイヤー4直下の領域(特に領域B(図2))であっても、膜質等に優れた保護膜5を形成することができる。これにより、領域Bにおける保護膜の劣化を軽減し、変色等だけでなくワイヤーの切断も抑制することができる。
図4に、保護膜形成工程の後で発光観測面側から撮影したワイヤーと反射膜との接続部近傍の写真を示す。図4(a)は、ALDによりAlよりなる膜厚30μmの保護膜を形成したものであり、図4(b)は、従来のスパッタによりAlよりなる膜厚30μmの保護膜を形成したものである。これらの写真は、Agよりなる反射膜が硫化しやすいように、硫黄成分過多の状態で一定時間経過させた後に撮影したものである(両者は同一条件での試験である。)。図4(a)に示すように、ALDにより形成した保護膜は、硫化しやすい条件にもかかわらず、ワイヤーから離れた障害物のない領域だけでなくワイヤー直下の領域(図2の領域Bに相当)においても硫化による変色は見られなかった。一方、図4(b)に示すように、スパッタにより形成した保護膜は、ワイヤーから離れた障害物のない領域でも多数の個所で点状に変色しており、ワイヤー直下の領域を含むワイヤーと反射膜との接続部の周辺においては連続的に変色していた(ワイヤーと反射膜との接続部にはワイヤーの微細な凹凸が存在しており、それが障害物となったため、ワイヤー直下の領域だけでなく接続部の周辺全体が変色したものと考えられる。)。これらの実験結果より、ALDで保護膜を形成することで、優れた保護膜を形成することができることが理解できる。
発光装置としての光出力を向上させるために、例えば、反射率の高い銀を含む材料よりなるワイヤーを用いて、ワイヤーにより光反射を効果的に行うこともできる。しかし、反射膜が変色するのと同様、銀を含む材料よりなるワイヤーの変色も問題となる。このような場合であっても、ALDであれば、上記理由によりワイヤーの発光観測面側から反対側(反射膜側)にかけてワイヤーの表面全体に保護膜を形成することができるので、ワイヤーの変色等を効果的に抑制することができる。
However, in the case of ALD, the protective film 5 having excellent film quality and the like can be formed even in the region immediately below the wire 4 (particularly, the region B (FIG. 2)). Thereby, deterioration of the protective film in the region B can be reduced, and not only discoloration and the like, but also cutting of the wire can be suppressed.
FIG. 4 shows a photograph of the vicinity of the connecting portion between the wire and the reflective film taken from the light emission observation surface side after the protective film forming step. 4A shows a 30 μm-thick protective film made of Al 2 O 3 by ALD, and FIG. 4B shows a 30 μm-thick protective film made of Al 2 O 3 by conventional sputtering. A film is formed. These photographs were taken after a certain period of time in a state of excessive sulfur component so that the reflective film made of Ag is easily sulfided (both are tests under the same conditions). As shown in FIG. 4 (a), the protective film formed by ALD is not only in the area free of obstacles away from the wire, but also in the area directly under the wire (in the area B in FIG. No change in color due to sulfuration was observed. On the other hand, as shown in FIG. 4 (b), the protective film formed by sputtering is discolored in many points even in an area free from obstacles away from the wire, and includes a wire including an area directly under the wire. The area around the connection with the reflective film was discolored continuously (the connection between the wire and the reflective film had fine irregularities on the wire, which became an obstacle. It is thought that not only the area but also the entire periphery of the connection part has changed color.) From these experimental results, it can be understood that an excellent protective film can be formed by forming a protective film by ALD.
In order to improve the light output as the light emitting device, for example, using a wire made of a material containing silver having a high reflectance, light reflection can be effectively performed by the wire. However, just as the reflective film changes color, the color change of the wire made of a material containing silver becomes a problem. Even in such a case, if it is ALD, a protective film can be formed on the entire surface of the wire from the light emission observation surface side to the opposite side (reflection film side) for the above reason. Etc. can be effectively suppressed.

パッケージ形成工程の後で従来の方法により保護膜を形成する場合、パッケージ2の側壁の存在により(パッケージ側壁が障害物となり)、側壁よりなる凹部底面の側壁近傍(領域C(図2))に保護膜5の材料成分が十分に届かないという問題があった。その結果、保護膜5の質が低下したり膜厚が薄くなったりして、その部分の反射膜1bが変色等していた。パッケージ2の側壁近傍における反射膜1bの変色は、領域Aにおける反射膜1bの変色ほど出力に悪影響はないものの、決して無視できない問題である。   When a protective film is formed by a conventional method after the package formation process, due to the presence of the side wall of the package 2 (the package side wall becomes an obstacle), in the vicinity of the side wall of the concave portion made of the side wall (region C (FIG. 2)). There was a problem that the material component of the protective film 5 did not reach the surface sufficiently. As a result, the quality of the protective film 5 deteriorates or the film thickness decreases, and the reflective film 1b in that portion is discolored. The discoloration of the reflective film 1b in the vicinity of the side wall of the package 2 is a problem that cannot be ignored although the output is not as bad as the discoloration of the reflective film 1b in the region A.

そこで、ALDを採用することにより、側壁2b近傍の領域(領域C(図2))であっても、膜質等に優れた保護膜5を形成することができる。これにより、領域Cにおける反射膜1bの変色を抑制することができるので、発光装置としての光出力の低下をより軽減することができる。   Therefore, by employing ALD, it is possible to form the protective film 5 having excellent film quality and the like even in the region (region C (FIG. 2)) near the side wall 2b. Thereby, since the discoloration of the reflecting film 1b in the region C can be suppressed, it is possible to further reduce the decrease in light output as the light emitting device.

反射膜1bが銀を含む場合、反射率が高い点では有利であるものの、従来の方法では、時間経過に伴い反射膜が変色し出力が低下しやすいという問題があった。しかし、ALDで保護膜を形成すれば、反射膜が銀を含む材料であっても変色等を効果的に防ぐことができるので好ましい。   When the reflective film 1b contains silver, it is advantageous in that the reflectance is high, but the conventional method has a problem that the reflective film is discolored with the passage of time and the output tends to decrease. However, it is preferable to form a protective film by ALD because even if the reflective film is a material containing silver, discoloration and the like can be effectively prevented.

保護膜5としては、例えば、酸化アルミニウム(Al)二酸化珪素(SiO)、窒化アルミニウム(AlN)又は窒化珪素(Si)を採用することができ、好ましくは酸化アルミニウム又は二酸化珪素、より好ましくは酸化アルミニウムとすることができる。これにより、発光素子からの光の吸収が抑制され、保護力に優れた保護膜とすることができる。 As the protective film 5, for example, aluminum oxide (Al 2 O 3 ) silicon dioxide (SiO 2 ), aluminum nitride (AlN), or silicon nitride (Si 3 N 4 ) can be employed, preferably aluminum oxide or It can be silicon, more preferably aluminum oxide. Thereby, absorption of the light from a light emitting element is suppressed, and it can be set as the protective film excellent in protective power.

保護膜5の膜厚としては、1nm以上50nm未満、好ましくは2nm以上25nm未満、より好ましくは3nm以上10nm未満とすることができる。これにより、保護膜としての機能を保ちつつ発光素子からの光の吸収を抑制し出力の高い発光素子とすることができる。   The thickness of the protective film 5 can be 1 nm or more and less than 50 nm, preferably 2 nm or more and less than 25 nm, more preferably 3 nm or more and less than 10 nm. Accordingly, light absorption from the light emitting element can be suppressed while maintaining the function as a protective film, and a light emitting element with high output can be obtained.

図1(e)等では、パッケージ2の凹部底面だけでなく、側壁2bの上面及び内壁にも保護膜5が形成されているが、例えば側壁2bの上面及び内壁には保護膜5を形成しないようにすることもできる。パッケージ2の凹部底面においても、保護膜5を形成しない領域を部分的に設けることもできる。   In FIG. 1E and the like, the protective film 5 is formed not only on the bottom surface of the recess of the package 2 but also on the upper surface and inner wall of the side wall 2b. It can also be done. A region where the protective film 5 is not formed can also be partially provided on the bottom surface of the recess of the package 2.

(その他の工程)
図1(f)に示すように、必要に応じて、パッケージの側壁2bよりなる凹部の内側に封止部材6を形成することができる(封止部材形成工程)。さらに、それぞれが発光装置として機能するように導電部材1を切断(導電部材切断工程)した後、必要に応じて導電部材1をパッケージ2の裏面に折り曲げて(導電部材折り曲げ工程)個々の発光装置とすることができる。
(Other processes)
As shown in FIG.1 (f), the sealing member 6 can be formed inside the recessed part which consists of the side wall 2b of a package as needed (sealing member formation process). Further, after cutting the conductive member 1 so that each functions as a light emitting device (conductive member cutting step), the conductive member 1 is bent to the back surface of the package 2 as necessary (conductive member bending step). It can be.

封止部材6は、発光素子3を封止するためのものであり、発光素子3からの光を外部に透過するものであればその材料は限定されない。封止部材6の材料としては、例えば、シリコーン樹脂、エポキシ樹脂等を用いることができる。さらに、封止部材6には、発光素子3からの光により発光する蛍光部材を含有させることもできる。蛍光部材としては公知のものを用いることができ、発光素子3が青色発光する場合は、黄色に発光するYAG系蛍光体、TAG系蛍光体、ストロンチウムシリケート系蛍光体等とすることで、発光装置全体として白色光を得ることができる。   The sealing member 6 is for sealing the light emitting element 3, and the material is not limited as long as it transmits the light from the light emitting element 3 to the outside. As a material of the sealing member 6, for example, a silicone resin, an epoxy resin, or the like can be used. Further, the sealing member 6 may contain a fluorescent member that emits light by light from the light emitting element 3. A known member can be used as the fluorescent member. When the light emitting element 3 emits blue light, a YAG phosphor, a TAG phosphor, a strontium silicate phosphor, etc. that emits yellow light can be used. As a whole, white light can be obtained.

[実施の形態2]
図3に基づいて、本実施の形態について説明する。なお、実施の形態1と同様の部材については同様の番号を用いており、重複した説明は省略する。
[Embodiment 2]
The present embodiment will be described with reference to FIG. In addition, the same number is used about the member similar to Embodiment 1, and the overlapping description is abbreviate | omitted.

(導電部材準備工程)
先ず、図3(a)に示すように、導電部材1を準備する(導電部材準備工程)。本実施の形態では、実施の形態1と異なり、母材のみで導電部材としており、この段階では反射膜1bは設けられていない。
(Conductive member preparation process)
First, as shown in FIG. 3A, the conductive member 1 is prepared (conductive member preparation step). In the present embodiment, unlike Embodiment 1, only the base material is used as the conductive member, and the reflective film 1b is not provided at this stage.

(パッケージ形成工程)
次に、図3(b)に示すように、導電部材1に基部2a及び側壁2bを有するパッケージ2を形成することができる(パッケージ形成工程)。
(Package formation process)
Next, as shown in FIG. 3B, the package 2 having the base 2a and the side wall 2b can be formed on the conductive member 1 (package forming step).

(発光素子配置工程)
次に、図3(c)に示すように、導電部材1上に発光素子3を配置する(発光素子配置工程)。具体的には、接着部材(図示せず)を介して、発光素子3を導電部材1に配置することができる。
(Light emitting element arrangement process)
Next, as shown in FIG.3 (c), the light emitting element 3 is arrange | positioned on the electrically-conductive member 1 (light emitting element arrangement | positioning process). Specifically, the light emitting element 3 can be arranged on the conductive member 1 through an adhesive member (not shown).

(ワイヤー接続工程)
次に、図3(d)に示すように、導電部材1と発光素子3とを導電性のワイヤー4にて電気的に接続する(ワイヤー接続工程)。
(Wire connection process)
Next, as shown in FIG.3 (d), the electrically-conductive member 1 and the light emitting element 3 are electrically connected with the electroconductive wire 4 (wire connection process).

(反射膜形成工程)
次に、導電部材1及びワイヤー4の表面に反射膜1bを形成する(反射膜形成工程)。作図の都合上、図3(e)では、ワイヤー4の表面に反射膜1bが図示されていないが、本実施の形態では実際は導電部材1の表面だけでなくワイヤー4の表面にも反射膜1bが形成されている。反射膜1bは導電部材1とワイヤー4との接合部分も被覆している。
(Reflective film formation process)
Next, the reflective film 1b is formed on the surfaces of the conductive member 1 and the wire 4 (reflective film forming step). For convenience of drawing, the reflective film 1b is not shown on the surface of the wire 4 in FIG. 3E. However, in the present embodiment, the reflective film 1b is not only applied to the surface of the conductive member 1 but also to the surface of the wire 4. Is formed. The reflective film 1 b also covers the joint portion between the conductive member 1 and the wire 4.

これにより、ワイヤー4の表面での光吸収を抑制することができるので、より出力の高い発光装置とすることができる。   Thereby, since the light absorption in the surface of the wire 4 can be suppressed, it can be set as the light-emitting device with higher output.

反射膜1bの形成方法としては、既存の方法を採用することができる。特に、電気めっき法であれば、導体ではない発光素子3の表面に反射膜(金属膜)を形成させることなく、導電部材1及びワイヤー4等の表面に選択的に反射膜1bを形成することができる。なお、反射膜1bの材料については実施の形態1と同様であり銀等とすることができる。   As a method for forming the reflective film 1b, an existing method can be employed. In particular, in the case of electroplating, the reflective film 1b is selectively formed on the surfaces of the conductive member 1 and the wires 4 without forming a reflective film (metal film) on the surface of the light emitting element 3 that is not a conductor. Can do. The material of the reflective film 1b is the same as that of the first embodiment and can be silver or the like.

(保護膜形成工程)
次に、図3(f)に示すように、ALDにより反射膜1bの表面に保護膜5を形成する。作図の都合上、図3(f)ではワイヤー4の表面に保護膜5が図示されていないが、本実施の形態では実際は、反射膜1bを介して、ワイヤー4の表面にも保護膜5が形成されている。
(Protective film formation process)
Next, as shown in FIG. 3F, a protective film 5 is formed on the surface of the reflective film 1b by ALD. For convenience of drawing, the protective film 5 is not shown on the surface of the wire 4 in FIG. 3 (f). However, in the present embodiment, the protective film 5 is actually provided on the surface of the wire 4 via the reflective film 1b. Is formed.

(その他の工程)
図3(g)に示すように、必要に応じて、パッケージの側壁2bよりなる凹部の内側に封止部材6を形成することができる(封止部材形成工程)。さらに、それぞれが発光装置として機能するように導電部材1を切断(導電部材切断工程)した後、必要に応じて導電部材1をパッケージ2の裏面に折り曲げて(導電部材折り曲げ工程)個々の発光装置とすることができる。
(Other processes)
As shown in FIG. 3G, the sealing member 6 can be formed inside the concave portion formed of the side wall 2b of the package as necessary (sealing member forming step). Further, after cutting the conductive member 1 so that each functions as a light emitting device (conductive member cutting step), the conductive member 1 is bent to the back surface of the package 2 as necessary (conductive member bending step). It can be.

本発明に係る発光装置の製造方法は、照明用光源、各種インジケーター用光源、車載用光源、ディスプレイ用光源、液晶のバックライト用光源、センサー用光源、信号機等、種々の発光装置の製造方法に使用することができる。   The light emitting device manufacturing method according to the present invention includes various light emitting device manufacturing methods such as illumination light sources, various indicator light sources, in-vehicle light sources, display light sources, liquid crystal backlight light sources, sensor light sources, and traffic lights. Can be used.

1・・・導電部材
1a・・・母材
1b・・・反射膜
2・・・パッケージ
2a・・・基部
2b・・・側壁
3・・・発光素子
4・・・ワイヤー
5・・・保護膜
6・・・封止部材
DESCRIPTION OF SYMBOLS 1 ... Conductive member 1a ... Base material 1b ... Reflective film 2 ... Package 2a ... Base part 2b ... Side wall 3 ... Light emitting element 4 ... Wire 5 ... Protective film 6 ... Sealing member

Claims (9)

反射膜を備えた導電部材と、
前記反射膜上に実装された発光素子と、
前記発光素子の表面と前記反射膜の表面を連続して覆う保護膜とを有する発光装置であって、
前記実装された発光素子近傍の反射膜上に形成された保護膜の厚さと、前記発光素子近傍を除く前記反射膜の表面に形成された保護膜の厚さとが実質的に等しい発光装置。
A conductive member provided with a reflective film;
A light emitting device mounted on the reflective film;
A light-emitting device having a protective film that continuously covers the surface of the light-emitting element and the surface of the reflective film,
A light-emitting device in which the thickness of the protective film formed on the reflective film in the vicinity of the mounted light-emitting element is substantially equal to the thickness of the protective film formed on the surface of the reflective film excluding the vicinity of the light-emitting element.
前記発光素子と前記反射膜とがワイヤーボンディングされており、前記保護膜は、前記反射膜に接続されたワイヤー端部と前記反射膜の間に形成された隙間を埋めるように形成されている請求項1に記載の発光装置。   The light emitting element and the reflective film are wire-bonded, and the protective film is formed to fill a gap formed between a wire end connected to the reflective film and the reflective film. Item 4. The light emitting device according to Item 1. 前記ワイヤー端部周りの反射膜上に前記保護膜がほぼ同じ厚さに形成されている請求項2に記載の発光装置。   The light emitting device according to claim 2, wherein the protective film is formed to have substantially the same thickness on the reflective film around the wire end. 前記ワイヤー端部近傍に形成された保護膜の厚さは、前記ワイヤー端部近傍を除く反射膜の表面に形成された保護膜の厚さと実質的に等しい請求項2又は3に記載の発光装置。   4. The light emitting device according to claim 2, wherein the thickness of the protective film formed in the vicinity of the wire end is substantially equal to the thickness of the protective film formed on the surface of the reflective film excluding the vicinity of the wire end. . 前記導電部材に基部及び側壁を有するパッケージが形成されており、
前記側壁近傍に形成された保護膜の厚さは、前記側壁近傍を除く反射膜の表面に形成された保護膜の厚さと実質的に等しい請求項1〜4のいずれかに記載の発光装置。
A package having a base and sidewalls is formed on the conductive member;
The light emitting device according to claim 1, wherein a thickness of the protective film formed in the vicinity of the side wall is substantially equal to a thickness of the protective film formed on the surface of the reflective film excluding the vicinity of the side wall.
前記保護膜はワイヤーの表面全体に形成されている請求項2〜4又は請求項2〜4のいずれかを引用する請求項5に記載の発光装置。   The light-emitting device according to claim 5, wherein the protective film is formed on the entire surface of the wire. 前記反射膜は銀を含む請求項1〜6のいずれかに記載の発光装置。   The light emitting device according to claim 1, wherein the reflective film contains silver. 前記保護膜は酸化アルミニウム又は酸化珪素よりなる請求項1〜7のいずれかに記載の発光装置。   The light emitting device according to claim 1, wherein the protective film is made of aluminum oxide or silicon oxide. 前記保護膜は1nm以上50nm未満である請求項1〜8のいずれかに記載の発光装置。   The light emitting device according to claim 1, wherein the protective film is 1 nm or more and less than 50 nm.
JP2015001027A 2010-08-25 2015-01-06 Light-emitting device Pending JP2015062261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015001027A JP2015062261A (en) 2010-08-25 2015-01-06 Light-emitting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010187806 2010-08-25
JP2010187806 2010-08-25
JP2015001027A JP2015062261A (en) 2010-08-25 2015-01-06 Light-emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010203920A Division JP5864089B2 (en) 2010-08-25 2010-09-13 Method for manufacturing light emitting device

Publications (1)

Publication Number Publication Date
JP2015062261A true JP2015062261A (en) 2015-04-02

Family

ID=52821483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015001027A Pending JP2015062261A (en) 2010-08-25 2015-01-06 Light-emitting device

Country Status (1)

Country Link
JP (1) JP2015062261A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017108117A (en) * 2015-12-08 2017-06-15 日亜化学工業株式会社 Method of manufacturing light emitting device
US9941451B2 (en) 2015-10-30 2018-04-10 Nichia Corporation Light emitting device and method of manufacturing light emitting module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285481A (en) * 1985-10-09 1987-04-18 Nippon Telegr & Teleph Corp <Ntt> Resin-sealed light emitting diode and manufacture thereof
JPH0353858U (en) * 1989-09-29 1991-05-24
JP2009033107A (en) * 2007-07-04 2009-02-12 Nichia Corp Light emitting device
JP2009111245A (en) * 2007-10-31 2009-05-21 Nichia Corp Light-emitting device and its manufacturing method
JP2010007013A (en) * 2008-06-30 2010-01-14 Jsr Corp Coating material for metal surface, light emitter, and method for protecting metal surface

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285481A (en) * 1985-10-09 1987-04-18 Nippon Telegr & Teleph Corp <Ntt> Resin-sealed light emitting diode and manufacture thereof
JPH0353858U (en) * 1989-09-29 1991-05-24
JP2009033107A (en) * 2007-07-04 2009-02-12 Nichia Corp Light emitting device
JP2009111245A (en) * 2007-10-31 2009-05-21 Nichia Corp Light-emitting device and its manufacturing method
JP2010007013A (en) * 2008-06-30 2010-01-14 Jsr Corp Coating material for metal surface, light emitter, and method for protecting metal surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9941451B2 (en) 2015-10-30 2018-04-10 Nichia Corporation Light emitting device and method of manufacturing light emitting module
JP2017108117A (en) * 2015-12-08 2017-06-15 日亜化学工業株式会社 Method of manufacturing light emitting device

Similar Documents

Publication Publication Date Title
JP5864089B2 (en) Method for manufacturing light emitting device
US10319888B2 (en) Method of manufacturing light emitting device
US10361347B2 (en) Light emitting device
JP5179766B2 (en) Semiconductor light emitting device and manufacturing method thereof
US8981401B2 (en) Package for optical semiconductor device, optical semiconductor device using the package, and methods for producing same
JP5975269B2 (en) Method for manufacturing light emitting device
JP5413137B2 (en) Light emitting device and method for manufacturing light emitting device
JP2012156443A (en) Method of manufacturing light-emitting device
JP2010239043A (en) Led light source and method of manufacturing led light source
TW201037868A (en) Light emitting diode, method of making light emitting diode and light emitting diode lamp
JP2011146480A (en) Light-emitting device and manufacturing method of light-emitting device
JP2000216434A5 (en)
JP2008147511A (en) Semiconductor light emitting device and its manufacturing method
US9755123B2 (en) Light emitting device and method of manufacturing the light emitting device
JP2004327632A (en) Package for housing light emitting element and light emitting device
JP2015062261A (en) Light-emitting device
KR101134409B1 (en) Light emitting diode package
JP2008198962A (en) Light emitting device and its manufacturing method
JP2007214302A (en) Light emitting element and its fabrication process
JP5556213B2 (en) Method for manufacturing light emitting device
JP2016119464A (en) Light emitting device
JPH11177130A (en) Led lamp
JP2006203262A (en) Light emitting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160628