JP2010239043A - Led light source and method of manufacturing led light source - Google Patents

Led light source and method of manufacturing led light source Download PDF

Info

Publication number
JP2010239043A
JP2010239043A JP2009087463A JP2009087463A JP2010239043A JP 2010239043 A JP2010239043 A JP 2010239043A JP 2009087463 A JP2009087463 A JP 2009087463A JP 2009087463 A JP2009087463 A JP 2009087463A JP 2010239043 A JP2010239043 A JP 2010239043A
Authority
JP
Japan
Prior art keywords
light source
led light
barrier layer
electrode
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009087463A
Other languages
Japanese (ja)
Inventor
Mizue Fukushima
福島  瑞惠
Tomohiro Matsumoto
智浩 松本
Masahiro Sato
雅浩 佐藤
Toshiyuki Tsuda
俊幸 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Electronics Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Electronics Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2009087463A priority Critical patent/JP2010239043A/en
Publication of JP2010239043A publication Critical patent/JP2010239043A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48471Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area being a ball bond, i.e. wedge-to-ball, reverse stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an LED light source that is hardly damaged during chroma adjustment and can adjust chroma easily without hardly changing the outside shape thereof. <P>SOLUTION: The LED light source (20) includes: Ag electrodes (24, 25) disposed on a substrate (30); a barrier layer (50) constituted of a metal oxide film that is formed to coat the entire Ag electrodes; an LED element (21) mounted to the barrier layer; and wires (26, 28) for electrically connecting the Ag electrodes and the LED element where part of the barrier layer for connecting the Ag electrodes and the LED element is removed. A method of manufacturing such an LED light source is also provided. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明はLED光源及びLED光源の製造方法に関し、特にLEDからの発光の一部が蛍光体によって波長変換されるLED光源及びLED光源の製造方法に関する。   The present invention relates to an LED light source and an LED light source manufacturing method, and more particularly to an LED light source in which a part of light emitted from an LED is wavelength-converted by a phosphor and an LED light source manufacturing method.

LED発光装置では、LEDチップが基板上にダイボンディングされ、ワイヤーでLEDチップと電極が電気的に接続され、樹脂で周囲を封止されている。また、LED発光装置の内部リードやリフレクタには、銀メッキが施されている。しかし、樹脂を介してガス等が進入し、銀メッキが硫化して黒色化し、LED発光装置の光出力が低下するという問題があった。そこで、銀メッキの硫化を防止するための薄膜コートを用いるLED発光装置が知られている(例えば、特許文献1参照)。   In an LED light-emitting device, an LED chip is die-bonded on a substrate, the LED chip and an electrode are electrically connected with a wire, and the periphery is sealed with a resin. Moreover, silver plating is given to the internal lead and reflector of the LED light-emitting device. However, there is a problem that gas or the like enters through the resin, the silver plating is sulfided and blackened, and the light output of the LED light emitting device is lowered. Therefore, an LED light-emitting device using a thin film coat for preventing silver plating from being sulfided is known (for example, see Patent Document 1).

図1は、上述した従来のLED発光装置1の概略断面図である。   FIG. 1 is a schematic cross-sectional view of the conventional LED light emitting device 1 described above.

LED発光装置1では、支持体11に配置された内部リード13aの上には銀メッキ14が施され、その上にLEDチップ15が実装されている。LEDチップ15上の電極15aは導電性ワイヤー18により内部リード13aと電気的に接続されている。支持体11の凹部には内部リード13aの露出部及びLEDチップ15を覆うように、薄膜コート16が形成されている。薄膜コート16の上には、透明性樹脂17が注入され、支持体11の凹部を封止している。支持体11の外部には、内部リード13aと繋がる外部リード13b及び表面実装用の外部端子13cが配置されている。   In the LED light emitting device 1, silver plating 14 is applied on the internal leads 13 a arranged on the support 11, and the LED chip 15 is mounted thereon. The electrode 15 a on the LED chip 15 is electrically connected to the internal lead 13 a by a conductive wire 18. A thin film coat 16 is formed in the concave portion of the support 11 so as to cover the exposed portion of the internal lead 13 a and the LED chip 15. A transparent resin 17 is injected onto the thin film coat 16 to seal the concave portion of the support 11. Outside the support 11, an external lead 13b connected to the internal lead 13a and an external terminal 13c for surface mounting are arranged.

また、薄膜コートを形成する物質は、エポキシ樹脂、オキセタン樹脂、変成シリコーン樹脂等の樹脂が用いられている。   In addition, as a material for forming the thin film coat, a resin such as an epoxy resin, an oxetane resin, or a modified silicone resin is used.

しかしながら、LED発光装置1では、LEDチップ15が直接内部リード13a上に実装されており、LEDチップ15と内部リード13a上の銀メッキ14との間には、薄膜コート16は形成されていない。LEDチップ15の点灯によってLEDチップ15が発熱すると、銀メッキ14中の不純物が移動(マイグレーション)を起こしたり、光と熱による組成変化を起こしたりして、その表面を黒色化させてしまう。LEDチップ15の下部の銀メッキ14が黒色化すると、LEDチップ15自体がほぼ透明に近いことから、反射効率の低下等によって、LED発光装置1全体の発光効率を低下させ、長期信頼性を確保できないという不具合があった。さらに、樹脂によって形成された薄膜コートでは、硫化ガス等の透過を完全には遮断することができず、銀メッキの黒色化を十分に防止することができないという問題もあった。   However, in the LED light emitting device 1, the LED chip 15 is directly mounted on the internal lead 13a, and the thin film coat 16 is not formed between the LED chip 15 and the silver plating 14 on the internal lead 13a. When the LED chip 15 generates heat due to the lighting of the LED chip 15, impurities in the silver plating 14 cause migration (migration) or change in composition due to light and heat, thereby blackening the surface. When the silver plating 14 under the LED chip 15 is blackened, the LED chip 15 itself is almost transparent. Therefore, the LED light emitting device 1 as a whole is lowered in luminous efficiency due to a reduction in reflection efficiency, and long-term reliability is ensured. There was a bug that it was not possible. Furthermore, the thin film coat formed of resin cannot completely block the transmission of sulfurized gas or the like, and there is a problem that the blackening of the silver plating cannot be sufficiently prevented.

特開2008−10591号公報(図1)Japanese Patent Laying-Open No. 2008-10591 (FIG. 1)

そこで、本発明は、上述した問題点を解消することを可能としたLED光源およびLED光源の製造方法を提供することを目的とする。   Then, an object of this invention is to provide the manufacturing method of the LED light source which made it possible to eliminate the trouble mentioned above, and an LED light source.

また、本発明は、銀メッキ等の変色を抑えることによりLED光源の長期信頼性を確保することを可能としたLED光源、及びそのようなLED光源の製造方法を提供することを目的とする。   Another object of the present invention is to provide an LED light source capable of ensuring long-term reliability of the LED light source by suppressing discoloration such as silver plating, and a method for manufacturing such an LED light source.

本発明に係るLED光源の製造方法では、基板上に配置されたAg電極全体を被服するように金属酸化膜により構成されるバリア層を成膜し、バリア層上にLED素子を実装し、Ag電極とLED素子と接続するためにバリア層の一部を除去し、バリア層が除去された部分を利用してAg電極とLED素子とを電気的に接続するステップを有することを特徴とする。   In the method for manufacturing an LED light source according to the present invention, a barrier layer composed of a metal oxide film is formed so as to cover the entire Ag electrode disposed on the substrate, and the LED element is mounted on the barrier layer. A part of the barrier layer is removed to connect the electrode and the LED element, and the Ag electrode and the LED element are electrically connected using the part from which the barrier layer is removed.

本発明に係るLED光源では、基板上に配置されたAg電極と、Ag電極全体を被服するように成膜された金属酸化膜により構成されるバリア層と、バリア層の上に実装されたLED素子と、Ag電極と前記LED素子とを電気的に接続するワイヤーを有し、Ag電極とLED素子と接続するためにバリア層の一部が除去されていることを特徴とする。   In the LED light source according to the present invention, an Ag electrode disposed on a substrate, a barrier layer composed of a metal oxide film formed so as to cover the entire Ag electrode, and an LED mounted on the barrier layer The device has a wire for electrically connecting the Ag electrode and the LED element, and a part of the barrier layer is removed to connect the Ag electrode and the LED element.

本発明によれば、Ag電極全体を被服した金属酸化膜から構成されるバリア層を有しているので、外部からの硫化ガス等の進入を防止することができるだけでなく、LED素子の発熱等によるLED素子の下部のAg電極の変成等をも防止することが可能となった。したがって、Ag電極の黒色化を長期に渡って防止できることとなり、LED光源の高い発光効率を長期間維持することが可能となった。   According to the present invention, since it has a barrier layer composed of a metal oxide film coated on the entire Ag electrode, it can not only prevent the entry of sulfide gas or the like from the outside, but also heat generation of the LED element, etc. Thus, it is possible to prevent the Ag electrode under the LED element from being transformed. Therefore, the blackening of the Ag electrode can be prevented over a long period of time, and the high luminous efficiency of the LED light source can be maintained for a long period of time.

従来のLED発行装置1の概略断面図である。It is a schematic sectional drawing of the conventional LED issuing apparatus 1. FIG. 本発明に係るLED光源20を示す概略断面図である。It is a schematic sectional drawing which shows the LED light source 20 which concerns on this invention. LED光源20の製造過程を説明する図である。It is a figure explaining the manufacturing process of the LED light source. 比較実験用のLED光源60の概略断面図である。It is a schematic sectional drawing of the LED light source 60 for comparative experiments. 他の比較実験用のLED光源70の概略断面図である。It is a schematic sectional drawing of the LED light source 70 for another comparative experiment. 更に他の比較実験用のLED光源80の概略断面図である。It is a schematic sectional drawing of the LED light source 80 for another comparative experiment. LED光源の硫化試験結果の一例を示す図である。It is a figure which shows an example of the sulfide test result of a LED light source.

以下図面を参照して、本発明に係るLED光源及びLED光源の製造方法について説明する。但し、本発明の技術的範囲はそれらの実施の形態に限定されず、特許請求の範囲に記載された発明とその均等物に及ぶ点に留意されたい。   The LED light source and the LED light source manufacturing method according to the present invention will be described below with reference to the drawings. However, it should be noted that the technical scope of the present invention is not limited to these embodiments, but extends to the invention described in the claims and equivalents thereof.

図2は、本発明に係るLED光源20を示す概略断面図である。   FIG. 2 is a schematic sectional view showing the LED light source 20 according to the present invention.

LED光源20において、基板30の上には、Ag電極24及び25が配置され、Ag電極24及び25は不図示の外部電極と接続されている。Ag電極24及び25の上には、バリア層50が配置されている。バリア層50の上には、LED素子21が実装され、LED素子21のアノード22とAg電極24はワイヤー26によって電気的に接続され、LED素子21のカソード23とAg電極25はワイヤー28によって電気的に接続されている。なお、ワイヤー26とAg電極24、及びワイヤー28とAg電極25とは、それぞれ接点27及び29においてワイヤーボンドされている。なお、Ag電極24及び25は、金属電極をAgメッキしたものでも良い。   In the LED light source 20, Ag electrodes 24 and 25 are disposed on the substrate 30, and the Ag electrodes 24 and 25 are connected to an external electrode (not shown). A barrier layer 50 is disposed on the Ag electrodes 24 and 25. The LED element 21 is mounted on the barrier layer 50, the anode 22 and the Ag electrode 24 of the LED element 21 are electrically connected by a wire 26, and the cathode 23 and the Ag electrode 25 of the LED element 21 are electrically connected by a wire 28. Connected. The wire 26 and the Ag electrode 24 and the wire 28 and the Ag electrode 25 are wire-bonded at the contacts 27 and 29, respectively. The Ag electrodes 24 and 25 may be metal electrodes that are Ag-plated.

LED光源20のパッケージ枠31内には、LED素子21の周囲を囲むように、蛍光体が均一に練り込まれた封止材40が埋め込まれている。LED素子21として青色光を発光する窒化物系化合物半導体を用い、封止材40に含まれる蛍光体としては、セリウムで付活されたイットリウム・アルミニウム・ガーネット(YAG)系蛍光体を用いた。封止材40におけるYAG蛍光体の濃度は、約4.5wt%に設定した。封止材40に含まれる蛍光体は、LED素子21からの発光の一部を吸収し、波長変換して黄色光を発光する。これによって、LED光源20では、LED素子21からの青色光と、LED素子21からの青色光によって蛍光体から発光する黄色光が混ざり合って擬似白色光を出射する。なお、LED素子21の発光光と封止材40に含まれる蛍光体の組み合わせは上記の例に限定されるものではない。   A sealing material 40 in which a phosphor is kneaded uniformly is embedded in the package frame 31 of the LED light source 20 so as to surround the LED element 21. A nitride compound semiconductor that emits blue light is used as the LED element 21, and an yttrium-aluminum-garnet (YAG) -based phosphor activated with cerium is used as the phosphor contained in the sealing material 40. The concentration of the YAG phosphor in the sealing material 40 was set to about 4.5 wt%. The phosphor contained in the sealing material 40 absorbs part of the light emitted from the LED element 21 and converts the wavelength to emit yellow light. Thus, in the LED light source 20, the blue light from the LED element 21 and the yellow light emitted from the phosphor by the blue light from the LED element 21 are mixed to emit pseudo white light. In addition, the combination of the emitted light of the LED element 21 and the phosphor included in the sealing material 40 is not limited to the above example.

封止材40として、透明性のシリコーン樹脂を用いた。なお、封止材40は、この樹脂に限定されるものではなく、例えば透明性のあるエポキシ樹脂等を利用することも可能である。   As the sealing material 40, a transparent silicone resin was used. In addition, the sealing material 40 is not limited to this resin, For example, a transparent epoxy resin etc. can also be utilized.

バリア層50としては、酸化ケイ素膜をスパッタ法によって20nmに成膜したものを利用した。しかしながら、バリア層50としては、これに限定されるものではなく、酸化アルミニウム膜、酸化チタン膜または、これら化合物の酸素の一部を他の元素に置き換えた化合物等のLED素子21からの特定の発光波長を有する出射光を十分に透過することが可能な金属酸化膜を利用することができる。特に、Ag電極との密着性については酸化アルミニウム膜が優れており、硫化ガスの耐透過性については酸化ケイ素膜が優れている。したがって、バリア層50を2層構造とし、Ag電極に直接酸化アルミニウム膜を成膜して中間層とし、その上に酸化ケイ素膜を成膜すると、Ag電極への密着性に優れ、且つAg電極を黒色化させる硫化ガスの耐透過性に優れたより効果的なバリア層50を設けることが可能となる。   As the barrier layer 50, a silicon oxide film formed to a thickness of 20 nm by a sputtering method was used. However, the barrier layer 50 is not limited to this, and a specific layer from the LED element 21 such as an aluminum oxide film, a titanium oxide film, or a compound in which part of oxygen in these compounds is replaced with another element is used. A metal oxide film that can sufficiently transmit outgoing light having an emission wavelength can be used. In particular, the aluminum oxide film is excellent in adhesion to the Ag electrode, and the silicon oxide film is excellent in permeation resistance of the sulfide gas. Therefore, when the barrier layer 50 has a two-layer structure, an aluminum oxide film is directly formed on the Ag electrode to form an intermediate layer, and a silicon oxide film is formed thereon, the adhesiveness to the Ag electrode is excellent, and the Ag electrode It is possible to provide a more effective barrier layer 50 that is excellent in resistance to permeation of sulfide gas for blackening.

図3は、LED光源20の製造過程を説明する図である。   FIG. 3 is a diagram for explaining the manufacturing process of the LED light source 20.

図3(a)は、基板30上に、Ag電極24及び25を固定した状況を示しており、図3(b)は、次に、Ag電極24及び25の上部に、酸化ケイ素から構成されるバリア層50をスパッタ法により20nmに成膜した状態を示している。   FIG. 3A shows a state in which the Ag electrodes 24 and 25 are fixed on the substrate 30. FIG. 3B shows a state in which silicon oxide is formed on the Ag electrodes 24 and 25 next. The barrier layer 50 is formed to a thickness of 20 nm by sputtering.

図3(c)は、次に、バリア層50の上に、LED素子21を実装した状態を示している。このように、LED素子21は、バリア層50によって完全に被服されたAg電極上に実装されているので、LED素子21の長期点灯動作等によって、LED素子21の下部のAg電極24が変成等して、黒色化するのを効果的に防止することが可能となった。   Next, FIG. 3C shows a state in which the LED element 21 is mounted on the barrier layer 50. Thus, since the LED element 21 is mounted on the Ag electrode completely covered by the barrier layer 50, the Ag electrode 24 under the LED element 21 is transformed by the long-time lighting operation of the LED element 21 or the like. Thus, it is possible to effectively prevent blackening.

図3(d)は、次に、LED素子21とAg電極をワイヤーで接続するために、Ag電極24及び25上の所定箇所51及び52のバリア層50を除去した状況を示している。バリア層50の所定箇所51及び52の除去には、355nm−60μJのレーザ光を用いたレーザ加工法を用いた。なお、バリア層50の所定箇所51及び52の除去には、物理的にスクレーパ等によってバリア層50を除去する機械加工法、マスクを蒸着させてマスクが蒸着された部分以外を除去するフォトリソグラフィー法等を利用することも可能である。   FIG. 3D shows a situation where the barrier layer 50 is removed from the predetermined portions 51 and 52 on the Ag electrodes 24 and 25 in order to connect the LED element 21 and the Ag electrode with a wire. For removing the predetermined portions 51 and 52 of the barrier layer 50, a laser processing method using a laser beam of 355 nm-60 μJ was used. The predetermined portions 51 and 52 of the barrier layer 50 can be removed by a mechanical processing method in which the barrier layer 50 is physically removed by a scraper or the like, or a photolithography method in which a portion other than the portion on which the mask is deposited is removed by vapor deposition of the mask. Etc. can also be used.

図3(e)は、次に、LED素子21のアノード及びカソードとAg電極24及び25とを、図3(d)においてバリア層50を除去した箇所51及び52でワイヤーボンドした状況を示している。   FIG. 3 (e) shows a state in which the anode and cathode of the LED element 21 and the Ag electrodes 24 and 25 are then wire-bonded at the locations 51 and 52 where the barrier layer 50 is removed in FIG. 3 (d). Yes.

図3(e)の状況の後、パッケージ枠31を設け、パッケージ枠31の内側に、LED素子21の周囲を囲むように、蛍光体が均一に練り込まれた封止材40を充填して硬化させて、図2に示したLED光源20が完成する。   After the situation of FIG. 3E, a package frame 31 is provided, and a sealing material 40 in which phosphors are uniformly kneaded so as to surround the LED element 21 is filled inside the package frame 31. By curing, the LED light source 20 shown in FIG. 2 is completed.

図4は、比較実験用のLED光源60の概略断面図である。   FIG. 4 is a schematic cross-sectional view of an LED light source 60 for a comparative experiment.

LED光源60では、Ag電極24及び25全体を被服するようにバリア層50を設けるのではなく、Ag電極24及び25とLED素子21とをワイヤーボンドした後に、LED素子21、Ag電極24及び25の上からバリア層61を成膜した。バリア層61は、バリア層50と同様に、酸化ケイ素膜をスパッタ法により20nmの膜厚に成膜したものである。LED光源60の他の構成は、LED光源20と同様であるので、説明を省略する。   In the LED light source 60, the barrier layer 50 is not provided so as to cover the entire Ag electrodes 24 and 25, but the LED elements 21, Ag electrodes 24 and 25 are bonded after the Ag electrodes 24 and 25 and the LED element 21 are wire-bonded. A barrier layer 61 was formed from above. As with the barrier layer 50, the barrier layer 61 is a silicon oxide film formed to a thickness of 20 nm by sputtering. Since the other structure of the LED light source 60 is the same as that of the LED light source 20, description is abbreviate | omitted.

図5は、他の比較実験用のLED光源70の概略断面図である。   FIG. 5 is a schematic cross-sectional view of an LED light source 70 for another comparative experiment.

LED光源70では、バリア層50を設けていない以外は、LED光源20と同様である。   The LED light source 70 is the same as the LED light source 20 except that the barrier layer 50 is not provided.

図6は、更に他の比較実験用のLED光源80の概略断面図である。   FIG. 6 is a schematic cross-sectional view of an LED light source 80 for still another comparative experiment.

LED光源80では、金属酸化膜によるバリア層に代わり、変成シリコーン樹脂による薄膜81を設けている。薄膜81は、スプレー法によって変成シリコーンが5μm厚になるように成膜したものである。LED光源80の他の構成は、LED光源20と同様であるので、説明を省略する。   In the LED light source 80, a thin film 81 made of a modified silicone resin is provided instead of the barrier layer made of a metal oxide film. The thin film 81 is formed by spraying so that the modified silicone has a thickness of 5 μm. Since the other structure of the LED light source 80 is the same as that of the LED light source 20, description is abbreviate | omitted.

図7は、LED光源の硫化試験結果の一例を示す図である。   FIG. 7 is a diagram illustrating an example of the result of the sulfidation test of the LED light source.

硫化試験では、H2Sが250ppm、湿度100%、温度25℃の環境に、LED光源を配置し、連続点灯させた場合の、輝度を測定した。図7は、硫化試験結果を示したもので、横軸は保存時間(時間)を示し、縦軸はLED光源の初期の輝度を100%とした場合の輝度(%)を示している。 In the sulfurization test, the luminance was measured when an LED light source was placed in an environment where H 2 S was 250 ppm, humidity was 100%, and temperature was 25 ° C., and the LED was continuously lit. FIG. 7 shows the result of the sulfidation test. The horizontal axis represents the storage time (hour), and the vertical axis represents the luminance (%) when the initial luminance of the LED light source is 100%.

図7において、直線90は図2に示した本発明に係るLED光源20のデータを示し、点線91は図6に示した比較実験用のLED光源80のデータを示し、点線92は図4に示した比較実験用のLED光源60のデータを示し、2点鎖線93は図5に示した比較実験用のLED光源70のデータを示している。   In FIG. 7, a straight line 90 shows data of the LED light source 20 according to the present invention shown in FIG. 2, a dotted line 91 shows data of the LED light source 80 for comparison experiment shown in FIG. 6, and a dotted line 92 shows FIG. Data of the LED light source 60 for comparison experiment shown is shown, and a two-dot chain line 93 shows data of the LED light source 70 for comparison experiment shown in FIG.

バリア層50を有しないLED光源70(二点鎖線93参照)では、約50時間経過時に、輝度が当初の30%まで低下してしまう。これは、硫化ガスがLED光源70内に浸透し、Ag電極24及び25を黒色化させてしまうことが大きな原因であると考えられる。これに対して、本発明に係るLED光源20(直線90参照)では、約50時間経過時でも、輝度は当初の約85%と、LED光源70とは大きな輝度の差を有している。   In the LED light source 70 that does not have the barrier layer 50 (see the two-dot chain line 93), the luminance decreases to 30% of the initial value after about 50 hours have elapsed. This is considered to be caused mainly by the sulfurized gas permeating into the LED light source 70 and blackening the Ag electrodes 24 and 25. On the other hand, in the LED light source 20 (refer to the straight line 90) according to the present invention, even when about 50 hours have elapsed, the luminance is about 85% of the original, and the LED light source 70 has a large luminance difference.

バリア層61を有しているLED光源60(点線92参照)では、約50時間経過時に、輝度が当初の約55%まで低下してしまう。これは、バリア層61が、Ag電極24の全体を被服していないことから、LED素子21の連続点灯による発熱等によって、LED素子21の下部のAg電極24が変成し、黒色化等してしまうことが大きな原因であると考えられる。これに対して、本発明に係るLED光源20(直線90参照)では、約50時間経過時でも、輝度は当初の約85%と、LED光源60とは大きな輝度の差を有している。さらに、約200時間経過時でも、本発明に係るLED光源20では、以前当初の輝度の70%以上を維持しているのに対し、LED光源60では、約200時間経過時には輝度は、当初の30%程度まで低下しており、本発明に係るLED光源20とLED光源60との間には、大きな長期信頼性に関する差異が存在することが理解できる。   In the LED light source 60 having the barrier layer 61 (see the dotted line 92), the luminance is reduced to about 55% of the original after about 50 hours. This is because the barrier layer 61 does not cover the entire Ag electrode 24, and the Ag electrode 24 below the LED element 21 is transformed and blackened due to heat generated by the continuous lighting of the LED element 21. It is thought that this is a major cause. On the other hand, in the LED light source 20 (refer to the straight line 90) according to the present invention, even when about 50 hours have elapsed, the luminance is about 85% of the original, and the LED light source 60 has a large difference in luminance. Further, even when about 200 hours have elapsed, the LED light source 20 according to the present invention maintains 70% or more of the original luminance, whereas the LED light source 60 has the luminance of about 200 hours after the initial luminance. It can be understood that there is a large difference in long-term reliability between the LED light source 20 and the LED light source 60 according to the present invention.

変成シリコーンによる薄膜81を有するLED光源80(点線91参照)では、約50時間経過時に、輝度が当初の約70%まで低下してしまう。これは、薄膜81が、金属酸化膜でないことから、硫化ガスを十分に遮断することができず、Ag電極24が黒色化等してしまうことが大きな原因であると考えられる。これに対して、本発明に係るLED光源20(直線90参照)では、約50時間経過時でも、輝度は当初の約85%と、LED光源80とは輝度の差を有している。さらに、約200時間経過時でも、本発明に係るLED光源20では、以前当初の輝度の70%以上を維持しているのに対し、LED光源80では、約200時間経過時には輝度は、当初の約40%程度まで低下しており、本発明に係るLED光源20とLED光源80との間には、大きな長期信頼性に関する差異が存在することが理解できる。   In the LED light source 80 having the thin film 81 made of modified silicone (see the dotted line 91), the luminance is reduced to about 70% of the original after about 50 hours. This is probably because the thin film 81 is not a metal oxide film, so that the sulfide gas cannot be sufficiently blocked and the Ag electrode 24 is blackened. On the other hand, in the LED light source 20 according to the present invention (see the straight line 90), even when about 50 hours have elapsed, the luminance is about 85% of the original, and the LED light source 80 has a difference in luminance. Further, even when about 200 hours have elapsed, the LED light source 20 according to the present invention maintains 70% or more of the original luminance, whereas the LED light source 80 has the luminance of about 200 hours after the initial luminance. It can be understood that there is a large long-term reliability difference between the LED light source 20 and the LED light source 80 according to the present invention.

図7に示したように、Ag電極全体を金属酸化膜から構成されるバリア層50で被服するようにしたので、外部からの硫化ガスの進入を防止することができるだけでなく、LED素子21の発熱等によるLED素子21の下部の変成等をも防止することができるので、LED光源のAg電極の黒色化を防止して、長期に渡って良好な輝度を維持することが可能となった。   As shown in FIG. 7, since the entire Ag electrode is covered with the barrier layer 50 made of a metal oxide film, not only the entry of sulfur gas from the outside can be prevented, but also the LED element 21 Since it is possible to prevent the lower part of the LED element 21 from being deformed due to heat generation or the like, it is possible to prevent the Ag electrode of the LED light source from being blackened and to maintain good luminance over a long period of time.

上述したLED光源20(図2参照)で、基板30上にAg電極24,25、バリア層50、LED素子21、蛍光体が練り込まれた封止材40とを備えた構成を示したが、本発明の構成は、上記構成に限定されるものではない。例えば、同一基板上に、Ag電極、Ag電極を被服するバリア層、異なる発光色を発するLED素子(例えばR発光素子、G発光素子、B発光素子)とを有し、これら部材を蛍光体を含まない封止材で覆った構成に、本発明を適用することも可能である。   In the LED light source 20 (see FIG. 2) described above, the structure including the Ag electrodes 24 and 25, the barrier layer 50, the LED element 21, and the sealing material 40 in which the phosphor is kneaded is shown on the substrate 30. The configuration of the present invention is not limited to the above configuration. For example, an Ag electrode, a barrier layer that covers the Ag electrode, and LED elements that emit different emission colors (for example, an R light emitting element, a G light emitting element, and a B light emitting element) are provided on the same substrate. The present invention can also be applied to a configuration covered with a sealing material not included.

20 LED光源
21 LED素子
24、25 Ag電極
30 基板
40 封止材
50 バリア層
20 LED light source 21 LED element 24, 25 Ag electrode 30 Substrate 40 Sealing material 50 Barrier layer

Claims (6)

基板上に配置されたAg電極全体を被服するように金属酸化膜により構成されるバリア層を成膜し、
前記バリア層上にLED素子を実装し、
前記Ag電極と前記LED素子と接続するために、前記バリア層の一部を除去し、
前記バリア層が除去された部分を利用して、前記Ag電極と前記LED素子とを電気的に接続する、
ステップを有することを特徴とするLED光源の製造方法。
A barrier layer composed of a metal oxide film is formed so as to cover the entire Ag electrode disposed on the substrate,
An LED element is mounted on the barrier layer,
In order to connect the Ag electrode and the LED element, a part of the barrier layer is removed,
Using the portion from which the barrier layer has been removed, the Ag electrode and the LED element are electrically connected.
The manufacturing method of the LED light source characterized by having a step.
前記LED素子からの発光の一部を吸収し波長変換して発光する蛍光体を含む封止材を、前記Ag電極と電気的に接続された前記LED素子の周囲に配置するステップを更に有する、請求項1に記載のLED光源の製造方法。   A step of disposing a sealing material including a phosphor that absorbs a part of light emitted from the LED element and converts the wavelength to emit light around the LED element electrically connected to the Ag electrode; The manufacturing method of the LED light source of Claim 1. 前記バリア層は、Ag電極と接触するように成膜された酸化アルミニウムから構成された第1層と、前記第1層の上に成膜される酸化ケイ素から構成された第2層を含む、請求項1又は2に記載のLED光源の製造方法。   The barrier layer includes a first layer made of aluminum oxide formed to be in contact with the Ag electrode, and a second layer made of silicon oxide formed on the first layer. The manufacturing method of the LED light source of Claim 1 or 2. 基板上に配置されたAg電極と、
前記Ag電極全体を被服するように成膜された金属酸化膜により構成されるバリア層と、
前記バリア層の上に実装されたLED素子と、
前記Ag電極と前記LED素子とを電気的に接続するワイヤーと、を有し、
前記Ag電極と前記LED素子と接続するために前記バリア層の一部が除去されている、
ことを特徴とするLED光源。
An Ag electrode disposed on the substrate;
A barrier layer composed of a metal oxide film formed so as to coat the entire Ag electrode;
An LED element mounted on the barrier layer;
A wire for electrically connecting the Ag electrode and the LED element;
A part of the barrier layer is removed to connect the Ag electrode and the LED element.
An LED light source characterized by that.
前記Ag電極と電気的に接続された前記LED素子の周囲に配置され、前記LED素子からの発光の一部を吸収し波長変換して発光する蛍光体を含む封止材を、更に有する請求項4に記載のLED光源。   The sealing material further includes a phosphor that is disposed around the LED element electrically connected to the Ag electrode and includes a phosphor that absorbs a part of light emitted from the LED element and converts the wavelength to emit light. 4. The LED light source according to 4. 前記バリア層は、Ag電極と接触するように成膜された酸化アルミニウムから構成された第1層と、前記第1層の上に成膜される酸化ケイ素から構成された第2層を含む、請求項4又は5に記載のLED光源。   The barrier layer includes a first layer made of aluminum oxide formed to be in contact with the Ag electrode, and a second layer made of silicon oxide formed on the first layer. The LED light source according to claim 4 or 5.
JP2009087463A 2009-03-31 2009-03-31 Led light source and method of manufacturing led light source Pending JP2010239043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009087463A JP2010239043A (en) 2009-03-31 2009-03-31 Led light source and method of manufacturing led light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009087463A JP2010239043A (en) 2009-03-31 2009-03-31 Led light source and method of manufacturing led light source

Publications (1)

Publication Number Publication Date
JP2010239043A true JP2010239043A (en) 2010-10-21

Family

ID=43093092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009087463A Pending JP2010239043A (en) 2009-03-31 2009-03-31 Led light source and method of manufacturing led light source

Country Status (1)

Country Link
JP (1) JP2010239043A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094587A (en) * 2010-10-25 2012-05-17 Hitachi Chem Co Ltd Method for manufacturing optical semiconductor device and optical semiconductor device
JP2012182256A (en) * 2011-02-28 2012-09-20 Nichia Chem Ind Ltd Light-emitting device
JP2012204558A (en) * 2011-03-25 2012-10-22 Citizen Electronics Co Ltd Wire bonding structure
JP2013042095A (en) * 2011-08-19 2013-02-28 Citizen Electronics Co Ltd Semiconductor light emitting device
WO2013183706A1 (en) * 2012-06-06 2013-12-12 日立化成株式会社 Optical semiconductor device
WO2013183705A1 (en) * 2012-06-06 2013-12-12 日立化成株式会社 Optical semiconductor device production method and optical semiconductor device
JP2013254824A (en) * 2012-06-06 2013-12-19 Hitachi Chemical Co Ltd Optical semiconductor device, method for manufacturing the same, base substance to be used for manufacturing the same and reflector molding
JP2013254823A (en) * 2012-06-06 2013-12-19 Hitachi Chemical Co Ltd Optical semiconductor device, method for manufacturing the same, base substance to be used for manufacturing the same and reflector molding
JP2014022651A (en) * 2012-07-20 2014-02-03 Hitachi Chemical Co Ltd Optical semiconductor device, manufacturing method of the same, base substrate and reflector mold used for manufacturing the same
JP2014130923A (en) * 2012-12-28 2014-07-10 Panasonic Corp Light-emitting module, lighting device, and lighting fixture
JP2014195126A (en) * 2014-07-02 2014-10-09 Citizen Electronics Co Ltd Semiconductor light-emitting device
JP2014225646A (en) * 2013-04-18 2014-12-04 日亜化学工業株式会社 Package for light emitting device, and light emitting device
US9117988B2 (en) 2013-09-24 2015-08-25 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device
CN105431952A (en) * 2013-08-08 2016-03-23 奥斯兰姆奥普托半导体有限责任公司 Optoelectronic component and method for the production thereof
US10490712B2 (en) 2011-07-21 2019-11-26 Cree, Inc. Light emitter device packages, components, and methods for improved chemical resistance and related methods
US10686107B2 (en) 2011-07-21 2020-06-16 Cree, Inc. Light emitter devices and components with improved chemical resistance and related methods
US11563156B2 (en) 2011-07-21 2023-01-24 Creeled, Inc. Light emitting devices and components having improved chemical resistance and related methods

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094587A (en) * 2010-10-25 2012-05-17 Hitachi Chem Co Ltd Method for manufacturing optical semiconductor device and optical semiconductor device
JP2012182256A (en) * 2011-02-28 2012-09-20 Nichia Chem Ind Ltd Light-emitting device
JP2012204558A (en) * 2011-03-25 2012-10-22 Citizen Electronics Co Ltd Wire bonding structure
US11563156B2 (en) 2011-07-21 2023-01-24 Creeled, Inc. Light emitting devices and components having improved chemical resistance and related methods
US10686107B2 (en) 2011-07-21 2020-06-16 Cree, Inc. Light emitter devices and components with improved chemical resistance and related methods
US10490712B2 (en) 2011-07-21 2019-11-26 Cree, Inc. Light emitter device packages, components, and methods for improved chemical resistance and related methods
JP2013042095A (en) * 2011-08-19 2013-02-28 Citizen Electronics Co Ltd Semiconductor light emitting device
JPWO2013183706A1 (en) * 2012-06-06 2016-02-01 日立化成株式会社 Optical semiconductor device
US9525114B2 (en) 2012-06-06 2016-12-20 Hitachi Chemical Company, Ltd. Optical semiconductor device
WO2013183706A1 (en) * 2012-06-06 2013-12-12 日立化成株式会社 Optical semiconductor device
CN104350620A (en) * 2012-06-06 2015-02-11 日立化成株式会社 Optical semiconductor device production method and optical semiconductor device
WO2013183705A1 (en) * 2012-06-06 2013-12-12 日立化成株式会社 Optical semiconductor device production method and optical semiconductor device
JPWO2013183705A1 (en) * 2012-06-06 2016-02-01 日立化成株式会社 Optical semiconductor device manufacturing method and optical semiconductor device
JP2013254823A (en) * 2012-06-06 2013-12-19 Hitachi Chemical Co Ltd Optical semiconductor device, method for manufacturing the same, base substance to be used for manufacturing the same and reflector molding
JP2013254824A (en) * 2012-06-06 2013-12-19 Hitachi Chemical Co Ltd Optical semiconductor device, method for manufacturing the same, base substance to be used for manufacturing the same and reflector molding
US9634210B2 (en) 2012-06-06 2017-04-25 Hitachi Chemical Company, Ltd Optical semiconductor device production method and optical semiconductor device
JP2014022651A (en) * 2012-07-20 2014-02-03 Hitachi Chemical Co Ltd Optical semiconductor device, manufacturing method of the same, base substrate and reflector mold used for manufacturing the same
JP2014130923A (en) * 2012-12-28 2014-07-10 Panasonic Corp Light-emitting module, lighting device, and lighting fixture
JP2014225646A (en) * 2013-04-18 2014-12-04 日亜化学工業株式会社 Package for light emitting device, and light emitting device
JP2016527729A (en) * 2013-08-08 2016-09-08 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic component and manufacturing method thereof
CN105431952A (en) * 2013-08-08 2016-03-23 奥斯兰姆奥普托半导体有限责任公司 Optoelectronic component and method for the production thereof
US9117988B2 (en) 2013-09-24 2015-08-25 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device
JP2014195126A (en) * 2014-07-02 2014-10-09 Citizen Electronics Co Ltd Semiconductor light-emitting device

Similar Documents

Publication Publication Date Title
JP2010239043A (en) Led light source and method of manufacturing led light source
US9306127B2 (en) Light emitting device that includes protective film having uniform thickness
US10490712B2 (en) Light emitter device packages, components, and methods for improved chemical resistance and related methods
JP5289835B2 (en) Light emitting device and manufacturing method thereof
US11942569B2 (en) Methods and packages for enhancing reliability of ultraviolet light-emitting devices
JP2008060344A (en) Semiconductor light-emitting device
JP6622032B2 (en) Light emitting device
JP5690871B2 (en) Light emitting device and manufacturing method thereof
JP2011100905A (en) Light emitting device and method of manufacturing the same
US20140063822A1 (en) Wiring board, light-emitting device, and method of manufacturing the wiring board
JP2011204986A (en) Lamp and method for manufacturing the same
JP5719613B2 (en) Optical device, light emitting device, and method of manufacturing functionally gradient material
JP2011253846A (en) Light emitting device and method for manufacturing the same
JP5323371B2 (en) LED device manufacturing method
JP2010267910A (en) Light emitting diode
KR102022463B1 (en) Semiconductor light emitting device and method of manufacturing the same
JP2008166661A (en) Semiconductor light-emitting apparatus
JP7112190B2 (en) light emitting device
JP2011198902A (en) Light emitting device
JP2009231568A (en) Led light source
JP6221387B2 (en) Light emitting device and manufacturing method thereof
JP2015062261A (en) Light-emitting device
JP2008198962A (en) Light emitting device and its manufacturing method
TWI438943B (en) Method for manufacturing led package
JP6155932B2 (en) Light emitting device