JP5323371B2 - LED device manufacturing method - Google Patents

LED device manufacturing method Download PDF

Info

Publication number
JP5323371B2
JP5323371B2 JP2008067150A JP2008067150A JP5323371B2 JP 5323371 B2 JP5323371 B2 JP 5323371B2 JP 2008067150 A JP2008067150 A JP 2008067150A JP 2008067150 A JP2008067150 A JP 2008067150A JP 5323371 B2 JP5323371 B2 JP 5323371B2
Authority
JP
Japan
Prior art keywords
led chip
film
led
led device
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008067150A
Other languages
Japanese (ja)
Other versions
JP2009224537A (en
Inventor
福島  瑞惠
俊幸 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2008067150A priority Critical patent/JP5323371B2/en
Publication of JP2009224537A publication Critical patent/JP2009224537A/en
Application granted granted Critical
Publication of JP5323371B2 publication Critical patent/JP5323371B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

本発明は、LEDチップが表面実装されたLEDデバイスに関するものである。   The present invention relates to an LED device on which an LED chip is surface-mounted.

短波長域の青色光または近紫外光を発光するLEDチップの開発により、それらLEDチップと、LEDチップの発光波長を吸収し異なる波長域の光に変換する蛍光体とを組み合わせたLEDデバイスが開発されている。その中でも青色LEDチップとYAG銀蛍光体とを組み合わせた擬似白色LEDデバイスは、照明用光源や液晶ディスプレイ用バックライト光源として広く用いられている。特に、一般照明用LED光源では高輝度化、長寿命化が重要な問題となっている。   By developing LED chips that emit blue light or near ultraviolet light in the short wavelength range, LED devices that combine these LED chips with phosphors that absorb the light emission wavelength of LED chips and convert them into light in different wavelength ranges have been developed. Has been. Among them, a pseudo white LED device combining a blue LED chip and a YAG silver phosphor is widely used as an illumination light source or a liquid crystal display backlight source. Particularly, in general LED light sources for illumination, high brightness and long life are important problems.

一般に、LEDチップが表面実装されたLEDデバイスの基板としては、リードフレーム材と樹脂を一体型に射出成形した成形体、フレキシブル配線基板や配線パターンを有するセラミックス基板等が用いられている。またLEDチップの実装と配線は、チップタイプによりワイヤーボンディング実装やフリップチップ実装が一般的に用いられている。   In general, as a substrate of an LED device on which an LED chip is surface-mounted, a molded body in which a lead frame material and a resin are integrally formed by injection molding, a flexible wiring substrate, a ceramic substrate having a wiring pattern, and the like are used. For LED chip mounting and wiring, wire bonding mounting or flip chip mounting is generally used depending on the chip type.

図11にLEDチップが表面実装された一般的なLEDデバイスの一例を示す。   FIG. 11 shows an example of a general LED device in which an LED chip is surface-mounted.

1は絶縁性基材であり、高耐熱性の絶縁性樹脂やセラミックス等が用いられる。2はLEDチップである。LEDチップ2は、LEDチップ搭載配線部3に電気的に接合される。4は配線導体部である。図11ではLEDチップ2はLEDチップ配線搭載配線部3上にエポキシ樹脂やシリコーン樹脂等からなるダイボンドペーストや銀ペーストにより実装され、金やアルミニウム等からなるボンディングワイヤー5を介し、配線導体部を兼ねるLEDチップ搭載配線部3に電気的に接合されている。LEDチップ搭載配線部3と配線導体部4を有する基材として銅貼りフレキシブル基板を用いた場合、配線導体部4は銅をケミカルエッチング等によりパターニングし形成する。しかし、銅は酸化されやすい事から、一般にオーバーコート層が設けられる。図11では、LEDチップ2が配置される面の導体配線部4の銅は絶縁性レジスト6に覆われており、LEDチップ搭載配線部3は銅の上にニッケルメッキ、その上に反射率の高い銀メッキを施している。LEDチップ搭載配線部3以外で絶縁性レジスト6に覆われていない配線導体部4は、外部電極との接続のために銅の上にニッケルメッキ、その上に金メッキやスズメッキを施している。   Reference numeral 1 denotes an insulating substrate, which is made of a highly heat-resistant insulating resin or ceramic. 2 is an LED chip. The LED chip 2 is electrically joined to the LED chip mounting wiring part 3. Reference numeral 4 denotes a wiring conductor portion. In FIG. 11, the LED chip 2 is mounted on the LED chip wiring mounting wiring portion 3 with a die bond paste or silver paste made of epoxy resin, silicone resin or the like, and also serves as a wiring conductor portion through a bonding wire 5 made of gold, aluminum or the like. It is electrically joined to the LED chip mounting wiring part 3. When a copper-clad flexible substrate is used as a base material having the LED chip mounting wiring part 3 and the wiring conductor part 4, the wiring conductor part 4 is formed by patterning copper by chemical etching or the like. However, since copper is easily oxidized, an overcoat layer is generally provided. In FIG. 11, the copper of the conductor wiring portion 4 on the surface on which the LED chip 2 is disposed is covered with an insulating resist 6, and the LED chip mounting wiring portion 3 is nickel-plated on the copper, and the reflectance of the copper is mounted thereon. High silver plating. The wiring conductor 4 that is not covered with the insulating resist 6 except for the LED chip mounting wiring 3 is nickel-plated on copper and gold-plated or tin-plated on the copper for connection to an external electrode.

図12は、図11で示したLEDデバイスの多数個取り基板の一例を示した図である。コスト的な面から、表面実装型のLEDデバイスは図12に示すような基板を用い、一枚の基板上に多数個のLEDデバイスを作製後、単個に切り分ける製造方法が一般的である。   12 is a diagram showing an example of a multi-chip substrate of the LED device shown in FIG. From the viewpoint of cost, a surface-mount type LED device generally uses a substrate as shown in FIG. 12, and a manufacturing method in which a large number of LED devices are manufactured on a single substrate and then cut into single pieces.

白色系の発光が要求される白色系LEDデバイスの場合、特にLEDチップから発せられる光を効率よく反射する材料をLEDチップ周りに配置することが必要となる。
そこで、図11の様にLEDを実装する面のLEDチップ搭載配線部表面に反射率の高い銀メッキを施し、反射板と配線導体部の双方の機能を持たせる場合が多い。
In the case of a white LED device that requires white light emission, it is particularly necessary to arrange a material that efficiently reflects light emitted from the LED chip around the LED chip.
Therefore, as shown in FIG. 11, the LED chip mounting wiring part surface on which the LED is mounted is often subjected to silver plating having a high reflectance so as to have both functions of the reflector and the wiring conductor part.

しかしながら、銀は熱的、化学的に不安定な物質であり、LEDチップの発熱、あるいは大気中の硫黄を含むガス等により変色し反射率が低下するため、銀をLEDチップ搭載配線部に用いたLEDデバイスは、輝度や色度の安定性や長寿命化に対して問題があった。   However, silver is a thermally and chemically unstable substance, and its reflectance is reduced due to heat generation of LED chips or gas containing sulfur in the atmosphere, etc., so silver is used for LED chip mounting wiring parts. The LED device had problems with respect to stability of luminance and chromaticity and long life.

高輝度で長寿命のLEDデバイス構造のひとつの方法として、特許文献1では光反射部と配線導体部とを分離し反射板上に真空薄膜形成法にて透明無機酸化膜層を設け、その上に
配線導体部を形成している。
特開2005−244152号公報(12頁、図3)
As one method of LED device structure with high brightness and long life, Patent Document 1 separates a light reflecting portion and a wiring conductor portion and provides a transparent inorganic oxide film layer on a reflecting plate by a vacuum thin film forming method. A wiring conductor portion is formed on the substrate.
Japanese Patent Laying-Open No. 2005-244152 (page 12, FIG. 3)

しかしながら、上記特許文献1の様なLEDデバイスの場合、配線導体部と無機酸化膜層と光反射部全てを真空薄膜形成法にて製膜した場合、それぞれのパターンの違いやターゲットの違いから、1回の処理で全ての部分を形成することは困難で、工程が複雑となってしまうという問題点がある。   However, in the case of the LED device as in the above-mentioned Patent Document 1, when all of the wiring conductor part, the inorganic oxide film layer, and the light reflecting part are formed by the vacuum thin film forming method, from the difference of each pattern and the difference of the target, It is difficult to form all the parts in one process, and there is a problem that the process becomes complicated.

また、マスクを用いた真空薄膜形成法を用いた場合、通常のマスク精度が100ミクロン程度であることから、上記文献1の様なパターンの異なる膜を積層するLEDデバイスは、小型のLEDデバイスへの応用が困難であると考えられる。   In addition, when a vacuum thin film forming method using a mask is used, the normal mask accuracy is about 100 microns, so that an LED device in which films having different patterns as in the above-mentioned document 1 are stacked is a small LED device. It seems that the application of is difficult.

そこで本発明は、工程が少なく小型化にも対応可能な、高輝度で長寿命のLEDデバイスを提供することを目的とする。   Therefore, an object of the present invention is to provide a high-luminance and long-life LED device that can be reduced in size with fewer steps.

本発明のLEDデバイスは、LEDチップ搭載配線部と配線導体部とを有する基材上にLEDチップが実装されるLEDデバイスであって、LEDチップ搭載配線部に特定の金属超薄膜を有することを特徴とするものである。   The LED device of the present invention is an LED device in which an LED chip is mounted on a substrate having an LED chip mounting wiring portion and a wiring conductor portion, and the LED chip mounting wiring portion has a specific metal ultrathin film. It is a feature.

本発明のLEDデバイスの製造方法は、LEDチップ搭載配線部と配線導体部とを有する基材上にLEDチップが実装されるLEDデバイスの製造方法であって、少なくともLEDチップ搭載配線部に特定の金属超薄膜を製膜する工程と、特定の金属超薄膜が製膜されたLEDチップ搭載配線部にLEDチップを実装し、配線する工程と、特定の金属超薄膜が製膜されたLEDチップ搭載配線部にLEDチップが実装、配線された基材を熱処理する工程とを有することを特徴とするものである。   The LED device manufacturing method of the present invention is a method of manufacturing an LED device in which an LED chip is mounted on a substrate having an LED chip mounting wiring portion and a wiring conductor portion, and is specific to at least the LED chip mounting wiring portion. The process of forming a metal ultrathin film, the process of mounting and wiring an LED chip on the LED chip mounting wiring part on which a specific metal ultrathin film is formed, and the LED chip mounting on which a specific metal ultrathin film is formed And a step of heat-treating the substrate on which the LED chip is mounted and wired in the wiring portion.

また、本発明のLEDデバイスの製造方法は、LEDチップ搭載配線部と配線導体部とを有する基材上にLEDチップが実装されるLEDデバイスの製造方法であって、少なくともLEDチップ搭載配線部に特定の金属超薄膜を製膜する工程と、特定の金属超薄膜が製膜されたLEDチップ搭載配線部にLEDチップを実装し、配線する工程とを有することを特徴とするものである。   Further, the LED device manufacturing method of the present invention is an LED device manufacturing method in which an LED chip is mounted on a substrate having an LED chip mounting wiring portion and a wiring conductor portion, and at least the LED chip mounting wiring portion The method includes a step of forming a specific metal ultrathin film, and a step of mounting and wiring the LED chip on the LED chip mounting wiring portion on which the specific metal ultrathin film is formed.

更に、本発明のLEDデバイスは、金属超薄膜が、チタンまたはアルミニウムから選ばれる金属で構成される膜であることが好ましい。   Furthermore, in the LED device of the present invention, the metal ultrathin film is preferably a film composed of a metal selected from titanium or aluminum.

また、本発明のLEDデバイスの製造方法において、金属超薄膜の膜厚は、10から100Åであることが好ましい。   In the LED device manufacturing method of the present invention, the thickness of the ultrathin metal film is preferably 10 to 100 mm.

(作用)
本発明のLEDデバイスは、銀表面に製膜された超薄膜が製膜後、加熱処理される前は導電性を有し、比較的低温加熱処理で透明な酸化膜となる事が大きなポイントとなる。
(Function)
The LED device of the present invention has a great point that an ultra-thin film formed on the silver surface is conductive after film formation and before heat treatment, and becomes a transparent oxide film by relatively low temperature heat treatment. Become.

チタン、アルミニウムは酸化しやすい金属として知られているが、通常の1000Å程度、或いはそれ以上に厚い金属薄膜の膜全体を酸化するには通常500℃以上の熱処理が必要となる。しかし、これら金属の超薄膜は数十Å程度の膜厚であり、通常の薄膜と挙動が異なるものと考える。   Titanium and aluminum are known as easily oxidizable metals, but heat treatment at 500 ° C. or higher is usually required to oxidize the entire metal thin film, which is usually about 1000 mm thick or thicker. However, these ultra-thin metal films have a film thickness of about several tens of millimeters and are considered to behave differently from normal thin films.

これら数十Åの特定の金属超薄膜は、製膜直後は島状に点在し、下地の銀表面を一面に被覆する膜となっていないと考えられ、このような状態は薄膜状態と比較して反応活性が高いことから、通常のLEDデバイスに用いる樹脂素材が耐えうる比較的低温での加熱処理で金属酸化膜に変化するものと考えられる。   These specific ultrathin metal films of several tens of thousands are scattered in islands immediately after film formation and are not considered to be a film that covers the entire surface of the underlying silver surface. Since the reaction activity is high, it is considered that the resin material used in a normal LED device changes into a metal oxide film by heat treatment at a relatively low temperature that can be withstood.

更に、本発明のLEDデバイスは、銀表面に製膜された超薄膜が加熱処理を施さない場合でも耐硫化特性を有する。数十Åの特定の金属超薄膜は、製膜直後は島状に点在し、下地の銀表面を一面に被覆する膜となっていないと考えられるが、島と島の間の空隙が反応性ガスである硫化水素分子よりも小さいため、耐硫化特性を有するものと考えられる。   Furthermore, the LED device of the present invention has sulfuration resistance even when the ultrathin film formed on the silver surface is not subjected to heat treatment. Dozens of ultrathin metal ultrathin films are scattered in islands immediately after film formation and are not considered to be a film that covers the entire surface of the underlying silver surface. Since it is smaller than hydrogen sulfide molecules, which are reactive gases, it is considered to have antisulfurization characteristics.

本発明によれば、従来のLEDデバイスの製造工程を大きく変えること無く、高輝度で長寿命特性を有するLEDデバイスを提供することが可能となる。   According to the present invention, it is possible to provide an LED device having high luminance and long life characteristics without greatly changing the manufacturing process of the conventional LED device.

更に、本発明によるLEDデバイスは、用いる基材、LEDチップ、LEDチップと配線導体部を電気的に接続する配線材料や配線方式、配線導体部等、一般的な材料や方法を用いることが出来ることから、高輝度で長寿命特性を有するLEDデバイスのコスト低減化、小型化に寄与することが出来る。   Furthermore, the LED device according to the present invention can use general materials and methods such as a base material to be used, an LED chip, a wiring material and a wiring system for electrically connecting the LED chip and the wiring conductor, and a wiring conductor. Therefore, it is possible to contribute to cost reduction and miniaturization of LED devices having high luminance and long life characteristics.

(第一の実施形態)
図1に本発明の第一の実施形態であるLEDデバイスを示し、その製造方法を図2に基づき説明する。
(First embodiment)
The LED device which is 1st embodiment of this invention is shown in FIG. 1, and the manufacturing method is demonstrated based on FIG.

1は絶縁性基材であり、LEDチップ搭載配線部3と配線導体部4を有している。絶縁性基材1は、高耐熱性のガラスエポキシ樹脂、BTレジン(ビスマレイミドトリアジン)、PBT樹脂(ポリブチレンテレフタレート)、硬質シリコーン樹脂、セラミックス等が用いられる。   Reference numeral 1 denotes an insulating base material having an LED chip mounting wiring portion 3 and a wiring conductor portion 4. As the insulating substrate 1, a high heat-resistant glass epoxy resin, BT resin (bismaleimide triazine), PBT resin (polybutylene terephthalate), hard silicone resin, ceramics, or the like is used.

2はLEDチップである。代表的なLEDチップは、InGaN系LEDチップで、組成比の違いにより近紫外光、青色光、緑色光を発光する。   2 is an LED chip. A typical LED chip is an InGaN-based LED chip, and emits near-ultraviolet light, blue light, and green light depending on the composition ratio.

LEDチップ2の実装方法としては、LEDチップ2の上面にn型電極パッドとp型電極パッドが設けられている場合は、LEDチップ配線搭載配線部3上にエポキシ樹脂やシリコーン樹脂等からなるダイボンドペーストや銀ペーストを用いてLEDチップ2が搭載され、その後両方の電極パッドとLEDチップ搭載配線部3との電気的接合を金やアルミニウム等のボンディングワイヤーにて接合し実装する。上面と下面にそれぞれn型電極パッドとp型電極パッド設けられているLEDチップ2の場合は、上面の電極パッドはボンディングワイヤーで、下面の電極パッドは銀ペースト等の導電性ペーストにて実装される。LEDチップ2の下面にn型電極パッドとp型電極パッドが配置されている場合は、フリップチップ実装等により実装される。本第一の実施形態では、LEDチップ2の上面に両方の電極パッドを有する例を示す。   As a mounting method of the LED chip 2, when an n-type electrode pad and a p-type electrode pad are provided on the upper surface of the LED chip 2, a die bond made of epoxy resin, silicone resin or the like on the LED chip wiring mounting wiring portion 3 is used. The LED chip 2 is mounted using a paste or a silver paste, and then electrical bonding between both electrode pads and the LED chip mounting wiring section 3 is bonded and mounted with a bonding wire such as gold or aluminum. In the case of the LED chip 2 provided with an n-type electrode pad and a p-type electrode pad on the upper and lower surfaces, respectively, the upper electrode pad is mounted with a bonding wire, and the lower electrode pad is mounted with a conductive paste such as silver paste. The When the n-type electrode pad and the p-type electrode pad are arranged on the lower surface of the LED chip 2, the LED chip 2 is mounted by flip chip mounting or the like. In the first embodiment, an example in which both electrode pads are provided on the upper surface of the LED chip 2 is shown.

LEDチップ搭載配線部3と配線導体部4を有する絶縁性基材1としてエポキシシ樹脂やBTレジンを用いた銅貼りフレキシブル基板を用いた場合、配線導体部4は銅をケミカルエッチング等によりパターニングし形成するが、銅は酸化されやすい事から、一般に金属、或いは樹脂によるオーバーコート層が設けられる。前記オーバーコート層として用いる絶縁性レジスト6の多くは、エポキシアクリレート樹脂とフィラーからなる液状フォトソルダーレジストで、塗布、焼付、現像、硬化することにより所望のパターンを形成することが出来る。   When a copper-clad flexible substrate using epoxy resin or BT resin is used as the insulating substrate 1 having the LED chip mounting wiring portion 3 and the wiring conductor portion 4, the wiring conductor portion 4 is formed by patterning copper by chemical etching or the like. However, since copper is easily oxidized, an overcoat layer made of metal or resin is generally provided. Most of the insulating resist 6 used as the overcoat layer is a liquid photo solder resist composed of an epoxy acrylate resin and a filler, and a desired pattern can be formed by coating, baking, developing and curing.

LEDチップ搭載配線部3は、銅の上にニッケルメッキ、その上に銀メッキを施している。ニッケルメッキは銅のオーバーコート層としての機能を有する。銀メッキは、配線導体としての機能を持つだけでなく、LEDチップから発する全方位の光を反射する反射板の機能を有している。   The LED chip mounting wiring section 3 has nickel plating on copper and silver plating thereon. Nickel plating functions as a copper overcoat layer. The silver plating not only has a function as a wiring conductor, but also has a function of a reflecting plate that reflects light in all directions emitted from the LED chip.

本第一の実施形態は、特定の金属超薄膜の材料としてチタンを用いた例であり、LEDチップ搭載面の基板全面、すなわち絶縁性レジスト6とLEDチップ搭載配線部3上に加熱処理後のチタン超薄膜11を有している。   The first embodiment is an example in which titanium is used as a material for a specific ultra-thin metal film, and the entire surface of the LED chip mounting surface, that is, the insulating resist 6 and the LED chip mounting wiring portion 3 is subjected to heat treatment. An ultra-thin titanium film 11 is provided.

LEDチップ搭載配線部3以外で絶縁性レジスト6に覆われていない配線導体部4は、外部電極との接続のために銅の上にニッケルメッキ、その上に金メッキやスズメッキを施している。   The wiring conductor 4 that is not covered with the insulating resist 6 except for the LED chip mounting wiring 3 is nickel-plated on copper and gold-plated or tin-plated on the copper for connection to an external electrode.

反射枠12は、LEDチップから発する全方向の光に指向性を付与する形状と反射特性を有するもので、金属、セラミックス、あるいは白色フィラーを混合した硬質シリコーン樹脂、液晶ポリマー等の耐熱性樹脂、これら耐熱性樹脂表面に金属メッキを施したもの等を用いる。   The reflection frame 12 has a shape and a reflection characteristic that gives directivity to light in all directions emitted from the LED chip, and includes a metal, ceramic, or a hard silicone resin mixed with a white filler, a heat resistant resin such as a liquid crystal polymer, Those having a surface plated with metal are used.

封止樹脂13は、透明なシリコーン樹脂やエポキシ樹脂等からなる。封止樹脂13の役割のひとつとして、実装したLEDチップ2を機械的衝撃から保護する目的がある。また、封止樹脂13に透明な散乱材を分散させることでLEDチップ2から発する光の均一性を高めることが出来る。更に、封止樹脂13にLEDチップ2から発する光を吸収し異なる波長の光を発光する蛍光体を分散することで、LEDチップ2と蛍光体からの発光波長を混合した光を得ることが出来る。LEDチップ2として青色LEDを、蛍光体として青色の光を吸収し黄色の光を発光するYAG銀蛍光体を用いた擬似白色LEDデバイスは広く知られている。   The sealing resin 13 is made of a transparent silicone resin, epoxy resin, or the like. One of the roles of the sealing resin 13 is to protect the mounted LED chip 2 from mechanical shock. Moreover, the uniformity of the light emitted from the LED chip 2 can be improved by dispersing a transparent scattering material in the sealing resin 13. Further, by dispersing phosphors that absorb light emitted from the LED chip 2 and emit light of different wavelengths in the sealing resin 13, it is possible to obtain light in which the emission wavelengths from the LED chip 2 and the phosphor are mixed. . A pseudo white LED device using a blue LED as the LED chip 2 and a YAG silver phosphor that absorbs blue light and emits yellow light as a phosphor is widely known.

次に図2を用いて図1のLEDデバイスの製造方法を説明する。
ここでは、ひとつのLEDデバイスを抜き出して示しているが、実際は図12で示したように多数個取りの基板を用いている。図2の(a)は、LEDチップ搭載配線部3、配線導体部4を有する絶縁性基材1を示す図である。LED搭載面のLEDチップ搭載配線部3以外の配線導体部4は絶縁性レジスト6で覆われている。図2の(b)は、基板を洗浄後、LEDチップ搭載面の基板表面全体にチタン超薄膜10を製膜した様子を示している。図2の(c)は、LEDチップ2をダイボンド剤にてLEDチップ搭載配線部3に実装し、金のボンディングワイヤー5にて電気的に接合した図である。製膜後のチタン超薄膜11は導電性であり、非常に薄い膜であることから、ボンディングワイヤー5は、チタン超薄膜を突き破り、LEDチップ搭載配線部3の銀と強固に接合される。図2の(d)はLEDチップ2を実装し配線後、加熱処理を施した後の様子を示している。11は加熱処理後のチタン超薄膜である。加熱処理後のチタン超薄膜11は透明、且つ絶縁物の酸化チタンとなり、図中のLEDチップ配線導体部3のLEDチップ2が搭載され、且つLEDチップ2とボンディングワイヤー5にて接合している右側の部分と、LEDチップ2とボンディングワイヤー5にて接合している左側の部分との導通が切断される。図2の(e)は、加熱処理後のチタン超薄膜11が製膜されている絶縁性レジスト6上に、反射枠12を配置し、反射枠12内にLEDチップ2を覆う形で封止樹脂13を充填した本発明の第一の実施形態であるLEDデバイスを示している。
Next, a method for manufacturing the LED device of FIG. 1 will be described with reference to FIG.
Here, one LED device is extracted and shown, but actually, a multi-piece substrate is used as shown in FIG. FIG. 2A is a diagram showing the insulating base material 1 having the LED chip mounting wiring part 3 and the wiring conductor part 4. The wiring conductor portions 4 other than the LED chip mounting wiring portion 3 on the LED mounting surface are covered with an insulating resist 6. FIG. 2B shows a state in which the titanium ultra-thin film 10 is formed on the entire surface of the LED chip mounting surface after the substrate is cleaned. FIG. 2C is a diagram in which the LED chip 2 is mounted on the LED chip mounting wiring portion 3 with a die bonding agent and electrically bonded with a gold bonding wire 5. Since the titanium ultrathin film 11 after film formation is conductive and is a very thin film, the bonding wire 5 penetrates the titanium ultrathin film and is firmly bonded to the silver of the LED chip mounting wiring portion 3. FIG. 2D shows a state after the LED chip 2 is mounted, wired, and heat-treated. 11 is an ultra-thin titanium film after heat treatment. The titanium ultrathin film 11 after the heat treatment is transparent and becomes an insulating titanium oxide, the LED chip 2 of the LED chip wiring conductor portion 3 in the figure is mounted, and is bonded to the LED chip 2 by the bonding wire 5. The conduction between the right part and the left part joined to the LED chip 2 by the bonding wire 5 is cut off. FIG. 2E shows a case where a reflective frame 12 is disposed on an insulating resist 6 on which a titanium ultrathin film 11 after heat treatment is formed, and the LED chip 2 is sealed in the reflective frame 12. The LED device which is 1st embodiment of this invention with which resin 13 was filled is shown.

図3に特定の金属超薄膜の材料としてチタンを用いた本発明の第一の実施形態のもう一つのLEDデバイスを示す。図3のLEDデバイスの場合、マスク等を用いてLEDチップ配線導体部3の右側の部分と、左側の部分とを分けてチタン超薄膜10が製膜されている。このLEDデバイスの製造方法は、チタン超薄膜10を製膜後、加熱処理を施さずL
EDチップ2の実装と配線、反射枠12の配置、封止樹脂13の充填を行う。
FIG. 3 shows another LED device according to the first embodiment of the present invention using titanium as a material for a specific ultra-thin metal film. In the case of the LED device of FIG. 3, the ultrathin titanium film 10 is formed by dividing the right side portion and the left side portion of the LED chip wiring conductor portion 3 using a mask or the like. The manufacturing method of this LED device is the following:
The mounting and wiring of the ED chip 2, the arrangement of the reflection frame 12, and the filling of the sealing resin 13 are performed.

また図1と図2の(e)、並びに図3の本発明の第一の実施形態であるLEDデバイスは、反射枠12内に封止樹脂13を充填した例であるが、その他の形状のLEDデバイスも本発明の実施形態に含まれる。   The LED device according to the first embodiment of the present invention shown in FIGS. 1 and 2 and FIG. 3 is an example in which the reflective resin 12 is filled with the sealing resin 13. LED devices are also included in embodiments of the present invention.

図4に示す本発明の第一の実施形態であるLEDデバイスは、封止樹脂13がLED搭載配線部3上のLEDチップを覆う形で配置され、封止樹脂13と反射枠12が接しない形態のLEDデバイスである。このような形態のLEDデバイスは、封止樹脂13で被覆されていないLEDチップ搭載配線部3が大気に直接暴露され汚染される危険性が高い。しかしながら、本発明のLEDデバイスは、LEDチップ搭載配線部3上に加熱処理後のチタン超薄膜11を有することでこれらの問題を解決することが出来る。また、図3のLEDデバイスの例の様にマスクを用いてチタン超薄膜のパターニングを行う場合は、チタン超薄膜10が同様の機能を有する。   In the LED device according to the first embodiment of the present invention shown in FIG. 4, the sealing resin 13 is arranged so as to cover the LED chip on the LED mounting wiring portion 3, and the sealing resin 13 and the reflection frame 12 do not contact each other. LED device of the form. In the LED device of such a form, there is a high risk that the LED chip mounting wiring part 3 not covered with the sealing resin 13 is directly exposed to the atmosphere and contaminated. However, the LED device of the present invention can solve these problems by having the titanium ultrathin film 11 after the heat treatment on the LED chip mounting wiring portion 3. Further, in the case where the titanium ultrathin film is patterned using a mask as in the example of the LED device of FIG. 3, the titanium ultrathin film 10 has the same function.

図5に示す本発明の第一の実施形態であるLEDデバイスは、反射枠12が無いLEDデバイスである。先に述べた様に、封止樹脂13の機能のひとつとして実装したLEDチップ2を機械的衝撃から保護する目的があるが、周囲環境温度や点灯時と非点灯時の温度変化による配線切れ等の問題があることから、封止樹脂13は比較的柔らかいゴム状の樹脂を用いる場合が多い。柔らかい樹脂は必然的にガス透過性も高いことから、側面を硬質樹脂や金属、或いはセラミックス等の反射枠に囲まれていないLEDデバイスの場合、ガスによる汚染が問題となる。しかしながら、本発明のLEDデバイスは、LEDチップ搭載配線部3上に加熱処理後のチタン超薄膜11を有することでこれらの問題を解決することが出来る。また、図3のLEDデバイスの例の様にマスクを用いてチタン超薄膜のパターニングを行う場合は、チタン超薄膜10が同様の機能を有する。   The LED device according to the first embodiment of the present invention shown in FIG. 5 is an LED device without the reflection frame 12. As described above, there is a purpose to protect the LED chip 2 mounted as one of the functions of the sealing resin 13 from mechanical shock. However, the wiring breakage due to the ambient temperature or the temperature change between lighting and non-lighting. Therefore, the sealing resin 13 often uses a relatively soft rubber-like resin. Since soft resin inevitably has high gas permeability, in the case of an LED device whose side is not surrounded by a reflection frame made of hard resin, metal, ceramics, or the like, contamination by gas becomes a problem. However, the LED device of the present invention can solve these problems by having the titanium ultrathin film 11 after the heat treatment on the LED chip mounting wiring portion 3. Further, in the case where the titanium ultrathin film is patterned using a mask as in the example of the LED device of FIG. 3, the titanium ultrathin film 10 has the same function.

次に、特定の金属超薄膜が製膜された銀表面の耐熱性と硫化水素ガスに対する耐性(耐硫化特性)について検討するための試験基板の一例を図6に示す。図6の(a)は平面図、(b)は試験基板をA−A’で切った際の断面図である。銅貼りガラスエポキシ基板7上に銅メッキ層とニッケルメッキ層を形成し、評価部8以外は絶縁性レジスト9で覆った。評価部8はニッケルメッキ層の上に銀メッキ層を形成した。評価部8の面積は49mm2(7mm×7mm)であり、本発明の実施形態のLEDデバイスにおけるLEDチップ搭載配線部のモデルとなる。 Next, FIG. 6 shows an example of a test substrate for examining the heat resistance of the silver surface on which the specific ultra-thin metal film is formed and the resistance to hydrogen sulfide gas (sulfur resistance). 6A is a plan view, and FIG. 6B is a cross-sectional view when the test substrate is cut along AA ′. A copper plating layer and a nickel plating layer were formed on the copper-bonded glass epoxy substrate 7, and the portions other than the evaluation portion 8 were covered with an insulating resist 9. The evaluation unit 8 formed a silver plating layer on the nickel plating layer. The area of the evaluation unit 8 is 49 mm 2 (7 mm × 7 mm), which is a model of the LED chip mounting wiring unit in the LED device of the embodiment of the present invention.

(実施例1)
本実施例では、金属としてチタンを用いた例を示す。
Example 1
In this embodiment, an example in which titanium is used as a metal is shown.

前処理として、プラズマ洗浄装置PC-300(サムコ株式会社製)にて、上記試験基板のプラズマ洗浄を行った。処理条件はアルゴンガスを用いたRIEモード(Reactive Ion Etching)で、処理時間は4分間とした。   As pretreatment, plasma cleaning of the test substrate was performed with a plasma cleaning apparatus PC-300 (manufactured by Samco Corporation). The treatment conditions were RIE mode (reactive ion etching) using argon gas, and the treatment time was 4 minutes.

基板を洗浄後、あらかじめ製膜速度が既知のスパッタ装置にて、基板表面に30Åのチタン超薄膜層を製膜したチタン製膜試験基板を得た。   After cleaning the substrate, a titanium film test substrate having a titanium ultrathin film layer of 30 mm on the substrate surface was obtained in advance using a sputtering apparatus with a known film forming speed.

得られたチタン製膜試験基板と未処理の試験基板を100ppm−硫化水素ガス中に25℃にて5時間放置し、硫化試験を行った。   The obtained titanium film test substrate and the untreated test substrate were left in 100 ppm-hydrogen sulfide gas at 25 ° C. for 5 hours to conduct a sulfuration test.

図7にチタン超薄膜の有無による硫化試験前後の評価部の450nmの反射率変化を示す。ここで、反射率測定にて450nmを測定波長として選んだ理由は、変色により銀は、短波長域の反射率が特に低下する為である。
図7の結果より、チタン製膜試験基板の評価部の初期反射率は、未処理の試験基板の評価部のそれより低いものの、硫化水素ガスによる変色が生じていないことが判る。
FIG. 7 shows the change in reflectance at 450 nm in the evaluation part before and after the sulfidation test depending on the presence or absence of a titanium ultrathin film. Here, the reason why 450 nm was selected as the measurement wavelength in the reflectance measurement is that silver has a particularly low reflectance in the short wavelength region due to discoloration.
From the results of FIG. 7, it can be seen that the initial reflectance of the evaluation part of the titanium film test substrate is lower than that of the evaluation part of the untreated test substrate, but no discoloration due to hydrogen sulfide gas occurs.

また、あらかじめ160℃で4hr加熱処理を施したチタン製膜試験基板も同様な耐硫化特性を示した。   Moreover, the titanium film test substrate which had been heat-treated at 160 ° C. for 4 hours in advance showed similar sulfurization resistance.

更に、特定金属としてチタンの代わりにアルミニウムを用いた場合も製膜後、及び加熱処理後の基板は、同様な耐硫化特性を有していた。   Furthermore, even when aluminum was used as the specific metal instead of titanium, the substrate after film formation and after heat treatment had similar sulfur resistance.

上記結果より、チタン超薄膜と加熱処理後のチタン超薄膜、並びにアルミニウム超薄膜と加熱処理後のアルミニウム超薄膜は、いずれも耐硫化特性を有していることが分かる。数十Åの特定の金属超薄膜は、島状で下地の銀表面を一面に被覆する膜となっていない可能性が高いが、本発明の特定の金属超薄膜は、島と島の間の空隙が反応性ガスである硫化水素分子よりも小さいため、耐硫化特性を有するものと考えられる。   From the above results, it can be seen that both the ultra-thin titanium film and the ultra-thin titanium film after heat treatment, and the ultra-thin aluminum film and the ultra-thin aluminum film after heat treatment have antisulfurization properties. There is a high possibility that a specific metal ultrathin film of several tens of kilometers is not an island-like film that covers the entire surface of the underlying silver surface, but the specific metal ultrathin film of the present invention is between the island and the island. Since the voids are smaller than hydrogen sulfide molecules, which are reactive gases, it is considered to have sulfurization resistance.

(実施例2)
実施例1で作製したチタン製膜試験基板と未処理の試験基板を用い、大気中160℃の耐熱試験を行った。
(Example 2)
Using the titanium film test substrate prepared in Example 1 and the untreated test substrate, a heat resistance test at 160 ° C. in the atmosphere was performed.

図8にチタン超薄膜の有無による耐熱試験前後の評価部の450nmの反射率変化を示す。
図8の結果より、チタン製膜試験基板の評価部は、耐熱特性を有し、且つ初期反射率は、未処理の試験基板の評価部のそれより低いものの、熱による変色が生じていないことが判る。
FIG. 8 shows the change in reflectance at 450 nm in the evaluation part before and after the heat resistance test depending on the presence or absence of the titanium ultrathin film.
From the results of FIG. 8, the evaluation part of the titanium film test substrate has heat resistance characteristics, and the initial reflectance is lower than that of the evaluation part of the untreated test substrate, but there is no discoloration due to heat. I understand.

銀は、熱や光により粒成長が生じ変色することが知られているが、銀単体の粒成長だけではなく、大気中のガスやメッキ中の不純物との反応により銀が酸化され、それら反応物が熱や光により銀へ再還元される際に生成する銀粒子による変色も起こりうるとされている。
本発明の特定の金属超薄膜は、銀粒子そのものの成長だけでなく、銀の反応物から銀への再還元の反応も抑制しているものと考えられる。
It is known that silver grows and discolors due to heat and light. However, silver is oxidized not only by grain growth of silver alone but also by reaction with atmospheric gas and impurities in plating, and these reactions occur. It is said that discoloration due to silver particles generated when an object is re-reduced to silver by heat or light can occur.
The specific ultrathin metal film of the present invention is considered to suppress not only the growth of the silver particles themselves but also the re-reduction reaction from the silver reactant to silver.

また、図8の結果より、チタン製膜試験基板の評価部の反射率は、耐熱試験後の方が初期よりも高いことから、更に検討を加えた。   Moreover, further examination was added from the result of FIG. 8, since the reflectance of the evaluation part of a titanium film test board | substrate is higher after the heat test than the initial stage.

(実施例3)
チタンを製膜する基材を評価用実験基板からガラス板に変更し、ガラス板を洗浄後、実施例1と同様に30Åのチタン超薄膜層を製膜した。作製したチタン製膜ガラス板を種々の条件で加熱処理し、処理前後の透過率を測定した。
(Example 3)
The base material on which titanium was formed was changed from the experimental substrate for evaluation to a glass plate, and after washing the glass plate, a 30-nm titanium ultra-thin film layer was formed in the same manner as in Example 1. The produced titanium film glass plate was heat-treated under various conditions, and the transmittance before and after the treatment was measured.

図9にチタン製膜ガラス板の加熱処理試験による450nmの透過率変化を示す。
図9の結果より、チタン超薄膜は加熱処理により450nmの透過率が上昇し、初期のチタン超薄膜は着色していたが、加熱処理後は透明膜となっていた。また、加熱処理後の透明膜のスペクトルは酸化チタンのそれと一致した。
FIG. 9 shows a change in transmittance at 450 nm by a heat treatment test of a titanium film-formed glass plate.
From the results of FIG. 9, the titanium ultrathin film increased in transmittance at 450 nm by the heat treatment, and the initial titanium ultrathin film was colored, but after the heat treatment, it became a transparent film. The spectrum of the transparent film after the heat treatment was consistent with that of titanium oxide.

通常のLEDデバイスに用いられる樹脂材料は、基材、接着剤、反射枠、レジスト等であり、リフロー工程等の瞬間的な高温耐性は有するものの、一般的な連続耐熱特性は200℃以下である。
チタン超薄膜は200℃以下の加熱処理により酸化チタンへの変換が可能であることが判る。
Resin materials used in ordinary LED devices are base materials, adhesives, reflective frames, resists, etc., and have continuous high-temperature resistance such as reflow process, but general continuous heat resistance is 200 ° C or less .
It can be seen that the ultra-thin titanium film can be converted to titanium oxide by heat treatment at 200 ° C. or lower.

(実施例4)
スパッタターゲットをチタンからアルミニウムに変更し膜厚を34Åとした他は、実施例2と同様にアルミニウム製膜基板を作製し耐熱試験を行った。
Example 4
An aluminum film substrate was prepared and subjected to a heat resistance test in the same manner as in Example 2 except that the sputtering target was changed from titanium to aluminum and the film thickness was changed to 34 mm.

図10に耐熱試験前後の試験基板の評価部の450nmの反射率変化を示す。
図10より、実施例2と同様に、アルミニウム製膜試験基板の評価部も耐熱特性を有し、且つ反射率が初期よりも耐熱試験後の方が高くなることが判った。アルミニウム超薄膜もチタン超薄膜と同様に200℃以下の加熱処理により酸化反応が進行するものと考えられる。
FIG. 10 shows the change in reflectance at 450 nm in the evaluation part of the test substrate before and after the heat resistance test.
From FIG. 10, it was found that, similarly to Example 2, the evaluation part of the aluminum film test substrate also has heat resistance, and the reflectance is higher after the heat test than in the initial stage. Similar to the titanium ultrathin film, the aluminum ultrathin film is considered to undergo an oxidation reaction by heat treatment at 200 ° C. or lower.

上述の様に、本発明のLEDデバイスとLEDデバイスの製造方法は、簡便な方法で銀表面に特定の金属超薄膜を形成することより、従来のLEDデバイスの製造工程を大きく変えることなく製造する事が可能な、経時的な銀表面の反射率低下の無い高輝度、長寿命のLEDデバイス、並びにLEDデバイスの製造方法である。   As described above, the LED device and the LED device manufacturing method of the present invention can be manufactured without greatly changing the manufacturing process of the conventional LED device by forming a specific ultra-thin metal film on the silver surface by a simple method. This is a high-brightness, long-life LED device that does not degrade the reflectance of the silver surface over time, and a method for manufacturing the LED device.

本発明の第一の実施形態のLEDデバイスの断面図である。It is sectional drawing of the LED device of 1st embodiment of this invention. 本発明の第一の実施形態のLEDデバイスの製造工程を示す断面図であ る。FIG. 3 is a cross-sectional view showing a manufacturing process of the LED device according to the first embodiment of the present invention. 本発明の第一の実施形態のLEDデバイスの断面図である。It is sectional drawing of the LED device of 1st embodiment of this invention. 本発明の第一の実施形態のLEDデバイスの断面図である。It is sectional drawing of the LED device of 1st embodiment of this invention. 本発明の第一の実施形態のLEDデバイスの断面図である。It is sectional drawing of the LED device of 1st embodiment of this invention. 本発明の実施例における試験基板の図である。It is a figure of the test board | substrate in the Example of this invention. 本発明の実施例1における硫化試験の結果を示す図である。It is a figure which shows the result of the sulfide test in Example 1 of this invention. 本発明の実施例2における耐熱試験の結果を示す図である。It is a figure which shows the result of the heat test in Example 2 of this invention. 本発明の実施例3における加熱処理試験の結果を示す図である。It is a figure which shows the result of the heat processing test in Example 3 of this invention. 本発明の実施例4における耐熱試験の結果を示す図である。It is a figure which shows the result of the heat test in Example 4 of this invention. 一般的なLEDデバイスの断面図である。It is sectional drawing of a common LED device. LEDデバイスの多数個取り基板の一例を示した図である。It is the figure which showed an example of the multi-piece substrate of an LED device.

符号の説明Explanation of symbols

1 絶縁性基板
2 LEDチップ
3 LEDチップ搭載配線部
4 配線導体
5 ボンディングワイヤー
6 絶縁性レジスト
7 銅貼りガラスエポキシ基板
8 評価部
9 絶縁性レジスト
10 チタン超薄膜
11 加熱処理後のチタン超薄膜
11 反射枠
12 封止樹脂
DESCRIPTION OF SYMBOLS 1 Insulation board | substrate 2 LED chip 3 LED chip mounting wiring part 4 Wiring conductor 5 Bonding wire 6 Insulating resist 7 Copper adhesion glass epoxy board 8 Evaluation part 9 Insulating resist 10 Titanium ultra-thin film 11 Titanium ultra-thin film 11 after heat processing 11 Reflection Frame 12 Sealing resin

Claims (2)

LEDチップ搭載配線部と配線導体部とを有する基材上にLEDチップが実装されるLEDデバイスの製造方法であって、LEDチップ搭載配線部に膜厚が10Å以上100Å未満で島状に点在し、島と島の間の空隙が硫化水素分子よりも小さい金属超薄膜を製膜する工程と、前記金属超薄膜が製膜されたLEDチップ搭載配線部に前記LEDチップを実装し、配線する工程と、前記金属超薄膜が製膜されたLEDチップ搭載配線部にLEDチップが実装、配線された材を熱処理する工程とを有するLEDデバイスの製造方法。 An LED device manufacturing method in which an LED chip is mounted on a substrate having an LED chip mounting wiring portion and a wiring conductor portion, and the LED chip mounting wiring portion is dotted in an island shape with a film thickness of 10 mm or more and less than 100 mm. Then, the step of forming a metal ultra-thin film in which the gap between the islands is smaller than hydrogen sulfide molecules, and mounting and wiring the LED chip on the LED chip mounting wiring part on which the metal ultra-thin film is formed The manufacturing method of an LED device which has a process and the process of heat-processing the base material by which the LED chip was mounted in the LED chip mounting wiring part by which the said metal ultrathin film was formed, and was wired. 前記金属超薄膜が、チタンまたはアルミニウムから選ばれる金属で構成される膜であることを特徴とする請求項に記載のLED デバイスの製造方法。 2. The method of manufacturing an LED device according to claim 1 , wherein the ultrathin metal film is a film made of a metal selected from titanium and aluminum.
JP2008067150A 2008-03-17 2008-03-17 LED device manufacturing method Active JP5323371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008067150A JP5323371B2 (en) 2008-03-17 2008-03-17 LED device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008067150A JP5323371B2 (en) 2008-03-17 2008-03-17 LED device manufacturing method

Publications (2)

Publication Number Publication Date
JP2009224537A JP2009224537A (en) 2009-10-01
JP5323371B2 true JP5323371B2 (en) 2013-10-23

Family

ID=41241015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008067150A Active JP5323371B2 (en) 2008-03-17 2008-03-17 LED device manufacturing method

Country Status (1)

Country Link
JP (1) JP5323371B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5550886B2 (en) * 2009-11-13 2014-07-16 シチズン電子株式会社 LED light emitting device
JP5388877B2 (en) * 2010-01-21 2014-01-15 シチズン電子株式会社 Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP5602578B2 (en) * 2010-10-19 2014-10-08 株式会社神戸製鋼所 LED lead frame
JP6068175B2 (en) * 2013-02-12 2017-01-25 新光電気工業株式会社 WIRING BOARD, LIGHT EMITTING DEVICE, WIRING BOARD MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
JP6668644B2 (en) * 2015-09-01 2020-03-18 日亜化学工業株式会社 Light irradiator and light irradiating method
TWI684293B (en) * 2018-06-29 2020-02-01 同泰電子科技股份有限公司 Backlight circuit board structure with high reflectivity and method for making thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3667125B2 (en) * 1998-12-07 2005-07-06 日亜化学工業株式会社 Optical semiconductor device and manufacturing method thereof
JP4530739B2 (en) * 2004-01-29 2010-08-25 京セラ株式会社 Light emitting element mounting substrate and light emitting device
KR100638868B1 (en) * 2005-06-20 2006-10-27 삼성전기주식회사 Led package with metal reflection layer and method of manufacturing the same
JP2007109915A (en) * 2005-10-14 2007-04-26 Stanley Electric Co Ltd Light emitting diode
JP2007227433A (en) * 2006-02-21 2007-09-06 Matsushita Electric Works Ltd Light emitting device
JP4973011B2 (en) * 2006-05-31 2012-07-11 豊田合成株式会社 LED device

Also Published As

Publication number Publication date
JP2009224537A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP2009224536A (en) Led device and method of manufacturing the same
KR100978028B1 (en) Light-emitting device
WO2012002580A1 (en) Led light source device and method for manufacturing same
JP2015144147A (en) LED module
US8981401B2 (en) Package for optical semiconductor device, optical semiconductor device using the package, and methods for producing same
JP5323371B2 (en) LED device manufacturing method
TW201510414A (en) LED assembly and lighting apparatus
JP2007324417A (en) Semiconductor light-emitting device and manufacturing method therefor
JP2008251663A (en) Light-emitting device and illumination apparatus
JP2011108748A (en) Led light emitting device and method of manufacturing led light emitting device
JP2008277349A (en) Base for mounting light-emitting element, and its manufacturing method, and light-emitting element
JP6128367B2 (en) LIGHT EMITTING DEVICE AND WIRING BOARD MANUFACTURING METHOD
JP2011204790A (en) Semiconductor light emitting device
JP5388877B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
KR100613490B1 (en) Light emitting device and package structure and method of manufacturing thereof
JP2004228549A (en) Package for housing light emitting element and light emitting device
JP5666265B2 (en) Light-emitting component, light-emitting device, and method for manufacturing light-emitting component
TWI393273B (en) Method for manufacturing light emitting diode assembly
JP2011198902A (en) Light emitting device
JP2009231568A (en) Led light source
WO2007072659A1 (en) Light-emitting device
US20060157859A1 (en) Led packaging method and package structure
JP5573563B2 (en) Light emitting device
JP2020053601A (en) Metal material for optical semiconductor device, method of manufacturing the same, and optical semiconductor device using the same
CN110867508A (en) PCB (printed circuit board), manufacturing method thereof, lamp panel and display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130717

R150 Certificate of patent or registration of utility model

Ref document number: 5323371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250