JP2009224536A - Led device and method of manufacturing the same - Google Patents

Led device and method of manufacturing the same Download PDF

Info

Publication number
JP2009224536A
JP2009224536A JP2008067149A JP2008067149A JP2009224536A JP 2009224536 A JP2009224536 A JP 2009224536A JP 2008067149 A JP2008067149 A JP 2008067149A JP 2008067149 A JP2008067149 A JP 2008067149A JP 2009224536 A JP2009224536 A JP 2009224536A
Authority
JP
Japan
Prior art keywords
led
led chip
led device
sio
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008067149A
Other languages
Japanese (ja)
Inventor
Mizue Fukushima
福島  瑞惠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2008067149A priority Critical patent/JP2009224536A/en
Publication of JP2009224536A publication Critical patent/JP2009224536A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problem: although a surface-mounted LED device is frequently used which has silver plating with high reflectivity on a wiring conductor portion surface irradiated with LED emitted light so as to have conductivity and reflection characteristics on a surface where an LED is mounted, the surface-mounted LED device does not have satisfactory stabilities of luminance and chromaticity due to discoloration of silver and does not have satisfactory longer life while a white LED device for lighting using an LED chip having a short wavelength and high luminance is desirable. <P>SOLUTION: A step of manufacturing an ordinary LED device includes a step of applying a SiO<SB>2</SB>coating liquid onto a base material and carrying out a heat treatment after an LED chip is mounted on the base material and wired. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、LEDチップが表面実装されたLEDデバイスに関するものである。   The present invention relates to an LED device on which an LED chip is surface-mounted.

短波長域の青色光または近紫外光を発光するLEDチップの開発により、それらLEDチップと、LEDチップの発光波長を吸収し異なる波長域の光に変換する蛍光体とを組み合わせたLEDデバイスが開発されている。その中でも青色LEDチップとYAG銀蛍光体とを組み合わせた擬似白色LEDデバイスは、照明用光源や液晶ディスプレイ用バックライト光源として広く用いられている。特に、一般照明用LED光源では高輝度化、長寿命化が重要な問題となっている。   By developing LED chips that emit blue light or near ultraviolet light in the short wavelength range, LED devices that combine these LED chips with phosphors that absorb the light emission wavelength of LED chips and convert them into light in different wavelength ranges have been developed. Has been. Among them, a pseudo white LED device combining a blue LED chip and a YAG silver phosphor is widely used as an illumination light source or a liquid crystal display backlight source. Particularly, in general LED light sources for illumination, high brightness and long life are important problems.

一般に、LEDチップが表面実装されたLEDデバイスの基板としては、リードフレーム材と樹脂を一体型に射出成形した成形体、フレキシブル配線基板や配線パターンを有するセラミックス基板等が用いられている。またLEDチップの実装と配線は、チップタイプによりワイヤーボンディング実装やフリップチップ実装が一般的に用いられている。   In general, as a substrate of an LED device on which an LED chip is surface-mounted, a molded body in which a lead frame material and a resin are integrally formed by injection molding, a flexible wiring substrate, a ceramic substrate having a wiring pattern, and the like are used. For LED chip mounting and wiring, wire bonding mounting or flip chip mounting is generally used depending on the chip type.

図8にLEDチップが表面実装された一般的なLEDデバイスの一例を示す。   FIG. 8 shows an example of a general LED device having a surface mounted LED chip.

1は絶縁性基材であり、高耐熱性の絶縁性樹脂やセラミックス等が用いられる。2はLEDチップである。LEDチップ2は、LEDチップ搭載配線部3に電気的に接合される。4は配線導体部である。図8ではLEDチップ2はLEDチップ搭載配線部3上にエポキシ樹脂やシリコーン樹脂等からなるダイボンドペーストや銀ペーストにより実装され、金やアルミニウム等からなるボンディングワイヤー5を介し、配線導体部を兼ねるLEDチップ搭載配線部3に電気的に接合されている。LEDチップ搭載配線部3と配線導体部4を有する基材として銅貼りフレキシブル基板を用いた場合、配線導体部4は銅をケミカルエッチング等によりパターニングし形成する。しかし、銅は酸化されやすい事から、一般にオーバーコート層が設けられる。図8では、LEDチップ2が配置される面の導体配線部4の銅は絶縁性レジスト6に覆われており、LEDチップ搭載配線部3は銅の上にニッケルメッキ、その上に反射率の高い銀メッキを施している。LEDチップ搭載配線部3以外で絶縁性レジスト6に覆われていない配線導体部4は、外部電極との接続のために銅の上にニッケルメッキ、その上に金メッキやスズメッキを施している。   Reference numeral 1 denotes an insulating substrate, which is made of a highly heat-resistant insulating resin or ceramic. 2 is an LED chip. The LED chip 2 is electrically joined to the LED chip mounting wiring part 3. Reference numeral 4 denotes a wiring conductor portion. In FIG. 8, the LED chip 2 is mounted on the LED chip mounting wiring portion 3 with a die bond paste or silver paste made of epoxy resin, silicone resin, or the like, and also serves as a wiring conductor portion through a bonding wire 5 made of gold, aluminum, or the like. It is electrically joined to the chip mounting wiring part 3. When a copper-clad flexible substrate is used as a base material having the LED chip mounting wiring part 3 and the wiring conductor part 4, the wiring conductor part 4 is formed by patterning copper by chemical etching or the like. However, since copper is easily oxidized, an overcoat layer is generally provided. In FIG. 8, the copper of the conductor wiring portion 4 on the surface on which the LED chip 2 is disposed is covered with an insulating resist 6, and the LED chip mounting wiring portion 3 is nickel-plated on the copper, and the reflectance of the copper is mounted thereon. High silver plating. The wiring conductor 4 that is not covered with the insulating resist 6 except for the LED chip mounting wiring 3 is nickel-plated on copper and gold-plated or tin-plated on the copper for connection to an external electrode.

白色系の発光が要求される白色系LEDデバイスの場合、特にLEDチップから発せられる光を効率よく反射する材料をLEDチップ周りに配置することが必要となる。
そこで、図8の様にLEDを実装する面のLEDチップ搭載配線部表面に反射率の高い銀メッキを施し、反射板と配線導体部の双方の機能を持たせる場合が多い。
In the case of a white LED device that requires white light emission, it is particularly necessary to arrange a material that efficiently reflects light emitted from the LED chip around the LED chip.
Thus, as shown in FIG. 8, the surface of the LED chip mounting wiring part on which the LED is mounted is often subjected to silver plating having a high reflectivity so as to have both functions of the reflector and the wiring conductor part.

しかしながら、銀は熱的、化学的に不安定な物質であり、LEDチップの発熱、あるいは大気中の硫黄を含むガス等により変色し反射率が低下するため、銀をLEDチップ搭載配線部に用いたLEDデバイスは、輝度や色度の安定性や長寿命化に対して問題があった。   However, silver is a thermally and chemically unstable substance, and its reflectance is reduced due to heat generation of LED chips or gas containing sulfur in the atmosphere, etc., so silver is used for LED chip mounting wiring parts. The LED device had problems with respect to stability of luminance and chromaticity and long life.

高輝度で長寿命のLEDデバイス構造のひとつの方法として、特許文献1では光反射部と配線導体部とを分離し反射板上に真空薄膜形成法にて透明無機酸化膜層を設け、その上に配線導体部を形成している。
特開2005−244152号公報(12頁、図3)
As one method of LED device structure with high brightness and long life, Patent Document 1 separates a light reflecting portion and a wiring conductor portion and provides a transparent inorganic oxide film layer on a reflecting plate by a vacuum thin film forming method. A wiring conductor portion is formed on the substrate.
Japanese Patent Laying-Open No. 2005-244152 (page 12, FIG. 3)

しかしながら、上記特許文献1の様なLEDデバイスの場合、配線導体部と無機酸化膜層と光反射部全てを真空薄膜形成法にて製膜した場合、それぞれのパターンの違いやターゲットの違いから、1回の処理で全ての部分を形成することは困難で、工程が複雑となってしまうという問題点がある。   However, in the case of the LED device as in the above-mentioned Patent Document 1, when all of the wiring conductor part, the inorganic oxide film layer, and the light reflection part are formed by the vacuum thin film forming method, It is difficult to form all the parts in one process, and there is a problem that the process becomes complicated.

また、マスクを用いた真空薄膜形成法を用いた場合、通常のマスク精度が100ミクロン程度であることから、上記特許文献1の様なパターンの異なる膜を積層するLEDデバイスは、小型のLEDデバイスへの応用が困難であると考えられる。   Further, when a vacuum thin film forming method using a mask is used, the normal mask accuracy is about 100 microns. Therefore, an LED device in which films having different patterns as described in Patent Document 1 are stacked is a small LED device. It is thought that application to is difficult.

そこで本発明は、工程が少なく小型化にも対応可能な、高輝度で長寿命のLEDデバイスを提供することを目的とする。   Therefore, an object of the present invention is to provide a high-luminance and long-life LED device that can be reduced in size with fewer steps.

本発明のLEDデバイスは、LEDチップ搭載配線部と配線導体部とを有する基材上にLEDチップが実装されるLEDデバイスであって、LEDチップ搭載配線部にSiO2膜を有することを特徴とするものである。 The LED device of the present invention is an LED device in which an LED chip is mounted on a substrate having an LED chip mounting wiring portion and a wiring conductor portion, and the LED chip mounting wiring portion has a SiO 2 film. To do.

また、本発明のLEDデバイスの製造方法は、LEDチップ搭載配線部と配線導体部とを有する基材上にLEDチップが実装されるLEDデバイスの製造方法であって、基材上にLEDチップを実装し、配線する工程と、LEDチップが実装された基材上にSiO2コーティング液を塗布する工程と、SiO2コーティング液が塗布された基材を熱処理する工程とを有することを特徴とするものである。 The LED device manufacturing method of the present invention is a method of manufacturing an LED device in which an LED chip is mounted on a substrate having an LED chip mounting wiring portion and a wiring conductor portion, and the LED chip is mounted on the substrate. It includes a step of mounting and wiring, a step of applying a SiO 2 coating solution on a substrate on which an LED chip is mounted, and a step of heat-treating the substrate on which the SiO 2 coating solution is applied. Is.

更に、本発明のLEDデバイスの製造方法に用いるSiO2コーティング液は、SiO2前駆体であるポリシラザン溶液であり、塗布後熱処理を施すことによりSiO2膜となることが好ましい。 Furthermore, the SiO 2 coating liquid used in the LED device manufacturing method of the present invention is a polysilazane solution that is a SiO 2 precursor, and it is preferable to form a SiO 2 film by performing a heat treatment after coating.

なお、本発明のLEDデバイスの製造方法に用いるSiO2コーティング液は、ディスペンサーまたはインクジェット法により塗布することが好ましい。 Incidentally, SiO 2 coating solution used in the production method of the LED device of the present invention is preferably applied by a dispenser or an ink-jet method.

また、本発明のLEDデバイスの製造方法においては、SiO2コーティング液を塗布する前処理としてLEDチップを実装された基材にプラズマ洗浄またはUV−オゾン洗浄を施すことが好ましい。 In the method of manufacturing the LED device of the present invention is preferably subjected to plasma cleaning or UV- ozone cleaning the substrate which is mounted an LED chip as a pretreatment for applying a SiO 2 coating solution.

(作用)
本発明のLEDデバイスは、ポリシラザン溶液を塗布後、熱処理を施すことで形成される SiO2コーティング膜により銀表面が被覆されることで、加熱による銀の粒成長による変色やガスとの反応による銀の変色が抑制されると考えられる。
(Function)
In the LED device of the present invention, the silver surface is covered with a SiO 2 coating film formed by applying a heat treatment after applying a polysilazane solution. It is thought that the discoloration of is suppressed.

塗布後加熱処理を施すことで SiO2コーティング膜を形成する方法として一般に知られているゾル−ゲル法は、用いるソル−ゲル溶液が(式1)から(式3)に示す反応が組み合わさりSiO2膜となるとされている。
Si(OR)4 + xH2O → Si(OH)x(OR)4-x
ROH ・・・ (式1)
−Si−OR + HO−Si− → −Si−O−Si− + H2O ・・・ (式2)
−Si−OR + HO−Si− → −Si−O−Si− + ROH ・・・ (式3)
The sol-gel method, which is generally known as a method for forming a SiO 2 coating film by applying a heat treatment after coating, combines the sol-gel solution used with the reactions shown in (Formula 1) to (Formula 3). It is supposed to be two films.
Si (OR) 4 + xH 2 O → Si (OH) x (OR) 4-x +
ROH (Formula 1)
-Si-OR + HO-Si- → -Si-O-Si- + H 2 O ··· ( Equation 2)
-Si-OR + HO-Si- → -Si-O-Si- + ROH (Formula 3)

しかし、上記ゾル−ゲル法の反応機構は加水分解や脱水反応、脱アルコール反応を経ることより、加熱処理による反応の進行に伴う膜収縮が大きいことから被コーティング部材との密着性が低く、クラック等の問題が生じてしまう。   However, the reaction mechanism of the sol-gel method is that it undergoes hydrolysis, dehydration reaction, and dealcoholization reaction, so that the film shrinkage accompanying the progress of the reaction by heat treatment is large, so the adhesion to the coated member is low, and cracks Etc. will occur.

一方、本発明で用いるポリシラザン溶液の反応は(式4)で示され、この反応に伴う重量収率は133%となることから、クラック等の無い安定したコーティング膜が形成されると考えられる。
−SiH2NH− + 2H2O → SiO2 + NH3 + 2H2 ・・・ (式4)
On the other hand, the reaction of the polysilazane solution used in the present invention is represented by (Equation 4), and the weight yield associated with this reaction is 133%. Therefore, it is considered that a stable coating film without cracks or the like is formed.
-SiH 2 NH- + 2H 2 O → SiO 2 + NH 3 + 2H 2 ··· ( Equation 4)

更に、ポリシラザン溶液を塗布する前処理として被コーティング部にプラズマ洗浄工程やUV−オゾン洗浄工程を施すことにより、被コーティング部最表面の不純物が除去されることにより密着性の高いSiO2膜が得られるものと考えられる。 Furthermore, by applying a plasma cleaning process or a UV-ozone cleaning process to the coated part as a pretreatment for applying the polysilazane solution, an SiO 2 film with high adhesion can be obtained by removing impurities on the outermost surface of the coated part. It is thought that

本発明によれば、従来のLEDデバイスの製造工程を大きく変えること無く、簡便な後処理により高輝度で長寿命特性を有するLEDデバイスを提供することが可能となる。   According to the present invention, it is possible to provide an LED device having high luminance and long life characteristics by simple post-processing without greatly changing the manufacturing process of the conventional LED device.

更に、本発明によるLEDデバイスは、用いる基材、LEDチップ、LEDチップと配線導体部を電気的に接続する配線材料や配線方式、配線導体部等、一般的な材料や方法を用いることが出来ることから、高輝度で長寿命特性を有するLEDデバイスのコスト低減化、小型化に寄与することが出来る。   Furthermore, the LED device according to the present invention can use general materials and methods such as a base material to be used, an LED chip, a wiring material and a wiring system for electrically connecting the LED chip and the wiring conductor, and a wiring conductor. Therefore, it is possible to contribute to cost reduction and miniaturization of LED devices having high luminance and long life characteristics.

(第一の実施形態)
図1に本発明の第一の実施形態であるLEDデバイスを示し、その製造方法を図2に基づき説明する。
(First embodiment)
The LED device which is 1st embodiment of this invention is shown in FIG. 1, and the manufacturing method is demonstrated based on FIG.

1は絶縁性基材であり、LEDチップ搭載配線部3と配線導体部4を有している。絶縁性基材1は、高耐熱性のガラスエポキシ樹脂、BTレジン(ビスマレイミドトリアジン)、PBT樹脂(ポリブチレンテレフタレート)、硬質シリコーン樹脂、セラミックス等が用いられる。   Reference numeral 1 denotes an insulating base material having an LED chip mounting wiring portion 3 and a wiring conductor portion 4. As the insulating substrate 1, a high heat-resistant glass epoxy resin, BT resin (bismaleimide triazine), PBT resin (polybutylene terephthalate), hard silicone resin, ceramics, or the like is used.

2はLEDチップである。代表的なLEDチップは、InGaN系LEDチップで、組成比の違いにより近紫外光、青色光、緑色光を発光する。   2 is an LED chip. A typical LED chip is an InGaN-based LED chip, and emits near-ultraviolet light, blue light, and green light depending on the composition ratio.

LEDチップ2の実装方法としては、LEDチップ2の上面にn型電極パッドとp型電極パッドが設けられている場合は、LEDチップ搭載配線部3上にエポキシ樹脂やシリコーン樹脂等からなるダイボンドペーストや銀ペーストを用いてLEDチップ2が搭載され、その後両方の電極パッドとLEDチップ搭載配線部3との電気的接合を金やアルミニウム等のボンディングワイヤーにて接合し実装する。上面と下面にそれぞれn型電極パッドとp型電極パッド設けられているLEDチップ2の場合は、上面の電極パッドはボンディングワイヤーで、下面の電極パッドは銀ペースト等の導電性ペーストにて実装される。LEDチップ2の下面にn型電極パッドとp型電極パッドが配置されている場合は、フリップチップ実装等により実装される。本第一の実施形態では、LEDチップ2の上面に両方の電極パッドを有する例を示す。   As a mounting method of the LED chip 2, when an n-type electrode pad and a p-type electrode pad are provided on the upper surface of the LED chip 2, a die bond paste made of epoxy resin, silicone resin or the like on the LED chip mounting wiring portion 3. Then, the LED chip 2 is mounted using silver paste, and then both the electrode pads and the LED chip mounting wiring part 3 are bonded and mounted with a bonding wire such as gold or aluminum. In the case of the LED chip 2 provided with an n-type electrode pad and a p-type electrode pad on the upper and lower surfaces, respectively, the upper electrode pad is mounted with a bonding wire, and the lower electrode pad is mounted with a conductive paste such as silver paste. The When the n-type electrode pad and the p-type electrode pad are arranged on the lower surface of the LED chip 2, the LED chip 2 is mounted by flip chip mounting or the like. In the first embodiment, an example in which both electrode pads are provided on the upper surface of the LED chip 2 is shown.

LEDチップ搭載配線部3と配線導体部4を有する絶縁性基材1としてエポキシシ樹脂やBTレジンを用いた銅貼りフレキシブル基板を用いた場合、配線導体部4は銅をケミカルエッチング等によりパターニングし形成するが、銅は酸化されやすい事から、一般に金
属、或いは樹脂によるオーバーコート層が設けられる。オーバーコート層として用いる絶縁性レジスト6の多くは、エポキシアクリレート樹脂とフィラーからなる液状フォトソルダーレジストで、塗布、焼付、現像、硬化することにより所望のパターンを形成することが出来る。
When a copper-clad flexible substrate using epoxy resin or BT resin is used as the insulating substrate 1 having the LED chip mounting wiring portion 3 and the wiring conductor portion 4, the wiring conductor portion 4 is formed by patterning copper by chemical etching or the like. However, since copper is easily oxidized, an overcoat layer made of metal or resin is generally provided. Most of the insulating resist 6 used as the overcoat layer is a liquid photo solder resist composed of an epoxy acrylate resin and a filler, and a desired pattern can be formed by coating, baking, developing and curing.

本第一の実施形態では、銅貼りガラスエポキシ基板を用い、LEDチップ搭載配線部3は、銅の上にニッケルメッキ、その上に銀メッキ、更に銀メッキ表面にSiO2膜を有している。ニッケルメッキは銅のオーバーコート層としての機能を有する。銀メッキは、配線導体としての機能を持つだけでなく、LEDチップから発する全方位の光を反射する反射板の機能を有している。 In the first embodiment, a copper-coated glass epoxy substrate is used, and the LED chip mounting wiring section 3 has nickel plating on copper, silver plating thereon, and further a SiO 2 film on the silver plating surface. . Nickel plating functions as a copper overcoat layer. The silver plating not only has a function as a wiring conductor, but also has a function of a reflecting plate that reflects light in all directions emitted from the LED chip.

LEDチップ搭載配線部3以外で絶縁性レジスト6に覆われていない配線導体部4は、外部電極との接続のために銅の上にニッケルメッキ、その上に金メッキやスズメッキを施している。
反射枠12は、LEDチップから発する全方向の光に指向性を付与する形状と反射特性を有するもので、金属、セラミックス、あるいは白色フィラーを混合した硬質シリコーン樹脂、液晶ポリマー等の耐熱性樹脂、これら耐熱性樹脂表面に金属メッキを施したもの等を用いる。
The wiring conductor 4 that is not covered with the insulating resist 6 except for the LED chip mounting wiring 3 is nickel-plated on copper and gold-plated or tin-plated on the copper for connection to an external electrode.
The reflection frame 12 has a shape and a reflection characteristic that gives directivity to light in all directions emitted from the LED chip, and includes a metal, ceramic, or a hard silicone resin mixed with a white filler, a heat resistant resin such as a liquid crystal polymer, Those having a surface plated with metal are used.

封止樹脂13は、透明なシリコーン樹脂やエポキシ樹脂等からなる。封止樹脂13の役割のひとつとして、実装したLEDチップ2を機械的衝撃から保護する目的がある。また、封止樹脂13に透明な散乱材を分散させることでLEDチップ2から発する光の均一性を高めることが出来る。更に、封止樹脂13にLEDチップ2から発する光を吸収し異なる波長の光を発光する蛍光体を分散することで、LEDチップ2と蛍光体からの発光波長を混合した光を得ることが出来る。LEDチップ2として青色LEDを、蛍光体として青色の光を吸収し黄色の光を発光するYAG銀蛍光体を用いた擬似白色LEDデバイスは広く知られている。   The sealing resin 13 is made of a transparent silicone resin, epoxy resin, or the like. One of the roles of the sealing resin 13 is to protect the mounted LED chip 2 from mechanical shock. Moreover, the uniformity of the light emitted from the LED chip 2 can be improved by dispersing a transparent scattering material in the sealing resin 13. Further, by dispersing phosphors that absorb light emitted from the LED chip 2 and emit light of different wavelengths in the sealing resin 13, it is possible to obtain light in which the emission wavelengths from the LED chip 2 and the phosphor are mixed. . A pseudo white LED device using a blue LED as the LED chip 2 and a YAG silver phosphor that absorbs blue light and emits yellow light as a phosphor is widely known.

次に図2を用いて図1のLEDデバイスの製造方法を説明する。
図2の(a)はLEDチップ搭載配線部3上にLEDチップ2を実装した様子を示している。図2の(b)は、LEDチップ2の実装基板をプラズマ洗浄後、LEDチップ搭載配線部3上にSiO2コーティング液10を滴下している様子を示している。SiO2コーティング液10の塗布は、ディスペンサーやインクジェット装置を用いる事が出来る。図2の(c)は、SiO2コーティング液10を塗布後、加熱処理することで、銀メッキ表面にSiO2膜11を形成し、更に基板の絶縁性レジスト6上にLEDチップ2を取り囲む形状の反射枠12を配置した様子を示している。図2の(d)は反射枠12内にLEDチップ2を覆う形で封止樹脂13を充填した本発明の第一の実施形態であるLEDデバイスを示している。
Next, a method for manufacturing the LED device of FIG. 1 will be described with reference to FIG.
FIG. 2A shows a state in which the LED chip 2 is mounted on the LED chip mounting wiring section 3. FIG. 2B shows a state in which the SiO 2 coating liquid 10 is dropped on the LED chip mounting wiring part 3 after plasma cleaning of the mounting substrate of the LED chip 2. The application of the SiO 2 coating solution 10 can be performed using a dispenser or an ink jet device. FIG. 2C shows a shape in which the SiO 2 film 11 is formed on the silver plating surface by applying a heat treatment after applying the SiO 2 coating solution 10 and the LED chip 2 is surrounded on the insulating resist 6 of the substrate. This shows a state in which the reflection frame 12 is arranged. FIG. 2D shows the LED device according to the first embodiment of the present invention in which the reflective resin 12 is filled with the sealing resin 13 so as to cover the LED chip 2.

本発明の第一の実施形態であるLEDデバイスの場合、SiO2コーティング液10を塗布する工程は、LEDチップ2を実装した基板に反射枠12を配置した後に入れても構わない。 In the case of the LED device according to the first embodiment of the present invention, the step of applying the SiO 2 coating solution 10 may be performed after the reflective frame 12 is arranged on the substrate on which the LED chip 2 is mounted.

また図1と図2の(d)の本発明の第一の実施形態であるLEDデバイスは、反射枠12内に封止樹脂13を充填した例であるが、その他の形状のLEDデバイスも本発明の実施形態に含まれる。   The LED device according to the first embodiment of the present invention shown in FIGS. 1 and 2 is an example in which the reflecting frame 12 is filled with the sealing resin 13, but LED devices of other shapes are also present. Included in embodiments of the invention.

図3に示す本発明の第一の実施形態であるLEDデバイスは、封止樹脂13がLED搭載配線部3上のLEDチップを覆う形で配置され、封止樹脂13と反射枠12が接しない形態のLEDデバイスである。このような形態のLEDデバイスは、封止樹脂13で被覆されていないLEDチップ搭載配線部3が大気に直接暴露され汚染される危険性が高い。しかしながら、本発明のLEDデバイスは、LEDチップ搭載配線部3上にSiO2膜11を有することでこれらの問題を解決することが出来る。 In the LED device according to the first embodiment of the present invention shown in FIG. 3, the sealing resin 13 is arranged so as to cover the LED chip on the LED mounting wiring portion 3, and the sealing resin 13 and the reflection frame 12 do not contact each other. LED device of the form. In the LED device of such a form, there is a high risk that the LED chip mounting wiring part 3 not covered with the sealing resin 13 is directly exposed to the atmosphere and contaminated. However, the LED device of the present invention can solve these problems by having the SiO 2 film 11 on the LED chip mounting wiring portion 3.

図4に示す本発明の第一の実施形態であるLEDデバイスは、反射枠12が無いLEDデバイスである。先に述べた様に、封止樹脂13の機能のひとつとして実装したLEDチップ2を機械的衝撃から保護する目的があるが、周囲環境温度や点灯時と非点灯時の温度変化による配線切れ等の問題があることから、封止樹脂13は比較的柔らかいゴム状の樹脂を用いる場合が多い。柔らかい樹脂は必然的にガス透過性も高いことから、側面を硬質樹脂や金属、或いはセラミックス等の反射枠に囲まれていないLEDデバイスの場合、ガスによる汚染が問題となる。しかしながら、本発明のLEDデバイスは、LEDチップ搭載配線部3上にSiO2膜11を有することで従来の封止樹脂を用いながらこれらの問題を解決することが出来る。 The LED device according to the first embodiment of the present invention shown in FIG. 4 is an LED device without the reflection frame 12. As described above, there is a purpose to protect the LED chip 2 mounted as one of the functions of the sealing resin 13 from mechanical shock. However, the wiring breakage due to the ambient temperature or the temperature change between lighting and non-lighting. Therefore, the sealing resin 13 often uses a relatively soft rubber-like resin. Since soft resin inevitably has high gas permeability, in the case of an LED device whose side is not surrounded by a reflection frame made of hard resin, metal, ceramics, or the like, contamination by gas becomes a problem. However, the LED device of the present invention has the SiO 2 film 11 on the LED chip mounting wiring part 3 and can solve these problems while using a conventional sealing resin.

次に、塗布方式のSiO2膜による銀表面の耐熱性と硫化水素ガスに対する耐性(耐硫化特性)について検討するための試験基板の一例を図5に示す。図5の(a)は平面図、(b)は試験基板をA−A’で切った際の断面図である。銅貼りガラスエポキシ基板7上に銅メッキ層とニッケルメッキ層を形成し、評価部8以外は絶縁性レジスト9で覆った。評価部8はニッケルメッキ層の上に銀メッキ層を形成した。評価部8の面積は49mm2(7mm×7mm)であり、本発明の実施形態のLEDデバイスにおけるLEDチップ搭載配線部のモデルとなる。 Next, FIG. 5 shows an example of a test substrate for examining the heat resistance of the silver surface and the resistance to hydrogen sulfide gas (sulfurization resistance) by the coating type SiO 2 film. 5A is a plan view, and FIG. 5B is a cross-sectional view when the test substrate is cut along AA ′. A copper plating layer and a nickel plating layer were formed on the copper-bonded glass epoxy substrate 7, and the portions other than the evaluation portion 8 were covered with an insulating resist 9. The evaluation unit 8 formed a silver plating layer on the nickel plating layer. The area of the evaluation unit 8 is 49 mm 2 (7 mm × 7 mm), which is a model of the LED chip mounting wiring unit in the LED device of the embodiment of the present invention.

(実施例1)
プラズマ洗浄装置PC-300(サムコ株式会社製)にて、上記試験基板のプラズマ洗浄を行った。処理条件はアルゴンガスを用いたRIEモード(Reactive Ion Etching)で、処理時間は4分間とした。
Example 1
Plasma cleaning of the test substrate was performed with a plasma cleaning apparatus PC-300 (manufactured by Samco Corporation). The treatment conditions were RIE mode (reactive ion etching) using argon gas, and the treatment time was 4 minutes.

基板を洗浄後、ポリシラザン溶液であるNP110(AZ エレクトロニックマテリアルズ株式会社製)0.3μLを容量計量型ディスペンサーにて評価部8上に滴下し、150℃の恒温漕にて1時間加熱処理した。   After washing the substrate, 0.3 μL of NP110 (manufactured by AZ Electronic Materials Co., Ltd.), which is a polysilazane solution, was dropped on the evaluation unit 8 with a volumetric dispenser, and heat-treated for 1 hour at a constant temperature bath at 150 ° C.

得られたSiO2膜を施した試験基板と未処理の試験基板を100ppm−硫化水素ガス中に25℃にて5時間放置し、硫化試験を行った。 The obtained test substrate on which the SiO 2 film was applied and the untreated test substrate were left in 100 ppm-hydrogen sulfide gas at 25 ° C. for 5 hours to conduct a sulfurization test.

図6にSiO2膜の有無による硫化試験前後の評価部の450nmの反射率変化を示す。 ここで、反射率測定にて450nmを測定波長として選んだ理由は、変色により銀は、 短波長域の反射率が特に低下する為である。
図6の結果より、SiO2膜を施した試験基板の評価部の初期の反射率は、未処理の試験基板の評価部のそれより低いものの、硫化水素ガスによる変色が生じていないことが判る。
FIG. 6 shows the change in reflectance at 450 nm in the evaluation part before and after the sulfidation test with and without the SiO 2 film. Here, the reason why 450 nm was selected as the measurement wavelength in the reflectance measurement is that silver has a particularly low reflectance in the short wavelength region due to discoloration.
From the results of FIG. 6, it can be seen that the initial reflectance of the evaluation part of the test substrate on which the SiO 2 film is applied is lower than that of the evaluation part of the untreated test substrate, but no discoloration due to hydrogen sulfide gas occurs. .

(実施例2)
実施例1で作製したSiO2膜を施した試験基板と未処理の試験基板を用い、大気中160℃の耐熱試験を行った。
(Example 2)
A heat resistance test at 160 ° C. in the atmosphere was performed using the test substrate on which the SiO 2 film prepared in Example 1 was applied and an untreated test substrate.

図7にSiO2膜の有無による耐熱試験前後の評価部の450nm反射率変化を示す。
図7の結果より、SiO2膜を施した試験基板の評価部の初期の反射率は、未処理の試験基板の評価部のそれより低いものの、熱による変色が生じていないことが判る。
FIG. 7 shows the 450 nm reflectivity change in the evaluation part before and after the heat resistance test with and without the SiO 2 film.
From the results of FIG. 7, it can be seen that although the initial reflectance of the evaluation part of the test substrate on which the SiO 2 film was applied is lower than that of the evaluation part of the untreated test substrate, no discoloration due to heat has occurred.

銀は、熱や光により粒成長が生じ変色することが知られているが、銀単体の粒成長だけではなく、大気中のガスやメッキ中の不純物との反応により銀が酸化され、それら反応物が熱や光により銀へ再還元される際に生成する銀粒子による変色も起こりうるとされている。
本発明のLEDデバイスのSiO2膜は、銀粒子そのものの成長だけでなく、銀の反応物から
銀への再還元の反応も抑制しているものと考えられる。
It is known that silver grows and discolors due to heat and light. However, silver is oxidized not only by grain growth of silver alone but also by reaction with atmospheric gas and impurities in plating, and these reactions occur. It is said that discoloration due to silver particles generated when an object is re-reduced to silver by heat or light can occur.
The SiO 2 film of the LED device of the present invention is considered to suppress not only the growth of silver particles themselves but also the re-reduction reaction from silver reactants to silver.

また、SiO2膜を施した試験基板の耐熱試験を行う際に前処理のプラズマ洗浄の有無について検討したところ、プラズマ処理を施していない試験基板の中にはSiO2膜にクラックが発生し、部分的な剥がれが生じてしまったものがあったが、プラズマ処理を施した試験基板はそれらの発生は殆ど無かった。この結果より、SiO2膜形成の前処理として、銀表面を清浄化し密着性を向上させるための洗浄工程を設けることが好ましいことが判る。 In addition, when conducting a heat resistance test of the test substrate with the SiO 2 film, the presence or absence of the pretreatment plasma cleaning was examined, and cracks occurred in the SiO 2 film in the test substrate not subjected to the plasma treatment. There were some samples that had been partially peeled off, but the test substrate that had been subjected to plasma treatment had almost no such occurrence. From this result, it can be seen that it is preferable to provide a cleaning step for cleaning the silver surface and improving adhesion as a pretreatment for forming the SiO 2 film.

上述の様に、本発明のLEDデバイスとLEDデバイスの製造方法は、簡便な方法で銀表面にSiO2膜を設ける事により、従来のLEDデバイスの製造工程を大きく変えることなく製造する事が可能な、経時的な銀表面の反射率低下の無い高輝度、長寿命のLEDデバイス、並びにLEDデバイスの製造方法である。 As described above, the LED device and the LED device manufacturing method of the present invention can be manufactured without greatly changing the manufacturing process of the conventional LED device by providing a SiO 2 film on the silver surface by a simple method. In addition, the present invention provides a high-brightness, long-life LED device that does not cause a decrease in reflectance of the silver surface over time, and a method for manufacturing the LED device.

本発明の第一の実施形態のLEDデバイスの断面図である。It is sectional drawing of the LED device of 1st embodiment of this invention. 本発明の第一の実施形態のLEDデバイスの製造工程を示す断面図である 。It is sectional drawing which shows the manufacturing process of the LED device of 1st embodiment of this invention. 本発明の第一の実施形態のLEDデバイスの断面図である。It is sectional drawing of the LED device of 1st embodiment of this invention. 本発明の第一の実施形態のLEDデバイスの断面図である。It is sectional drawing of the LED device of 1st embodiment of this invention. 本発明の実施例における試験基板の図である。It is a figure of the test board | substrate in the Example of this invention. 本発明の実施例1における硫化試験の結果を示す図である。It is a figure which shows the result of the sulfide test in Example 1 of this invention. 本発明の実施例2における耐熱試験の結果を示す図である。It is a figure which shows the result of the heat test in Example 2 of this invention. 一般的なLEDデバイスの断面図である。It is sectional drawing of a common LED device.

符号の説明Explanation of symbols

1 絶縁性基材
2 LEDチップ
3 LEDチップ搭載配線部
4 配線導体部
5 ボンディングワイヤー
6 絶縁性レジスト
7 銅貼りガラスエポキシ基板
8 評価部
9 絶縁性レジスト
10 SiO2コーティング液
11 SiO2
12 反射枠
13 封止樹脂
1 insulating substrate 2 LED chip 3 LED chip mounting wiring portion 4 wiring conductor portion 5 bonding wire 6 insulating resist 7 copper-clad glass epoxy substrate 8 evaluation unit 9 insulating resist 10 SiO 2 coating solution 11 SiO 2 film 12 reflecting frame 13 Sealing resin

Claims (5)

LEDチップ搭載配線部と配線導体部とを有する基材上にLEDチップが実装されるLEDデバイスであって、前記LEDチップ搭載配線部にSiO2膜を有するLEDデバイス。 An LED device in which an LED chip is mounted on a substrate having an LED chip mounting wiring portion and a wiring conductor portion, and the LED chip mounting wiring portion has an SiO 2 film. LEDチップ搭載配線部と配線導体部とを有する基材上にLEDチップが実装されるLEDデバイスの製造方法であって、前記基材上に前記LEDチップを実装し、配線する工程と、前記LEDチップが実装された基材上にSiO2コーティング液を塗布する工程と、該SiO2コーティング液が塗布された基材を熱処理する工程とを有するLEDデバイスの製造方法。 An LED device manufacturing method in which an LED chip is mounted on a base material having an LED chip mounting wiring portion and a wiring conductor portion, the step of mounting and wiring the LED chip on the base material, and the LED A method for manufacturing an LED device, comprising: applying a SiO 2 coating liquid on a substrate on which a chip is mounted; and heat treating the substrate on which the SiO 2 coating liquid is applied. 前記SiO2コーティング液がSiO2前駆体であるポリシラザン溶液であり、塗布後熱処理を施すことによりSiO2膜となることを特徴とする請求項2に記載のLEDデバイスの製造方法。 3. The method of manufacturing an LED device according to claim 2, wherein the SiO 2 coating liquid is a polysilazane solution that is a SiO 2 precursor, and a SiO 2 film is formed by performing a heat treatment after coating. 前記SiO2コーティング液を、ディスペンサーまたはインクジェット法により塗布することを特徴とする請求項2または請求項3に記載のLEDデバイスの製造方法。
The method for manufacturing an LED device according to claim 2 or 3, wherein the SiO 2 coating solution is applied by a dispenser or an ink jet method.
前記SiO2コーティング液を塗布する前処理として、前記LEDチップが実装された基材にプラズマ洗浄またはUV−オゾン洗浄を施すことを特徴とする請求項2から請求項4のいずれか一項に記載のLEDデバイスの製造方法。 The plasma cleaning or the UV-ozone cleaning is performed on the base material on which the LED chip is mounted as a pretreatment for applying the SiO 2 coating liquid. LED device manufacturing method.
JP2008067149A 2008-03-17 2008-03-17 Led device and method of manufacturing the same Pending JP2009224536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008067149A JP2009224536A (en) 2008-03-17 2008-03-17 Led device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008067149A JP2009224536A (en) 2008-03-17 2008-03-17 Led device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2009224536A true JP2009224536A (en) 2009-10-01

Family

ID=41241014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008067149A Pending JP2009224536A (en) 2008-03-17 2008-03-17 Led device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2009224536A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011171345A (en) * 2010-02-16 2011-09-01 Stanley Electric Co Ltd Light emitting device and method of manufacturing the same
KR20110109207A (en) * 2010-03-30 2011-10-06 서울반도체 주식회사 Light emitting device and method of manufacturing the same
WO2011122665A1 (en) * 2010-03-30 2011-10-06 大日本印刷株式会社 Leadframe or substrate for led, semiconductor device, and method for manufacturing leadframe or substrate for led
JP2012019062A (en) * 2010-07-08 2012-01-26 Shin Etsu Chem Co Ltd Light emitting semiconductor device, mounting board, and method for manufacturing the light emitting semiconductor device and the mounting board
JP2012028630A (en) * 2010-07-26 2012-02-09 Dainippon Printing Co Ltd Lead frame or substrate for led and manufacturing method thereof, and semiconductor device and manufacturing method thereof
JP2012079790A (en) * 2010-09-30 2012-04-19 Nichia Chem Ind Ltd Light emitting device
JP2012144652A (en) * 2011-01-13 2012-08-02 Shin-Etsu Chemical Co Ltd Primer composition and photosemiconductor device using the same
JP2012146942A (en) * 2010-12-24 2012-08-02 Citizen Holdings Co Ltd Semiconductor light emitting device and manufacturing method of the same
JP2013143559A (en) * 2012-01-13 2013-07-22 Nichia Chem Ind Ltd Light emitting device and lighting device
JP2013151736A (en) * 2011-12-27 2013-08-08 Jewelry Miura:Kk Noble metal protective film
KR20140094954A (en) * 2013-01-23 2014-07-31 삼성전자주식회사 Light emitting device package
JP2014525146A (en) * 2011-07-21 2014-09-25 クリー インコーポレイテッド Light emitting device, package, component, and method for improved chemical resistance and related methods
JP2015515146A (en) * 2012-04-19 2015-05-21 ヒューネット プラス カンパニー リミテッドHunet Plus Co., Ltd. Method of manufacturing a substrate for a high-efficiency nitride-based light-emitting diode having a nano-level pattern (MethodFor Fabricating NanoPatternedSubstituteForHighEfficiencyNitridebasedLightEmittingDiode)
US9240530B2 (en) 2012-02-13 2016-01-19 Cree, Inc. Light emitter devices having improved chemical and physical resistance and related methods
US9343441B2 (en) 2012-02-13 2016-05-17 Cree, Inc. Light emitter devices having improved light output and related methods
US9496466B2 (en) 2011-12-06 2016-11-15 Cree, Inc. Light emitter devices and methods, utilizing light emitting diodes (LEDs), for improved light extraction
US9647185B2 (en) 2010-11-12 2017-05-09 Mitsubishi Materials Corporation Composition for reflection film for light emitting element, light emitting element, and method of producing light emitting element
US9773960B2 (en) 2010-11-02 2017-09-26 Dai Nippon Printing Co., Ltd. Lead frame for mounting LED elements, lead frame with resin, method for manufacturing semiconductor devices, and lead frame for mounting semiconductor elements
US9966513B2 (en) 2013-07-17 2018-05-08 Nichia Corporation Light emitting device having light reflecting member with Ag-containing layer and Au-containing layer
US10008637B2 (en) 2011-12-06 2018-06-26 Cree, Inc. Light emitter devices and methods with reduced dimensions and improved light output
US10211380B2 (en) 2011-07-21 2019-02-19 Cree, Inc. Light emitting devices and components having improved chemical resistance and related methods
US10686107B2 (en) 2011-07-21 2020-06-16 Cree, Inc. Light emitter devices and components with improved chemical resistance and related methods

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011171345A (en) * 2010-02-16 2011-09-01 Stanley Electric Co Ltd Light emitting device and method of manufacturing the same
US9966517B2 (en) 2010-03-30 2018-05-08 Dai Nippon Printing Co., Ltd. LED leadframe or LED substrate, semiconductor device, and method for manufacturing LED leadframe or LED substrate
KR20110109207A (en) * 2010-03-30 2011-10-06 서울반도체 주식회사 Light emitting device and method of manufacturing the same
WO2011122665A1 (en) * 2010-03-30 2011-10-06 大日本印刷株式会社 Leadframe or substrate for led, semiconductor device, and method for manufacturing leadframe or substrate for led
US9263315B2 (en) 2010-03-30 2016-02-16 Dai Nippon Printing Co., Ltd. LED leadframe or LED substrate, semiconductor device, and method for manufacturing LED leadframe or LED substrate
KR101650430B1 (en) * 2010-03-30 2016-08-23 서울반도체 주식회사 Light emitting device and method of manufacturing the same
US9887331B2 (en) 2010-03-30 2018-02-06 Dai Nippon Printing Co., Ltd. LED leadframe or LED substrate, semiconductor device, and method for manufacturing LED leadframe or LED substrate
JP2012019062A (en) * 2010-07-08 2012-01-26 Shin Etsu Chem Co Ltd Light emitting semiconductor device, mounting board, and method for manufacturing the light emitting semiconductor device and the mounting board
JP2012028630A (en) * 2010-07-26 2012-02-09 Dainippon Printing Co Ltd Lead frame or substrate for led and manufacturing method thereof, and semiconductor device and manufacturing method thereof
JP2012079790A (en) * 2010-09-30 2012-04-19 Nichia Chem Ind Ltd Light emitting device
US9773960B2 (en) 2010-11-02 2017-09-26 Dai Nippon Printing Co., Ltd. Lead frame for mounting LED elements, lead frame with resin, method for manufacturing semiconductor devices, and lead frame for mounting semiconductor elements
US9647185B2 (en) 2010-11-12 2017-05-09 Mitsubishi Materials Corporation Composition for reflection film for light emitting element, light emitting element, and method of producing light emitting element
JP2012146942A (en) * 2010-12-24 2012-08-02 Citizen Holdings Co Ltd Semiconductor light emitting device and manufacturing method of the same
JP2012144652A (en) * 2011-01-13 2012-08-02 Shin-Etsu Chemical Co Ltd Primer composition and photosemiconductor device using the same
US10211380B2 (en) 2011-07-21 2019-02-19 Cree, Inc. Light emitting devices and components having improved chemical resistance and related methods
US10490712B2 (en) 2011-07-21 2019-11-26 Cree, Inc. Light emitter device packages, components, and methods for improved chemical resistance and related methods
US10686107B2 (en) 2011-07-21 2020-06-16 Cree, Inc. Light emitter devices and components with improved chemical resistance and related methods
JP2014525146A (en) * 2011-07-21 2014-09-25 クリー インコーポレイテッド Light emitting device, package, component, and method for improved chemical resistance and related methods
US11563156B2 (en) 2011-07-21 2023-01-24 Creeled, Inc. Light emitting devices and components having improved chemical resistance and related methods
US10008637B2 (en) 2011-12-06 2018-06-26 Cree, Inc. Light emitter devices and methods with reduced dimensions and improved light output
US9496466B2 (en) 2011-12-06 2016-11-15 Cree, Inc. Light emitter devices and methods, utilizing light emitting diodes (LEDs), for improved light extraction
JP2013151137A (en) * 2011-12-27 2013-08-08 Jewelry Miura:Kk Method for forming noble-metal protection film
JP2013151736A (en) * 2011-12-27 2013-08-08 Jewelry Miura:Kk Noble metal protective film
JP2013143559A (en) * 2012-01-13 2013-07-22 Nichia Chem Ind Ltd Light emitting device and lighting device
US9190585B2 (en) 2012-01-13 2015-11-17 Nichia Corporation Light emitting device and lighting equipment
US9343441B2 (en) 2012-02-13 2016-05-17 Cree, Inc. Light emitter devices having improved light output and related methods
US9240530B2 (en) 2012-02-13 2016-01-19 Cree, Inc. Light emitter devices having improved chemical and physical resistance and related methods
JP2015515146A (en) * 2012-04-19 2015-05-21 ヒューネット プラス カンパニー リミテッドHunet Plus Co., Ltd. Method of manufacturing a substrate for a high-efficiency nitride-based light-emitting diode having a nano-level pattern (MethodFor Fabricating NanoPatternedSubstituteForHighEfficiencyNitridebasedLightEmittingDiode)
US9537068B2 (en) 2013-01-23 2017-01-03 Samsung Electronics Co., Ltd. Light emitting device package
KR102008315B1 (en) * 2013-01-23 2019-10-21 삼성전자주식회사 Light emitting device package
KR20140094954A (en) * 2013-01-23 2014-07-31 삼성전자주식회사 Light emitting device package
US9966513B2 (en) 2013-07-17 2018-05-08 Nichia Corporation Light emitting device having light reflecting member with Ag-containing layer and Au-containing layer
US10263166B2 (en) 2013-07-17 2019-04-16 Nichia Corporation Light emitting device

Similar Documents

Publication Publication Date Title
JP2009224536A (en) Led device and method of manufacturing the same
JP4747726B2 (en) Light emitting device
WO2012002580A1 (en) Led light source device and method for manufacturing same
US20080083973A1 (en) Lead frame for an optical semiconductor device, optical semiconductor device using the same, and manufacturing method for these
TW201312807A (en) Light emitter device packages, components, and methods for improved chemical resistance and related methods
WO2013168802A1 (en) Led module
JP2008010591A (en) Light emitting device, manufacturing method thereof, package, and substrate for mounting light emitting element
JP2005079329A (en) Surface-mounting light emitting diode
JP2012114284A (en) Led module and illuminating device
TW201635599A (en) Light-emitting device
JP5323371B2 (en) LED device manufacturing method
US20140063822A1 (en) Wiring board, light-emitting device, and method of manufacturing the wiring board
JP2012113919A (en) Lighting device
JP2008277349A (en) Base for mounting light-emitting element, and its manufacturing method, and light-emitting element
TWI415291B (en) Chip-type led package and light emitting apparatus having the same
JP2011204790A (en) Semiconductor light emitting device
JP5871174B2 (en) LED lead frame or substrate, semiconductor device, and LED lead frame or substrate manufacturing method
JP5875816B2 (en) LED module
JP6521032B2 (en) Optical semiconductor device and method of manufacturing the same
KR101081920B1 (en) Light emitting device
JP2006237571A (en) Light-emitting diode device
JP2023010799A (en) Light-emitting module and manufacturing method therefor
JP2020053599A (en) Metal material for optical semiconductor device, method of manufacturing the same, and optical semiconductor device using the same
JP5573563B2 (en) Light emitting device
JP5779220B2 (en) Phosphor and light emitting device including the same