JP5653581B2 - 測定システム - Google Patents

測定システム Download PDF

Info

Publication number
JP5653581B2
JP5653581B2 JP2008508275A JP2008508275A JP5653581B2 JP 5653581 B2 JP5653581 B2 JP 5653581B2 JP 2008508275 A JP2008508275 A JP 2008508275A JP 2008508275 A JP2008508275 A JP 2008508275A JP 5653581 B2 JP5653581 B2 JP 5653581B2
Authority
JP
Japan
Prior art keywords
probe
deflection
measurement system
surface detector
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008508275A
Other languages
English (en)
Other versions
JP2008539405A (ja
Inventor
マクファーランド ジェフリー
マクファーランド ジェフリー
チェン ホウ ナイ ケニス
チェン ホウ ナイ ケニス
ジョン ウェストン ニコラス
ジョン ウェストン ニコラス
ウィリアム マクレーン イアン
ウィリアム マクレーン イアン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renishaw PLC
Original Assignee
Renishaw PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renishaw PLC filed Critical Renishaw PLC
Publication of JP2008539405A publication Critical patent/JP2008539405A/ja
Application granted granted Critical
Publication of JP5653581B2 publication Critical patent/JP5653581B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/045Correction of measurements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37043Touch probe, store position of touch point on surface
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37442Cad and cap for cmm

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Description

本発明は、座標測定機械(CMM)、工作機械、手動座標測定アームおよび検査ロボットの如き座標位置決め装置に取り付けられる電動走査ヘッドを用いて加工対象物の表面を走査する測定システムに関する。
座標位置決め機械に電動走査ヘッドを取り付けることは、特許文献1から知られている。電動走査ヘッドは、この電動走査ヘッドに取り付けられるスタイラスが2本の直交する軸線を中心に回転することを可能にする。従って、スタイラスはこれら2本の軸線を中心として角度をつけて配されることができるのに対し、電動走査ヘッドは座標位置決め機械によってこの機械の作業範囲内のどのような位置にでも配されることができる。
電動走査ヘッドは、スタイラスを多くの異なる向きに配することができるため、このような電動走査ヘッドは、より大きな走査の柔軟性を持った座標位置決め機械をもたらす。
特許文献1は、電動走査ヘッドの回転軸線が位置決めモードまたは付勢モードに操作されることができることをさらに開示している。付勢モードは、電動走査ヘッドのモータにより加えられる一定トルクにて表面が走査されることを可能にする。この特許文献1はまた、スタイラスに作用する力を検出するために歪ゲージアレイをこのスタイラスに設けることができることも開示している。歪ゲージからのデータは、スタイラスに作用する力ができるだけ一定となるように、電動走査ヘッドによって加えられるトルクを調整するために用いられる。
国際公開パンフレット第WO90/07097号
高速走査を精度と共に達成するため、この測定システムにおいては、運動質量、従って動的誤差を最小にすることが望ましい。電動走査ヘッドは、その回転軸線を中心とする高加速を可能にし、従って高速走査の使用に適している。
走査中、スタイラスのチップは、走査される部分の表面と接触状態に保持される必要がある。周知の部分の走査のため、CMMおよび電動走査ヘッドは、所定の経路を追随することができる。しかしながら、未知の部分のため、プローブのスタイラスに損傷を与えたり、この部分と衝突を起こす可能性のある力を越えることなく、このチップをこの未知の部分の表面に対して保持するように、スタイラスチップの経路を調整する必要がある。
電動走査ヘッドのモータは一定トルクを加えることができるけれども、加速,重力および表面摩擦の如き要因がスタイラスチップにて検知される力に影響を与える。さらに、スタイラスチップにて検知される力は、表面に対するスタイラスの角度と共に変化しよう。従って、一定のトルクは、一定のスタイラスチップ力を必ずしももたらさない。従って、一定のトルクを用いる方法は、これがスタイラスチップでの一定の力を保証しないので、高速走査に適していない。
スタイラスチップと表面との間の大きな接触力は、プローブが表面と接触状態でいることを確実にするために必要である。大きな力を伴う高速走査は、これがセンサに摩耗をもたらすので望ましくない。従って、力を最小にすることが望まれる。しかしながら、歪ゲージの如き力センサにて小さな力を測定するため、この力センサは柔軟性のある構造体に取り付けられる必要がある。このような柔軟性のある構造体は強靭ではなく、落としたり、衝突した場合に破損しやすく、従って、これは一定の力で高速走査を実行するための主たる障害である。それ故、一定の力を持つプローブチップにて高速走査を行うために必要な小さな力を検出することに問題がある。
高速走査のために必要とされる高帯域幅の力測定プローブは、狭い範囲を概ね有する。従って、(例えば加工誤差や固定具などのために)この部分の予想される形状からのどんな著しい逸脱でも、プローブが範囲外に外れるという結果になる可能性がある。
本発明は、表面検出器がプローブヘッドに取り付けられ、このプローブヘッドが座標位置決め装置に取り付けられる測定システムを提供し、
前記座標位置決め装置は、前記プローブヘッドと表面の輪郭との間で相対移動がもたらされるように操作可能であり、前記プローブヘッドは、1つ以上の軸線を中心として前記表面検出器の回転移動をもたらすために1つ以上の駆動装置を含み、
前記表面検出器は、少なくとも前記プローブヘッドを少なくとも1つの回転軸線に関して駆動することにより前記表面に沿って走査され、
前記表面検出器は前記表面からのその距離を測定し、
前記プローブヘッドは、前記表面検出器の相対位置を前記表面から予め設定された範囲内まで実時間にて制御すると共に前記表面に沿って走査するため、前記表面検出器が少なくとも1つの軸線を中心に回転するように駆動され、
前記表面に沿った前記表面検出器の走査は、これが実時間にて調整されるように、前記表面検出器からのフィードバックを用いて実時間にて調整される駆動ベクトル沿って少なくとも前記プローブヘッドを少なくとも1つの回転軸線に関して駆動することによってもたらされる。
表面検出器は、可撓性スタイラスを持った接触プローブを具有することができ、この場合には撓みが予め設定された範囲内に保持される。
表面検出器は、静電容量式か、誘導式か、または光学式プローブの如き非接触プローブを具有することができる。この場合、そのオフセットが予め設定された範囲で保持される。
表面検出器を撓みまたはオフセットベクトルに沿って移動させることにより、表面検出器の表面からの相対位置を予め設定された範囲に保持することができる。(この移動は、前記ベクトルと同じか、あるいは逆方向の何れかであってよい。)二次元または三次元プローブに対し、撓みまたはオフセットベクトルが表面検出器の出力から定められる。1次元のプローブに対し、撓みベクトルは表面の垂線と等しく、これは公称データから推定することができ、または履歴データを用いて予測することができる。
駆動ベクトルを撓みまたはオフセットベクトルから決定することができ、あるいは表面の垂線を回転することにより決定することができる。撓みまたはオフセットベクトルを約90°回転することにより、この駆動ベクトルを決定することができる。
表面検出器の距離を実時間にて調整するため、プローブヘッドを駆動するために表面検出器からのフィードバックを用いることができる。
これは、正確さを最高にするため、予め設定された範囲に亙って表面検出器を較正できるという利点を有する。従って、前記検出器の全範囲に亙るよりもこの予め設定された範囲に亙って表面検出器を較正することにより、より良好な較正適合性を達成することができる。
さて、本発明の好ましい実施形態の例が添付図面を参照して記述されよう。
図1は、座標測定機械(CMM)に取り付けられた電動走査ヘッドを例示する。測定される加工対象物10がCMM14のテーブル12に取り付けられ、電動走査ヘッド16がCMM14のクイル18に取り付けられる。スピンドルは、モータにより周知の方法にてテーブル対してX,Y,Z方向に駆動可能である。
図2に示すように、電動走査ヘッド16は、ベース、すなわちハウジング20により形成された固定部と、モータM1によりハウジング20対して軸線A1を中心に回転可能な軸22の形態の可動部とを具有する。軸22は別なハウジング24に固定され、このハウジングは、次の軸26をモータM2によりハウジング24に対して軸線A1と直交する軸線A2を中心に回転可能に支持する。
加工対象物接触チップ30を有するスタイラス29を持ったプローブ28が電動走査ヘッドに取り付けられている。この構成は、ヘッドのモータM1,M2が加工対象物接触チップを軸線A1またはA2を中心とする角度で位置決めすることができ、かつスタイラスチップが走査される表面に対して予め設定した関係となるように、CMMのモータが電動走査ヘッドを直線的に三次元座標枠組み内のどこへでも位置決めすることができるようになっている。モータM1,M2は直結駆動であり、モータがコントローラからの要求に応じて迅速に作動可能である。
空気軸受(摩擦がゼロ)の如き低摩擦軸受もまた、軸線A1およびA2を中心に応答性の良いプローブの高速移動を可能にする。空気軸受はこれらが軽いというさらなる利点を有する。
走査ヘッドの直線変位を測定するための直線位置変換器がCMMに設けられ、それぞれの軸線A1およびA2を中心とするスタイラスの角度変位を測定するための角度位置変換器T1およびT2が走査ヘッドに設けられている。変換器T1およびT2は、その負荷(すなわちプローブ)に対して強固に結合される。これは、プローブの正確な位置データをもたらす。走査ヘッドの軸受は曲がらず、変換器T1およびT2が地面に対して正確な位置データを与え得ることを確実にする。
プローブは、可撓性スタイラス29と、スタイラスの撓み量を測定するプローブの変換器とを有する。代わりに非接触プローブを用いることができる。このプローブは、一次元(例えば表面からの距離を検出する非接触プローブ)か、二次元(例えばXおよびYの撓みを検知する接触プローブ)か、または三次元(例えばX,YおよびZの撓みを検知する接触プローブ)であってよい。
図1に示すような垂直アームのCMMに関し、走査ヘッド16の軸線A1は、(軸18に沿った)CMMのZ軸に対して名目上、平行である。走査ヘッドは、プローブをこの軸を中心として連続的に回転させることができる。走査ヘッドの軸線A2は、その軸線A1に対して直交する。
電動走査ヘッドは、これを高速走査に適合させる低慣性構造を有する。低慣性構造は、その小さくかつ軽量な構造によって達成される。走査ヘッドはまた、測定誤差を減らす剛体構造と軸受とを有する。
本発明の第1の実施形態が図3に示され、平坦面32が掃引走査プロフィール34を用いて走査される。
CMMは、ヘッドを経路に沿って動かすのに対し、電動走査ヘッドはプローブをCMMの経路に対して横切る方向の1本の回転軸線を中心に往復動し、正弦波の形で変化するプロフィールを作り出す。
スタイラス29の撓みは、プローブの変換器によって測定される。この撓みは、可能な限り目標値に近い望ましい範囲内に保たれる。プローブ28からの出力は、コントローラに送られる。撓みが目標値から離れている場合、電動走査ヘッドの他の回転軸線を中心とするプローブ28の角度を調整し、これが目標値に近づくように撓みを調整するようになっている。
図4は、穴または円形のプロフィールをこのシステムにて走査する方法を示す。この場合、電動走査ヘッド16は穴38の中心線36に沿って動かされる。電動走査ヘッド16の回転軸線A1,A2がスタイラスチップ30を穴の内周に沿って動かすために用いられ、CMMと電動走査ヘッドとの合成運動が穴の内面に沿った螺旋軌跡でスタイラスチップを移動させるようになっている。
位置Aにて、一方の回転軸線がプローブを駆動すると共に他方の回転軸線がスタイラスの撓みを調整するために用いられる。位置Bではこれが逆となる。2つの回転軸線は、位置Aと位置Bとの間で螺旋状のプロフィールに沿ってプローブを駆動すると共に撓みを調整するために組み合わさって機能する。
回転軸線の何れか一方または両方がプローブの撓みを調整するために用いられると共に回転軸線の何れか他方または両方がプローブを駆動に用いられるこの技術を用いて他の表面プロフィールを測定することができる。
図5は、スタイラスの撓みのフィードバック制御を例示するフローチャートである。プローブセンサ40からの出力PSは、中央処理装置(CPU)42に送られる。この出力は、一次元か、二次元か、または三次元のデータを含むことができる。
CPU40はまた、CMM44のX,Y,Z軸のエンコーダからの位置入力信号PX,PY,PZと、電動走査ヘッド46の軸線A1,A2のエンコーダの位置入力信号PAA1,PA2とを受け取る。CPU42は、CMMデータPX,PY,PZと、電動走査ヘッドのデータPA1,PA2と、プローブセンサのデータPSとから表面位置を計算することができる。
CPUはまた、測定されたスタイラスの撓みを目標値および規定範囲と比較することができる。
プローブセンサが2Dまたは3Dセンサの場合、CPUは、次に図6に示したスタイラスチップの撓みベクトル50を計算することができる。これは、スタイラスチップ30が撓む方向である。これはまた、撓みが規定範囲内であって目標値に対して可能な限り近く保つためにスタイラスチップの位置を調整すべき方向と平行な方向である。
撓みベクトルはまた、駆動ベクトル52を生成するために用いることもでき、これはスタイラスチップ30が表面4に沿って駆動される方向である。駆動ベクトルを生成するため、撓み方向が約90°だけ回転させられる。大体の方向は(例えばCADデータや部品プログラムから、または履歴データ点から)すでに知られているが、この計算は駆動ベクトルを表面に対する接線に保つ。
CPUが駆動ベクトルと撓みベクトルとを決定すると、これは駆動コマンドDX,DY,D2,DA1,DA2をCMMと電動走査ヘッドとに送ることができる。スタイラスチップを駆動ベクトルに沿って駆動するため、駆動コマンドがX,Y,Z軸と、電動走査ヘッドの軸線の一方または両方とに送られる。これらの指令は、個々のモータに対する電圧または電流により送られる。
撓み調整コマンドは、撓みベクトルと平行な方向に撓みを制御するため、電圧または電流の形態で電動走査ヘッドの回転軸線の一方または両方に送られる。
従って、撓みおよび駆動の両方がプローブからのフィードバックを用いて実時間にて調整される。
CPUは、同期駆動コマンドを電動走査ヘッドおよびCMMに対して生成する。これは、走査ヘッドによってもたらされる回転運動がCMMの直線運動の前または後に得られないことを確実にする。この同期化は、表面、例えば自由表面を走査するため、走査ヘッドおよびCMMの両方が駆動ベクトルに応じて(例えば予期しない障害を回避するため)それぞれそれらの軸線を中心とした運動を与えることができるという利点を有する。
実時間撓み制御を達成するため、プローブセンサが迅速かつ正確なプローブ撓みの測定を実行できることが重要である。迅速かつ正確にプローブ撓みを測定する方法は、光学的手段による。
欧州特許出願EP1505362は、スタイラスが取り付けられるスタイラスホルダの撓みを検出するための光学的変換器を開示する。各変換器はレーザーダイオード光源を含み、このレーザーダイオード光源は、スタイラスホルダに配された反射鏡の如き光学的形体に対してビームを投射する。光学的形体を反射した光は、高感度位置検出器に入射し、その出力が反射光の入射位置、つまりスタイラスホルダの変位量を示す。
米国特許第6633051号は、相対的に堅い中空のスタイラスキャリアと、相対的に可撓性のある中空のスタイラスとを有するスタイラスアセンブリを開示している。光学的変換システムがこのスタイラスアセンブリ内に設けられ、光ビームをスタイラスチップの方に導く固定光源と、この光ビームをスタイラスチップにて反射して固定検出器に戻す再帰反射部材とを具えている。この構成は、スタイラスチップが表面と接触状態にある場合、スタイラスチップの横方向変位を直接測定することができるようなものである。この構成は、スタイラスチップの位置が検出され、従ってスタイラスの曲げが考慮されるという利点を有する。
これら両方の機構は、これらが高感度な光であって、高分解能を有するという利点を持っており、これらの開示は、これらを参照することにより本願に組み入れられる。
プローブを高速走査に適合させるため、これは高い構造的共振を有することが必要であり、すなわちこれは測定経路を高速で追従するために充分堅くなくてはならない。しかしながら、堅いプローブは、これが狭い測定範囲を有するという欠点を有する。従って、プローブをその測定範囲内に保持するためにフィードバックが必要である。
この発明はまた、静電容量式か、誘導式か、または光学式プローブの如き、非接触プローブを用いても好適である。この場合、プローブのオフセットがオフセット目標値に可能な限り近い規定範囲内に保持される。規定範囲外では、プローブは直線的に動かなかったり、あるいは較正されない可能性がある。
非接触プローブは、スカラーセンサを有することができ、この場合、センサ出力は表面からの距離を与えるけれども、これは方向についての情報を何ら与えない。従ってセンサ出力のみでは、オフセットを調整するためにプローブを動かす必要のある方向を決定するための充分なデータがない。さらに、撓みベクトルをセンサデータから決定することができないので、駆動ベクトルもまた決定することができない。
この場合、適切な撓みベクトルを決定するために履歴データを用いることができる。図7に示すように、履歴データ点P1,P2およびP3が表面58上の次の表面点P4の位置を予測するために用いられる。この予測位置から、点P4における表面の垂線56もまた予測することができる。この方法は、米国特許第5334918号に記述されており、これを参照することによって、この明細書に組み入れられる。
撓みベクトルは、予測された表面の垂線56に沿って存在するように取得される。従って、表面点の位置が測定データから知れており、撓みベクトルの方向は履歴データを用いて推定される。回転軸の一方または両方を動かしてプローブが撓みベクトルに沿って動くようにすることにより、オフセットを調整することができる。撓みベクトルを前述したように90度だけ回転させることにより、駆動ベクトルを決定することができる。
しかしながら、二次元または三次元のプローブに関し、履歴データを用いずに撓みベクトルを決定するためのセンサからの充分なデータがある。
電動走査ヘッドは、高速走査を実行することが可能であり、それは高い固有振動数を有し、それ故にプローブチップを高速にて位置決めすることができるからである。
電動走査ヘッドはまた、高いサーボ制御帯域幅を有する。これは、プローブが長い範囲の距離に亙って動くことが可能であり、従ってスタイラスの撓みを調整するのに有効であることを意味する。さらに、電動走査ヘッドの運動が直接駆動モータにより制御され、CPUからの指令に対して迅速な応答を確実にし、従って望ましい実時間フィードバックを可能にする。
この装置は、さまざまな異なるプローブ、例えば異なるスタイラス長を有するプローブを用いることができる。各プローブの目標撓みをコントローラ内にプログラムすることができる。従って、プローブを相互に代用することができ、電動走査ヘッドは、スタイラス撓みを個々のプローブの範囲内に調整するためにフィードバックを使用し続けることが可能である。プローブを較正してこれらがすべて同じ目標撓みおよび目標範囲を有するようにすることができる。非接触プローブも同様に較正し、オフセット目標値およびそれらの範囲が全て同じであって接触プローブの目標撓みおよび範囲と対応させることができる。
電動走査ヘッドは、このヘッドの寸法形状誤差を実時間にて補償することができる。このような誤差は、電動走査ヘッドの組み立て中に生ずる可能性がある。走査ヘッドは、周知の方法を用いてそのパラメータを理解するために較正される。このような方法は、基準ボールの如き既知の寸法の一部を走査ヘッドで測定するステップと、ヘッドを較正するために用いられる測定誤差をそれによって集めるステップとを含むことができる。電動走査ヘッドが較正されるように、ヘッドのモータを駆動して表面検出器の位置をフィードバックに応じて調整する場合、これらの誤差が計算に取り込まれる。
CMMは、その直線駆動に関する回転誤差(例えばピッチ,ロールおよびヨー)のための誤差マップが作成される。走査ヘッドもまた、回転誤差のための誤差マップが作成される。測定データは、CMMおよび走査ヘッドの組み合わされた回転誤差に関して実時間にて補正された誤差があり、従って同期した誤差補正をもたらす。CMMおよび走査ヘッドの両方に対する指令信号を同期誤差補正のために実時間にて誤差補正するため、同じCMMおよび走査ヘッドの誤差マッピングデータを使用することもまた可能である。
この高速走査の方法は、未知の部品を測定するのに適している。CMMが追従すべき経路は、コントローラにプログラムされるか、または手動にて操作棹を介して制御することができる。広域プロフィールの如き電動走査ヘッドの走査移動もまたプログラムされる。走査中、電動走査ヘッドの少なくとも1本の回転軸線が前述のように撓みを制御するために駆動される。CMMと電動走査ヘッドの少なくとも1本の軸線とを制御する駆動ベクトルもまた、前述のように調整することができる。
電動走査ヘッドの角度位置変換器T1およびT2は回転エンコーダを具えることができる。規格品の回転エンコーダは、電動走査ヘッドの測定要求に対して充分に正確ではなく、それで誤差マップを作成する必要がある。
走査ヘッドは多くの誤差要因、例えば幾何学的な誤差や、重力または加速度によって生ずる歪みを含む。幾何学的誤差の如き他の誤差から独立しているエンコーダのための誤差マップを作成することが有利である。
回転エンコーダは、電動走査ヘッドの組み込み前か、または後の何れかで誤差マップが作成されてよい。回転エンコーダの組み込み後の誤差マップの作成は、エンコーダを取り付けることによって生ずる歪みおよび偏心の如き誤差が配慮されるという利点を有する。
走査ヘッドのエンコーダは、走査ヘッドを参照基準に対して駆動することにより誤差マップが作成されてよい。
エンコーダの誤差マップを作成する第1の方法が角度干渉計を用いた図8を参照して以下に記述される。適当な角度干渉計は、国際特許出願WO96/31752に開示されている。角度干渉計は、コヒーレントな光ビームを発振するレーザー60を含む。偏光ビームスプリッタおよびプリズム64は、光ビームを一対の直角に偏光して平行に延在する光ビーム66,68へと分割する。各光ビームは、走査ヘッドの台座74に取り付けた屈折製品のガラスブロック70,72をそれぞれ通過する。その後、光ビーム66,68は、一対の再帰反射器7,7によりこれらの入射経路と平行に反射して戻され、これら光ビーム間の距離と等しい距離だけ一方が他方に対して光ビームの伝搬方向に変位し、位相ノイズを削減する。これら光ビームは、干渉ビームを生成するために再結合される。走査ヘッドの回転は、ビーム66および68の相対的な光路長の変化をもたらし、従って干渉ビームの位相の変化は、走査ヘッドの角度変位量を決定するために用いることができる。ビーム66,68は軸線方向に間隔をあけられ、比較的低慣性モーメントを持つ製品の使用を可能にすると共に広範囲の角度変位を可能にする。
この屈折製品が各軸線を中心に個々に回転する電動走査ヘッドに取り付けられるのに対し、測定が走査ヘッドエンコーダと干渉装置とでなされる。これら二組の測定が誤差関数や参照テーブルを作成するために用いられる。
干渉計は、有限の角度に関して単に読み取りを行うことができるだけなので、滑りクラッチ装置が用いられ、エンコーダの全範囲に亙って誤差マップを作成することができるようになっている。それぞれの角度区域からの測定データのセットが相互に継ぎ合わされ、全範囲に亙る測定データを作成する。
走査ヘッドの角度誤差は、走査ヘッドの記録角度と、干渉計により測定した角度位置との間の差から取得される。
さて、エンコーダの誤差マップを作成する第2の方法が図9を参照して記述されよう。図9は、軸線A1と一直線状に配される直接結合にて較正回転台に直接結合される電動走査ヘッド16を示す。回転台は、ベースに取り付けられる固定構造体82と、軸受に取り付けられて固定ハウジング82に対し軸線を中心に回転可能である可回転構造体84とを有する。回転エンコーダは、固定構造体に対する可回転構造体の回転を測定するために用いられる。継手は、走査ヘッド16のプローブ台座88に取り付けられる軸86を具有する。軸86は、その長手方向軸線を中心とする回転のねじれに対して変形しないけれども、その長手方向軸線から離れたXおよびYの平行移動と、すべての軸線を中心とする少量の傾きとを可能にする。
次に、走査ヘッドが軸線A1を中心に回転するのに対し、走査ヘッドを読み込むエンコーダは、回転台を読み込むエンコーダと同時に記録される。次に、走査ヘッドエンコーダからの読み取り位置と、較正回転台の読み取り位置とを比較することができる。
軸線A2のエンコーダは、図10に示すように、誤差マップが作成される。図10の回転テーブルは、その側方に取り付けられ、軸86が回転テーブル80から水平に延在するようになっている。L字状の板90が軸の自由端に設けられ、そしてL字状板90の水平部分がプローブヘッドのプローブ台座88に取り付けられる。従って、軸86は軸線A2と一直線状に整列される。従って、プローブヘッド16のその軸線A2を中心とする回転は、回転テーブル80の回転部84の回転をもたらす。走査ヘッドはその軸線A2を中心に回転するのに対し、走査ヘッドおよび回転テーブルの両方からのエンコーダの読み取りが同時に記録される。
走査ヘッドの読み取り誤差は、走査ヘッドのエンコーダの読み取りと回転テーブルのエンコーダの読み取りとの間の差から決定される。
回転テーブルのエンコーダを次の方法により較正することができる。走査ヘッド16は図9に示すように回転テーブル80に結合され、軸86が走査ヘッドと回転テーブルとを相互に強固に結合する。
走査ヘッドおよび結合した回転テーブルを予め設定した量(例えば1回転)回転した後、走査ヘッドをその軸線A1を中心として回転テーブル対して回転し、この処理がこの新たな位置合わせにて繰り返される。軸線A1を中心とする何回かの回転位置合わせにてこの処理を繰り返すことにより、測定結果を数学的に処理することができ、単一のエンコーダ(この場合、回転テーブルの回転エンコーダ)からの誤差が得られるようになっている。
回転テーブルのエンコーダを較正するステップのため、走査ヘッドは回転エンコーダを含む他の機器、例えば第2の回転テーブルと置き換えることができる。
回転テーブルのエンコーダを較正する他の方法において、第2の回転エンコーダが回転テーブルに直接結合される。前述同様、回転テーブルおよび第2の回転エンコーダは相互に回転すると同時に両方の回転エンコーダからの読み取りが記録される。予め設定した量(例えば1回転)を回転した後、第2の回転エンコーダの結合が解除され、新たな角度位置合わせのためにその軸線を中心に回転する。絶対位置検出器ではなく、インクリメンタルエンコーダを用いた場合、回転した回転エンコーダは、これらが位置合わせし直されるようにこれらの位置を記録し続けるか、あるいはこれらの時間位置が位置合わせし直し後に設定できるように、参照マーカを有する必要がある。この処理は、第2の回転エンコーダのその軸線を中心とする何回かの回転位置あわせにて繰り返される。前述同様、これは、単一のエンコーダからの誤差が得られることを可能にし、従って回転テーブルの回転エンコーダの誤差マップが作成されることを可能にする。この方法は、第2の回転テーブルが回転テーブルのエンコーダと同じ軸受に取り付けられるので、軸受の位置不整合による誤差が排除されるという利点を有する。
図11は、図9に示した方法の変更例を示す。この実施形態において、走査ヘッド16はCCDまたは位置検出器の如き検出器90の上に直接取り付けられる。光源92は電動走査ヘッド16に取り付けられ、検出器90に入射する光ビーム94を創成する。走査ヘッドがその軸線A1を中心に回転するので、検出器90に入射するビーム94の位置が変化しよう。従って、エンコーダ読み取りを検出器に対する光線の位置と比較することができる。
走査ヘッドの角度の誤差は、記録された走査ヘッドの角度と、検出器に対する光線の記録された位置との間の差から取得される。
記録された走査ヘッドの角度と誤差補正とを関係付けるために参照テーブルを作成することができる。代わりに、走査ヘッドの記録角度と走査ヘッドの補正角度とを関係付けるために参照テーブルを作成することができる。
参照テーブルの変化量の間にある走査ヘッドの角度の誤差補正は例えば直線または平滑補間により補間することができる。
誤差に対する走査ヘッドの記録角度か、あるいは正しい角度に対する走査ヘッドの記録角度を関連付けるため、多項関数を画成することができる。この多項関数を角度の全範囲に関連させることができる。代わりに、いくつかの多項関数をそれぞれの角度範囲に関連して画成することができる。
代わりに、誤差関数をフーリエ級数とし、格納されたフーリエ級数の係数と共に設計することができる。
走査ヘッドのエンコーダをマップ化するための他の実施形態を図12に示す。この装置において、コリメート光源100と、ビームスプリッタ102と、x,y位置検出器の如き光検出器104とが走査ヘッド16に取り付けられる。走査ヘッド16は、図示しない回転台の上方に配され、この回転台は軸受により固定構造体109に回転可能に取り付けられた可回転板108を有する。回転エンコーダは、回転板108の角度位置を測定するために設けられる。回転板108には、再帰反射器112を取り付けた直立支柱110が設けられている。
走査ヘッド16の光学機器を再帰反射器112と位置合わせした場合、光源100から出射した光線は、再帰反射器112へとビームスプリッタ102を通過しよう。再帰反射器112はビームを反射してビームスプリッタに戻し、ビームスプリッタはこのビームを検出器104へと反射する。
回転台の可回転板108は一定速度で回転する。走査ヘッド16は、ビームが検出器104に入射するようにしておくことにより、その軸線A1を中心に回転板と合致した速度で回転する。検出器104からのフィードバックがコントローラにより用いられ、走査ヘッドの速度を制御するようになっている。回転板108と走査ヘッド16とが同じ速度で回転すると、二組のエンコーダの出力が同時に記録され、従って走査ヘッドエンコーダの誤差マップを作成することが可能になる。
走査ヘッド16が回転すると、x,y位置検出器の一方のチャンネルが回転台と基準エンコーダとの間の方位の相違を伝える。位置検出器の他方のチャンネルは、ヘッドに対する再帰反射器の高さのあらゆる変化を伝え、従って走査ヘッドの軸線と基準軸線との間の角度の位置ずれを伝えることができる。これらは、回転台のピッチとロールとを調整することにより除去することができる。この調整を可能にするため、回転台はピッチおよびロール傾斜台114に取り付けられる。
唯一の可能性がある別な位置ずれは、走査ヘッドの回転中心が回転台の回転中心の上にない場合である。これは、走査ヘッドと回転台エンコーダとの出力間の一回転毎に発生する正弦波の形で変化する相違として認識することができる。この一次誤差を最小にするため、走査ヘッドまたは回転台のx,y位置を変更することができる。それで、走査ヘッドおよび回転台の回転軸線が一致しよう。
ヘッドエンコーダと回転台エンコーダとの間に残る相違は、次の関心事の一つであり、誤差マップを作成するために前述したようなアクティブヘッドエンコーダを用いることができる。
回転台エンコーダを較正しない場合、可回転板に対する多数の異なる角度に対し、再帰反射器の支柱を動かしてデータ採取を繰り返すことにより、走査ヘッドと可回転板との間の多数の相対角度を作り出すことができ、これは、結合軸を用いて1つのエンコーダの誤差マップを作成することを可能にするという前述したのと同じ方法である。
回転テーブルがその側方に取り付けられると共に光学機器がL字形ブラケットに取り付けられた図10に示すものと同様な構成を用いて同じように走査ヘッドの軸線A2をマップ化することができる。
本発明による走査装置を含む座標測定機械の立面図である。 電動走査ヘッドの断面図である。 平坦な表面の掃引走査を例示する。 穴の走査を例示する。 フィードバックシステムを例示するフローチャートである。 表面上のスタイラスチップをその関連付けられた撓みと駆動ベクトルと共に例示する。 この先の表面の点を予測するために用いられる履歴データ点を例示する。 角度干渉装置を例示する。 回転テーブルに対して第1の方向に結合される走査ヘッドの側面図である。 回転テーブルに対して第2の方向に結合される走査ヘッドの側面図である。 走査ヘッドのエンコーダを誤差マップ化する非接触装置を例示する。 走査ヘッドのエンコーダを誤差マップ化する第2の非接触装置を例示する。

Claims (13)

  1. 表面検出器がプローブヘッドに取り付けられ、このプローブヘッドが座標位置決め装置に取り付けられる測定システムであって、
    前記座標位置決め装置は、前記プローブヘッドと表面の輪郭との間で相対移動がもたらされるように操作可能であり、前記プローブヘッドは、1つ以上の軸線を中心として前記表面検出器の回転移動をもたらすために1つ以上の駆動装置を含み、
    前記表面検出器は、少なくとも前記プローブヘッドを少なくとも1つの回転軸線に関して駆動することにより前記表面に沿って走査され、
    前記表面検出器は前記表面からのその距離を測定し、
    前記プローブヘッドは、前記表面検出器の相対位置を前記表面から予め設定された範囲内まで実時間にて制御すると共に前記表面に沿って走査するため、前記表面検出器が少なくとも1つの軸線を中心に回転するように駆動され、
    前記表面に沿った前記表面検出器の走査は、これが実時間にて調整されるように、前記表面検出器からのフィードバックを用いて実時間にて調整される駆動ベクトル沿って少なくとも前記プローブヘッドを少なくとも1つの回転軸線に関して駆動することによってもたらされることを特徴とする測定システム。
  2. 前記表面検出器は可撓性のスタイラスを持った接触プローブを具有し、前記スタイラスの撓みが予め設定された範囲内に保持されることを特徴とする請求項1に記載の測定システム。
  3. 前記表面検出器が非接触プローブを具有し、この非接触プローブのオフセットは予め設定された範囲で保持されていることを特徴とする請求項1に記載の測定システム。
  4. 前記表面からの前記表面検出器の相対位置は、前記表面検出器を撓みまたはオフセットベクトルと平行に動かすことにより、予め設定された範囲に保持されることを特徴とする請求項1から請求項3の何れかに記載の測定システム。
  5. 前記表面検出器が少なくとも二次元プローブであり、前記撓みまたはオフセットベクトルが前記表面検出器の出力から設定されることを特徴とする請求項4に記載の測定システム。
  6. 前記表面検出器がスカラープローブであり、前記撓みまたはオフセットベクトルが前記表面の垂線に対して平行であることを特徴とする請求項4に記載の測定システム。
  7. 前記表面の垂線が履歴データを用いて予測されることを特徴とする請求項6に記載の測定システム。
  8. 前記表面の垂線がCADデータから予測されることを特徴とする請求項6に記載の測定システム。
  9. 前記駆動ベクトルは、表面の垂線を回転することにより決定されることを特徴とする請求項1から請求項8の何れかに記載の測定システム。
  10. 前記駆動ベクトルは、前記撓みまたはオフセットベクトルから決定されることを特徴とする請求項4から請求項8の何れかに記載の測定システム。
  11. 前記駆動ベクトルが前記撓みまたはオフセットベクトルを約90°回転することにより決定されることを特徴とする請求項10に記載の測定システム。
  12. 前記表面検出器の撓みまたはオフセットを実時間にて調整するため、前記表面検出器からのフィードバックが前記プローブヘッドを駆動するために用いられることを特徴とする請求項1から請求項11の何れかに記載の測定システム。
  13. この測定システムは、前記プローブヘッドと前記座標位置決め機械とに同期駆動コマンドを生成するプロセッサを具有することを特徴とする請求項1から請求項12の何れかに記載の測定システム。
JP2008508275A 2005-04-26 2006-04-10 測定システム Active JP5653581B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0508395.1 2005-04-26
GBGB0508395.1A GB0508395D0 (en) 2005-04-26 2005-04-26 Method for scanning the surface of a workpiece
PCT/GB2006/001298 WO2006114567A1 (en) 2005-04-26 2006-04-10 Method for scanning the surface of a workpiece

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012228309A Division JP5851969B2 (ja) 2005-04-26 2012-10-15 関節式プローブヘッド

Publications (2)

Publication Number Publication Date
JP2008539405A JP2008539405A (ja) 2008-11-13
JP5653581B2 true JP5653581B2 (ja) 2015-01-14

Family

ID=34640127

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008508275A Active JP5653581B2 (ja) 2005-04-26 2006-04-10 測定システム
JP2012228309A Active JP5851969B2 (ja) 2005-04-26 2012-10-15 関節式プローブヘッド

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012228309A Active JP5851969B2 (ja) 2005-04-26 2012-10-15 関節式プローブヘッド

Country Status (6)

Country Link
US (2) US8006398B2 (ja)
EP (2) EP2431707B1 (ja)
JP (2) JP5653581B2 (ja)
CN (2) CN102305613B (ja)
GB (1) GB0508395D0 (ja)
WO (1) WO2006114567A1 (ja)

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0707921D0 (en) * 2007-04-24 2007-05-30 Renishaw Plc Apparatus and method for surface measurement
GB0712008D0 (en) 2007-06-21 2007-08-01 Renishaw Plc Apparatus and method of calibration
US8250772B2 (en) * 2008-02-07 2012-08-28 Eaton Homer L Spatial measurement and robotic arm device
JP5192283B2 (ja) * 2008-05-13 2013-05-08 株式会社ミツトヨ 三次元測定機
JP4611403B2 (ja) * 2008-06-03 2011-01-12 パナソニック株式会社 形状測定装置及び形状測定方法
DE102008049751A1 (de) * 2008-10-01 2010-04-08 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren zum Vermessen eines Werkstücks, Kalibrierverfahren sowie Koordinatenmessgerät
GB2464509C (en) * 2008-10-17 2014-05-21 Taylor Hobson Ltd Surface measurement instrument and method
JP5684712B2 (ja) * 2008-10-29 2015-03-18 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company 座標測定システムのための方法
EP2219010A1 (en) * 2009-02-11 2010-08-18 Leica Geosystems AG Coordinate measuring machine (CMM) and method of compensating errors in a CMM
DE102009049534A1 (de) * 2009-10-06 2011-04-07 Carl Zeiss Industrielle Messtechnik Gmbh Koordinatenmessgerät mit Lageänderungssensoren
US20110087363A1 (en) * 2009-10-09 2011-04-14 Furmanite Worldwide, Inc. Surface measurement, selection, and machining
US20110112786A1 (en) * 2009-11-06 2011-05-12 Hexagon Metrology Ab Cmm with improved sensors
KR101126808B1 (ko) * 2010-03-02 2012-03-23 경북대학교 산학협력단 다축 제어 기계의 오차 평가 방법 및 장치
GB2478303B (en) * 2010-03-02 2018-03-07 Taylor Hobson Ltd Surface measurement instrument and calibration thereof
US8479568B1 (en) * 2010-03-05 2013-07-09 Electronics, Inc. Apparatus for measuring variations in flatness
EP2381212B1 (en) * 2010-04-26 2018-04-25 Tesa Sa Coordinate measuring system for rotationally symmetric workpieces
JP5311294B2 (ja) 2010-04-28 2013-10-09 株式会社安川電機 ロボットの接触位置検出装置
EP2385339A1 (en) * 2010-05-05 2011-11-09 Leica Geosystems AG Surface sensing device with optical monitoring system
JP5509013B2 (ja) * 2010-09-17 2014-06-04 株式会社ミツトヨ 三次元測定機の測定データ補正方法および三次元測定機
TWI495838B (zh) * 2011-01-10 2015-08-11 Hon Hai Prec Ind Co Ltd 影像測量機
CN107255462B (zh) * 2011-07-08 2019-07-23 卡尔蔡司工业测量技术有限公司 在测量工件的坐标时的误差修正和/或避免
DE102011051800B3 (de) * 2011-07-13 2012-07-19 Carl Mahr Holding Gmbh Konturmessgerät und Verfahren zur Konturmessung eines Werkstücks mit tangential aneinander anschließenden Konturgeometrien
ES2769304T3 (es) * 2012-04-05 2020-06-25 Fidia Spa Dispositivo para corrección de errores para máquinas CNC
IN2014DN08719A (ja) 2012-04-18 2015-05-22 Renishaw Plc
CN104969028B (zh) * 2012-04-18 2018-06-01 瑞尼斯豪公司 在机床上进行模拟测量扫描的方法和对应的机床设备
US10037017B2 (en) * 2012-04-18 2018-07-31 Renishaw Plc Method of measurement on a machine tool and corresponding machine tool apparatus
US9513230B2 (en) * 2012-12-14 2016-12-06 Kla-Tencor Corporation Apparatus and method for optical inspection, magnetic field and height mapping
WO2014108187A1 (de) * 2013-01-09 2014-07-17 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren zur ermittlung von fehlern eines drehpositionsermittlungssystems
CN103808251B (zh) * 2014-02-14 2015-07-08 哈尔滨工业大学 航空发动机转子装配方法与装置
US9731392B2 (en) * 2014-08-05 2017-08-15 Ati Industrial Automation, Inc. Robotic tool changer alignment modules
US9417047B2 (en) 2014-08-11 2016-08-16 Toyota Motor Engineering & Manufacturing North America, Inc. Three-dimensional edge profile determination
US9557157B2 (en) * 2014-12-01 2017-01-31 Steven Eugene Ihlenfeldt Inertial dimensional metrology
CN105729441A (zh) * 2014-12-24 2016-07-06 精工爱普生株式会社 机器人、机器人系统、控制装置以及控制方法
JP6049786B2 (ja) * 2015-03-05 2016-12-21 株式会社ミツトヨ 測定プローブ
JP6039718B2 (ja) 2015-03-05 2016-12-07 株式会社ミツトヨ 測定プローブ
US10545019B2 (en) 2015-04-14 2020-01-28 Hexagon Metrology, Inc. CMM probe path controller and method
EP3289314B1 (en) * 2015-04-29 2019-06-05 Renishaw PLC Method of determining sub-divisional error
US9677880B2 (en) * 2015-05-01 2017-06-13 United Technologies Corporation Laser alignment system
US10598476B2 (en) 2015-05-12 2020-03-24 Hexagon Metrology, Inc. Apparatus and method of controlling CMM using environmental information or CMM information
US10203192B2 (en) 2015-05-29 2019-02-12 Hexagon Metrology, Inc. CMM with object location logic
EP3322959B1 (en) * 2015-07-13 2024-04-03 Renishaw Plc. Method for measuring an artefact
JP6570393B2 (ja) * 2015-09-25 2019-09-04 株式会社ミツトヨ 形状測定装置の制御方法
JP6652820B2 (ja) * 2015-12-05 2020-02-26 株式会社東京精密 接触式変位センサ用コントローラ及びそれを用いた変位ゲージ
EP3184960B1 (en) * 2015-12-22 2018-06-27 Tesa Sa Motorized orientable head for measuring system
WO2017168630A1 (ja) * 2016-03-30 2017-10-05 株式会社日立ハイテクノロジーズ 欠陥検査装置、欠陥検査方法
WO2018091867A1 (en) * 2016-11-16 2018-05-24 Renishaw Plc Coordinate positioning apparatus and method of operation
CN106989706B (zh) * 2017-01-16 2019-08-06 大连交通大学 一种用于高精度圆形套装的圆心测算方法及装置
JP6173628B1 (ja) * 2017-01-30 2017-08-02 株式会社ミツトヨ 形状測定装置の制御方法
DE102017106741B4 (de) * 2017-03-29 2019-11-14 Jenoptik Industrial Metrology Germany Gmbh Oberflächenmessgerät
DE102017113695B3 (de) * 2017-06-21 2018-12-27 Carl Mahr Holding Gmbh Wippenloses Messsystem für ein Messgerät
DE102017113699B3 (de) 2017-06-21 2018-06-28 Carl Mahr Holding Gmbh Messsystem mit einer Kugelführungseinheit für ein Messgerät
JP6918599B2 (ja) * 2017-06-23 2021-08-11 株式会社ミツトヨ 表面性状測定機、表面性状測定システム及びプログラム
DE102017127882A1 (de) * 2017-11-24 2019-05-29 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren zur Überprüfung von drehend zueinander angeordneten Bauteilen und Vorrichtungen hierfür
DE102018103420A1 (de) 2018-02-15 2019-08-22 Jenoptik Industrial Metrology Germany Gmbh Messgerät zur Oberflächen- oder Konturmessung
EP3623883B1 (de) * 2018-09-17 2024-07-24 Adelbert Haas GmbH Verfahren und werkzeugmaschine zur bearbeitung von werkstücken unbekannter werkstückgeometrie
CN111721228A (zh) * 2019-03-18 2020-09-29 江苏理工学院 测量汽车复合材料模压成形件的线轮廓度的装置及方法
DE102020108182A1 (de) 2019-05-07 2020-11-12 Jenoptik Industrial Metrology Germany Gmbh Oberflächenmessgerät
JP6898966B2 (ja) * 2019-06-07 2021-07-07 株式会社ミツトヨ 不具合判定ユニット
CN112729180A (zh) * 2019-10-14 2021-04-30 株式会社三丰 形状测量设备的控制方法和非易失性记录介质
DE102019220247B4 (de) * 2019-12-19 2024-09-26 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren und Anordnung zum optischen Kalibrieren von Drehachsen für Koordinatenmessungen
CN113686239B (zh) * 2020-05-19 2024-06-04 宝山钢铁股份有限公司 基于光电传感器的自动测温枪的探头套接/拔除检测方法
US11230393B1 (en) * 2020-07-23 2022-01-25 Pratt & Whitney Canada Corp. Methods for measuring part size and runout
TWI739693B (zh) * 2020-12-14 2021-09-11 財團法人工業技術研究院 量測設備
CN113092363A (zh) * 2021-03-24 2021-07-09 深圳市德瑞茵精密科技有限公司 用于检测半导体器件粘接强度的测试装置及方法
JP2022169398A (ja) * 2021-04-27 2022-11-09 株式会社ミツトヨ テストインジケータ
DE102021115046A1 (de) 2021-06-10 2022-12-15 Hans-Georg Grün Messkopf für ein taktiles Koordinatenmessgerät, Verfahren zum Vermessen eines Werkstücks mit einem taktilen Koordinatenmessgerät sowie Koordinatenmessgerät

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4912468A (en) * 1985-12-04 1990-03-27 Dynamics Research Corporation Non-linear error correction system
DE3740070A1 (de) 1987-11-26 1989-06-08 Zeiss Carl Fa Dreh-schwenk-einrichtung fuer tastkoepfe von koordinatenmessgeraeten
GB8729638D0 (en) 1987-12-19 1988-02-03 Renishaw Plc Mounting for surface sensing device
US4987356A (en) 1988-10-14 1991-01-22 Hitachi Construction Machinery Co., Ltd. Profiling control system for given curved surface
GB8908854D0 (en) * 1989-04-19 1989-06-07 Renishaw Plc Method of and apparatus for scanning the surface of a workpiece
JP2810709B2 (ja) 1989-07-27 1998-10-15 ファナック 株式会社 非接触ならい制御装置
GB9013744D0 (en) * 1990-06-20 1990-08-08 Renishaw Plc Measurement of a workpiece
DE4245012B4 (de) * 1992-04-14 2004-09-23 Carl Zeiss Verfahren zur Messung von Formelementen auf einem Koordinatenmeßgerät
US5315259A (en) * 1992-05-26 1994-05-24 Universities Research Association, Inc. Omnidirectional capacitive probe for gauge of having a sensing tip formed as a substantially complete sphere
US5611147A (en) 1993-02-23 1997-03-18 Faro Technologies, Inc. Three dimensional coordinate measuring apparatus
US5402582A (en) * 1993-02-23 1995-04-04 Faro Technologies Inc. Three dimensional coordinate measuring apparatus
US6535794B1 (en) * 1993-02-23 2003-03-18 Faro Technologoies Inc. Method of generating an error map for calibration of a robot or multi-axis machining center
US5485148A (en) * 1993-03-31 1996-01-16 Tseng; Ling-Yuan Pipeline fluid travel monitoring system
EP0640902A3 (en) * 1993-08-26 1996-11-06 Faro Technologies Method for programming multi-axis devices controlled by computer.
GB9506790D0 (en) 1995-04-01 1995-05-24 Renishaw Plc Laser apparatus for the measurement of angular displacement
US5737344A (en) 1995-05-25 1998-04-07 International Business Machines Corporation Digital data storage with increased robustness against data loss
DE19529574A1 (de) * 1995-08-11 1997-02-13 Zeiss Carl Fa Koordinatenmeßgerät mit einer Steuerung, die den Tastkopf des Meßgeräts nach Solldaten verfährt
DE59711571D1 (de) * 1996-12-21 2004-06-03 Zeiss Carl Verfahren zur Steuerung von Koordinatenmessgeräten und Koordinatenmessgerät
DE19712029A1 (de) 1997-03-21 1998-09-24 Zeiss Carl Fa Verfahren zur Steuerung von Koordinatenmeßgeräten nach Solldaten
US6304825B1 (en) * 1999-01-19 2001-10-16 Xerox Corporation Rotary encoder error compensation system and method for photoreceptor surface motion sensing and control
GB9907644D0 (en) 1999-04-06 1999-05-26 Renishaw Plc Surface sensing device with optical sensor
GB9907643D0 (en) * 1999-04-06 1999-05-26 Renishaw Plc Measuring probe
JP2002040352A (ja) 2000-07-21 2002-02-06 Minolta Co Ltd スキャナ装置および3次元測定装置
TW531660B (en) * 2000-08-28 2003-05-11 Guang-Jau Fan 3D laser tracking ball bar
US6642906B1 (en) * 2002-06-14 2003-11-04 Star-H Corporation Self-righting assembly
GB0215478D0 (en) * 2002-07-04 2002-08-14 Renishaw Plc Method of scanning a calibrating system
US6882901B2 (en) * 2002-10-10 2005-04-19 Shao-Wei Gong Ultra-precision robotic system
WO2004096502A1 (en) * 2003-04-28 2004-11-11 Stephen James Crampton Cmm arm with exoskeleton
JP2005069972A (ja) * 2003-08-27 2005-03-17 Hitachi Kenki Fine Tech Co Ltd 走査型プローブ顕微鏡の探針移動制御方法
GB0322115D0 (en) * 2003-09-22 2003-10-22 Renishaw Plc Method of error compensation
US7100463B2 (en) * 2003-10-10 2006-09-05 Todd Gerard Boudreaux Pipeline locator/coordinate mapping device

Also Published As

Publication number Publication date
JP2008539405A (ja) 2008-11-13
EP2431707B1 (en) 2018-09-19
WO2006114567A1 (en) 2006-11-02
JP2013047687A (ja) 2013-03-07
CN101166951B (zh) 2011-09-07
US8006398B2 (en) 2011-08-30
JP5851969B2 (ja) 2016-02-03
CN101166951A (zh) 2008-04-23
EP1877727A1 (en) 2008-01-16
EP1877727B1 (en) 2013-07-10
US20090025463A1 (en) 2009-01-29
CN102305613A (zh) 2012-01-04
GB0508395D0 (en) 2005-06-01
EP2431707A2 (en) 2012-03-21
US8978261B2 (en) 2015-03-17
US20110283553A1 (en) 2011-11-24
CN102305613B (zh) 2015-11-25
EP2431707A3 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
JP5653581B2 (ja) 測定システム
WO2006109094A1 (en) Method of error correction
US7676942B2 (en) Multi-axis positioning and measuring system and method of using
EP1668317B1 (en) Method of error compensation in a coordinate measuring machine
US7131207B2 (en) Workpiece inspection method
EP1687589B1 (en) Method of error compensation in a coordinate measuring machine with an articulating probe head
US5189806A (en) Method of and apparatus for scanning the surface of a workpiece
US7526873B2 (en) Use of surface measurement probes
US7535193B2 (en) Five axis compensated rotating stage
WO2021241187A1 (ja) 形状測定装置および形状測定方法
CN101166953B (zh) 探针的校准

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120413

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120712

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120720

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120913

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131021

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131022

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131202

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141119

R150 Certificate of patent or registration of utility model

Ref document number: 5653581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250