TW531660B - 3D laser tracking ball bar - Google Patents

3D laser tracking ball bar Download PDF

Info

Publication number
TW531660B
TW531660B TW89117324A TW89117324A TW531660B TW 531660 B TW531660 B TW 531660B TW 89117324 A TW89117324 A TW 89117324A TW 89117324 A TW89117324 A TW 89117324A TW 531660 B TW531660 B TW 531660B
Authority
TW
Taiwan
Prior art keywords
telescopic
rod
encoder
base
rotating
Prior art date
Application number
TW89117324A
Other languages
Chinese (zh)
Inventor
Guang-Jau Fan
Jr-Wei Ke
Original Assignee
Guang-Jau Fan
Jr-Wei Ke
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guang-Jau Fan, Jr-Wei Ke filed Critical Guang-Jau Fan
Priority to TW89117324A priority Critical patent/TW531660B/en
Application granted granted Critical
Publication of TW531660B publication Critical patent/TW531660B/en

Links

Abstract

This invention ""3D laser tracking ball bar"" makes use a precision standard sphere to mount onto a magnetic shaft of any moving target which has its own coordinate system, such as the large coordinate measuring machine, machine tool, robot, etc. By means of the length change of an extendable structure, it is possible to rapidly measure the distance of a moving reflector with respect to the laser interferometer. In the meantime, through two rotary encoders the pitch and yaw angular motions of the target can be measured simultaneously. From the obtained pitch, yaw, and radial motions this spherical coordinate system can be converted to the Cartesian Coordinate system so that the exact target motion can be realized.

Description

531660 A7 B7 五、發明説明(1 ) 1·創作背景: 在具有運動座標系統之機台中,如:三次元座標量測儀 (Coordinate Measuring Machine,CMM )爲一能夠快速進行 三維尺寸量測的儀器。目前國內擁有之各式CMM至少有 1000台以上,其中較大型的CMM (量測長度超過〇.8公尺) 約佔40%。此類較大型的CMM設備屬於高精度量測儀器, 依規定每年應執行精度校正一次,才可確保儀器之精度。但 由於一般之校驗儀器價格昂貴,且不易保存與使用,所以目 前國內一般CMM的校驗工作大多仰賴儀器供應商,在校驗 時間和校驗成本上均造成了國內中小型業者的負擔。 回顧一般CMM或工具機之校驗方式,包括了使用塊規 (block gauge )、階規(step gauge )、環規(ring gauge )、直 線規(straightedge )、直角規(square )、標準球(standard sphere )、電子式水平儀(electrical spirit level)、指示量表(dial indicator)、自動視準儀(auto-collimator)、球桿(ball bar) 等等。若要以上述之校驗方式校驗較大型之CMM,不但校 驗所需的時間甚久,任一校驗方式往往只能校驗一兩項的誤 差値,且校驗器的價格昂貴,不符合經濟性、方便性與購置 成本上之要求。 先前之技術如P.S.Huang與LNi應用三支雷射干涉儀之 多自由度量測系統(Multi-Degree-of-Freedom Measurement System,MDFM),可即時線上量測出二十一項體積誤差中的 十二項,但其缺點爲價格昂貴且架設不易。 回顧各型球桿之昔知技術,如美國專利第4435905號之 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) (請先閱讀背面之注意事項再本頁) 、τ 經濟部智您財4局自(工消#合作社印製 534660 A7 B7 五、發明説明(2 ) 磁性伸縮球桿(TMBB),該球桿以LVDT爲基礎,可量得 工具機與機器人手臂之精度。但因受到LVDT本身精度與球 桿伸縮長度之限制,無法量得較精確的誤差値。 美國專利第5428446號之雷射球桿(Laser Ball Bar, LBB)以雷射干涉儀爲基礎,可以在甚短的時間內求取多項誤 差的分量。但由於受到其自身構造之限制其方法與限制依舊 存在,無法精確量得角度變化値,因此其誤差較大、量測葷§ 圍較小。 本創作擬應用雷射干涉儀之量測方法,搭配一能夠快速 架設之設備,以便利較大型具有運動座標系統之機台之精度 校驗工作。 2.創作槪述: 本創作「三維雷射追蹤球桿」係利用一精密標準球吸附 於具有運動座標系統之機台的表面。藉由伸縮構造之長度改 變,可以雷射干涉儀快速量得反射鏡座與雷射干涉儀之間的 距離。同時,藉由帶動旋轉基座構造之轉角用編碼器與仰角 用編碼器,可以快速量得該精密標準球之轉角與仰角。在量 得仰角、轉角、與距離之後,可經由電腦將此球座標轉換爲 卡氏座標,進而用於具有運動座標系統之機台的各項校驗工 作。 3·本創作之構造及功能說明: 本紙張尺度適用中國國家榡準(CNS ) A4規格(210X297公釐) •(請先閱讀背面之注意事項再 I) 經濟部智慈財走局肖工消費合作社印製 531660 A7 B7 五、發明説明(3 ) 本創作配合圖式及零件編號表說明於後。 圖式簡單說明: 圖一係本創作之單桿式伸縮構造示意圖; 圖二係本創作之單桿式伸縮構造剖開示意圖; 圖三係本創作之單桿式伸縮構造之銅軸承與線性軸承 搭配示意圖; 圖四係本創作之旋轉基座構造剖面圖; 圖五係本創作之複合式伸縮構造示意圖; 圖六係本創作之雷射光行進路線示意圖。 零件編號表· (請先閱讀背面之注意事項再本頁) 經濟部智慧財1局Μ工消費合作钍印^ (1)單桿式伸縮構造 (101)伸縮桿一 (102)伸縮桿二 (103)伸縮桿三 (104)反射鏡座固定座 (105)反射鏡座 (106)精密標準球 (107)基桿 (108)基桿右側轉軸 (109)基桿左側轉軸 (110)雷射干涉儀固定架 (111)雷射干涉儀 (113)銅軸承 (112)線性軸承 ⑵旋轉基座構造 (201)旋轉筒 (202)旋轉基座底板 (203)轉角用編碼器固定架 (204)旋轉基座外筒 (205)轉軸 (206)套筒 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) 531660 A7 B7 (207 )旋轉架 (208 )球桿支撐架 (209 )球桿支撐架上蓋 (210)仰角用編碼器固定架 (211)軸連結器 (212)止推軸承 (213)轉角用編碼器 (214)滾珠軸承 (215)仰角用編碼器 (216)軸連結器 (3 )複合式伸縮構造 (301)第一桿下板 (302)第一桿上板 (303)第一桿滑動桿 (304)第二桿下板 (305)第二桿上板 (306)第二桿滑動桿 (3〇7 )第三桿下板 (309)第三桿滑動桿 (308)第三桿上板 五、發明説明(4 ) (請先閱讀背面之注意事項再本頁) 經濟部智慈財產局:1H工消費合作社印災 、本創作「二維雷射追蹤球桿」有單桿式與複合式兩種形 式。單桿式三維雷射追蹤球桿具有兩個主要構造:〔丨〕單桿 式伸縮構造〔2〕旋轉基座構造。複合式三維雷射追蹤球桿 亦具有兩個主要構造:〔2〕旋轉基座構造〔3〕複合式伸縮 構造。以下詳述各構造的作動方式: 〔1〕單桿式伸縮構造·· 單桿式伸縮構造(1)請參閱圖一、圖二與圖三。 伸縮桿一(101 )、伸縮桿二(102)與伸縮桿三(103 ) 爲中空之管狀構造。請參閱圖三,以緊配合的方式分別固定 線性軸承(112)與銅軸承(113)於伸縮桿二(102)之外 本紙張尺度適用中國國家標準(CNS ) A4規格(2ΐ〇χ 297公着) 531660 A7 B7 五、發明説明(5 ) (請先閱讀背面之注意事項再 壁,伸縮桿二(102 )便可藉由線性軸承(112 )與銅軸承(113 ) 的導引,在伸縮桿一(101)內滑動。以同樣之緊配合方式, 分別將較小型號之線性軸承與銅軸承固定於伸縮桿三(103) 之外壁,伸縮桿三(103 )便可藉由較小型號之線性軸承與 銅軸承的導引,在伸縮桿二(102)內滑動。如此,藉由伸 縮桿二(102)與伸縮桿三(103)之伸縮滑動,便可在一既 定範圍之內,得到任意長度之總桿長。531660 A7 B7 V. Description of the invention (1) 1. Creative background: In a machine with a motion coordinate system, such as a three-dimensional coordinate measuring machine (CMM) is an instrument capable of rapid three-dimensional measurement . At present, there are at least 1,000 CMMs of various types in China, of which the larger CMMs (measured lengths exceeding 0.8 m) account for about 40%. This type of larger CMM equipment is a high-precision measuring instrument. According to regulations, accuracy calibration should be performed once a year to ensure the accuracy of the instrument. However, because general calibration instruments are expensive and difficult to store and use, most domestic CMM calibrations currently rely on the instrument supplier, which has caused a burden on domestic small and medium-sized enterprises in terms of calibration time and cost. Review the calibration methods of general CMM or machine tools, including the use of block gauges, step gauges, ring gauges, straightedges, square gauges, and standard balls ( standard sphere), electrical spirit level, dial indicator, auto-collimator, ball bar, etc. If you want to verify a larger CMM with the above verification method, not only does the verification take a long time, any verification method can only verify one or two errors, and the price of the checker is expensive. Does not meet the requirements of economy, convenience and purchase cost. Previous technologies, such as the Multi-Degree-of-Freedom Measurement System (MDFM) using three laser interferometers by PSHuang and LNi, can measure the 21st volume error online in real time. Twelve, but its disadvantages are expensive and difficult to set up. Review the past known technologies of various types of clubs, such as US Patent No. 4435905, the paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X 297 mm) (Please read the precautions on the back before this page), τ Economy The Ministry of Wisdom and Your Wealth 4 Bureaus (Printed by Gongxiao #Cooperative Society 534660 A7 B7 V. Description of the invention (2) Magnetic telescopic club (TMBB), which is based on LVDT, can measure the accuracy of machine tools and robot arms However, due to the limitation of the accuracy of the LVDT and the extension and contraction length of the club, a more accurate error cannot be measured. The Laser Ball Bar (LBB) of US Patent No. 5428446 is based on a laser interferometer. The components of multiple errors are obtained in a very short period of time. However, due to the limitations of its own structure, its methods and restrictions still exist, and it is impossible to accurately measure the angle change, so the error is large and the measurement range is small. This creation intends to apply the laser interferometer measurement method and a device that can be quickly set up to facilitate the accuracy verification of larger machines with motion coordinate systems. 2. Creation description: This creation "three The "dimensional laser tracking club" uses a precision standard ball to be attached to the surface of the machine with a moving coordinate system. By changing the length of the telescopic structure, the laser interferometer can quickly measure the mirror base and the laser interferometer. At the same time, by driving the encoder for the rotation angle and the encoder for the elevation angle of the rotating base structure, the rotation angle and elevation angle of the precision standard ball can be quickly measured. After measuring the elevation angle, rotation angle, and distance, you can pass The computer converts this ball coordinate into Kelvin coordinate, which is then used for various calibration work of the machine with the motion coordinate system. 3. The structure and function description of this creation: This paper standard is applicable to China National Standard (CNS) A4 Specifications (210X297 mm) • (Please read the precautions on the back before I) Printed by Xiao Gong Consumer Cooperative of the Ministry of Economy, Intellectual Property and Wealth Management Co., Ltd. 531660 A7 B7 V. Description of the invention (3) This drawing is accompanied by drawings and part number table The illustration is briefly explained below: Figure 1 is a schematic diagram of a single-pole telescopic structure of this creation; Figure 2 is a schematic diagram of a single-pole telescopic structure of this creation; Schematic diagram of the single-rod telescopic structure of the copper bearing and linear bearing; Figure 4 is a sectional view of the rotating base structure of the original creation; Figure 5 is a composite telescopic structure of the original creation; Figure 6 is the laser light travel route of the original Schematic diagram of part number · (Please read the notes on the back first and then on this page) Printed by the Ministry of Economic Affairs and Intellectual Property, Bureau of Industrial and Commercial Cooperation ^ (1) Single-pole telescopic structure (101) Telescopic rod one (102) Telescopic rod Two (103) telescopic rods Three (104) Mirror holder fixed base (105) Mirror base (106) Precision standard ball (107) Base rod (108) Base rod right axis (109) Base rod left axis (110) Thunder Radio interferometer fixing frame (111) Laser interferometer (113) Copper bearing (112) Linear bearing ⑵ Rotating base structure (201) Rotating cylinder (202) Rotating base plate (203) Corner encoder fixing frame (204) ) Rotary base outer cylinder (205) Rotary shaft (206) Sleeve This paper size applies to Chinese National Standard (CNS) A4 size (210X 297 mm) 531660 A7 B7 (207) Rotary frame (208) Cue support frame (209 ) Club cover upper cover (210) Elevator encoder holder (211) Shaft connector (212) Push bearing (213) Corner encoder (214) Ball bearing (215) Elevator encoder (216) Shaft coupler (3) Composite telescopic structure (301) First lower plate (302) First upper plate (303) First slide bar (304) Second bar lower plate (305) Second bar upper plate (306) Second bar slide (307) Third bar lower plate (309) Third bar slide (308) The third shot is on the board. 5. Description of the invention (4) (Please read the notes on the back first and then this page.) The Intellectual Property Bureau of the Ministry of Economic Affairs: 1H Industrial Consumer Cooperatives printed the disaster, this creation "two-dimensional laser tracking ball" There are two types of "rods": single lever and compound. The single-rod three-dimensional laser tracking club has two main structures: [丨] single-rod telescopic structure [2] rotating base structure. The composite three-dimensional laser tracking club also has two main structures: [2] rotating base structure [3] composite telescopic structure. The operation modes of each structure are detailed below: [1] Single-pole telescopic structure ·· Single-pole telescopic structure (1) Please refer to Figure 1, Figure 2, and Figure 3. The first telescopic rod (101), the second telescopic rod (102) and the third telescopic rod (103) are hollow tubular structures. Please refer to Figure 3. The linear bearing (112) and copper bearing (113) are fixed outside the telescopic rod two (102) in a tight fit. The paper size applies the Chinese National Standard (CNS) A4 specification (2ΐ〇χ 297 male). ) 531660 A7 B7 V. Description of the invention (5) (Please read the precautions on the back first and then the wall. The telescopic rod two (102) can be guided by the linear bearing (112) and the copper bearing (113). Rod one (101) slides in. In the same tight fit, the smaller linear bearing and copper bearing are fixed to the outer wall of the telescopic rod three (103), and the telescopic rod three (103) can be used by the smaller model. The guide of the linear bearing and the copper bearing slides in the telescopic rod two (102). In this way, by telescopic sliding of the telescopic rod two (102) and the telescopic rod three (103), it can be within a predetermined range, Get the total rod length of any length.

-5-U 請參閱圖一,伸縮桿一(101)以螺釘固定於基桿(107)。 基桿上裝有基桿右側轉軸(108)與基桿左側轉軸(109)。 藉由基桿右側轉軸(108)與基桿左側轉軸(109)在旋轉基 座構造(2 )內之旋轉,基桿(107 )便可在一既定範圍之內, 相對於旋轉基座構造(2)具有不同之仰角。 經濟部智慧財產局a (工消费合作钍印製 如圖一所示,精密標準球(106)爲一具有磁性之球狀 物,可吸附在待校驗之具有運動座標系統之機台的表面。固 定精密標準球(106)於反射鏡座(105)上,並固定反射鏡 座(105)於反射鏡座固定座(104)上,再固定反射鏡座固 定座(104)於伸縮桿三(103 )之末端,如此,精密標準球 (106)便可隨待校驗之具有運動座標系統之機台的移動’ 同時牽動前述之伸縮桿二(1〇2 )與伸縮桿三(103 )之滑動’ 進而得到桿長(伸縮桿之總長度)。 在桿長的量測方面,請參閱圖六,固定雷射干涉儀固定 架(110)於基桿(107)之末端,並固定雷射干涉儀(in) 於雷射干涉儀固定架(11〇)之上。雷射干涉儀(I11)發出 之雷射光,按順序行進於基桿(107)、伸縮桿一(101 )、伸 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) 531660 A7 B7 五、發明説明(7 ) 撐架(208)圍成一圓孔,該二圓孔可導引圖一之基桿右側 轉軸(108)與基桿左側轉軸(1〇9)旋轉,使單桿式伸褕 造⑴可相對於旋轉基座構造(2)旋轉。 ,、 在轉角的量測分面,請參閱圖四,將轉角用編碼器固定 架(203)固定於旋轉基座底板(2〇2),並將轉角用編碼器 (213)固定於轉角用編碼器固定架(2〇3)之上。藉由—軸 連結器(211)連結轉軸(205)與轉角用編碼器(213),則 旋轉架(207)轉角之大小,便可以由轉角用編碼器(213) 測得。 在仰角的量測方面,請參閱圖四,固定仰角用編碼器固 定架(210)於旋轉架(207),並固定仰角用編碼器(215) 於仰角用編碼器固定架(210)之上。藉由一軸連結器(216) 連結圖一之基桿左側轉軸(109)與圖四之仰角用編碼器 (215),則單桿式伸縮構造(1)仰角之大小,便可以仰角 用編碼器(215)測得。 〔3〕複合式伸縮構造 本創作之另一形態爲複合式伸縮構造(3 ),請參閱圖五。 複合式伸縮構造亦具有三段伸縮桿。二支第一桿滑動桿 (303)的兩端被分別固定於第一桿下板(3〇1)與第一桿上 板(302)上。該第一桿下板(3〇1)被固定於基桿(1〇7) 上’而與基桿(107)無任何相對運動。 弟一干下板(304)被套於第—'桿滑動桿(303)上,而 能相對於第一桿進行滑動。由於二支第二桿滑動桿(3〇6) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公慶) (請先閱讀背&之注意事項再頁) ,τ 經濟部智总財產局:^工消費合作社印災 531660 A7 B7 五、發明説明(8 ) 的兩端被分別固定於第二桿下板(304 )與第二桿上板(305) 上,第二桿便可相對於第一桿進行滑重力。 (請先閲讀背私之注意事項再頁) 同理,第二桿上板(305)被套於第三桿滑動桿(309) 上,而能相對於第三桿進行滑動。由於二支第三桿滑動桿 (309)的兩端被分別固定於第三桿下板(307)與第三桿上 板(308)上,第三桿便可相對於第二桿進行滑動。 其它零件之搭配方式與單桿式伸縮構造類似,如圖五所 示。固定精密標準球(106)於反射鏡座(105)上,並固定 反射鏡座(105 )於第三桿上板(308 )上,精密標準球(106 ) 可隨待校驗之具有運動座標系統之機台移動,同時牽動前述 第一二三桿之伸縮滑動,進而得到桿長(伸縮桿之總長度)。 經濟部智慧財/i局g(工消f合作社印奴 在桿長的量測方面,亦與單桿式伸縮構造類似。即固定 雷射干涉儀固定架(110)於基桿(107)之末端,並固定雷 射干涉儀(111)於雷射干涉儀固定架(110)之上。雷射干 涉儀(111)發出之雷射光,按順序行進於基桿(107)與一 二三桿之內部,經由反射鏡座(105)反射,再經由上述各 零件之內部,行進回雷射干涉儀(111)。以雷射干涉儀(111) 測量雷射干涉儀(111)與反射鏡座(105)間之距離,便可 計算出桿長。 將精密標準球(106)吸附於具有運動座標系統之機台 的表面。在分別以前述各構造量得精密標準球(106)相對 於各參考點之仰角、轉角、與距離之後,可經由電腦將此球 座標轉換爲卡氏座標,進而進行具有運動座標系統之機台的 各項校驗工作。 本紙張尺度適用中國國家標準(CNS ) A4现格(210X 297公釐)-5-U Please refer to Figure 1. The telescopic rod (101) is fixed to the base rod (107) with screws. The base shaft is provided with a right shaft (108) and a left shaft (109). By rotating the right shaft (108) of the base rod and the left shaft (109) of the base rod within the rotation base structure (2), the base rod (107) can be within a predetermined range relative to the rotation base structure ( 2) Have different elevation angles. Bureau of Intellectual Property of the Ministry of Economic Affairs (printed as shown in Figure 1) The precision standard ball (106) is a magnetic ball that can be adsorbed on the surface of a machine with a motion coordinate system to be verified. .Fix the precision standard ball (106) on the reflector base (105), and fix the reflector base (105) on the reflector base fixation (104), and then fix the reflector base fixation (104) on the telescopic rod three (103) at the end, so that the precision standard ball (106) can move with the movement of the machine with the motion coordinate system to be calibrated ', simultaneously moving the aforementioned two telescopic rods (102) and three telescopic rods (103) Slide it 'to get the pole length (total length of the telescopic pole). For the measurement of pole length, please refer to Figure 6. Fix the laser interferometer holder (110) to the end of the base pole (107), and fix the lightning The laser interferometer (in) is on the laser interferometer fixing frame (11〇). The laser light emitted by the laser interferometer (I11) travels in sequence on the base rod (107), the telescopic rod (101), and the extension rod. This paper size applies to China National Standard (CNS) A4 (210X 297 mm) 531660 A7 B7 (7) Description of the invention (7) The support frame (208) forms a circular hole, which can guide the right shaft (108) of the base rod and the left shaft (109) of the base rod in Figure 1 to rotate, so that the single rod can be extended. The structure can be rotated relative to the rotating base structure (2). At the angle measurement facet, please refer to Figure 4. Fix the angle with the encoder fixing bracket (203) on the rotating base plate (202). ), And the corner encoder (213) is fixed on the corner encoder fixing bracket (203). The shaft (205) and the corner encoder (213) are connected by a shaft connector (211), Then, the size of the rotation angle of the rotating frame (207) can be measured by the encoder (213) of the rotation angle. For the measurement of the elevation angle, please refer to Fig. 4. The encoder fixing frame (210) for fixing the elevation angle to the rotating frame (207) ) And fix the encoder (215) for elevation angle on the encoder mount (210) for elevation angle. A shaft connector (216) is used to connect the left shaft (109) of the base rod in Figure 1 with the code for elevation angle in Figure 4. (215), then the single rod telescopic structure (1) can measure the elevation angle with the encoder (215). [3] Composite Telescopic structure Another form of this creation is the compound telescopic structure (3), see Figure 5. The compound telescopic structure also has three sections of telescopic rods. The two ends of the two first rod sliding rods (303) are respectively fixed to The first lower plate (301) and the first upper plate (302). The first lower plate (301) is fixed on the base rod (107) and the base rod (107) ) There is no relative movement. The lower plate (304) of Yiyi is sheathed on the sliding rod (303) of the first rod, and can slide relative to the first rod. Because of the two second sliding rods (306), Paper size applies Chinese National Standard (CNS) A4 specification (210X 297 public holidays) (Please read the back & precautions and then page), τ Intellectual Property Bureau of the Ministry of Economic Affairs: ^ Industrial and Consumer Cooperatives India disaster 531660 A7 B7 V. The two ends of the invention description (8) are respectively fixed on the second lower plate (304) and the second upper plate (305), and the second rod can perform sliding force relative to the first rod. (Please read the precautions for the back page first). Similarly, the upper plate (305) of the second rod is put on the sliding rod (309) of the third rod and can slide relative to the third rod. Since the two ends of the two third-rod sliding rods (309) are fixed to the third lower plate (307) and the third upper plate (308), the third rod can slide relative to the second rod. The matching of other parts is similar to the single-pole telescopic structure, as shown in Figure 5. The precision standard ball (106) is fixed on the mirror base (105), and the mirror base (105) is fixed on the third pole upper plate (308). The precision standard ball (106) can have a movement coordinate with the to-be-checked The machine of the system moves, and at the same time, the aforementioned telescopic sliding movement of the first, second and third poles is obtained, thereby obtaining the pole length (total length of the telescopic pole). In terms of measuring rod length, the Intellectual Property of the Ministry of Economic Affairs / I Bureau (Industrial Consumer Cooperative) is similar to the single-rod telescopic structure. That is, the fixed laser interferometer holder (110) is fixed to the base rod (107) The end, and the laser interferometer (111) is fixed on the laser interferometer holder (110). The laser light emitted by the laser interferometer (111) travels in sequence on the base rod (107) and one, two or three The inside of the laser interferometer is reflected by the reflector base (105), and then travels back to the laser interferometer (111) through the interior of the above parts. The laser interferometer (111) and the mirror base are measured by the laser interferometer (111). (105), the length of the shaft can be calculated. The precision standard ball (106) is adsorbed on the surface of the machine with a motion coordinate system. The precision standard ball (106) is measured with respect to each structure with respect to each After the elevation angle, rotation angle, and distance of the reference point, this ball coordinate can be converted into a Karst coordinate by a computer, and then various calibrations of the machine with a motion coordinate system can be performed. This paper standard applies to the Chinese National Standard (CNS) A4 is now (210X 297 mm)

Claims (1)

531660 ABCD 六、申請專利範圍 密之伸縮滑動,藉由精密標準球之帶動,可以得到不 同之桿長,並可利用位於該伸縮構造後端之雷射干涉 儀,快速量得其與位於該伸縮構造前端之反射鏡座間 的距離;旋轉基座構造具有一球桿支撐架、一旋轉 架、一旋轉筒與一旋轉基座外筒,該球桿支撐架與旋 轉架被固定於旋轉筒上,能藉由止推軸承與滾珠軸承 之導引,與旋轉基座外筒進行相對旋轉,該球桿支撐 架還可導引伸縮構造之旋轉,使位於轉角用編碼器固 定架與仰角用編碼器固定架上之轉角用編碼器與仰 角用編碼器,得以量得精密標準球所在位置之轉角與 仰角。 4.依專利申請範圍第3項中所述之雷射三維追蹤球 桿,其中,該複合式伸縮構造之伸縮桿數量可爲二段 或三段。 (請先閲讀背面之注意事項再填寫本頁) 經濟部智慧財走局"貝工消費合作社印製 本紙張尺度適用中國國家標準(CNS )八4说格(210X297公釐)531660 ABCD 6. The patent-pending telescopic slide can be driven by a precision standard ball to obtain different rod lengths. A laser interferometer located at the rear end of the telescopic structure can be used to quickly measure the telescopic sliding distance. Structure the distance between the mirror bases at the front end; the rotating base structure has a club supporting frame, a rotating frame, a rotating cylinder and a rotating base outer cylinder, the club supporting frame and the rotating frame are fixed on the rotating cylinder, It can be rotated relative to the outer base of the rotating base by the guidance of thrust bearings and ball bearings. The club support can also guide the rotation of the telescopic structure, so that the encoder for the corner and the encoder for the elevation can be located The encoder for the rotation angle and the encoder for the elevation angle on the fixed frame can measure the rotation angle and the elevation angle where the precision standard ball is located. 4. According to the laser three-dimensional tracking club described in item 3 of the patent application scope, wherein the number of the telescopic rods of the composite telescopic structure can be two or three. (Please read the precautions on the back before filling out this page) Printed by the Bureau of Wisdom and Wealth of the Ministry of Economic Affairs " Printed by Beigong Consumer Cooperative Co., Ltd. This paper is in accordance with China National Standards (CNS) 8 and 4 (210X297 mm)
TW89117324A 2000-08-28 2000-08-28 3D laser tracking ball bar TW531660B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW89117324A TW531660B (en) 2000-08-28 2000-08-28 3D laser tracking ball bar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW89117324A TW531660B (en) 2000-08-28 2000-08-28 3D laser tracking ball bar

Publications (1)

Publication Number Publication Date
TW531660B true TW531660B (en) 2003-05-11

Family

ID=28787531

Family Applications (1)

Application Number Title Priority Date Filing Date
TW89117324A TW531660B (en) 2000-08-28 2000-08-28 3D laser tracking ball bar

Country Status (1)

Country Link
TW (1) TW531660B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102305613A (en) * 2005-04-26 2012-01-04 瑞尼斯豪公司 Method for scanning the surface of a workpiece
CN108393929A (en) * 2018-02-01 2018-08-14 大连理工大学 A kind of mechanical arm positional precision measuring device and method
TWI639494B (en) * 2017-12-26 2018-11-01 范光照 Method and apparatus for robot calibration
CN112536822A (en) * 2020-12-04 2021-03-23 法奥意威(苏州)机器人系统有限公司 Spatial trajectory precision measuring device and method
CN113483665A (en) * 2021-07-22 2021-10-08 浙江吉利控股集团有限公司 Calibration device and calibration control method
CN114370817A (en) * 2022-01-12 2022-04-19 中国测试技术研究院机械研究所 Device and method for calibrating ball arm instrument

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102305613A (en) * 2005-04-26 2012-01-04 瑞尼斯豪公司 Method for scanning the surface of a workpiece
US8978261B2 (en) 2005-04-26 2015-03-17 Renishaw Plc Probe head for scanning the surface of a workpiece
CN102305613B (en) * 2005-04-26 2015-11-25 瑞尼斯豪公司 Articulated probe
TWI639494B (en) * 2017-12-26 2018-11-01 范光照 Method and apparatus for robot calibration
CN108393929A (en) * 2018-02-01 2018-08-14 大连理工大学 A kind of mechanical arm positional precision measuring device and method
WO2019148895A1 (en) * 2018-02-01 2019-08-08 大连理工大学 Position precision measuring device and method for mechanical arm
CN112536822A (en) * 2020-12-04 2021-03-23 法奥意威(苏州)机器人系统有限公司 Spatial trajectory precision measuring device and method
CN113483665A (en) * 2021-07-22 2021-10-08 浙江吉利控股集团有限公司 Calibration device and calibration control method
CN114370817A (en) * 2022-01-12 2022-04-19 中国测试技术研究院机械研究所 Device and method for calibrating ball arm instrument
CN114370817B (en) * 2022-01-12 2023-08-15 中国测试技术研究院机械研究所 Device and method for calibrating club instrument

Similar Documents

Publication Publication Date Title
US9228816B2 (en) Method of determining a common coordinate system for an articulated arm coordinate measurement machine and a scanner
US8947678B2 (en) Method for correcting three-dimensional measurements of a spherically mounted retroreflector
US8931183B2 (en) Measurement method and apparatus
US9074869B2 (en) Method for measuring 3D coordinates of a spherically mounted retroreflector from multiple stations
JP4504818B2 (en) Workpiece inspection method
US9347767B2 (en) Spherically mounted retroreflector and method to minimize measurement error
US9239238B2 (en) Method for correcting a 3D measurement of a spherically mounted retroreflector on a nest
US9329028B2 (en) Spherically mounted retroreflector having an embedded temperature sensor and socket
JP2004518123A (en) Method and apparatus for calibrating a non-contact shape measurement sensor with respect to an external coordinate system
CN108827149B (en) Turntable calibration method based on linear laser displacement sensor and diffuse reflection gauge block
JPS61105414A (en) Three-dimensional measuring machine
JP2003114112A (en) Calibration method and calibration program for profiling probe
TWI639494B (en) Method and apparatus for robot calibration
US20160341541A1 (en) Spherically mounted retroreflector and method to minimize measurement error
Saadat et al. Measurement systems for large aerospace components
CN103712572A (en) Structural light source-and-camera-combined object contour three-dimensional coordinate measuring device
TW531660B (en) 3D laser tracking ball bar
CN115371545A (en) Attitude measurement and calibration device and method for laser tracker
CN112697074B (en) Dynamic object to be measured angle measuring instrument and measuring method
Li et al. Method for simultaneously and directly measuring all six-DOF motion errors of a rotary axis
Li et al. A high-speed in situ measuring method for inner dimension inspection
Zapico et al. Extrinsic calibration of a conoscopic holography system integrated in a CMM
Miao et al. Calibration and measurement method based on optical lenses for large-scale 3-D precise measurement
CN113513986B (en) Geometric tolerance measuring device and measuring method thereof
Peggs Virtual technologies for advanced manufacturing and metrology

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent