JP5635314B2 - 電気自動車、ハイブリッド自動車、自動車、自動車ブレーキネットワークシステム、車載ネットワークシステム - Google Patents

電気自動車、ハイブリッド自動車、自動車、自動車ブレーキネットワークシステム、車載ネットワークシステム Download PDF

Info

Publication number
JP5635314B2
JP5635314B2 JP2010147904A JP2010147904A JP5635314B2 JP 5635314 B2 JP5635314 B2 JP 5635314B2 JP 2010147904 A JP2010147904 A JP 2010147904A JP 2010147904 A JP2010147904 A JP 2010147904A JP 5635314 B2 JP5635314 B2 JP 5635314B2
Authority
JP
Japan
Prior art keywords
electronic control
vehicle
brake
control ecu
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010147904A
Other languages
English (en)
Other versions
JP2012011824A (ja
JP2012011824A5 (ja
Inventor
英寿 小倉
英寿 小倉
黒澤 憲一
憲一 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2010147904A priority Critical patent/JP5635314B2/ja
Priority to US13/170,332 priority patent/US20110320081A1/en
Priority to EP11171892.0A priority patent/EP2402203B1/en
Publication of JP2012011824A publication Critical patent/JP2012011824A/ja
Publication of JP2012011824A5 publication Critical patent/JP2012011824A5/ja
Application granted granted Critical
Publication of JP5635314B2 publication Critical patent/JP5635314B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0484Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures for reaction to failures, e.g. limp home
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0652Synchronisation among time division multiple access [TDMA] nodes, e.g. time triggered protocol [TTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40169Flexible bus arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/10Arrangements for initial synchronisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0641Change of the master or reference, e.g. take-over or failure of the master
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40267Bus for use in transportation systems
    • H04L2012/40273Bus for use in transportation systems the transportation system being a vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Regulating Braking Force (AREA)

Description

本発明は、時間同期通信を行う電子制御装置に関するものである。
近年、環境や燃費の観点から、電気自動車やハイブリット自動車が注目されている。これらの自動車は、高度な制御を行うため、多数のモータとECU(Electronic Control Unit:電子制御装置)を実装している。これら自動車が実装しているECUとして、インバータを制御するためのインバータ制御ECU、ステアリング用インバータを制御するステアリング制御ECU、バッテリを制御するバッテリ制御ECU、エアコンを制御するエアコン制御ECU、パワーウィンドウを制御するパワーウィンドウ制御ECUなどがある。これら複数のECUは、各ECU間で情報共有を行うため、車載ネットワークを介して接続されている。
下記特許文献1には、ステアリング制御ECUが車載ネットワークを介して他のECUから送信された車速情報を受信し、車速情報が所定値(例えば40km/h)以上であるか否かを判定し、車速情報が所定値より小さい場合は、危険状態ではないと判定し、車速情報が所定値以上である場合は、操舵パターンを解析することにより、車両走行状態の危険状態を判定するなどの車速に応じたステアリングの制御を行うことが記載されている。このように車載ネットワークは、ECU間で情報を共有し、より安全な制御や最適な制御を行うために用いられている。
ところで、車載ネットワークとして用いられる、時間同期通信型の車載ネットワークであるFlexRay(下記非特許文献1参照)は、あらかじめ用意された2〜3個のECU(同期実行ノード)が時間同期情報を含む通信フレームを送受信することによって、ECU間で同期通信を確立する。各ECUは、確立された時間同期にしたがって、時間同期通信を実行する。
同期通信を確立するECUが3個以下に制約されている理由は、もし多数のECUで時間同期を行うと、同期が確立されたECUグループが複数発生してしまい、かつこれらグループ間で時間が同期していない現象が生じる可能性があることによる。このような現象を、クリーク現象と呼ぶ。クリーク現象が発生すると、異なるグループに属するECU間の通信ができなくなる。
特開2009−12613号公報
FlexRay Communications System Protocol Specification,Version 2.1 Revision A,FlexRay Consortium
FlexRayを用いる車載ネットワークにおいて、同期実行ノードであるECUが故障すると、時間同期情報を含む通信フレーム(同期フレーム)を送信することができなくなる。このとき、各ECUは時間同期することができなくなり、当該車載ネットワークを介した通信は停止する。
車載ネットワークが利用できなくなると、ECU間で情報を交換することができなくなる。例えば、上記特許文献1におけるステアリング制御ECUは、他のECUから車速情報を受信してステアリング制御を実行するので、車載ネットワークを介して他のECUと通信することができなくなると、事実上ステアリング制御を実行することができない。したがって、ステアリング制御によって運転者を補助し、当該自動車を安全に走行させることができなくなる。この状態は、自動車自体は走行可能であるものの、安全性が低下した状態であるといえる。
本発明は、上記のような課題を解決するためになされたものであり、車載ネットワークが通信不能状態に陥ったとき、自動車を不安全な状態のままで走行させないようにすることを目的とする。
本発明に係る車載ネットワークにおいて、同期実行ノードは、各電子制御装置のうち当該自動車の走行または動力に関する電子制御を行う電子制御装置のなかから選択されている。
本発明に係る車載ネットワークによれば、同期実行ノードは当該自動車の走行または動力に関する電子制御を行う電子制御装置であるため、同期実行ノードが故障すると、当該自動車そのものが走行できなくなる。したがって、車載ネットワークを介した通信ができなくなったままで当該自動車が走行し続ける状態を回避することになるので、安全側に倒した制御を実現することができる。
実施形態1に係る電気自動車1000の構成図である。 ステアリング制御ECU10の機能ブロック図である。 インバータ制御ECU30の機能ブロック図である。 バッテリ制御ECU40の機能ブロック図である。 エアコン制御ECU20の機能ブロック図である。 パワーウィンドウ制御ECU140の機能ブロック図である。 同期実行ノードが時間同期通信を確立する処理を示すフローチャートである。 ステアリング制御ECU10とエアコン制御ECU20が同期実行ノードである場合における、通信フレームの送信タイミングを示す。 実施形態1における各ECUを分類した結果を示す図である。 ステアリング制御ECU10とインバータ制御ECU30が同期実行ノードである場合における、通信フレームの送信タイミングを示す。 ステアリング制御ECU10とインバータ制御ECU30が時間同期通信を確立する様子を示す図である。 バッテリ制御ECU40を「故障すると走行に影響を与えるECU」に分類した様子を示す図である。 実施形態2に係るハイブリッド自動車2000の構成図である。 実施形態2における各ECUを分類した結果を示す図である。 ステアリング制御ECU70、インバータ制御ECU100、エンジン制御ECU80が時間同期通信を確立する様子を示す図である。 実施形態4に係る自動車3000およびそのブレーキネットワークシステムの構成図である。 3つの同期実行ノードのうちいずれか2つが故障したときの動作について、全ての組合せを列挙したものである。
<本発明の基本的な考え方>
以下ではまず初めに、本発明の基本的な考え方を説明する。その後、本発明の実施形態を説明する。
まず、車両を不安全な状態のままで走行させないことを考える。車両の例として、電気自動車を取り上げる。電気自動車は、インバータ制御ECU、ステアリング制御ECU、エアコン制御ECUなどの様々なECUを搭載している。このうちインバータ制御ECUは、当該電気自動車の走行用モータを駆動するインバータを制御するECUであるため、これが故障すると当該電気自動車は走行することができない。一方、エアコン制御ECUが故障しても、電気自動車そのものは走行を継続することができる。
ここで、エアコン制御ECUを同期実行ノードとして動作させている状態を想定する。同期実行ノードは2つであると仮定する。このときエアコン制御ECUが故障すると、先に説明したように車載ネットワークを利用することができなくなるので、他のECUから情報を受信して制御に利用するECUは、制御を実行することができなくなる。上述のステアリング制御ECUは、その1例であるといえる。
すなわちこの場合、本来であればエアコン制御ECUが故障しても電気自動車自体は走行を継続することができるはずであるにも関わらず、当該電気自動車は不安全な走行状態に陥っていることになる。
かかる事態を回避するためには、車載ネットワーク内の時間同期を取ることができない状態のままで当該電気自動車が走行し続けることができないようにすればよい。そこで本発明では、自動車の走行または動力の制御を行うECUを、同期実行ノードとして選択することにする。また本発明において、自動車の走行または動力の制御とは関係ない制御を行うECUは、同期実行ノードとして選択しない。
次に、あるECUが故障しても、自動車が安全に走行し続けることができるようにすることを考える。これは上記と同様の考え方に基づき、自動車の走行または動力の制御とは関係ない制御を行うECUを、同期実行ノードとして選択しないことにより達成できる。この場合、自動車の走行または動力の制御とは関係ないECUが故障しても、同期実行ノードが時間同期を取ることができるので、車載ネットワークはそのまま利用可能である。したがって、各ECUは他のECUとの間で通信を継続し、制御を実行することができるので、当該車両は不安全な状態に陥らずに済む。
以上、本発明の基本的な考え方を説明した。以下では、車両の種別毎に具体的な実施形態を説明する。
<実施の形態1>
図1は、本発明の実施形態1に係る電気自動車1000の構成図である。電気自動車1000は、前輪1および2、後輪3および4、ステアリング装置16、電動アシストモータ15、ステアリング用インバータ12、バッテリ42、インバータ32、モータ35、プロペラシャフト36、リアデファレンシャル37、ドライブシャフト38および39、エアコン22、パワーウィンドウ142を備えている。
バッテリ42は、直列に接続された複数のセルを有し、電源線44を介して、ステアリング用インバータ12、インバータ32、エアコン22、およびパワーウィンドウ142に直流電圧を供給している。バッテリ42のグランド線43は、電気自動車1000の車体に接続されている。バッテリ制御ECU40は、制御線41を介してバッテリ42と接続され、バッテリ42の状態を管理している。
ステアリング制御ECU10は、制御線11を介してステアリング用インバータ12へ制御指令を伝達する。
ステアリング用インバータ12は、バッテリ42からの直流を、ステアリング制御ECU10からの制御指令に基づき交流に変換し、PWM線14を介して電動アシストモータ15に交流を供給する。電動アシストモータ15は、ステアリング装置16に内蔵されている。ステアリング装置16は、前輪1および2と連結されている。ステアリング用インバータ12のグランド線13は、電気自動車1000の車体に接続されている。
インバータ制御ECU30は、制御線31を介してインバータ32へ制御指令を伝達する。インバータ32は、バッテリ42からの直流電圧を交流電圧に変換し、インバータ制御ECU30からの制御指令に基づき、PWM線34を介してモータ35にその交流電圧を供給する。インバータ32のグランド線33は、電気自動車1000の車体に接続されている。
モータ35は、プロペラシャフト36と連結されており、モータ35が生成する動力はプロペラシャフト36を介してリアデファレンシャル37へ伝達される。その動力は、さらにリアデファレンシャル37からドライブシャフト38および39を介して、後輪3および4に伝達される。
エアコン22は、制御線21を介してエアコン制御ECU20からの制御指令を受け取り、その制御指令に基づいて動作する。エアコン22のグランド線23は、電気自動車1000の車体に接続されている。
パワーウィンドウ142は、制御線141を介してパワーウィンドウ制御ECU140からの制御指令を受け取り、その制御指令に基づいて動作する。パワーウィンドウ142のグランド線143は、電気自動車1000の車体に接続されている。
車載ネットワーク50には、ステアリング制御ECU10、インバータ制御ECU30、バッテリ制御ECU40、エアコン制御ECU20、パワーウィンドウ制御ECU140が接続されている。
バッテリ制御ECU40がバッテリ42の電圧低下を検出すると、車載ネットワーク50を介してインバータ制御ECU30とエアコン制御ECU20へその旨を通知することができる。インバータ制御ECU30は、その通知を受信すると、インバータ32を低消費電力モードで動作させることができる。同様にエアコン制御ECU20も、エアコン22を低消費電力モードにすることができる。バッテリ制御ECU40が故障した場合には、バッテリ42の電圧低下を検出できなくなるだけで、バッテリ電圧自体はインバータ32へ供給し続けることができる。
ステアリング制御ECU10は、車載ネットワーク50を介してインバータ制御ECU30から車速情報を受信すると、車速に応じたステアリングの反力を運転者へ与える。これにより、安全かつ扱いやすいハンドリングを提供することができる。
以上のように、車載ネットワーク50を介してECU間で電気自動車の状態に応じた制御情報を互いにやりとりすることにより、安全かつ快適な走行制御が可能となる。
図2は、ステアリング制御ECU10の機能ブロック図である。ステアリング制御ECU10は、マイコン230a、送受信回路220aを備える。マイコン230aはさらに、ROM(Read Only Memory)232a、RAM(Random Access Memory)233a、演算器234a、通信コントローラ231aを備える。
ROM232aは、処理プログラムを記憶する。RAM233aは、データを一時的に記憶する。演算器234aは、演算処理を実行する。通信コントローラ231aは、送受信回路220aを介して他のECUと通信する。送受信回路220aは、車載ネットワーク50を介して他のECUと通信する。
ステアリング制御ECU10が備えるマイコン230aは、車載ネットワーク50を介して他のECUから送信された制御情報を、送受信回路220aと通信コントローラ231aを介して、RAM233aに格納することができる。通信コントローラ231aは、時間同期通信のプロトコル処理を行う。演算器234aは、ROM232aに記憶されている処理プログラムを実行し、RAM233aに格納された制御情報を用いて制御処理を行い、ステアリング用インバータ12に対する制御指令値を、制御線11へ出力する。
図3は、インバータ制御ECU30の機能ブロック図である。インバータ制御ECU30は、マイコン230b、送受信回路220bを備える。マイコン230bはさらに、ROM232b、RAM233b、演算器234b、通信コントローラ231bを備える。これら各機能部の動作は、制御対象がインバータ32である点を除いて、ステアリング制御ECU10が備える同名の各機能部の動作と概ね同様である。演算器234bは、インバータ32に対する制御指令値を、制御線31へ出力する。
図4は、バッテリ制御ECU40の機能ブロック図である。バッテリ制御ECU40は、マイコン230c、送受信回路220cを備える。マイコン230cはさらに、ROM232c、RAM233c、演算器234c、通信コントローラ231cを備える。
バッテリ制御ECU40が備えるマイコン230cは、制御線41を介して、バッテリ42の電圧値、電流値、温度値を取得し、RAM233cに格納する。演算器234cは、ROM232cに記憶されている処理プログラムを実行し、RAM233cに格納された電圧値、電流値、温度値を用いて制御処理を行い、バッテリ42の状態情報を生成し、RAM233cに格納する。通信コントローラ231cは、RAM233cに格納されたバッテリ42の状態情報を、時間同期通信のプロトコルに基づいて、送受信回路220cと車載ネットワーク50を介して他のECUへ送信する。
図5は、エアコン制御ECU20の機能ブロック図である。エアコン制御ECU20は、マイコン230d、送受信回路220dを備える。マイコン230dはさらに、ROM232d、RAM233d、演算器234d、通信コントローラ231dを備える。これら各機能部の動作は、制御対象がエアコン22である点を除いて、ステアリング制御ECU10が備える同名の各機能部の動作と概ね同様である。演算器234dは、エアコン22に対する制御指令値を、制御線21へ出力する。
図6は、パワーウィンドウ制御ECU140の機能ブロック図である。パワーウィンドウ制御ECU140は、マイコン230e、送受信回路220eを備える。マイコン230eはさらに、ROM232e、RAM233e、演算器234e、通信コントローラ231eを備える。これら各機能部の動作は、制御対象がパワーウィンドウ142である点を除いて、ステアリング制御ECU10が備える同名の各機能部の動作と概ね同様である。演算器234eは、パワーウィンドウ142に対する制御指令値を、制御線141へ出力する。
以上、電気自動車1000が備える各機能部について説明した。以下では、車載ネットワーク50を介して各ECUが通信する動作を説明する。なお、各ECUが用いる通信プロトコルとして、非特許文献1に記載されているFlexRayを想定する。
通信コントローラ231a、231b、231c、231d、231eは、送信すべき制御情報を、プロトコルに適合するフォーマットのフレームに変換し、この通信フレームをあらかじめ定められた通信スケジュールに基づいて送信する。したがって、各通信コントローラ231a、231b、231c、231d、231eが時間的に同期した状態であれば、通信の衝突を起こすことなく、互いに制御情報を送受信することができる。
ただし、各通信コントローラが通信を開始する時点では、各通信コントローラがばらばらに動作しているので時間的に同期しておらず、そのまま通信を継続すると衝突が発生してしまう。この衝突を避けるには、各通信コントローラの内部的な時刻を一致させ、時間的に同期動作させる必要がある。
各通信コントローラを同期動作させる方法として、FlexRayでは、先に説明した同期実行ノードを2〜3個設ける。同期実行ノードは、時間同期情報を含む通信フレームを互いに送受信し、通信スケジュールの起点を受信した通信フレームのタイミングに合わせる。これにより、2つのECUを同期動作させることができる。同期実行ノード以外のECUも、同期実行ノードがあらかじめ同期を確立した後、同期実行ノードから受信した通信フレームのタイミングに自己の通信スケジュールの起点を合わせる。これにより、結果として車載ネットワーク全体で同期動作することができる。なお、上述の同期実行ノードのことを、コールドスタートノードと呼ぶ場合もある(非特許文献1参照)。
図7は、同期実行ノードが時間同期通信を確立する処理を示すフローチャートである。以下、図7の各ステップについて説明する。
(図7:ステップS301)
同期実行ノードは、時間同期通信を確立する処理が開始されると、時間同期情報を含む通信フレームを送信する。
(図7:ステップS302)
同期実行ノードは、他ECUから時間同期情報を含む通信フレームを受信したか否かを判定する。受信していない場合は、ステップS301に戻って他ECUから時間同期情報を含む通信フレームを受信するまで待ち続ける。受信している場合は、ステップS303に進む。
(図7:ステップS303)
同期実行ノードは、時間同期通信を確立する処理を実行する。具体的には、ステップS302で受信した時間同期情報に基づいて、自ノードの通信ケジュールの起点を合わせることにより、他のECUと時間を同期させることができる。
(図7:ステップS304)
同期実行ノードは、互いに時間同期情報を含む通信フレームを送受信する。これにより車載ネットワーク50に接続された各ECUは、時間同期通信を行うことができる。
なお、FlexRayネットワークにおいては、同期実行ノードの数は2〜3個であることが指定されている点に留意されたい。4つ以上のECUが同期実行ノードとして車載ネットワーク50内に存在すると、通信に参加するECUの時間同期が成立しない場合があることが、非特許文献1の92ページ注釈40に記載されている。本実施形態1では説明簡単のため、同期実行ノードを2つとする。
図8は、ステアリング制御ECU10とエアコン制御ECU20が同期実行ノードとして図7の処理フローを実行する場合における、通信フレームの送信タイミングを示す。以下、図8に示す各サイクルにおける各ECUの状態を説明する。
ステアリング制御ECU10は、サイクル0において時間同期通信を開始する。しかし、エアコン制御ECU20はサイクル4から時間同期通信を開始するため、サイクル0〜サイクル3の間はFlexRayネットワークの時間同期通信を確立することができない。
サイクル4では、ステアリング制御ECU10の通信フレームとエアコン制御ECU20の通信フレームがともに送信されているため、時間同期通信を確立することができる。この結果、図1に示したインバータ制御ECU30とバッテリ制御ECU40もFlexRayネットワークに参加することができるようになり、電気自動車1000内の時間同期通信が確立される。
ここで、図8においてエアコン制御ECU20が故障し、同期確立処理を実行することができない状態を想定する。本実施形態では同期実行ノードは2つであるとしたため、エアコン制御ECU20が故障すると、2つのECUの間で時間同期を確立する処理は実行できなくなる。その結果、各ECUを時間同期させることができず、車載ネットワーク50を介した通信はできなくなってしまう。
一方、電気自動車1000が走行するために必要であるその他のECUは動作しているため、各ECUが他のECUと通信することができない状態のままで、電気自動車1000が走行を継続することになる。
このとき、例えばステアリング制御ECU10に着目すると、ステアリング制御ECU10は他のECUから車速情報を受け取ることができないので、車速に適したステアリング制御を実行することができない。具体的には、車速が低い場合には電動アシストモータ15によりステアリングを軽くし、車速が高い場合には安全のためにステアリングを重くする、といった車速に適応する運転者補助ではなく、固定的なステアリング補助しかできなくなる。
すなわち、本来であれば電気自動車1000の走行制御には影響しないはずのエアコン制御ECU20を、同期実行ノードとして選択したがために、エアコン制御ECU20が故障することによって電気自動車1000を不安全な走行状態に陥らせることになる。
以上の例に鑑みると、電気自動車1000の走行制御に影響しないECUは、同期実行ノードとして動作させるべきではない、ということになる。
これに対し、インバータ制御ECU30を同期実行ノードとして動作させる場合、インバータ制御ECU30が故障すると車載ネットワーク50を介した通信はできなくなるが、同時にモータ35を駆動することもできなくなるので、電気自動車1000は走行停止する。したがって、少なくとも電気自動車1000が不安全な状態のままで走行し続けることはないので、より安全側に倒した動作を行なうことができるといえる。
図9は、本実施形態1における各ECUを分類した結果を示す図である。図8の例を用いて説明したように、いずれのECUを同期実行ノードとして動作させるかは、そのECUが故障すると電気自動車1000の走行制御に影響するか否かを基準として判断することが望ましい。そこで本実施形態1では、各ECUを、「故障すると走行に影響を与えるECU」と「故障しても走行に影響を与えないECU」に分類し、同期実行ノードは前者のECUのなかから選択する。より具体的には、電気自動車1000の走行または動力に関する電子制御を実行するECUを、「故障すると走行に影響を与えるECU」に分類する。インバータ制御ECU30は、電気自動車1000の動力を提供するモータ35を駆動制御するECUであるため、これに分類される。ステアリング制御ECU10は、電気自動車1000の走行方向に関する制御を行うECUであるため、同様にこれに分類される。
図10は、ステアリング制御ECU10とインバータ制御ECU30が同期実行ノードとして図7の処理フローを実行する場合における、通信フレームの送信タイミングを示す。以下、図10に示す各サイクルにおける各ECUの状態を説明する。
ステアリング制御ECU10は、サイクル0から時間同期通信の開始処理を開始する。インバータ制御ECU30は、サイクル4から時間同期通信の開始処理を開始する。したがって、2つのECUともに故障していなければ、サイクル4において時間同期通信が確立されるので、電気自動車1000は安全な状態で走行することができる。一方、どちらかのECUが故障していれば、時間同期通信は確立されず、車載ネットワーク50を介した通信は停止するが、同時に電気自動車1000も走行不能となる。この場合、電気自動車1000は走行できないので、車載ネットワーク50を介した通信が停止しても特段の支障はないと考えられる。
図11は、ステアリング制御ECU10とインバータ制御ECU30を同期実行ノードとして動作させる場合において、これら各ECUが時間同期通信を確立する様子を示す図である。
ステアリング制御ECU10は、時間同期情報を含む通信フレーム51を矢印52で示すように送信している。同様にインバータ制御ECU30も、時間同期情報を含む通信フレーム53を矢印54で示すように送信している。この結果、互いの時間同期情報を含む通信フレームを受信して、通信スケジュールの起点を合わせるが可能となり、2つのECU間で通信を同期させることができる。エアコン制御ECU20、パワーウィンドウ制御ECU140、バッテリ制御ECU40は、ステアリング制御ECU10とインバータ制御ECU30が通信同期を確立した後に、FlexRayネットワークに参加することができる。
以上の動作により、電気自動車1000が備える各ECUは、車載ネットワーク50を介して、互いに制御情報を送受信することができるようになる。
なお図9において、バッテリ制御ECU40は「故障しても走行に影響を与えないECU」に分類した。これは、バッテリ制御ECU40が故障してもバッテリ42自体は動作し続けることを想定したものである。一方、設計上、バッテリ制御ECU40が故障したときはバッテリ42も動作停止させる場合もある。このとき、バッテリ制御ECU40が故障すると動力源がなくなるので、電気自動車1000は走行停止する。したがってこの場合は、バッテリ制御ECU40は「故障すると走行に影響を与えるECU」に分類される。図12は、この場合における各ECUの分類を示すものである。
<実施の形態2>
図13は、本発明の実施形態2に係るハイブリッド自動車2000の構成図である。ハイブリッド自動車2000は、前輪61および62、後輪63および64、ステアリング装置76、電動アシストモータ75、ステアリング用インバータ72、バッテリ112、インバータ102、モータ105、プロペラシャフト123、リアデファレンシャル124、ドライブシャフト125および126、エアコン92、パワーウィンドウ152、エンジン82、エンジン出力軸83、モータ出力軸106、変速機122を備えている。
バッテリ112は、直列に接続された複数のセルを有し、電源線114を介して、ステアリング用インバータ72、インバータ102、エアコン92、パワーウィンドウ152に、直流電圧を供給している。バッテリ112のグランド線113は、ハイブリット自動車2000の車体に接続されている。バッテリ制御ECU110は、制御線111を介してバッテリ112と接続され、バッテリ112の状態を管理している。
ステアリング制御ECU70は、制御線71を介してステアリング用インバータ72へ制御指令を伝達する。ステアリング用インバータ72は、ステアリング制御ECU70からの制御指令に基づき、バッテリ112からの直流電圧を交流電圧へ変換し、PWM線74を介して電動アシストモータ75に供給する。電動アシストモータ75は、ステアリング装置76に内蔵されている。ステアリング装置76は、前輪61および62と連結されている。ステアリング用インバータ72のグランド線73は、ハイブリット自動車2000の車体に接続されている。
インバータ制御ECU100は、制御線101を介してインバータ102へ制御指令を伝達する。インバータ102は、インバータ制御ECU100からの制御指令に基づき、バッテリ112からの直流を交流に変換し、PWM線104を介してモータ105に供給する。モータ105は、インバータ102から供給される交流によってモータ出力軸106を駆動する。インバータ102のグランド線103は、ハイブリット自動車2000の車体に接続されている。
エンジン制御ECU80は、制御線81を介してエンジン82へ制御指令を伝達する。エンジン82はガソリンまたは軽油を燃料とする内燃機関であり、エンジン出力軸83を介して駆動力を出力する。エンジン出力軸83はモータ出力軸106と連結されており、駆動力をモータ出力軸106に伝達する。
モータ105は、エンジン82が出力する駆動力を補助するため、モータ出力軸106に補助駆動力を与える。モータ出力軸106は、エンジン82の駆動力とモータ105の補助駆動力を合成した駆動力を出力する。
モータ出力軸106は、変速機122と連結されており、モータ出力軸106が出力する駆動力を変速機122に伝達する。
変速機122は、プロペラシャフト123と連結されている。変速機122が生成する駆動力は、プロペラシャフト123を介してリアデファレンシャル124へ伝達され、さらにリアデファレンシャル124からドライブシャフト125および126を介して後輪63および64に伝達される。変速機122は、制御線121を介して変速機制御ECU120からの制御指令を受け取り、その制御指令に基づいて動作する。
変速機122は、変速機制御ECU120が故障したとき、ハイブリッド自動車2000が走行可能な状態を維持できるように、あらかじめ定められた規定変速比を固定的に選択するように構成されている。したがってハイブリット自動車2000は、変速機制御ECU120が故障しても、走行可能な状態を保つことができる。
エアコン92は、制御線91を介してエアコン制御ECU90から制御指令を受け取り、その制御指令に基づいて動作する。エアコンのグランド線93は、ハイブリット自動車2000の車体に接続されている。
パワーウィンドウ152は、制御線151を介してパワーウィンドウ制御ECU150から制御指令を受け取り、その制御指令に基づいて動作する。パワーウィンドウ152のグランド線153は、ハイブリット自動車2000の車体に接続されている。
車載ネットワーク130には、ステアリング制御ECU70、インバータ制御ECU100、バッテリ制御ECU110、エアコン制御ECU90、エンジン制御ECU80、変速機制御ECU120、パワーウィンドウ制御ECU150が接続されている。
バッテリ制御ECU110がバッテリ92の電圧低下を検出すると、バッテリ制御ECU110は、車載ネットワーク130を介してインバータ制御ECU100とエアコン制御ECU90へその旨を通知することができる。インバータ制御ECU100は、その通知を受け取ると、インバータ102を低消費電力モードで動作させる。エアコン制御ECU90も同様に、エアコン92を低消費電力モードにすることができる。バッテリ制御ECU110が故障した場合には、電圧低下を検出できなくなるだけで、バッテリ電圧自体はインバータ102へ供給し続けることができる。
ステアリング制御ECU70は、車載ネットワーク130を介してインバータ制御ECU100から車速情報を受信すると、車速に応じたステアリングの反力を運転者へ与える。これにより、安全かつ扱いやすいハンドリングを提供することができる。
ハイブリット自動車2000は、エンジン82が出力する駆動力とモータ105が発する補助駆動力によって走行するハイブリット自動車である。したがって、エンジン82が駆動しなくともモータ105の発する補助駆動力によって走行することでき、またモータ105が駆動しなくともエンジン82の発する駆動力によって走行することができる。
以上、ハイブリッド自動車2000が備える各機能部について説明した。以下では、本実施形態2において、同期実行ノードを選択する基準について説明する。
図14は、本実施形態2における各ECUを分類した結果を示す図である。本実施形態2でも、実施形態1と同様に、各ECUを「故障すると走行に影響を与えるECU」と「故障しても走行に影響を与えないECU」に分類する。実施形態1と同様に、ハイブリッド自動車2000の走行または動力に関する電子制御を実行するECUは、「故障すると走行に影響を与えるECU」に分類される。同期実行ノードは後者のECUのなかから選択する。
実施形態1で説明した図9と比較すると、「故障しても走行に影響を与えないECU」のなかに変速機制御ECU120が新たに追加され、「故障すると走行に影響を与えるECU」のなかにエンジン制御ECU80が新たに追加されている。
この点、ハイブリッド自動車2000は、モータ105またはエンジン82のいずれか一方が停止しても、他方が動力を提供することができるので、インバータ制御ECU100とエンジン制御ECU80は、「故障しても走行に影響を与えないECU」に分類すべきであるようにも思える。しかし、この2つのECUは動力を制御するECUであり、2つセットで「故障すると走行に影響を与えるECU」に分類すべきと判断した。
「故障すると走行に影響を与えるECU」のなかから同期実行ノードを選択する基準として、以下のような例が考えられる。
インバータ制御ECU100とエンジン制御ECU80を同期実行ノードとして優先的に選択し、「故障すると走行に影響を与えるECU」の中からさらにもう1つの同期実行ノードを選択する。結果として、3つのECUが同期実行ノードとして選択されたことになる。この場合、インバータ制御ECU100またはエンジン制御ECU80のいずれか一方が故障しても、他方のECUが正常であれば、ハイブリッド自動車2000は走行を継続することができる。また、同期実行ノードが2つ残っていれば、車載ネットワーク130を用いた通信も継続することができるので、ハイブリッド自動車2000を不安全な状態に陥らせることはない。
以下では、いずれのECUを同期実行ノードとして選択するかにより、ハイブリッド自動車2000の動作にどのような影響を与えるかを説明する。
(選択例1)
エアコン制御ECU90、パワーウィンドウ制御ECU150、バッテリ制御ECU110、変速機制御ECU120のうち2つ以上を、同期実行ノードとして選択したと仮定する。もしこれらECUが故障した場合、ハイブリット自動車2000は走行継続することができるが、車載ネットワーク130を介した通信ができなくなる。そのため、先に説明したように、ステアリング制御ECU70が車速情報を受信することができなくなるなどの不具合が生じ、好ましくない。
(選択例2)
同期実行ノードとして、インバータ制御ECU100、エンジン制御ECU80を選択した上で、もう1つの同期実行ノードは任意に選択する。この場合、いずれか1つの同期実行ノードが故障しても、2つの同期実行ノードの間で同期を確立し、通信を継続することができる。また、インバータ制御ECU100とエンジン制御ECU80のうちいずれかが故障しても、もう一方のECUが動作している限り動力を提供することができるので、ハイブリッド自動車2000は走行継続することができる。
(選択例3)
同期実行ノードとして、インバータ制御ECU100、エンジン制御ECU80、ステアリング制御ECU70を選択したと仮定する。この場合インバータ制御ECU100が故障しても、エンジン制御ECU80とステアリング制御ECU70の間で時間同期を確立することができるので、車載ネットワーク130を介した通信は継続できる。また、エンジン82の動力によって、ハイブリット自動車2000自体も走行継続することができる。エンジン制御ECU80が故障した場合も同様である。一方、インバータ制御ECU100とエンジン制御ECU80が2つとも故障した場合、車載ネットワーク130を介した通信ができなくなるが、ハイブリッド自動車2000自体も走行継続できなくなるので、特段の支障はない。
図15は、ステアリング制御ECU70、インバータ制御ECU100、エンジン制御ECU80を同期実行ノードとして動作させる場合において、これら各ECUが時間同期通信を確立する様子を示す図である。
ステアリング制御ECU70は、時間同期情報を含む通信フレーム131を矢印132で示すように送信する。エンジン制御ECU80は、時間同期情報を含む通信フレーム135を矢印136で示すように送信する。インバータ制御ECU100は、時間同期情報を含む通信フレーム133を矢印134で示すように送信する。
このように3つのECUから互いに時間同期情報を含む通信フレームを受信することにより、通信スケジュールの起点を合わせ、3つのECU間の通信が同期動作できる。また、エアコン制御ECU90、パワーウィンドウ制御ECU150、バッテリ制御ECU110、変速機制御ECU120は、3つのECU間の通信同期が確立した後に、FlexRayネットワークへ参加することができる。
以上の動作により、ハイブリット自動車2000の各ECUは、車載ネットワーク130を介して、互いに制御情報をやりとりすることができるようになる。
<実施の形態3>
実施形態1〜2では、電気自動車1000およびハイブリッド自動車2000が備える車載ネットワークにおいて、同期実行ノードを選択する手法を説明した。同様の手法は、その他の自動車についても適用することができる。
例えば、燃料を動力源とし、エンジン駆動によって走行する自動車を想定する。この自動車は、エンジン、エンジン制御ECU、変速機、変速機制御ECU、エアコン制御などのその他ECUを備える。
本実施形態3においても、実施形態1〜2と同様に、各ECUを「故障すると走行に影響を与えるECU」と「故障しても走行に影響を与えないECU」に分類する。具体的には、当該自動車の走行または動力に関する制御を行うECUは、「故障すると走行に影響を与えるECU」に分類されることになる。エンジン制御ECUは、自動車の動力に関する制御を行うECUであるため、「故障すると走行に影響を与えるECU」に相当する。
本実施形態3においても、「故障すると走行に影響を与えるECU」のなかから同期実行ノードを選択する。FlexRayネットワークであれば、2〜3個の同期実行ノードが必要となる。例えば、変速機制御ECUを「故障すると走行に影響を与えるECU」に分類しておき、変速機制御ECUを同期実行ノードとして選択することができる。
<実施の形態4>
図16は、本発明の実施形態4に係る自動車3000およびそのブレーキネットワークシステムの構成図である。自動車3000は、前輪1および2、後輪3および4、ブレーキペダル170、電動モータ182、192、202、および212、電動モータによってブレーキディスク180、190、200、210の回転を停止させるための制動器181、191、201、211を備える。
前輪のブレーキ制御ECU186は、それぞれ信号線185と195を介してインバータ184と194に接続されている。インバータ184と194は、PWM信号線183と193を介して電動モータ182と192に接続されている。後輪のブレーキ制御ECU206は、それぞれ信号線205と215を介してインバータ204と214に接続されている。インバータ204と214は、PWM信号線203と213を介して電動モータ202と212に接続されている。
制動センサ171は、信号線172を介して、運転者がブレーキペダル170を踏み込んだ量をブレーキペダル制御ECU173へ通知することができる。ブレーキ動作表示器220は、信号線221を介してパネル表示制御ECU222から点灯命令を受け取り、その点灯命令にしたがって点灯する。
前輪のブレーキ制御ECU186、後輪のブレーキ制御ECU206、ブレーキペダル制御ECU173、パネル表示制御ECU222は、時間同期型ブレーキサブネットワーク160に接続されている。
以上、自動車3000およびブレーキネットワークシステムの構成を説明した。次に、ブレーキネットワークシステムの動作を説明する。
運転者がブレーキペダル170を踏み込むと、制動センサ171が踏み込みを感知し、その踏み込み量が信号線172を介してブレーキペダル制御ECU173へ通知される。ブレーキペダル制御ECU173は、その踏み込み量などに基づきブレーキ制動指令を生成し、ブレーキサブネットワーク160を介して、前輪のブレーキ制御ECU186と後輪のブレーキ制御ECU206へ通知する。
ブレーキ制動指令を受け取った前輪のブレーキ制御ECU186と後輪のブレーキ制御ECU206は、それぞれの信号線185、195、205、215を介してインバータ184、194、204、214ヘブレーキ制御量を通知し、PWM信号線183、193、203、213を介して電動モータ182、192、202、212を動作させる。
電動モータは、制動器181、191、201、211が備えるブレーキディスク180、190、200、210の回転に制動を与える。これにより自動車3000を停止させることができる。
パネル表示制御ECU222は、信号線221を介してブレーキ動作表示器220を点灯させ、制動中である旨を表示する。これによって運転者へブレーキ動作を通知することができる。
本実施形態4においても、各ECUを「故障すると走行に影響を与えるECU」と「故障しても走行に影響を与えないECU」に分類する。ブレーキペダル制御ECU173、前輪のブレーキ制御ECU186、後輪のブレーキ制御ECU206は、自動車3000の走行を制御するECUであり、故障するとブレーキが動作しないので、「故障すると走行に影響を与えるECU」として分類する。パネル表示制御ECU222は、故障してもブレーキ動作の表示ができないだけであり、走行には影響を与えないので、「故障しても走行に影響を与えないECU」へ分類する。
同期実行ノードは、「故障すると走行に影響を与えるECU」のなかから選択される。ここでは、ブレーキペダル制御ECU173、前輪のブレーキ制御ECU186、後輪のブレーキ制御ECU206が選択されることになる。
図17は、本実施形態4と比較するため、3つの同期実行ノードのうちいずれか2つが故障したときの動作について、全ての組合せを列挙したものである。ここでは、同期実行ノードとして{ブレーキペダル制御ECU173、前輪のブレーキ制御ECU186、後輪のブレーキ制御ECU206}を選択した場合の動作(本実施形態4)と、{ブレーキペダル制御ECU173、後輪のブレーキ制御ECU206、パネル表示制御ECU222}を選択した場合の動作を比較する。3つの同期実行ノードのうち2つが故障する組合せパターンは、図17に示す6通りである。
(図17:組合せNo.1)
No.1のケースは、ブレーキペダル制御ECU173と前輪のブレーキ制御ECU186が故障した場合を示す。これは、本実施形態4における同期実行ノード{173、186、206}のうち2つが故障したことになり、時間同期を確立することができなくなるので、車載ネットワークを介した通信は停止する。また、ブレーキペダル制御ECU173が故障しているのでブレーキ制動指令を送信できなくなり、ブレーキ動作も停止する。一方、同期実行ノードとして{173、222、206}を選択した場合、同期実行ノードが1つ故障したのみであるため、車載ネットワークを介した通信は継続する。しかしブレーキペダル制御ECU173が故障しているので、ブレーキ動作は停止する。
(図17:組合せNo.2)
No.2のケースは、ブレーキペダル制御ECU173とパネル表示制御ECU222が故障した場合を示す。これは、本実施形態4における同期実行ノード{173、186、206}のうち1つのみが故障したことになり、車載ネットワークを介した通信は継続する。しかしブレーキペダル制御ECU173が故障しているので、ブレーキ動作は停止する。一方、同期実行ノードとして{173、222、206}を選択した場合、同期実行ノードが2つ故障したことになるので、時間同期を確立することができなくなり、車載ネットワークを介した通信は停止する。また、ブレーキペダル制御ECU173が故障しているので、ブレーキ動作も停止する。
(図17:組合せNo.3)
No.3のケースは、ブレーキペダル制御ECU173と後輪のブレーキ制御ECU206が故障した場合を示す。これは、本実施形態4における同期実行ノード{173、186、206}のうち2つが故障したことになり、時間同期を確立することができなくなるので、車載ネットワークを介した通信は停止する。また、ブレーキペダル制御ECU173が故障しているのでブレーキ制動指令を送信できなくなり、ブレーキ動作も停止する。一方、同期実行ノードとして{173、222、206}を選択した場合、同期実行ノードが2つ故障したことになるので、時間同期を確立することができなくなり、車載ネットワークを介した通信は停止する。また、ブレーキペダル制御ECU173が故障しているので、ブレーキ動作も停止する。
(図17:組合せNo.4)
No.4のケースは、前輪のブレーキ制御ECU186とパネル表示制御ECU222が故障した場合を示す。これは、本実施形態4における同期実行ノード{173、186、206}のうち1つのみが故障したことになり、車載ネットワークを介した通信は継続する。また、ブレーキペダル制御ECU173からブレーキネットワークを介してブレーキ制動指令を後輪のブレーキ制御ECU206へ通知できるので、自動車3000は後輪のブレーキを用いて停止できる。一方、同期実行ノードとして{173、222、206}を選択した場合、同期実行ノードが1つ故障したのみであるため、車載ネットワークを介した通信は継続する。また、後輪のブレーキ制御ECU206を制御することができるので、自動車3000は後輪のブレーキを用いて停止できる。
(図17:組合せNo.5)
No.5のケースは、前輪のブレーキ制御ECU186と後輪のブレーキ制御ECU206が故障した場合を示す。これは、本実施形態4における同期実行ノード{173、186、206}のうち2つが故障したことになり、時間同期を確立することができなくなるので、車載ネットワークを介した通信は停止する。また、全てのブレーキ制御ECUが故障しているので、ブレーキ動作も停止する。一方、同期実行ノードとして{173、222、206}を選択した場合、同期実行ノードが1つ故障したのみであるため、車載ネットワークを介した通信は継続する。しかし全てのブレーキ制御ECUが故障しているので、ブレーキ動作は停止する。
(図17:組合せNo.6)
No.6のケースは、後輪のブレーキ制御ECU206とパネル表示制御ECU222が故障した場合を示す。これは、本実施形態4における同期実行ノード{173、186、206}のうち1つのみが故障したことになり、車載ネットワークを介した通信は継続する。また、ブレーキペダル制御ECU173からブレーキネットワークを介してブレーキ制動指令を前輪のブレーキ制御ECU186へ通知できるので、自動車3000は前輪のブレーキを用いて停止できる。一方、同期実行ノードとして{173、222、206}を選択した場合、同期実行ノードが2つ故障したことになるので、時間同期を確立することができなくなり、車載ネットワークを介した通信は停止する。また、ブレーキペダル制御ECU173から車載ネットワークを介して制動指令をブレーキ制御ECUへ通知することができないので、ブレーキ動作も停止する。
(図17:まとめ)
以上挙げた例によれば、組合せNo.6のケースにおいて、本実施形態4に係る同期実行ノードの構成のほうがブレーキ動作の観点で優れており、より安全に自動車3000を走行させることができる。
<実施の形態5>
実施形態4では、自動車が搭載するブレーキネットワークシステムを例として取り上げたが、その他の車載ネットワークシステムにおいて、本発明と同様の手法を採用することもできる。例えば、複数のECUが時間同期して通信しながらステアリング制御を行うステアリングネットワークシステムにおいて、同様の手法を採用することもできる。また、実施形態1〜3で説明したような車両全体にわたる車載ネットワークも、本発明に係る車載ネットワークシステムの1形態であるといえる。
<実施の形態6>
以上の実施形態1〜5では、車両および車両が搭載する車載ネットワークにおいて、同期実行ノードを選択する手法を説明した。同様の手法は、2以上の電子制御装置が時間同期をとって通信するその他の電子機器におけるネットワークシステムにおいても採用することができる。
いずれの電子制御装置を同期実行ノードとして選択するかは、その電子制御装置が故障すると当該電子機器を動作させることができなくなるか否かを基準とすればよい。故障すると当該電子機器を動作させることができなくなる電子制御装置を同期実行ノードとして選択すれば、仮にその電子制御装置が故障して時間同期を取ることができなくなっても、当該電子機器自体も停止するので、特段の支障はない。すなわち、実施形態1〜5と同様の効果を発揮することができる。
また、以上の実施形態1〜5では、通信プロトコルとしてFlexRayを想定したが、2以上の通信ノードが時間同期を確立する通信プロトコルを用いるその他のネットワークにおいても、本発明と同様の手法を用いることができる。
また、以上の実施形態1〜5において、2以上のECUの機能を組み合わせることによって各ECUの機能を実現してもよい。例えば、いずれかのECUからインバータ制御ECUに対して制御命令を送信し、これら2つのECUの組合せによってインバータを制御するようにしてもよい。
1、2:前輪、3、4:後輪、10:ステアリング制御ECU、11:制御線、12:ステアリング用インバータ、13:グランド線、14:PWM線、15:電動アシストモータ、16:ステアリング装置、20:エアコン制御ECU、21:制御線、22:エアコン、23:グランド線、30:インバータ制御ECU、31:制御線、32:インバータ、33:グランド線、34:PWM線、35:モータ、36:プロペラシャフト、37:リアデファレンシャル、38、39:ドライブシャフト、40:バッテリ制御ECU、41:制御線、42:バッテリ、43:グランド線、44:電源線、50:車載ネットワーク、51:時間同期情報を含むフレーム、53:時間同期情報を含むフレーム、220a〜220e:送受信回路、230a〜230e:マイコン、231a〜231e:通信コントローラ、232a〜232e:ROM、233a〜233e:RAM、234a〜234e:演算器、61、62:前輪、63、64:後輪、70:ステアリング制御ECU、71:制御線、72:ステアリング用インバータ、73:グランド線、74:PWM線、75:電動アシストモータ、76:ステアリング装置、80:エンジン制御ECU、81:制御線、82:エンジン、83:エンジン出力軸、90:エアコン制御ECU、91:制御線、92:エアコン、93:グランド線、100:インバータ制御ECU、101:制御線、102:インバータ、103:グランド線、104:PWM線、105:モータ、106:モータ出力軸、110:バッテリ制御ECU、111:制御線、112:バッテリ、113:グランド線、114:電源線、120:変速機制御ECU、121:制御線、122:変速機、123:プロペラシャフト、124:リアデファレンシャル、125、126:ドライブシャフト、130:車載ネットワーク、131:時間同期情報を含むフレーム、133:時間同期情報を含むフレーム、135:時間同期情報を含むフレーム、140:パワーウィンドウ制御ECU、141:制御線、142:パワーウィンドウ、143:グランド線、150:パワーウィンドウ制御ECU、151:制御線、152:パワーウィンドウ、153:グランド線、160:ブレーキサブネットワーク、170:ブレーキペダル、171:制動センサ、172:信号線、173:ブレーキペダル制御ECU、180:ブレーキディスク、181:制動器、182:電動モータ、183:PWM信号線、184:インバータ、185:信号線、186:前輪のブレーキ制御ECU、190:ブレーキディスク、191:制動器、192:電動モータ、193:PWM信号線、194:インバータ、195:信号線、200:ブレーキディスク、201:制動器、202:電動モータ、203:PWM信号線、204:インバータ、205:信号線、206:後輪のブレーキ制御ECU、210:ブレーキディスク、211:制動器、212:電動モータ、213:PWM信号線、214:インバータ、215:信号線、220:ブレーキ動作表示器、221:信号線、222:パネル表示制御ECU。

Claims (7)

  1. 自動車のブレーキを制御するブレーキネットワークシステムであって、
    前記ブレーキの動作を制御するブレーキ電子制御装置と、
    その他の電子制御を行う1以上の電子制御装置と、
    各前記電子制御装置が通信する際に用いるブレーキネットワークと、
    を備え、
    各前記電子制御装置のうちいずれか2以上は、時間同期情報を含む通信フレームを相互に送受信することにより時間同期通信を確立する同期実行ノードとして構成され、その他の前記電子制御装置は、確立された前記時間同期通信にしたがって時間同期通信を実行するように構成されており、
    前記同期実行ノードのうち2つ以上は、各前記電子制御装置のうち、前記自動車の走行に関する電子制御を行う電子制御装置のみのなかから選択されており、故障していない前記同期実行ノードが1つ以下になると前記自動車の走行に関する電子制御を行う電子制御装置はその他の前記電子制御装置と通信することができなくなるように構成されている
    ことを特徴とする自動車ブレーキネットワークシステム。
  2. 前記ブレーキ電子制御装置は、
    前記自動車の車輪が備える車輪ブレーキを制御する車輪ブレーキ電子制御装置と、
    前記自動車が備えるブレーキペダルが踏み込まれた量を計測するブレーキペダル電子制御装置と、
    を備え、
    前記車輪ブレーキ電子制御装置、および前記ブレーキペダル電子制御装置が、前記同期実行ノードとして選択されている
    ことを特徴とする請求項1記載の自動車ブレーキネットワークシステム。
  3. 前記車輪ブレーキ電子制御装置は、
    前記自動車の前輪が備えるブレーキを制御する前輪ブレーキ電子制御装置と、
    前記自動車の後輪が備えるブレーキを制御する後輪ブレーキ電子制御装置と、
    によって構成されており、
    前記前輪ブレーキ電子制御装置、および後輪ブレーキ電子制御装置が、前記同期実行ノードとして選択されている
    ことを特徴とする請求項2記載の自動車ブレーキネットワークシステム。
  4. 自動車の動作を制御する複数の電子制御装置と、
    前記電子制御装置を接続する車載ネットワークと、
    を備え、
    前記電子制御装置のうちいずれか2以上は、時間同期情報を含む通信フレームを相互に送受信することにより時間同期通信を確立する同期実行ノードとして構成され、その他の前記電子制御装置は、確立された前記時間同期通信にしたがって時間同期通信を実行するように構成されており、
    前記同期実行ノードのうち2つ以上は、前記電子制御装置のうち、前記自動車の走行または動力の少なくともいずれかに関する電子制御を行う電子制御装置のみのなかから選択されており、故障していない前記同期実行ノードが1つ以下になると前記自動車の走行または動力に関する電子制御を行う電子制御装置はその他の前記電子制御装置と通信することができなくなるように構成されている
    ことを特徴とする車載ネットワークシステム。
  5. 電力を動力源として用いる電気自動車であって、
    電力を供給するバッテリと、
    前記バッテリを制御するバッテリ電子制御装置と、
    前記バッテリが供給する電力を用いて動作するモータと、
    前記モータを駆動するインバータと、
    前記インバータを制御するインバータ電子制御装置と、
    当該電気自動車のステアリング動作を補助するステアリングモータと、
    前記ステアリングモータを駆動するステアリングインバータと、
    前記ステアリングインバータを制御するステアリングインバータ電子制御装置と、
    その他の電子制御を行う1以上の電子制御装置と、
    各前記電子制御装置が通信する際に用いる車内ネットワークと、
    を備え、
    各前記電子制御装置のうちいずれか2以上は、時間同期情報を含む通信フレームを相互に送受信することにより時間同期通信を確立する同期実行ノードとして構成され、その他の前記電子制御装置は、確立された前記時間同期通信にしたがって時間同期通信を実行するように構成されており、
    前記同期実行ノードのうち2つ以上は、各前記電子制御装置のうち、当該電気自動車の走行または動力の少なくともいずれかに関する電子制御を行う電子制御装置のみのなかから選択されており、故障していない前記同期実行ノードが1つ以下になると当該電気自動車の走行または動力に関する電子制御を行う電子制御装置はその他の前記電子制御装置と通信することができなくなるように構成されている
    ことを特徴とする電気自動車。
  6. 電力と燃料を動力源として用いるハイブリッド自動車であって、
    電力を供給するバッテリと、
    前記バッテリを制御するバッテリ電子制御装置と、
    前記バッテリが供給する電力を用いて動作するモータと、
    前記モータを駆動するインバータと、
    前記インバータを制御するインバータ電子制御装置と、
    当該ハイブリッド自動車のステアリング動作を補助するステアリングモータと、
    前記ステアリングモータを駆動するステアリングインバータと、
    前記ステアリングインバータを制御するステアリングインバータ電子制御装置と、
    前記燃料を燃焼させるエンジンと、
    前記エンジンを制御するエンジン電子制御装置と、
    当該ハイブリッド自動車の変速比を変更する変速機と、
    前記変速機を制御する変速機電子制御装置と、
    その他の電子制御を行う1以上の電子制御装置と、
    各前記電子制御装置が通信する際に用いる車内ネットワークと、
    を備え、
    各前記電子制御装置のうちいずれか2以上は、時間同期情報を含む通信フレームを相互に送受信することにより時間同期通信を確立する同期実行ノードとして構成され、その他の前記電子制御装置は、確立された前記時間同期通信にしたがって時間同期通信を実行するように構成されており、
    前記同期実行ノードのうち2つ以上は、各前記電子制御装置のうち、当該ハイブリッド自動車の走行または動力の少なくともいずれかに関する電子制御を行う電子制御装置のみのなかから選択されており、故障していない前記同期実行ノードが1つ以下になると当該ハイブリッド自動車の走行または動力に関する電子制御を行う電子制御装置はその他の前記電子制御装置と通信することができなくなるように構成されている
    ことを特徴とするハイブリッド自動車。
  7. 燃料を動力源として用いる自動車であって、
    前記燃料を燃焼させるエンジンと、
    前記エンジンを制御するエンジン電子制御装置と、
    当該自動車の変速比を変更する変速機と、
    前記変速機を制御する変速機電子制御装置と、
    その他の電子制御を行う1以上の電子制御装置と、
    各前記電子制御装置が通信する際に用いる車内ネットワークと、
    を備え、
    各前記電子制御装置のうちいずれか2以上は、時間同期情報を含む通信フレームを相互に送受信することにより時間同期通信を確立する同期実行ノードとして構成され、その他の前記電子制御装置は、確立された前記時間同期通信にしたがって時間同期通信を実行するように構成されており、
    前記同期実行ノードのうち2つ以上は、各前記電子制御装置のうち、当該自動車の走行または動力の少なくともいずれかに関する電子制御を行う電子制御装置のみのなかから選択されており、故障していない前記同期実行ノードが1つ以下になると当該自動車の走行または動力に関する電子制御を行う電子制御装置はその他の前記電子制御装置と通信することができなくなるように構成されている
    ことを特徴とする自動車。
JP2010147904A 2010-06-29 2010-06-29 電気自動車、ハイブリッド自動車、自動車、自動車ブレーキネットワークシステム、車載ネットワークシステム Active JP5635314B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010147904A JP5635314B2 (ja) 2010-06-29 2010-06-29 電気自動車、ハイブリッド自動車、自動車、自動車ブレーキネットワークシステム、車載ネットワークシステム
US13/170,332 US20110320081A1 (en) 2010-06-29 2011-06-28 Electric Automobile, Hybrid Automobile, Automobile, Automobile Brake Network System, In-Vehicle Network System, and Electronic Control Network System
EP11171892.0A EP2402203B1 (en) 2010-06-29 2011-06-29 Electric automobile, hybrid automobile, automobile, automobile brake network system, in-vehicle network system, and electronic control network system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010147904A JP5635314B2 (ja) 2010-06-29 2010-06-29 電気自動車、ハイブリッド自動車、自動車、自動車ブレーキネットワークシステム、車載ネットワークシステム

Publications (3)

Publication Number Publication Date
JP2012011824A JP2012011824A (ja) 2012-01-19
JP2012011824A5 JP2012011824A5 (ja) 2012-10-25
JP5635314B2 true JP5635314B2 (ja) 2014-12-03

Family

ID=44720542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010147904A Active JP5635314B2 (ja) 2010-06-29 2010-06-29 電気自動車、ハイブリッド自動車、自動車、自動車ブレーキネットワークシステム、車載ネットワークシステム

Country Status (3)

Country Link
US (1) US20110320081A1 (ja)
EP (1) EP2402203B1 (ja)
JP (1) JP5635314B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101744778B1 (ko) 2015-12-11 2017-06-20 현대오트론 주식회사 이더넷 네트워크에서 avb를 이용한 데이터 전송 방법

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2985051B1 (fr) * 2011-12-21 2016-12-09 Continental Automotive France Procede de diagnostic pour dispositif de commande d'un vehicule automobile a moteur electrique propulsif et dispositif associe
CN103185832B (zh) * 2011-12-31 2016-06-29 上海汽车集团股份有限公司 汽车中的霍尔传感器温度补偿方法和相关的霍尔传感器
EP2832070B1 (en) * 2012-03-29 2020-05-20 Arilou Information Security Technologies Ltd. Device for protecting a vehicle electronic system
JP5715107B2 (ja) * 2012-10-29 2015-05-07 富士通テン株式会社 制御システム
JP5919205B2 (ja) * 2013-01-28 2016-05-18 日立オートモティブシステムズ株式会社 ネットワーク装置およびデータ送受信システム
JP6500123B2 (ja) * 2015-11-25 2019-04-10 日立オートモティブシステムズ株式会社 車載ゲートウェイ装置、及び車載ネットワークシステム
JP6280662B2 (ja) * 2016-07-05 2018-02-14 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 不正制御抑止方法、不正制御抑止装置及び車載ネットワークシステム
CN108382325B (zh) * 2018-02-12 2019-11-22 威马智慧出行科技(上海)有限公司 汽车电动尾门高度设置方法、电子设备及存储介质
JP7238650B2 (ja) 2019-07-09 2023-03-14 トヨタ自動車株式会社 車載ネットワークシステム
US11343138B2 (en) * 2020-04-23 2022-05-24 GM Global Technology Operations LLC Method and apparatus for fault tolerant ethernet time synchronization
JP6936380B1 (ja) * 2020-12-28 2021-09-15 本田技研工業株式会社 車両制御システム、および車両制御方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053964A (en) * 1989-07-17 1991-10-01 Utdc, Inc. On-board integrated vehicle control and communication system
US5293632A (en) * 1992-03-18 1994-03-08 Aeg Transportation Systems, Inc. Method and apparatus for load shedding using a trainline monitor system
SE525273C2 (sv) * 2002-01-07 2005-01-18 Kvaser Consultant Ab Distribuerat styr- och övervakningssystem
US7181644B2 (en) * 2002-01-11 2007-02-20 Delphi Technologies, Inc. Method for synchronizing data utilized in redundant, closed loop control systems
ES2228262B1 (es) * 2003-06-20 2006-02-16 Sistemas Integrados Para La Automocion, S.L. Sistema de cableado digital para vehiculos.
JP2006094689A (ja) * 2004-08-25 2006-04-06 Toyota Motor Corp 電気自動車およびこの制御方法
WO2007068002A2 (en) * 2005-12-09 2007-06-14 Tego Inc. Multiple radio frequency network node rfid tag
JP2008103922A (ja) * 2006-10-18 2008-05-01 Denso Corp 通信システム及び通信装置
WO2008053277A1 (en) * 2006-10-31 2008-05-08 Freescale Semiconductor, Inc. Network and method for setting a time-base of a node in the network
GB2444528B (en) * 2006-12-09 2011-07-06 Converteam Ltd Methods for synchronising a plurality of generators
JP2008207679A (ja) * 2007-02-27 2008-09-11 Hitachi Ltd 電動ブレーキ装置およびその制御方法
EP2015182A3 (en) * 2007-05-30 2010-03-24 Hitachi Ltd. Distributed system
JP2009012613A (ja) 2007-07-04 2009-01-22 Nsk Ltd 電動パワーステアリング装置
US8130773B2 (en) * 2008-06-25 2012-03-06 Honeywell International Inc. Hybrid topology ethernet architecture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101744778B1 (ko) 2015-12-11 2017-06-20 현대오트론 주식회사 이더넷 네트워크에서 avb를 이용한 데이터 전송 방법

Also Published As

Publication number Publication date
US20110320081A1 (en) 2011-12-29
JP2012011824A (ja) 2012-01-19
EP2402203A3 (en) 2018-03-21
EP2402203B1 (en) 2023-05-10
EP2402203A2 (en) 2012-01-04

Similar Documents

Publication Publication Date Title
JP5635314B2 (ja) 電気自動車、ハイブリッド自動車、自動車、自動車ブレーキネットワークシステム、車載ネットワークシステム
CN104205003B (zh) 尤其在车辆中以高可用性来运行至少两个数据处理单元的方法以及用于运行机器的装置
JP6694325B2 (ja) 車両制御システム
US9434330B2 (en) Method for controlling vehicle driving
CN102481920B (zh) 混合动力车辆的发动机启动控制装置
CN103863302B (zh) 起动电机故障时控制混合动力车发动机起动的方法和系统
JP4562195B2 (ja) ハイブリッド電気自動車の変速制御装置
JP5373371B2 (ja) ハイブリッド電気自動車の制御装置
WO2013186924A1 (ja) ハイブリッド車両用駆動装置
CN102328655B (zh) 一种基于FlexRay总线的车用混合动力系统
CN101011966A (zh) 包括动力输出设备的车辆及用于其的控制单元和方法
JP6537832B2 (ja) 電気自動車の異常対応制御装置
CN102354196A (zh) 一种混合动力汽车内部网络架构
JP2011105024A (ja) ハイブリッド自動車の変速制御装置
JP2013213518A (ja) 車両用駆動装置及び車両用駆動装置の制御方法
JP2013071721A (ja) ハイブリッド電気自動車の制御装置
US20190366956A1 (en) Vehicle power and control method thereof
JP2007261415A (ja) ハイブリッド自動車の制御装置
CN106470861B (zh) 用于混合动力车辆的控制混和动力驱动系统的控制方法
JP6236674B2 (ja) 電気自動車の制御システム
JP2015160462A (ja) ハイブリッド自動車の変速制御方法
JP2009266494A (ja) 駆動装置およびこれを搭載するハイブリッド車並びに駆動装置の制御方法
CN110901368A (zh) 混合动力驱动系统及方法
JP6221763B2 (ja) 車両用駆動力配分装置の制御装置
JP5948109B2 (ja) 車両用駆動装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120910

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140530

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141016

R150 Certificate of patent or registration of utility model

Ref document number: 5635314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250