JP5630152B2 - Waste liquid treatment equipment - Google Patents

Waste liquid treatment equipment Download PDF

Info

Publication number
JP5630152B2
JP5630152B2 JP2010194818A JP2010194818A JP5630152B2 JP 5630152 B2 JP5630152 B2 JP 5630152B2 JP 2010194818 A JP2010194818 A JP 2010194818A JP 2010194818 A JP2010194818 A JP 2010194818A JP 5630152 B2 JP5630152 B2 JP 5630152B2
Authority
JP
Japan
Prior art keywords
waste liquid
reactor
water
treatment apparatus
liquid treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010194818A
Other languages
Japanese (ja)
Other versions
JP2012050920A (en
Inventor
村田 省蔵
省蔵 村田
典晃 岡田
典晃 岡田
秀之 宮澤
秀之 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2010194818A priority Critical patent/JP5630152B2/en
Publication of JP2012050920A publication Critical patent/JP2012050920A/en
Application granted granted Critical
Publication of JP5630152B2 publication Critical patent/JP5630152B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、廃液処理装置に関する。   The present invention relates to a waste liquid treatment apparatus.

従来、廃液を処理する方法としては、焼却処理、生物処理等の方法が知られている。しかしながら、焼却処理は、前処理の脱水や固形分凝集において、エネルギーや薬品が必要となり、不完全燃焼によりダイオキシン類が発生するという問題があった。また、生物処理は、処理時間が長く、処理後に発生する活性汚泥が新たな廃棄物となるという問題があった。   Conventionally, methods such as incineration and biological treatment are known as methods for treating waste liquid. However, the incineration process has a problem that energy and chemicals are required in the pretreatment dehydration and solid content aggregation, and dioxins are generated due to incomplete combustion. In addition, the biological treatment has a problem that the treatment time is long and the activated sludge generated after the treatment becomes a new waste.

そこで、亜臨界水、過熱水蒸気、超臨界水等の熱水中で廃液を処理する方法が知られている。   Therefore, a method for treating a waste liquid in hot water such as subcritical water, superheated steam, or supercritical water is known.

特許文献1には、電力用トランスやコンデンサなどの電力機器に含まれるPCBを無害化処理するPCB処理方法が開示されている。このPCB処理方法は、電力用トランス或いはコンデンサなどの電力機器の構成材を分割破砕する工程と、分割破砕した破砕片からPCBに汚染された紙、木或いは樹脂などの有機廃棄物を他の構成材から分離して取り出す工程と、取り出した有機廃棄物を水熱分解処理または超臨界水酸化処理する工程を含む。   Patent Document 1 discloses a PCB processing method for detoxifying PCB contained in power equipment such as a power transformer and a capacitor. This PCB processing method includes a step of dividing and crushing components of power equipment such as a power transformer or a capacitor, and organic waste such as paper, wood or resin contaminated by PCB from the divided and crushed pieces. A step of separating the material from the material and a step of hydrothermal decomposition or supercritical water oxidation of the extracted organic waste.

一方、有機廃棄物を水熱分解処理または超臨界水酸化処理する反応器は、耐食性が必要とされる。   On the other hand, a reactor for hydrothermal decomposition treatment or supercritical water oxidation treatment of organic waste is required to have corrosion resistance.

特許文献2には、外管の内側に内管を挿入して外管と内管とを重ね合わせて結合する二重管の製造方法が開示されている。このとき、外管の材料は、炭素鋼、低合金鋼又はオーステナイト系ステンレス鋼であり、内管の材料は、外管の材料よりも熱膨張係数が小さいTi又はZrである。   Patent Document 2 discloses a method of manufacturing a double tube in which an inner tube is inserted inside an outer tube and the outer tube and the inner tube are overlapped and joined. At this time, the material of the outer tube is carbon steel, low alloy steel or austenitic stainless steel, and the material of the inner tube is Ti or Zr having a smaller thermal expansion coefficient than the material of the outer tube.

しかしながら、有機廃棄物を水熱分解処理または超臨界水酸化処理する反応器に適用すると、蒸気がリークするという問題がある。   However, when the organic waste is applied to a reactor for hydrothermal decomposition treatment or supercritical water oxidation treatment, there is a problem that steam leaks.

本発明は、上記従来技術が有する問題に鑑み、水を亜臨界水、過熱水蒸気又は超臨界水に変化させても、蒸気のリークを抑制することが可能な廃液処理装置を提供することを目的とする。   An object of the present invention is to provide a waste liquid treatment apparatus capable of suppressing steam leakage even when water is changed to subcritical water, superheated steam or supercritical water. And

請求項1に記載の発明は、水及び有機物を含む廃液を処理する廃液処理装置であって、前記水を亜臨界水、過熱水蒸気又は超臨界水に変化させると共に、前記有機物を酸化させる反応器と、前記反応器に前記廃液を供給する廃液供給手段と、前記反応器に酸化剤を供給する酸化剤供給手段と、前記反応器を加熱する加熱手段を有し、前記反応器は、外管と内管が接合されている二重管を有し、前記外管及び前記内管の25℃における線膨張係数をそれぞれα [℃ −1 及びα [℃ −1 、前記加熱手段により加熱される前記反応器の内部の温度をT[℃]とすると、式
α<α
0<(α−α)×(T−25)≦2×10−3
を満たし、前記反応器は、前記廃液が供給される側及び前記有機物が酸化した廃液が排出される側に、継手部材をさらに有し、前記加熱手段は、前記継手部材を加熱しないことを特徴とする。
The invention according to claim 1 is a waste liquid treatment apparatus for treating a waste liquid containing water and organic matter, wherein the water is changed to subcritical water, superheated steam or supercritical water, and the organic matter is oxidized. A waste liquid supply means for supplying the waste liquid to the reactor, an oxidant supply means for supplying an oxidant to the reactor, and a heating means for heating the reactor, wherein the reactor has an outer tube And the inner tube and the outer tube and the inner tube have linear expansion coefficients at 25 ° C. of α 1 [° C. −1 ] and α 2 [° C. −1 ] , respectively, and the heating means. Assuming that the temperature inside the reactor heated by T is T [° C.] , the formula α 12
0 <(α 2 −α 1 ) × (T−25) ≦ 2 × 10 −3
Meets the reactor, on the side where the waste liquid side and the organic material is oxidized liquid waste is supplied is discharged, further comprising a joint member, said heating means, not to heat the joint member Features.

請求項2に記載の発明は、請求項1に記載の廃液処理装置において、前記内管は、チタン、タンタル、チタン・パラジウム合金又はニッケル合金を含むことを特徴とする。   According to a second aspect of the present invention, in the waste liquid treatment apparatus according to the first aspect, the inner tube includes titanium, tantalum, a titanium-palladium alloy, or a nickel alloy.

請求項3に記載の発明は、請求項1又は2に記載の廃液処理装置において、前記外管と前記内管が拡散接合又はろう付けにより接合されていることを特徴とする。   According to a third aspect of the present invention, in the waste liquid treatment apparatus according to the first or second aspect, the outer tube and the inner tube are joined by diffusion joining or brazing.

請求項に記載の発明は、請求項1乃至3のいずれか一項に記載の廃液処理装置において、前記反応器は、前記継手部材を断熱する断熱部材をさらに有することを特徴とする。 According to a fourth aspect of the present invention, in the waste liquid treatment apparatus according to any one of the first to third aspects, the reactor further includes a heat insulating member that insulates the joint member.

本発明によれば、水を亜臨界水、過熱水蒸気又は超臨界水に変化させても、蒸気のリークを抑制することが可能な廃液処理装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if it changes water into subcritical water, superheated steam, or supercritical water, the waste liquid processing apparatus which can suppress a leak of a steam can be provided.

本発明の廃液処理装置の一例を示す図である。It is a figure which shows an example of the waste liquid processing apparatus of this invention. 図1の反応器を示す断面図である。It is sectional drawing which shows the reactor of FIG. 図1の廃液処理装置の部分拡大図である。It is the elements on larger scale of the waste liquid processing apparatus of FIG.

次に、本発明を実施するための形態を図面と共に説明する。   Next, the form for implementing this invention is demonstrated with drawing.

図1に、本発明の廃液処理装置の一例を示す。水及び有機物を含む廃液21aを処理する廃液処理装置100は、水を亜臨界水、過熱水蒸気又は超臨界水に変化させると共に、有機物を酸化させる反応器10と、反応器10に廃液21aを供給する廃液供給部20と、反応器10に空気を供給する空気供給部30と、反応器10に供給される廃液21a及び空気を予熱する予熱器40と、反応器10を加熱するヒーター50と、反応器10から排出された有機物が酸化した廃液と熱交換する熱交換器60と、反応器10から排出された有機物が酸化した廃液を気液分離する気液分離部70を有する。   FIG. 1 shows an example of the waste liquid treatment apparatus of the present invention. The waste liquid treatment apparatus 100 for treating the waste liquid 21a containing water and organic matter changes the water into subcritical water, superheated steam or supercritical water, and supplies the waste liquid 21a to the reactor 10 for oxidizing the organic matter. A waste liquid supply unit 20, an air supply unit 30 for supplying air to the reactor 10, a waste liquid 21 a supplied to the reactor 10 and a preheater 40 for preheating the air, a heater 50 for heating the reactor 10, It has a heat exchanger 60 for exchanging heat with the waste liquid oxidized from the organic matter discharged from the reactor 10, and a gas-liquid separation unit 70 for gas-liquid separation of the waste liquid oxidized from the organic matter discharged from the reactor 10.

反応器10は、図2及び図3に示すように、外管11aと内管11bが接合されている二重管11の廃液21aが供給される側及び有機物が酸化した廃液が排出される側に、それぞれ継手部材12A及び12Bが設置されている。また、二重管11の有機物が酸化した廃液が排出される側の端部の近傍に、酸化触媒として、MnO(不図示)が充填されている。このとき、ヒーター50は、二重管11の外面に設置されており、継手部材12A及び12Bを加熱しないように設置されているため、継手部材12A及び12Bの耐久性を向上させることができる。 As shown in FIGS. 2 and 3, the reactor 10 includes a side where the waste liquid 21 a of the double pipe 11 where the outer pipe 11 a and the inner pipe 11 b are joined and a side where the waste liquid where organic matter is oxidized is discharged. In addition, joint members 12A and 12B are respectively installed. Further, MnO 2 (not shown) is filled as an oxidation catalyst in the vicinity of the end portion on the side where the waste liquid in which the organic matter in the double pipe 11 is oxidized is discharged. At this time, since the heater 50 is installed on the outer surface of the double pipe 11 and is installed so as not to heat the joint members 12A and 12B, the durability of the joint members 12A and 12B can be improved.

さらに、継手部材12A及び12Bには、グラスウール13A及び13Bが設置されているため、反応器10の内部の温度を均一にすることができる。   Furthermore, since glass wool 13A and 13B are installed in the joint members 12A and 12B, the temperature inside the reactor 10 can be made uniform.

なお、グラスウール13A及び13Bの代わりに、ロックウール、発泡ガラス、フェノールフォーム、セルロースファイバー等の断熱部材を用いてもよい。   Note that heat insulating members such as rock wool, foamed glass, phenol foam, and cellulose fiber may be used instead of the glass wool 13A and 13B.

また、継手部材12A及び12Bを断熱しなくても、廃液21aに含まれる有機物を十分に酸化できる場合は、グラスウール13A及び13Bを設置しなくてもよい。   Further, if the organic matter contained in the waste liquid 21a can be sufficiently oxidized without insulating the joint members 12A and 12B, the glass wool 13A and 13B need not be installed.

反応器10の内部の温度は、温度センサTにより検知され、所定の温度になるようにヒーター50が制御される。   The temperature inside the reactor 10 is detected by the temperature sensor T, and the heater 50 is controlled so as to reach a predetermined temperature.

このとき、外管11a及び内管11bの25℃における線膨張係数をそれぞれα及びα、ヒーター50により加熱される反応器10の内部の温度をTとすると、式
α<α
を満たし、式
(α−α)×(T−25)・・・(1)
の値が0〜2×10−3であり、5×10−4〜1.5×10−3が好ましい。式(1)の値が0以下である場合又は2×10−3を超える場合は、水を亜臨界水、過熱水蒸気又は超臨界水に変化させると、外管11aと内管11bがずれたり、剥離したりして、蒸気がリークする。
At this time, if the linear expansion coefficients at 25 ° C. of the outer tube 11a and the inner tube 11b are α 1 and α 2 , respectively, and the temperature inside the reactor 10 heated by the heater 50 is T, the equation α 12
Is satisfied, and the formula (α 2 −α 1 ) × (T−25) (1)
Is 0 to 2 × 10 −3 , and preferably 5 × 10 −4 to 1.5 × 10 −3 . When the value of the formula (1) is 0 or less or exceeds 2 × 10 −3 , if the water is changed to subcritical water, superheated steam or supercritical water, the outer tube 11a and the inner tube 11b may be shifted. , Peeling or vapor leaks.

ヒーター50により加熱される反応器10の内部の温度Tは、通常、100〜700℃であり、200〜600℃が好ましい。   The temperature T inside the reactor 10 heated by the heater 50 is usually 100 to 700 ° C, preferably 200 to 600 ° C.

外管11aを構成する材料としては、耐熱性及び耐圧性に優れる材料であれば、特に限定されないが、コバール合金、低熱膨張超耐熱合金HRA929(日立金属社製)等が挙げられる。   The material constituting the outer tube 11a is not particularly limited as long as it is a material excellent in heat resistance and pressure resistance, and examples thereof include Kovar alloy, low thermal expansion super heat resistant alloy HRA929 (manufactured by Hitachi Metals) and the like.

内管11bを構成する材料としては、耐熱性及び耐食性に優れる材料であれば、特に限定されないが、チタン、タンタル、チタン・パラジウム合金、ニッケル合金等が挙げられる。   The material constituting the inner tube 11b is not particularly limited as long as it is a material excellent in heat resistance and corrosion resistance, and examples thereof include titanium, tantalum, titanium / palladium alloy, and nickel alloy.

外管11aと内管11bを接合する方法としては、特に限定されないが、溶接接合、固相接合等が挙げられる。中でも、耐久性に優れることから、拡散接合、ろう付けが好ましい。   A method for joining the outer tube 11a and the inner tube 11b is not particularly limited, and examples thereof include welding joining and solid phase joining. Among these, diffusion bonding and brazing are preferable because of excellent durability.

外管11aと内管11bを拡散接合により接合する方法としては、特に限定されないが、熱間静水圧加圧(HIP)等が挙げられる。   A method for joining the outer tube 11a and the inner tube 11b by diffusion bonding is not particularly limited, and examples thereof include hot isostatic pressing (HIP).

外管11aの内径と内管11bの外径の差は、通常、3〜15mmであり、5〜10mmが好ましい。外管11aの内径と内管11bの外径の差が3mm未満であると、外管11a内に内管11bを挿入しにくくなることがあり、15mmを超えると、外管11aと内管11bを接合しにくくなることがある。   The difference between the inner diameter of the outer tube 11a and the outer diameter of the inner tube 11b is usually 3 to 15 mm, preferably 5 to 10 mm. If the difference between the inner diameter of the outer tube 11a and the outer diameter of the inner tube 11b is less than 3 mm, it may be difficult to insert the inner tube 11b into the outer tube 11a. If the difference exceeds 15 mm, the outer tube 11a and the inner tube 11b May be difficult to join.

ヒーター50としては、特に限定されないが、ラバーヒーター、バンドヒーター、セラミックヒーター、ハロゲンヒーター、シーズヒーター、オイルヒーター等が挙げられる。   Although it does not specifically limit as the heater 50, A rubber heater, a band heater, a ceramic heater, a halogen heater, a sheathed heater, an oil heater etc. are mentioned.

廃液供給部20は、廃液21aが貯蔵されているタンク21と、廃液21aを圧縮してタンク21から反応器10に連続供給するポンプ22と、開閉弁23を有する。このとき、タンク21には、攪拌羽根21bが設置されており、廃液21aを攪拌することができる。また、反応器10に供給される廃液21aの圧力は、圧力センサPにより検知され、所定の圧力になるようにポンプ22が制御される。 The waste liquid supply unit 20 includes a tank 21 in which the waste liquid 21 a is stored, a pump 22 that compresses the waste liquid 21 a and continuously supplies the waste liquid 21 a to the reactor 10, and an on-off valve 23. At this time, the stirring blade 21b is installed in the tank 21, and the waste liquid 21a can be stirred. The pressure of the waste liquid 21a to be supplied to the reactor 10 is detected by the pressure sensor P 1, the pump 22 is controlled to a predetermined pressure.

反応器10に供給される廃液21aの圧力は、通常、1〜50MPaであり、5〜35MPaが好ましい。   The pressure of the waste liquid 21a supplied to the reactor 10 is usually 1 to 50 MPa, and preferably 5 to 35 MPa.

空気供給部30は、空気を廃液が供給される圧力以上に圧縮して反応器10に連続供給するコンプレッサー31と、開閉弁32を有する。このとき、反応器10に供給される空気の圧力は、圧力センサPにより検知され、所定の圧力になるようにコンプレッサー31が制御される。 The air supply unit 30 includes a compressor 31 that compresses air to a pressure equal to or higher than the pressure at which the waste liquid is supplied and continuously supplies the compressed air to the reactor 10, and an on-off valve 32. At this time, the pressure of the air supplied to the reactor 10 is detected by the pressure sensor P 2, the compressor 31 to a predetermined pressure is controlled.

以上のようにして、反応器10では、廃液供給部20から供給された廃液21aと、空気供給部30から導入された空気が混合される。このとき、廃液21a及び空気は、予熱器40により予熱される。次に、ヒーター50により加熱されて、廃液21aに含まれる水が亜臨界水、過熱水蒸気又は超臨界水に変化されると共に、廃液21aに含まれる有機物が酸化されて低分子化される。さらに、低分子化された有機物は、MnOの触媒作用により完全酸化される。 As described above, in the reactor 10, the waste liquid 21 a supplied from the waste liquid supply unit 20 and the air introduced from the air supply unit 30 are mixed. At this time, the waste liquid 21 a and air are preheated by the preheater 40. Next, it is heated by the heater 50, and the water contained in the waste liquid 21a is changed to subcritical water, superheated steam or supercritical water, and the organic matter contained in the waste liquid 21a is oxidized and reduced in molecular weight. Furthermore, the organic substance reduced in molecular weight is completely oxidized by the catalytic action of MnO 2 .

熱交換器60には、水61が貯蔵されているため、反応器10から排出された有機物が酸化した廃液が水61と熱交換することにより、水蒸気が発生する。   Since the water 61 is stored in the heat exchanger 60, the waste liquid obtained by oxidizing the organic matter discharged from the reactor 10 exchanges heat with the water 61 to generate water vapor.

気液分離部70は、熱交換器60から排出された有機物が酸化した廃液を大気圧まで減圧する背圧弁71と、減圧された有機物が酸化した廃液を気液分離する気液分離器72を有する。このとき、気液分離器72は、減圧された有機物が酸化した廃液を、無機酸等を僅かに含む水と、二酸化炭素ガス、窒素ガス等を含む気体に分離し、無機酸等を僅かに含む水が回収される。無機酸等を僅かに含む水は、水質基準を確認した後、工業用水として再利用される。   The gas-liquid separation unit 70 includes a back pressure valve 71 that depressurizes the waste liquid that has been oxidized by the organic matter discharged from the heat exchanger 60 to atmospheric pressure, and a gas-liquid separator 72 that gas-liquid separates the waste liquid that has been oxidized by the depressurized organic substance. Have. At this time, the gas-liquid separator 72 separates the waste liquid obtained by oxidizing the reduced-pressure organic matter into water containing a slight amount of inorganic acid, etc., and a gas containing carbon dioxide gas, nitrogen gas, etc. Contained water is recovered. Water that contains a small amount of inorganic acid or the like is reused as industrial water after confirming water quality standards.

なお、MnOの代わりに、Pt、Ir、Ag、Pd、Rh、Ru、Cu、Ni、Co、Fe、W、PdO、PtO、PtO、AgO、RuO、CuO、Co、NiO、Fe、VO5、Cr、CdO、CeO、Al、ThO等を用いてもよい。 In place of MnO 2 , Pt, Ir, Ag, Pd, Rh, Ru, Cu, Ni, Co, Fe, W, PdO, PtO, PtO 2 , Ag 2 O, RuO 2 , CuO, Co 3 O 4 NiO, Fe 2 O 3 , V 2 O 5, Cr 2 O 3 , CdO, CeO 2 , Al 2 O 3 , ThO 2, or the like may be used.

また、反応器10に空気を供給する空気供給部30の代わりに、反応器10にオゾンを供給するオゾン供給部、反応器10に過酸化水素水を供給する過酸化水素水供給部等を用いてもよい。   Further, instead of the air supply unit 30 for supplying air to the reactor 10, an ozone supply unit for supplying ozone to the reactor 10, a hydrogen peroxide solution supply unit for supplying hydrogen peroxide solution to the reactor 10, etc. are used. May be.

以下、本発明を実施例に基づいて、具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

[実施例1]
外管11aとしての、外径が12.7mm、厚さが1.24mm、長さが600mm、25℃における線膨張係数αが5.0×10−6−1のコバール合金製のチューブ及び内管11bとしての、外径が10mm、厚さが0.5mm、長さが600mm、25℃における線膨張係数αが6.3×10−6−1のタンタル製のチューブを、標準小型HIP装置に載置し、1000℃、90MPaで1時間HIP処理して拡散接合し、二重管11を得た。
[Example 1]
A tube made of Kovar alloy having an outer diameter of 12.7 mm, a thickness of 1.24 mm, a length of 600 mm, and a linear expansion coefficient α 1 at 25 ° C. of 5.0 × 10 −6 ° C. −1 as the outer tube 11a. And a tube made of tantalum having an outer diameter of 10 mm, a thickness of 0.5 mm, a length of 600 mm, and a linear expansion coefficient α 2 at 25 ° C. of 6.3 × 10 −6 ° C. −1 as the inner pipe 11b. The double tube 11 was obtained by mounting on a standard small HIP device, diffusion-bonding by HIP treatment at 1000 ° C. and 90 MPa for 1 hour.

得られた二重管11が設置されている廃液処理装置100を用いて、8質量%メタノール水溶液を処理した。このとき、二重管11の有機物が酸化した廃液が排出される側の端部の近傍にMnO5gを充填した。 Using the waste liquid treatment apparatus 100 in which the obtained double pipe 11 was installed, an 8 mass% aqueous methanol solution was treated. At this time, 5 g of MnO 2 was filled in the vicinity of the end portion on the side where the waste liquid in which the organic matter in the double pipe 11 was oxidized was discharged.

まず、開閉弁23及び32を閉じた状態で、ヒーター50を用いて反応器10を加熱した。このとき、廃液処理装置100は、ヒーター50により加熱される反応器10の内部の温度Tが410℃であるため、式(1)の値は5.0×10−4である(表1参照)。 First, the reactor 10 was heated using the heater 50 with the on-off valves 23 and 32 closed. At this time, since the temperature T inside the reactor 10 heated by the heater 50 is 410 ° C., the waste liquid treatment apparatus 100 has a value of Equation (1) of 5.0 × 10 −4 (see Table 1). ).

次に、開閉弁23及び32を開き、ポンプ22を用いて、8質量%メタノール水溶液を10MPaで反応器10に供給すると共に、コンプレッサー31を用いて、空気を10.5MPaで反応器10に供給した。このとき、8質量%メタノール水溶液の反応器10における滞留時間を1分間とした。   Next, the on-off valves 23 and 32 are opened, and an 8 mass% aqueous methanol solution is supplied to the reactor 10 at 10 MPa using the pump 22, and air is supplied to the reactor 10 at 10.5 MPa using the compressor 31. did. At this time, the residence time of the 8 mass% methanol aqueous solution in the reactor 10 was set to 1 minute.

次に、反応器10から排出された有機物が酸化した廃液は、熱交換器60に貯蔵されている水61と熱交換することにより瞬時に25℃に冷却された。さらに、冷却された有機物が酸化した廃液は、背圧弁71により減圧された後、気液分離器72により液体成分と気体成分に分離された。   Next, the waste liquid in which the organic matter discharged from the reactor 10 was oxidized was instantaneously cooled to 25 ° C. by exchanging heat with the water 61 stored in the heat exchanger 60. Further, the waste liquid in which the cooled organic matter was oxidized was decompressed by the back pressure valve 71 and then separated into a liquid component and a gas component by the gas-liquid separator 72.

気液分離器72により分離された液体成分と気体成分を分析したところ、TOC基準で99.999%の分解率が達成されていること、液体成分が水を含有すること、気体成分が二酸化炭素と水を含有することが確認された。   When the liquid component and the gas component separated by the gas-liquid separator 72 were analyzed, it was found that a 99.999% decomposition rate was achieved on the TOC basis, the liquid component contained water, and the gas component was carbon dioxide. And water were confirmed.

また、継手部材12A及び12Bから蒸気はリークしなかった。   Further, the steam did not leak from the joint members 12A and 12B.

[実施例2]
外管11aとして、外径が12.7mm、厚さが1.24mm、長さが600mm、25℃における線膨張係数αが6.0×10−6−1の低熱膨張超耐熱合金HRA929(日立金属社製)製のチューブを用いた以外は、実施例1と同様にして、二重管11を得た。
[Example 2]
As the outer tube 11a, a low thermal expansion super heat resistant alloy HRA929 having an outer diameter of 12.7 mm, a thickness of 1.24 mm, a length of 600 mm, and a linear expansion coefficient α 1 at 25 ° C. of 6.0 × 10 −6 ° C. −1. A double tube 11 was obtained in the same manner as in Example 1 except that a tube made by Hitachi Metals was used.

得られた二重管11が設置されている廃液処理装置100を用いた以外は、実施例1と同様にして、8質量%メタノール水溶液を処理した。このとき、式(1)の値は1.2×10−4である(表1参照)。 An 8% by mass aqueous methanol solution was treated in the same manner as in Example 1 except that the waste liquid treatment apparatus 100 in which the obtained double pipe 11 was installed was used. At this time, the value of the formula (1) is 1.2 × 10 −4 (see Table 1).

気液分離器72により分離された液体成分と気体成分を分析したところ、TOC基準で99.999%の分解率が達成されていること、液体成分が水を含有すること、気体成分が二酸化炭素と水を含有することが確認された。   When the liquid component and the gas component separated by the gas-liquid separator 72 were analyzed, it was found that a 99.999% decomposition rate was achieved on the TOC basis, the liquid component contained water, and the gas component was carbon dioxide. And water were confirmed.

また、継手部材12A及び12Bから蒸気はリークしなかった。   Further, the steam did not leak from the joint members 12A and 12B.

[実施例3]
内管11bとして、外径が10mm、厚さが0.5mm、長さが600mm、25℃における線膨張係数αが8.5×10−6−1のチタン製のチューブを用いた以外は、実施例2と同様にして、二重管11を得た。
[Example 3]
As the inner tube 11b, a titanium tube having an outer diameter of 10 mm, a thickness of 0.5 mm, a length of 600 mm, and a linear expansion coefficient α 2 at 25 ° C. of 8.5 × 10 −6 ° C. −1 was used. Obtained a double tube 11 in the same manner as in Example 2.

得られた二重管11が設置されている廃液処理装置100を用いた以外は、実施例1と同様にして、8質量%メタノール水溶液を処理した。このとき、式(1)の値は9.6×10−4である(表1参照)。 An 8% by mass aqueous methanol solution was treated in the same manner as in Example 1 except that the waste liquid treatment apparatus 100 in which the obtained double pipe 11 was installed was used. At this time, the value of Formula (1) is 9.6 × 10 −4 (see Table 1).

気液分離器72により分離された液体成分と気体成分を分析したところ、TOC基準で99.999%の分解率が達成されていること、液体成分が水を含有すること、気体成分が二酸化炭素と水を含有することが確認された。   When the liquid component and the gas component separated by the gas-liquid separator 72 were analyzed, it was found that a 99.999% decomposition rate was achieved on the TOC basis, the liquid component contained water, and the gas component was carbon dioxide. And water were confirmed.

また、継手部材12A及び12Bから蒸気はリークしなかった。   Further, the steam did not leak from the joint members 12A and 12B.

[実施例4]
ろう材として、Cuを用いて、ろう付けにより外管と内管を接合した以外は、実施例2と同様にして、二重管11を得た。
[Example 4]
A double tube 11 was obtained in the same manner as in Example 2 except that Cu was used as the brazing material and the outer tube and the inner tube were joined by brazing.

得られた二重管11が設置されている廃液処理装置100を用いた以外は、実施例1と同様にして、8質量%メタノール水溶液を処理した。このとき、式(1)の値は1.2×10−4である(表1参照)。 An 8% by mass aqueous methanol solution was treated in the same manner as in Example 1 except that the waste liquid treatment apparatus 100 in which the obtained double pipe 11 was installed was used. At this time, the value of the formula (1) is 1.2 × 10 −4 (see Table 1).

気液分離器72により分離された液体成分と気体成分を分析したところ、TOC基準で99.999%の分解率が達成されていること、液体成分が水を含有すること、気体成分が二酸化炭素と水を含有することが確認された。   When the liquid component and the gas component separated by the gas-liquid separator 72 were analyzed, it was found that a 99.999% decomposition rate was achieved on the TOC basis, the liquid component contained water, and the gas component was carbon dioxide. And water were confirmed.

また、継手部材12A及び12Bから蒸気はリークしなかった。   Further, the steam did not leak from the joint members 12A and 12B.

[比較例1]
外管11aとして、外径が12.7mm、厚さが1.24mm、長さが600mm、25℃における線膨張係数αが1.6×10−5−1のSUS316製のチューブを用いた以外は、実施例1と同様にして、二重管11を得た。
[Comparative Example 1]
As the outer tube 11a, a tube made of SUS316 having an outer diameter of 12.7 mm, a thickness of 1.24 mm, a length of 600 mm, and a linear expansion coefficient α 1 at 25 ° C. of 1.6 × 10 −5 ° C. −1 is used. A double tube 11 was obtained in the same manner as in Example 1 except that.

得られた二重管11が設置されている廃液処理装置100を用いた以外は、実施例1と同様にして、8質量%メタノール水溶液を処理した。このとき、式(1)の値は−3.7×10−3である(表1参照)。 An 8% by mass aqueous methanol solution was treated in the same manner as in Example 1 except that the waste liquid treatment apparatus 100 in which the obtained double pipe 11 was installed was used. At this time, the value of the formula (1) is −3.7 × 10 −3 (see Table 1).

その結果、圧力センサPが3MPaになった時点で、急激に圧力が低下し、継手部材12A及び12Bから蒸気がリークした。二重管11を精査した結果、端面において、外管11aが内管11bに比べて相対的に膨張しており、シール性が低下していた。 As a result, when the pressure sensor P 1 becomes 3 MPa, rapid drop in pressure, the steam from the joint members 12A and 12B are leaked. As a result of scrutinizing the double pipe 11, the outer pipe 11a was relatively expanded at the end face as compared with the inner pipe 11b, and the sealing performance was lowered.

[比較例2]
内管として、外径が10mm、厚さが0.5mm、長さが600mm、25℃における線膨張係数αが8.5×10−6−1のチタン製のチューブを用いた以外は、比較例1と同様にして、二重管11を得た。
[Comparative Example 2]
As the inner tube, a tube made of titanium having an outer diameter of 10 mm, a thickness of 0.5 mm, a length of 600 mm, and a linear expansion coefficient α 2 at 25 ° C. of 8.5 × 10 −6 ° C. −1 was used. In the same manner as in Comparative Example 1, a double tube 11 was obtained.

得られた二重管11が設置されている廃液処理装置100を用いた以外は、実施例1と同様にして、8質量%メタノール水溶液を処理した。このとき、式(1)の値は−2.9×10−3である(表1参照)。 An 8% by mass aqueous methanol solution was treated in the same manner as in Example 1 except that the waste liquid treatment apparatus 100 in which the obtained double pipe 11 was installed was used. At this time, the value of the equation (1) is −2.9 × 10 −3 (see Table 1).

その結果、圧力センサPが2MPaになった時点で、急激に圧力が低下し、継手部材12A及び12Bから蒸気がリークした。二重管11を精査した結果、端面において、外管11aが内管11bに比べて相対的に膨張しており、シール性が低下していた。 As a result, when the pressure sensor P 1 becomes 2 MPa, rapid drop in pressure, the steam from the joint members 12A and 12B are leaked. As a result of scrutinizing the double pipe 11, the outer pipe 11a was relatively expanded at the end face as compared with the inner pipe 11b, and the sealing performance was lowered.

[比較例3]
外管11aとして、外径が12.7mm、厚さが1.24mm、長さが600mm、25℃における線膨張係数αが8.5×10−6−1のチタン製のチューブ、内管11bとして、外径が10mm、厚さが0.5mm、長さが600mm、25℃における線膨張係数αが1.6×10−5−1のSUS316製のチューブを用いた以外は、実施例4と同様にして、二重管11を得た。
[Comparative Example 3]
As the outer tube 11a, a titanium tube having an outer diameter of 12.7 mm, a thickness of 1.24 mm, a length of 600 mm, and a linear expansion coefficient α 1 at 25 ° C. of 8.5 × 10 −6 ° C.− 1 , As the tube 11b, a tube made of SUS316 having an outer diameter of 10 mm, a thickness of 0.5 mm, a length of 600 mm, and a linear expansion coefficient α 2 at 25 ° C. of 1.6 × 10 −5 ° C. −1 was used. In the same manner as in Example 4, a double tube 11 was obtained.

得られた二重管11が設置されている廃液処理装置100を用いた以外は、実施例1と同様にして、8質量%メタノール水溶液を処理した。このとき、式(1)の値は2.9×10−3である(表1参照)。 An 8% by mass aqueous methanol solution was treated in the same manner as in Example 1 except that the waste liquid treatment apparatus 100 in which the obtained double pipe 11 was installed was used. At this time, the value of Formula (1) is 2.9 × 10 −3 (see Table 1).

その結果、内管11bの応力により外管11aが破壊されて、蒸気がリークした。   As a result, the outer tube 11a was destroyed by the stress of the inner tube 11b, and the steam leaked.

表1に、評価結果を示す。   Table 1 shows the evaluation results.

Figure 0005630152
表1から、実施例1〜4の廃液浄化装置100は、式(1)の値が0〜2×10−3であるため、蒸気のリークを抑制できることがわかる。
Figure 0005630152
From Table 1, it turns out that the waste liquid purification apparatus 100 of Examples 1-4 can suppress the leak of a vapor | steam since the value of Formula (1) is 0-2 * 10 < -3 >.

一方、比較例1、2の廃液浄化装置100は、式(1)の値が0以下であるため、蒸気がリークした。   On the other hand, in the waste liquid purification apparatuses 100 of Comparative Examples 1 and 2, since the value of the formula (1) was 0 or less, the steam leaked.

また、比較例3の廃液浄化装置100は、式(1)の値が2×10−3を超えるため、蒸気がリークした。 Moreover, since the value of Formula (1) exceeded 2 * 10 < -3 >, the waste liquid purification apparatus 100 of the comparative example 3 leaked the vapor | steam.

100 廃液処理装置
10 反応器
11 二重管
11a 外管
11b 内管
12A、12B 継手部材
13A、13B グラスウール
20 廃液供給部
21 タンク
21a 廃液
21b 撹拌羽根
22 ポンプ
23 開閉弁
30 空気供給部
31 コンプレッサー
32 開閉弁
40 予熱器
50 ヒーター
60 熱交換器
61 水
70 気液分離部
71 背圧弁
72 気液分離器
T 温度センサ
、P 圧力センサ
DESCRIPTION OF SYMBOLS 100 Waste liquid processing apparatus 10 Reactor 11 Double pipe 11a Outer pipe 11b Inner pipe 12A, 12B Joint member 13A, 13B Glass wool 20 Waste liquid supply part 21 Tank 21a Waste liquid 21b Stirring blade 22 Pump 23 Open / close valve 30 Air supply part 31 Compressor 32 Open / close Valve 40 Preheater 50 Heater 60 Heat exchanger 61 Water 70 Gas-liquid separator 71 Back pressure valve 72 Gas-liquid separator T Temperature sensor P 1 , P 2 Pressure sensor

特開2002−143825号公報JP 2002-143825 A 特開昭63−165028号公報Japanese Patent Laid-Open No. 63-165028

Claims (4)

水及び有機物を含む廃液を処理する廃液処理装置であって、
前記水を亜臨界水、過熱水蒸気又は超臨界水に変化させると共に、前記有機物を酸化させる反応器と、
前記反応器に前記廃液を供給する廃液供給手段と、
前記反応器に酸化剤を供給する酸化剤供給手段と、
前記反応器を加熱する加熱手段を有し、
前記反応器は、外管と内管が接合されている二重管を有し、
前記外管及び前記内管の25℃における線膨張係数をそれぞれα [℃ −1 及びα [℃ −1 、前記加熱手段により加熱される前記反応器の内部の温度をT[℃]とすると、式
α<α
0<(α−α)×(T−25)≦2×10−3
を満たし、
前記反応器は、前記廃液が供給される側及び前記有機物が酸化した廃液が排出される側に、継手部材をさらに有し、
前記加熱手段は、前記継手部材を加熱しないことを特徴とする廃液処理装置。
A waste liquid treatment apparatus for treating a waste liquid containing water and organic matter,
A reactor for changing the water to subcritical water, superheated steam or supercritical water, and oxidizing the organic matter;
Waste liquid supply means for supplying the waste liquid to the reactor;
An oxidant supply means for supplying an oxidant to the reactor;
Heating means for heating the reactor;
The reactor has a double pipe in which an outer pipe and an inner pipe are joined,
The linear expansion coefficients of the outer tube and the inner tube at 25 ° C. are α 1 [° C. −1 ] and α 2 [° C. −1 ] , respectively, and the temperature inside the reactor heated by the heating means is T [° C. ] , The formula α 12
0 <(α 2 −α 1 ) × (T−25) ≦ 2 × 10 −3
Meet the,
The reactor further has a joint member on the side where the waste liquid is supplied and the side where the waste liquid where the organic matter is oxidized is discharged,
The waste liquid treatment apparatus , wherein the heating means does not heat the joint member .
前記内管は、チタン、タンタル、チタン・パラジウム合金又はニッケル合金を含むことを特徴とする請求項1に記載の廃液処理装置。   The waste liquid treatment apparatus according to claim 1, wherein the inner tube contains titanium, tantalum, titanium-palladium alloy, or nickel alloy. 前記外管と前記内管が拡散接合又はろう付けにより接合されていることを特徴とする請求項1又は2に記載の廃液処理装置。   The waste liquid treatment apparatus according to claim 1 or 2, wherein the outer pipe and the inner pipe are joined by diffusion joining or brazing. 前記反応器は、前記継手部材を断熱する断熱部材をさらに有することを特徴とする請求項1乃至3のいずれか一項に記載の廃液処理装置。 The waste liquid treatment apparatus according to any one of claims 1 to 3, wherein the reactor further includes a heat insulating member for heat insulating the joint member.
JP2010194818A 2010-08-31 2010-08-31 Waste liquid treatment equipment Expired - Fee Related JP5630152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010194818A JP5630152B2 (en) 2010-08-31 2010-08-31 Waste liquid treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010194818A JP5630152B2 (en) 2010-08-31 2010-08-31 Waste liquid treatment equipment

Publications (2)

Publication Number Publication Date
JP2012050920A JP2012050920A (en) 2012-03-15
JP5630152B2 true JP5630152B2 (en) 2014-11-26

Family

ID=45904929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010194818A Expired - Fee Related JP5630152B2 (en) 2010-08-31 2010-08-31 Waste liquid treatment equipment

Country Status (1)

Country Link
JP (1) JP5630152B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5888596B2 (en) * 2012-02-23 2016-03-22 株式会社リコー Fluid purification device
JP2014004523A (en) * 2012-06-25 2014-01-16 Ricoh Co Ltd Fluid purification apparatus
CN104671388B (en) * 2015-01-28 2016-08-24 广州中国科学院先进技术研究所 A kind of supercritical water oxidation system using air as diaphragm and reaction process
JP7450898B2 (en) * 2020-10-06 2024-03-18 エンバイロ・ビジョン株式会社 Wastewater treatment equipment and wastewater treatment method

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711717A (en) * 1980-06-25 1982-01-21 Sumitomo Metal Ind Ltd Manufacture of laminated metallic pipe
JPS591491B2 (en) * 1981-03-24 1984-01-12 川崎重工業株式会社 Double tube manufacturing method
JPS58112612A (en) * 1981-12-25 1983-07-05 Kawasaki Steel Corp Manufacture of double pipe
JPS5881521A (en) * 1981-11-06 1983-05-16 Kawasaki Heavy Ind Ltd Manufacture of double pipe
JP2747610B2 (en) * 1989-08-17 1998-05-06 臼井国際産業株式会社 Manufacturing method of high pressure fluid supply pipe
JPH0798216B2 (en) * 1990-02-20 1995-10-25 日本鋼管株式会社 Manufacturing method of metal double tube
JPH04309463A (en) * 1991-04-09 1992-11-02 Nippon Steel Corp Heat treatment method for double tube
US5252224A (en) * 1991-06-28 1993-10-12 Modell Development Corporation Supercritical water oxidation process of organics with inorganics
JPH11156379A (en) * 1997-09-25 1999-06-15 Japan Organo Co Ltd Method for supercritical hydroxylation-decomposition of nitrogen-containing organic compound
JP4395643B2 (en) * 1999-03-08 2010-01-13 木村化工機株式会社 Degradation processing equipment
SE518803C2 (en) * 1999-09-03 2002-11-26 Chematur Eng Ab Method and reaction system with high pressure and high temperature suitable for supercritical water oxidation
JP3844626B2 (en) * 1999-10-08 2006-11-15 住友軽金属工業株式会社 Method of manufacturing heat exchanger tube for heat exchanger and heat exchanger tube for heat exchanger obtained thereby
JP4455703B2 (en) * 1999-10-27 2010-04-21 オルガノ株式会社 Supercritical water reactor
JP2002001424A (en) * 2000-06-26 2002-01-08 Masaaki Nagakura Method for manufacturing component for super critical water oxidization treatment
JP2002102671A (en) * 2000-09-29 2002-04-09 Toshiba Corp High pressure corrosion resistant reaction vessel, treatment apparatus, and method for corrosion resistant treatment of the apparatus
JP4334162B2 (en) * 2001-05-08 2009-09-30 株式会社東芝 Reaction vessel
JP2003245679A (en) * 2002-02-22 2003-09-02 Japan Organo Co Ltd Supercritical water oxidizing method and supercritical oxidation apparatus
JP4334298B2 (en) * 2003-08-19 2009-09-30 株式会社東芝 Organic waste treatment apparatus and treatment method
JP2010131478A (en) * 2008-12-02 2010-06-17 Japan Organo Co Ltd Organic fluorine compound treatment system
JP2011121052A (en) * 2009-11-16 2011-06-23 Ricoh Co Ltd Oxidative decomposition treatment apparatus
JP2012022934A (en) * 2010-07-15 2012-02-02 Fuji Electric Co Ltd Induction heating apparatus and double tube for the same

Also Published As

Publication number Publication date
JP2012050920A (en) 2012-03-15

Similar Documents

Publication Publication Date Title
JP5630152B2 (en) Waste liquid treatment equipment
JP4234595B2 (en) Hydrogen refining apparatus, components, and fuel processing system including the same
CN103157405B (en) Liquid waste treatment apparatus
EP2226131A3 (en) Method of cleaning an industrial tank using electrical energy and critical fluid
JP5789983B2 (en) Waste liquid treatment equipment
JP2013516302A (en) Devices and procedures for continuous disposal of garbage
JP2007229553A (en) Treatment device of nitrogen containing organic substance and treatment method thereof
JP2002193601A (en) Method and device for water decomposition
JP4058497B1 (en) Oil cake processing apparatus, oil cake processing method, and method for producing fertilizer derived from oil cake
JP4445034B1 (en) Waste treatment equipment
JP6090658B2 (en) Waste liquid treatment equipment
JP5671892B2 (en) Waste liquid treatment equipment
JP2012055831A (en) Method for treating waste liquid
JP4951760B2 (en) Hydrothermal oxidative decomposition treatment apparatus and fertilizer manufacturing method
JP4142501B2 (en) Heavy oil reforming method and apparatus, and gas turbine power generation system
JP2002113348A (en) Treating apparatus of organic waste from animal and vegetable residue by hydrothermal reaction
WO2023286525A1 (en) Apparatus and method for converting plastic to oil
JP2005104758A (en) Method of producing hydrogen by using super critical water
JP2008271994A (en) Decomposition treatment method of organic compound and its apparatus
JP4483094B2 (en) Method and apparatus for cleaning animal and plant residue treatment apparatus by hydrothermal reaction
JP4151062B2 (en) Ni-based alloy with excellent corrosion resistance against supercritical water environment containing inorganic acid
WO2021113021A1 (en) Removing contaminants from liquids
JP2003062116A (en) Hydrothermal decomposition system and method for organic halide
JP2009256178A (en) Hydrogen production apparatus
Dimig et al. A Review of Pure Oxygen Generation and Alternative Oxidants for Wet Oxidation of Fecal Sludge for Novel Sanitation Technologies

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140922

R151 Written notification of patent or utility model registration

Ref document number: 5630152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees