JP2012022934A - Induction heating apparatus and double tube for the same - Google Patents

Induction heating apparatus and double tube for the same Download PDF

Info

Publication number
JP2012022934A
JP2012022934A JP2010160890A JP2010160890A JP2012022934A JP 2012022934 A JP2012022934 A JP 2012022934A JP 2010160890 A JP2010160890 A JP 2010160890A JP 2010160890 A JP2010160890 A JP 2010160890A JP 2012022934 A JP2012022934 A JP 2012022934A
Authority
JP
Japan
Prior art keywords
outer tube
tube
induction heating
pipe
inner tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010160890A
Other languages
Japanese (ja)
Inventor
Shunsuke Oga
俊輔 大賀
Koji Yasumoto
浩二 安本
Kenzo Ichiishi
健三 一石
Michihiro Yamakawa
道広 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2010160890A priority Critical patent/JP2012022934A/en
Publication of JP2012022934A publication Critical patent/JP2012022934A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce thermal stress generated by a difference in a linear expansion coefficient and variations in temperature between an outer tube which is a magnetic material enabling induction heating and an inner tube through which heated fluid is made to flow.SOLUTION: An induction heating apparatus includes: a double tube constituted of a circular outer tube 3 and a circular inner tube 4; and induction heating means for heating a heated fluid 8 flowing in the double tube. The inner tube 4 is constituted of a non-magnetic material having the linear expansion coefficient smaller than that of the outer tube 3. The outer tube 3 is made of the magnetic material, and constituted of a plurality of outer tube components 31 of which the outer tube length in the axial direction is equal to or less than a predetermined value, respectively.

Description

本発明は、誘導加熱を利用した誘導加熱装置、およびそのための二重管に関する。   The present invention relates to an induction heating apparatus using induction heating, and a double tube therefor.

特許文献1には、二重管内を流れる流体を誘導加熱する装置が開示されている。この二重管は、誘導加熱に適した磁性体からなる外管の内部に、誘導加熱に適さない非磁性体からなる内管が嵌合するように構成されている。このような二重管に流体を通流して誘導加熱すると、主に磁性体である外管が発熱し、この熱が非磁性体からなる内管を介して二重管内を流れる流体へ熱伝導することで、流体が加熱される。   Patent Document 1 discloses an apparatus for inductively heating a fluid flowing in a double pipe. This double tube is configured such that an inner tube made of a non-magnetic material not suitable for induction heating is fitted inside an outer tube made of a magnetic material suitable for induction heating. When fluid is passed through such a double tube and induction heating is performed, the outer tube, which is mainly a magnetic material, generates heat, and this heat is conducted to the fluid flowing in the double tube via the inner tube made of a non-magnetic material. By doing so, the fluid is heated.

特開2008−134041号公報JP 2008-134041 A

しかしながら、特許文献1の先行技術では、外管と内管の線膨張係数が異なる場合、誘導加熱したときに生じる熱応力で、外管もしくは内管が破損する恐れがある。たとえば、外管に線膨張係数が11.7×10-6/K程度である鋼管SS400を用い、内管に線膨張係数が0.58×10-6/K程度である石英管を用いて誘導加熱する。このとき、加熱時に外管に生じる温度ばらつきによって外管が曲がることで、内管の石英管が曲げ応力を受けて破損する恐れがある。 However, in the prior art of Patent Document 1, when the linear expansion coefficients of the outer tube and the inner tube are different, the outer tube or the inner tube may be damaged by the thermal stress generated when induction heating is performed. For example, a steel pipe SS400 having a linear expansion coefficient of about 11.7 × 10 −6 / K is used for the outer pipe, and a quartz pipe having a linear expansion coefficient of about 0.58 × 10 −6 / K is used for the inner pipe. Induction heating. At this time, the outer tube bends due to temperature variations that occur in the outer tube during heating, so that the quartz tube of the inner tube may be damaged due to bending stress.

本発明は、上記課題を解決するためになされたもので、外管と内管の線膨張係数が異なるように構成した二重管を誘導加熱したときに、二重管が破損する恐れを低減することを目的とする。   The present invention has been made to solve the above-described problems, and reduces the risk of the double pipe being damaged when induction heating is performed on the double pipe configured so that the outer pipe and the inner pipe have different linear expansion coefficients. The purpose is to do.

上記課題を解決するために、本発明の誘導加熱装置は、円形の外管と円形の内管とから構成される二重管と、この二重管内を流れる被加熱流体を加熱するための誘導加熱手段と、を有する誘導加熱装置において、前記内管は非磁性体で構成し、前記外管は磁性体であり且つ当該外管の軸方向の長さがそれぞれ所定値以下である複数個の外管構成物から構成する。   In order to solve the above-described problems, an induction heating apparatus according to the present invention includes a double tube composed of a circular outer tube and a circular inner tube, and an induction for heating a fluid to be heated flowing in the double tube. In the induction heating apparatus having a heating means, the inner tube is made of a nonmagnetic material, the outer tube is a magnetic material, and the axial length of the outer tube is a plurality of predetermined values or less. Consists of outer tube components.

本発明によれば、外管と内管の線膨張係数が異なるように構成した二重管を誘導加熱したときに、二重管が破損する恐れを低減することができる。   ADVANTAGE OF THE INVENTION According to this invention, when induction heating the double pipe comprised so that the linear expansion coefficient of an outer pipe and an inner pipe may differ, a possibility that a double pipe may be damaged can be reduced.

本発明の誘導加熱装置の一例を示す図である。It is a figure which shows an example of the induction heating apparatus of this invention. 外管3の詳細を説明する図である。It is a figure explaining the detail of the outer tube | pipe 3. FIG. 外管構成物31の軸方向の長さをどのように決めるかを説明する図である。It is a figure explaining how to determine the length of the axial direction of outer pipe constituent 31. 図1の構成における実験結果を示す図である。It is a figure which shows the experimental result in the structure of FIG. 外管3を電鋳層で構成した図である。It is the figure which comprised the outer tube | pipe 3 with the electroformed layer. 外管3をスパイラル状に構成した図である。It is the figure which comprised the outer tube | pipe 3 in the spiral shape.

添付図面を適宜参照しながら、本発明にかかる誘導加熱装置の好適な実施の形態について説明する。
図1は、本発明の誘導加熱装置の一例を示す図である。図1(a)は、誘導加熱装置の管やコイルなどに対し、管の長さ方向からみた断面図である。図1(b)は、管の軸方向に対する断面図である。
DESCRIPTION OF EMBODIMENTS Preferred embodiments of an induction heating apparatus according to the present invention will be described with reference to the accompanying drawings as appropriate.
FIG. 1 is a diagram showing an example of the induction heating apparatus of the present invention. Fig.1 (a) is sectional drawing seen from the length direction of the pipe | tube with respect to the pipe | tube, coil, etc. of an induction heating apparatus. FIG.1 (b) is sectional drawing with respect to the axial direction of a pipe | tube.

誘導加熱装置は、交流電源1と、誘導加熱用のコイル2と、断面が同心円形の外管3と、断面が同心円形の内管4とを有する。誘導加熱装置は、さらに、外管3と内管4との間に充填する潤滑剤5と、コイル2と外管3との間に敷設する断熱材6と、コイル2を冷却するためコイル2の外周にあるコイル冷却ジャケット7から構成する。内管4には、図面において矢印で示した方向に、被加熱流体8、たとえば硫酸が通流する。誘導加熱手段は、交流電源1とコイル2とから構成される。   The induction heating apparatus includes an AC power supply 1, an induction heating coil 2, an outer tube 3 having a concentric circular section, and an inner tube 4 having a concentric circular section. The induction heating device further includes a lubricant 5 filled between the outer tube 3 and the inner tube 4, a heat insulating material 6 laid between the coil 2 and the outer tube 3, and a coil 2 for cooling the coil 2. It comprises the coil cooling jacket 7 in the outer periphery. A fluid 8 to be heated, such as sulfuric acid, flows through the inner tube 4 in the direction indicated by the arrow in the drawing. The induction heating means includes an AC power source 1 and a coil 2.

交流電源1には、50/60Hzから450kHzの周波数を使用する。
コイル2には、1kHz以上の高周波を流す場合、リッツ線を用いる。リッツ線は、細いエナメル線を複数本より合わせたものであり、高周波を流す場合に表皮効果により電気抵抗が増加することを防ぐため、導体を細分化して導体表面積を大きくしている。コイル2は、内管4・外管3・断熱材6の周囲を巻き回す形で構成する。コイル2は、外管の長さ方向全体の周囲を巻き回すだけの長さがある。
The AC power supply 1 uses a frequency of 50/60 Hz to 450 kHz.
When the high frequency of 1 kHz or more is passed through the coil 2, a litz wire is used. A litz wire is a combination of a plurality of thin enamel wires. In order to prevent an increase in electrical resistance due to the skin effect when a high frequency is applied, the conductor is subdivided to increase the conductor surface area. The coil 2 is configured to be wound around the inner tube 4, the outer tube 3, and the heat insulating material 6. The coil 2 is long enough to be wound around the entire length of the outer tube.

内管4は外管3の中に挿入しており、断面が円形の二重管として構成する。すなわち、内管4と外管3とを同軸上に形成する。内管4と外管3、もしくは内管4と後述する外管構成物31とは、所定の大きさのクリアランスを有する。クリアランスとは、内管4の外径と、外管3の内径との差である。クリアランスは、製造時の精度を考慮すると、0.1mm以上とすることが望ましい。   The inner tube 4 is inserted into the outer tube 3 and is configured as a double tube having a circular cross section. That is, the inner tube 4 and the outer tube 3 are formed coaxially. The inner tube 4 and the outer tube 3 or the inner tube 4 and the outer tube component 31 described later have a predetermined clearance. The clearance is a difference between the outer diameter of the inner tube 4 and the inner diameter of the outer tube 3. The clearance is desirably set to 0.1 mm or more in consideration of the accuracy during manufacturing.

外管3と内管4の線膨張係数が異なることで加熱時に外管3が内管4を引っ張る熱応力が発生するが、クリアランスを大きくとれば、この応力により外管3が歪む距離をクリアランスで吸収できるので、二重管が破損する恐れを小さくできる。しかしながら、誘導加熱された外管3から内管4へ効率よく熱伝導するには、クリアランスは小さい方がよい。   The outer tube 3 and the inner tube 4 have different linear expansion coefficients, which generates a thermal stress that causes the outer tube 3 to pull the inner tube 4 during heating. If the clearance is increased, the distance that the outer tube 3 is distorted by this stress is cleared. Since it can be absorbed in, the risk of damaging the double pipe can be reduced. However, in order to efficiently conduct heat from the induction-heated outer tube 3 to the inner tube 4, a smaller clearance is better.

図1に示す実施形態の要旨は、クリアランスを小さくして効率よく熱伝導しつつ、外管3を構成する複数個の外管構成物の軸方向の長さを所定値以下にして外管構成物の歪む距離を小さくすることで、加熱時に二重管が破損する恐れを小さくする点にある。   The gist of the embodiment shown in FIG. 1 is that the outer tube configuration is made by reducing the axial length of a plurality of outer tube components constituting the outer tube 3 to a predetermined value or less while efficiently conducting heat by reducing the clearance. By reducing the distance at which the object is distorted, the risk of damaging the double tube during heating is reduced.

誘導加熱したときに流体をなるべく均等に加熱できるように、コイル2・外管3・内管4は、それぞれの中心軸が一致するよう同軸かつ同心円状に形成するのが望ましい。本実施例では、図1(b)に示すように、コイル2、外管3、内管4、断熱材6、コイル冷却ジャケット7は、同心円状に形成している。   It is desirable that the coil 2, the outer tube 3, and the inner tube 4 are formed coaxially and concentrically so that their central axes coincide with each other so that the fluid can be heated as evenly as possible when induction heating is performed. In the present embodiment, as shown in FIG. 1B, the coil 2, the outer tube 3, the inner tube 4, the heat insulating material 6, and the coil cooling jacket 7 are formed concentrically.

外管3は磁性体でできており、電磁誘導により非常に密度の高いうず電流が生じる。外管3の厚さは、表皮効果を得るため、0.2mm以上であることが望ましい。外管3の一例としては、SS400(線膨張係数が11.7×10-6/K、スチール)やSUS430(線膨張係数が10.4×10-6/K、アルミニウム)が挙げられる。 The outer tube 3 is made of a magnetic material, and very high density eddy current is generated by electromagnetic induction. The thickness of the outer tube 3 is desirably 0.2 mm or more in order to obtain a skin effect. Examples of the outer tube 3 include SS400 (linear expansion coefficient is 11.7 × 10 −6 / K, steel) and SUS430 (linear expansion coefficient is 10.4 × 10 −6 / K, aluminum).

ここで、図2を参照して、外管3の詳細に言及する。
外管3は、外管長さ方向の長さ、すなわち軸方向の長さが所定値以下である複数個の外管構成物31から構成されている。図2の例では、外管3は6個の外管構成物31から構成されている。外管3は、予め作製した外管構成物31を複数個組み合わせて構成してもよい。外管3は、1本の外管3を軸方向の長さが所定値以下となるように、外管3の断面方向に複数に分割して構成してもよい。外管3を、軸方向の断面で分割しても、誘導加熱によるうず電流が外管3の円周方向に円滑に流れないので、あまり影響がない。
Here, the details of the outer tube 3 will be described with reference to FIG.
The outer tube 3 includes a plurality of outer tube components 31 whose length in the length direction of the outer tube, that is, the length in the axial direction is equal to or less than a predetermined value. In the example of FIG. 2, the outer tube 3 includes six outer tube components 31. The outer tube 3 may be configured by combining a plurality of previously prepared outer tube components 31. The outer tube 3 may be configured by dividing the single outer tube 3 into a plurality of pieces in the cross-sectional direction of the outer tube 3 so that the length in the axial direction is a predetermined value or less. Even if the outer tube 3 is divided in the cross section in the axial direction, the eddy current due to induction heating does not flow smoothly in the circumferential direction of the outer tube 3, so that there is not much influence.

なお、図1(a)および図2では、複数の外管構成物31はそれぞれ所定の間隔をあけて配置しているが、これは外管3が複数の外管構成物31から構成されることを図示しただけである。図1(a)の誘導加熱装置は、コイル2、外管3、内管4からなる加熱部分を横方向に設置する場合、複数の外管構成物31はそれぞれ所定の距離をあけて配置されることがある。図1(a)の誘導加熱装置は、コイル2、外管3、内管4からなる加熱部分を縦方向に設置する場合、複数の外管構成物31は重力の影響で積み重なって配置されるので、外管構成物間に大きな間隔はない。   In FIG. 1A and FIG. 2, the plurality of outer tube components 31 are arranged at predetermined intervals, respectively. This is because the outer tube 3 is composed of a plurality of outer tube components 31. This is only illustrated. In the induction heating apparatus shown in FIG. 1A, when a heating portion including the coil 2, the outer tube 3, and the inner tube 4 is installed in the horizontal direction, the plurality of outer tube components 31 are arranged at predetermined distances from each other. Sometimes. In the induction heating apparatus shown in FIG. 1A, when a heating portion composed of the coil 2, the outer tube 3, and the inner tube 4 is installed in the vertical direction, the plurality of outer tube components 31 are arranged to be stacked due to the influence of gravity. Therefore, there is no large space between the outer tube components.

図1(a)に戻り、内管4には、耐食性が高いこともあり、線膨張係数が0.58×10-6/Kである石英が使われることが多い。石英管の厚さは、機械的強度を確保するため、1.5mm以上であることが望ましい。内管4の他の例としては、セラミックを使うことが挙げられる。 Returning to FIG. 1A, the inner tube 4 is often made of quartz having a high coefficient of corrosion resistance and a linear expansion coefficient of 0.58 × 10 −6 / K. The thickness of the quartz tube is preferably 1.5 mm or more in order to ensure mechanical strength. Another example of the inner tube 4 is the use of ceramic.

外管3と内管4の材質は、内管4の線膨張係数が、外管3の線膨張係数の1/10倍以下であるように選択すると望ましいことを、本発明者らは実験によって確認している。上述のように材質を選択すると、誘導加熱時に外管3が熱応力で歪む距離に比べ、内管4が歪む距離は十分に小さいため考慮しなくてもよくなり、外管3を構成する外管構成物31の長さを算出しやすくなる。   The present inventors have experimented that the material of the outer tube 3 and the inner tube 4 is preferably selected so that the linear expansion coefficient of the inner tube 4 is not more than 1/10 times the linear expansion coefficient of the outer tube 3. I have confirmed. When the material is selected as described above, the distance at which the inner tube 4 is distorted is sufficiently small compared to the distance at which the outer tube 3 is distorted by thermal stress during induction heating. It becomes easy to calculate the length of the tube component 31.

なお、上述した材質の選択方法は、外管3の線膨張係数を考慮して、内管4の材質をいわば相対的に決めるものである。他の選択方法としては、線膨張係数が汎用的な磁性体材料よりも小さい石英を内管4に採用することを、絶対値的に決めることもできる。   Note that the above-described material selection method relatively determines the material of the inner tube 4 in consideration of the linear expansion coefficient of the outer tube 3. As another selection method, it is possible to determine in absolute terms that quartz having a linear expansion coefficient smaller than that of a general-purpose magnetic material is adopted for the inner tube 4.

なお、外管3と内管4との間に、潤滑剤5が充填されている。潤滑剤5としては、たとえば「スミコーGSコート(住鉱潤滑剤株式会社製、登録商標)」を使うことができる。潤滑剤5の使用は必須ではない。潤滑剤5を使用するかどうかは、外管3や内管4の材質や、外管3と内管4との間のクリアランスの大きさを考慮して決める。   A lubricant 5 is filled between the outer tube 3 and the inner tube 4. As the lubricant 5, for example, “Sumiko GS Coat (manufactured by Sumiko Lubricant Co., Ltd., registered trademark)” can be used. The use of the lubricant 5 is not essential. Whether to use the lubricant 5 is determined in consideration of the material of the outer tube 3 and the inner tube 4 and the size of the clearance between the outer tube 3 and the inner tube 4.

潤滑剤5をクリアランスに充填することで、外管3から内管4への接触熱抵抗を低減し、かつ外管3と内管4の線膨張係数の違いによる摺動を促して二重管の破損を低減する効果を期待できる。しかしながら、潤滑剤5を使用するだけでは、二重管の破損を防ぎ切れない場合がある。図1(b)に示すように、コイル2、外管3、内管4をそれぞれの中心軸が一致するように同心円状に形成したとしても、製造誤差がある以上、それぞれの中心軸が完全に一致することは難しい。中心軸が少しでもずれると、コイル2が形成する交番磁束密度に偏りが生じ、外管3表面の所定部分と、この所定部分の円周方向における外管3表面の反対部分とでは、発生する加熱エネルギーが異なってくる。よって、外管3には温度ばらつきが生じるため、外管3が所定の方向に曲がってしまい、内管4が破損する問題が実際に発生している。   By filling the lubricant 5 in the clearance, the contact heat resistance from the outer tube 3 to the inner tube 4 is reduced, and the sliding due to the difference in the linear expansion coefficient between the outer tube 3 and the inner tube 4 is promoted to make a double tube It can be expected to reduce the damage. However, the use of the lubricant 5 may not prevent the double pipe from being damaged. As shown in FIG. 1 (b), even if the coil 2, the outer tube 3, and the inner tube 4 are formed concentrically so that the respective central axes coincide with each other, the respective central axes are completely fixed due to manufacturing errors. Difficult to match. When the central axis is shifted even a little, the alternating magnetic flux density formed by the coil 2 is biased, and is generated in a predetermined portion on the surface of the outer tube 3 and a portion opposite to the surface of the outer tube 3 in the circumferential direction of the predetermined portion. Heating energy is different. Therefore, since the temperature variation occurs in the outer tube 3, the outer tube 3 is bent in a predetermined direction, and the inner tube 4 is actually damaged.

図1に示す実施形態によれば、たとえば製造誤差によりコイル2、外管3、内管4のそれぞれの中心軸が完全には一致しない場合でも、外管3を構成する複数個の外管構成物31の長さを所定値以下にして外管構成物の歪む距離を小さくすることで、加熱時に二重管が破損する恐れを小さくできる。   According to the embodiment shown in FIG. 1, a plurality of outer tube configurations constituting the outer tube 3 even when the central axes of the coil 2, the outer tube 3, and the inner tube 4 do not completely coincide due to, for example, manufacturing errors. By making the length of the object 31 equal to or less than a predetermined value and reducing the distorted distance of the outer tube component, the possibility of damaging the double tube during heating can be reduced.

断熱材6には、セラミックやガラス繊維を用いる。外管3の熱を逃さないように断熱材6を敷設することで、誘導加熱装置の加熱効率を向上でき、また、コイル2の過熱を防ぐことができる。   For the heat insulating material 6, ceramic or glass fiber is used. By laying the heat insulating material 6 so that the heat of the outer tube 3 is not lost, the heating efficiency of the induction heating device can be improved, and overheating of the coil 2 can be prevented.

コイル冷却ジャケット7は、コイル2の自己発熱を水冷方式で冷却して過熱を防止するために設けるものであり、冷却水9が内部で循環するように構成されている。本実施例では、強制対流による水冷方式で例示したが、必要とされる冷却能力の大きさによっては、自然対流もしくは強制対流による空冷方式とすることもできる。   The coil cooling jacket 7 is provided to cool the self-heating of the coil 2 by a water cooling method to prevent overheating, and is configured so that the cooling water 9 circulates inside. In this embodiment, the water cooling method using forced convection is exemplified, but depending on the required cooling capacity, a natural convection method or an air cooling method using forced convection method may be used.

図3は、外管構成物31の軸方向の長さの決め方を説明する図である。
前述したように、円形の外管3表面の所定部分と、この所定部分の円周方向における外管3表面の反対部分とでは、発生する加熱エネルギーが異なってくるので、温度ばらつきが生じる外管3は所定の方向に曲がる。つまり、外管3を構成する外管構成物31は、図3に示すように、加熱時には外管3の円周方向に発生する温度差によって曲がる。
FIG. 3 is a view for explaining how to determine the axial length of the outer tube component 31.
As described above, since the generated heating energy differs between the predetermined portion of the surface of the circular outer tube 3 and the portion opposite to the surface of the outer tube 3 in the circumferential direction of the predetermined portion, the outer tube in which temperature variation occurs. 3 bends in a predetermined direction. That is, the outer tube component 31 constituting the outer tube 3 is bent by a temperature difference generated in the circumferential direction of the outer tube 3 during heating, as shown in FIG.

図3に示す各種記号を以下のように定める。
α:外管3(外管構成物31)の線膨張係数
t:加熱昇温時に外管3(外管構成物31)の円周方向に発生する最大温度差
d:外管3(外管構成物31)の内径
L:外管構成物31の軸方向の最大長さ
r:加熱時の外管構成物31の曲げ半径
θ:外管構成物31が加熱により曲がるときの曲げ角度
このとき、曲げ半径:rと曲げ角度:θと外管構成物31の軸方向の最大長さ:Lとの間には、次の(1)・(2)式の関係がある。
Various symbols shown in FIG. 3 are defined as follows.
α: Linear expansion coefficient of the outer tube 3 (outer tube component 31) t: Maximum temperature difference generated in the circumferential direction of the outer tube 3 (outer tube component 31) during heating and heating d: Outer tube 3 (outer tube) Inner diameter of component 31) L: Maximum axial length of outer tube component 31 r: Bending radius of outer tube component 31 during heating θ: Bending angle when outer tube component 31 bends by heating At this time The relationship between the bending radius: r, the bending angle: θ, and the maximum axial length L of the outer tube component 31 is expressed by the following equations (1) and (2).

rθ=L ・・・(1)式
(r+d)θ=L(1+αt) ・・・(2)式
(1)・(2)式より、次の(3)・(4)式が求まる。
rθ = L (1) Equation (r + d) θ = L (1 + αt) (2) Equation From the equations (1) and (2), the following equations (3) and (4) are obtained.

dθ=αt×L ・・・(3)式
r=d/αt ・・・(4)式
外管3(外管構成物31)の内径と、この曲がった外管3内を貫通するまっすぐな内管4の外径との差であるクリアランス:cとすると、次の(5)式が成り立つ。なお、外管3と内管4の材質は、内管4の線膨張係数が、外管3の線膨張係数の1/10倍以下であるように選択する。もしくは、内管4を、線膨張係数が汎用的な磁性体材料よりも小さい、たとえば石英で構成する。よって、内管4は、加熱時に発生する温度差によって曲がらないと仮定している。
dθ = αt × L (3) Formula r = d / αt (4) Formula The inner diameter of the outer tube 3 (outer tube component 31) and a straight line penetrating through the bent outer tube 3 When the clearance, which is the difference from the outer diameter of the inner tube 4, is c, the following equation (5) is established. The materials of the outer tube 3 and the inner tube 4 are selected so that the linear expansion coefficient of the inner tube 4 is not more than 1/10 times the linear expansion coefficient of the outer tube 3. Alternatively, the inner tube 4 is made of, for example, quartz whose linear expansion coefficient is smaller than that of a general-purpose magnetic material. Therefore, it is assumed that the inner tube 4 does not bend due to a temperature difference generated during heating.

c=r(1−cos(θ/2)) ・・・(5)式
(3)〜(5)式より、次の(6)式が求まる。そして、この(6)式を満たす外管構成物31の軸方向の最大長さ:Lを求め、実際はこのL以下となるように外管構成物31を作製する。
c = r (1−cos (θ / 2)) (5) Formula The following formula (6) is obtained from the formulas (3) to (5). Then, the maximum length L in the axial direction of the outer tube component 31 satisfying the expression (6) is obtained, and the outer tube component 31 is actually manufactured so as to be equal to or less than L.

c=d/αt×(1−cos(αt×L/2d)) ・・・(6)式
たとえば、外管3として線膨張係数が11.7×10-6/KであるSS400、内管4として線膨張係数が0.58×10-6/Kである石英を使った場合のLを計算する。実験値よりt=200Kとし、d=20mm、製造上の精度から考えてc=0.1mmとした場合、L≒80mmとなる。よって、外管構成物31の軸方向の長さは、外管3(外管構成物31)の内径:dの4倍以内、80mm以内に形成して誘導加熱を行えばよい。
c = d / αt × (1−cos (αt × L / 2d)) (6) For example, as the outer tube 3, SS400 having a linear expansion coefficient of 11.7 × 10 −6 / K, an inner tube 4, L is calculated when quartz having a linear expansion coefficient of 0.58 × 10 −6 / K is used. From the experimental value, when t = 200K, d = 20 mm, and c = 0.1 mm in consideration of manufacturing accuracy, L≈80 mm. Therefore, the length of the outer tube component 31 in the axial direction may be within 4 times the inner diameter d of the outer tube 3 (outer tube component 31) and within 80 mm to perform induction heating.

図4は、図1の構成における実験結果を示す図である。
外管3としては、線膨張係数がα=11.7×10-6/KであるSS400を用いた。外管3の内径はd=16.1mm、外管構成物31の軸方向の長さは50mmとした。
FIG. 4 is a diagram showing experimental results in the configuration of FIG.
As the outer tube 3, SS400 having a linear expansion coefficient of α = 11.7 × 10 −6 / K was used. The inner diameter of the outer tube 3 was d = 16.1 mm, and the length of the outer tube component 31 in the axial direction was 50 mm.

内管4としては、線膨張係数が0.58×10-6/Kである石英を用いた。内管4の外径は16.0mm、内管4の軸方向の長さは80mmとした。すなわち、外管3(外管構成物31)の内径と内管4の外径との差であるクリアランスc=0.1mmとした。 As the inner tube 4, quartz having a linear expansion coefficient of 0.58 × 10 −6 / K was used. The outer diameter of the inner tube 4 was 16.0 mm, and the length of the inner tube 4 in the axial direction was 80 mm. That is, the clearance c = 0.1 mm, which is the difference between the inner diameter of the outer tube 3 (outer tube component 31) and the outer diameter of the inner tube 4.

上述したように、外管3にSS400を使い、内管4に石英を使い、クリアランスc=0.1mmとしたとき、外管構成物31の軸方向の最大長さ:Lは、外管3(外管構成物31)の内径:dの4倍程度である。図4の実験では、外管3の内径d:16.1mm、外管構成物31の軸方向の長さ:50mmとしており、すなわち外管構成物31の軸方向の長さは、外管3(外管構成物31)の内径:dの3倍程度と少し余裕を持たせてある。   As described above, when SS400 is used for the outer tube 3 and quartz is used for the inner tube 4 and the clearance c = 0.1 mm, the maximum axial length L of the outer tube component 31 is L. Inner diameter of (outer tube component 31): about 4 times d. In the experiment of FIG. 4, the inner diameter d of the outer tube 3 is 16.1 mm, and the axial length of the outer tube component 31 is 50 mm. That is, the axial length of the outer tube component 31 is the outer tube 3. Inner diameter of (outer tube component 31): A margin of about 3 times d is provided.

図1の本発明による構成、すなわち軸方向の長さ:50mmの外管構成物31を6個組み合わせて誘導加熱したとき、入力電力=12kWを加えて外管3を700℃まで約1分で急速加熱しても、石英からなる内管4は破損しなかった。   The structure according to the present invention shown in FIG. 1, that is, when six outer tube components 31 having an axial length of 50 mm are combined and heated by induction, input power = 12 kW is applied and the outer tube 3 is heated to 700 ° C. in about 1 minute. Even with rapid heating, the inner tube 4 made of quartz was not damaged.

一方、従来のように外管3が300mm、すなわち50mmの外管構成物31が6個つながったものと同等の外管3を誘導加熱したとき、入力電力=3.6kWを加えて外管3が380℃になった時点で、石英からなる内管4が破損してしまった。なお、このような従来構成では、外管3が300mmというのは、外管3の内径:dの18倍以上である。   On the other hand, when the outer tube 3 is 300 mm, i.e., when the outer tube 3 is equivalent to one having six 50 mm outer tube components 31 connected as in the conventional case, the input power = 3.6 kW is applied to the outer tube 3. When the temperature reached 380 ° C., the inner tube 4 made of quartz was broken. In such a conventional configuration, the outer tube 3 having a length of 300 mm is 18 times or more the inner diameter d of the outer tube 3.

よって、図1のように外管3を構成する複数個の外管構成物31の軸方向長さが所定値以下となるようにすれば、従来構成と比較して高いエネルギーを加えても、内管4が破損する恐れを小さくできる。   Therefore, if the axial lengths of the plurality of outer tube components 31 constituting the outer tube 3 are set to a predetermined value or less as shown in FIG. The possibility that the inner tube 4 is damaged can be reduced.

図5は、外管3を構成する複数個の外管構成物31を、電鋳層で構成した図である。
電鋳層32は、石英からなる内管4に、SS400を電鋳で形成する。内管4に複数個の外管構成物31からなる電鋳層32を形成するには、内管4の所定位置にマスクをしてSS400を電鋳で形成し、電鋳層32の形成後にマスクを除去すればよい。
FIG. 5 is a diagram in which a plurality of outer tube components 31 constituting the outer tube 3 are configured by electroformed layers.
The electroformed layer 32 is formed by electroforming SS400 on the inner tube 4 made of quartz. In order to form the electroformed layer 32 composed of a plurality of outer tube components 31 on the inner tube 4, SS400 is formed by electroforming with a mask at a predetermined position of the inner tube 4. What is necessary is just to remove a mask.

このように、外管3を構成する複数個の外管構成物31を電鋳層32で形成すると、外管3と内管4との間のクリアランスがないため効率よく熱伝導することができ、外管3を構成する複数個の外管構成物31の軸方向の長さを所定値以下にして外管構成物の歪む距離を小さくすることで、加熱時に二重管が破損する恐れを小さくできる。   As described above, when the plurality of outer tube components 31 constituting the outer tube 3 are formed of the electroformed layer 32, there is no clearance between the outer tube 3 and the inner tube 4, and thus heat can be efficiently conducted. By reducing the axial length of the plurality of outer tube components 31 constituting the outer tube 3 to a predetermined value or less and reducing the distortion distance of the outer tube components, the double tube may be damaged during heating. Can be small.

図6は、外管3をスパイラル状に巻いて構成した図である。
外管3は、所定値以下の巾からなる帯状の板である帯状磁性体32を使い、帯状磁性体32同士が重なり合わないよう内管4をスパイラル状に巻いて構成する。帯状磁性体32は、いわば磁性体テープである。帯状磁性体32の巾は、図2における外管構成物31の軸方向の長さを決めたときと同様に求められる。
FIG. 6 is a diagram in which the outer tube 3 is wound in a spiral shape.
The outer tube 3 is configured by using a strip-shaped magnetic body 32 that is a strip-shaped plate having a width of a predetermined value or less, and winding the inner tube 4 in a spiral shape so that the strip-shaped magnetic bodies 32 do not overlap each other. The band-shaped magnetic body 32 is a so-called magnetic tape. The width of the belt-like magnetic body 32 is obtained in the same manner as when the axial length of the outer tube component 31 in FIG. 2 is determined.

このように、外管3を、内管4をスパイラル状に巻く帯状磁性体32で形成すると、外管3の歪む距離を小さくすることで、加熱時に二重管が破損する恐れを小さくできる。さらに、図2における外管構成物31よりも部品点数を少なくできるという利点がある。   In this way, when the outer tube 3 is formed of a strip-shaped magnetic body 32 in which the inner tube 4 is wound in a spiral shape, the distance at which the outer tube 3 is distorted can be reduced to reduce the possibility of the double tube being damaged during heating. Furthermore, there is an advantage that the number of parts can be reduced as compared with the outer tube component 31 in FIG.

1 交流電源
2 コイル
3 外管
4 内管
5 潤滑剤
6 断熱材
7 コイル冷却ジャケット
8 被加熱流体
9 冷却水
DESCRIPTION OF SYMBOLS 1 AC power supply 2 Coil 3 Outer tube 4 Inner tube 5 Lubricant 6 Heat insulating material 7 Coil cooling jacket 8 Heated fluid 9 Cooling water

Claims (11)

断面が円形の外管と断面が円形の内管とから構成される二重管と、この二重管内を流れる被加熱流体を加熱するための誘導加熱手段と、を有する誘導加熱装置において、
前記内管は非磁性体で構成し、
前記外管は磁性体であり且つ当該外管の軸方向の長さがそれぞれ所定値以下である複数個の外管構成物から構成する誘導加熱装置。
In an induction heating apparatus having a double pipe composed of an outer pipe having a circular cross section and an inner pipe having a circular cross section, and induction heating means for heating a fluid to be heated flowing in the double pipe,
The inner tube is made of a non-magnetic material,
The induction heating apparatus is composed of a plurality of outer tube constituents in which the outer tube is a magnetic body and the length of the outer tube in the axial direction is not more than a predetermined value.
前記内管は線膨張係数が前記外管の線膨張係数より小さい非磁性体で構成し、
前記外管構成物の軸方向の長さは、以下の式で求めるL以下である請求項1に記載の誘導加熱装置。
c=d/αt×(1−cos(αt×L/2d))
ここで、c:内管の外径と外管の内径とのクリアランスの大きさ
d:外管の内径
α:外管の線膨張係数
t:加熱時に外管の円周方向に発生する最大温度差
L:外管構成物の軸方向の最大長さ
The inner tube is made of a nonmagnetic material having a linear expansion coefficient smaller than that of the outer tube,
The induction heating apparatus according to claim 1, wherein the axial length of the outer tube component is equal to or less than L obtained by the following expression.
c = d / αt × (1-cos (αt × L / 2d))
Where c: the size of the clearance between the outer diameter of the inner tube and the inner diameter of the outer tube
d: Inner diameter of outer tube
α: Coefficient of linear expansion of outer tube
t: Maximum temperature difference generated in the circumferential direction of the outer tube during heating
L: Maximum axial length of the outer tube component
断面が円形の外管と断面が円形の内管とから構成される二重管と、この二重管内を流れる被加熱流体を加熱するための誘導加熱手段と、を有する誘導加熱装置において、
前記内管は非磁性体で構成し、
前記外管は所定値以下の巾からなる帯状磁性体で前記内管をスパイラル状に巻いて構成する誘導加熱装置。
In an induction heating apparatus having a double pipe composed of an outer pipe having a circular cross section and an inner pipe having a circular cross section, and induction heating means for heating a fluid to be heated flowing in the double pipe,
The inner tube is made of a non-magnetic material,
An induction heating apparatus in which the outer tube is a belt-like magnetic body having a width of a predetermined value or less and the inner tube is wound in a spiral shape.
前記内管は線膨張係数が前記外管の線膨張係数より小さい非磁性体で構成し、
前記外管の巾は、以下の式で求めるL以下である請求項3に記載の誘導加熱装置。
c=d/αt×(1−cos(αt×L/2d))
ここで、c:内管の外径と外管の内径とのクリアランスの大きさ
d:外管の内径
α:外管の線膨張係数
t:加熱時に外管の円周方向に発生する最大温度差
L:外管構成物の軸方向の最大長さ
The inner tube is made of a nonmagnetic material having a linear expansion coefficient smaller than that of the outer tube,
The induction heating apparatus according to claim 3, wherein the width of the outer tube is equal to or less than L obtained by the following equation.
c = d / αt × (1-cos (αt × L / 2d))
Where c: the size of the clearance between the outer diameter of the inner tube and the inner diameter of the outer tube
d: Inner diameter of outer tube
α: Coefficient of linear expansion of outer tube
t: Maximum temperature difference generated in the circumferential direction of the outer tube during heating
L: Maximum axial length of the outer tube component
前記内管は石英で構成する請求項2または4に記載の誘導加熱装置。   The induction heating apparatus according to claim 2 or 4, wherein the inner tube is made of quartz. 前記内管の線膨張係数は、前記外管の線膨張係数の1/10以下である請求項2または4に記載の誘導加熱装置。   The induction heating apparatus according to claim 2 or 4, wherein a linear expansion coefficient of the inner pipe is 1/10 or less of a linear expansion coefficient of the outer pipe. 前記誘導加熱手段は、前記外管の長さ方向全体の周囲を巻き回す誘導加熱用コイルと、このコイルに印加する電源と、から構成する請求項1または3に記載の誘導加熱装置。   The induction heating apparatus according to claim 1 or 3, wherein the induction heating means includes an induction heating coil that is wound around the entire length of the outer tube, and a power source that is applied to the coil. 前記外管構成物は、前記内管の表面に施す電鋳層で形成されている請求項1に記載の誘導加熱装置。   The induction heating apparatus according to claim 1, wherein the outer tube constituent is formed of an electroformed layer applied to a surface of the inner tube. 外管と内管とから構成される二重管と、この二重管内を流れる被加熱流体を加熱するための誘導加熱手段と、を有する誘導加熱装置において、
前記内管は非磁性体で構成し、
前記外管は磁性体であり且つ当該外管の軸方向の長さがそれぞれ所定値以下に当該外管の断面方向で分割して構成する誘導加熱装置。
In an induction heating apparatus having a double pipe composed of an outer pipe and an inner pipe, and induction heating means for heating a fluid to be heated flowing in the double pipe,
The inner tube is made of a non-magnetic material,
An induction heating apparatus in which the outer tube is a magnetic body, and the axial length of the outer tube is divided into a predetermined value or less in the cross-sectional direction of the outer tube.
誘導加熱により加熱される流体が通流する円形の外管と円形の内管とから構成される二重管において、
前記内管は非磁性体で構成し、
前記外管は磁性体であり且つ当該外管の軸方向の長さがそれぞれ所定値以下である複数個の外管構成物から構成する二重管。
In a double tube composed of a circular outer tube and a circular inner tube through which a fluid heated by induction heating flows,
The inner tube is made of a non-magnetic material,
The outer tube is a double tube made of a plurality of outer tube components each made of a magnetic material and having an axial length of the outer tube equal to or less than a predetermined value.
誘導加熱により加熱される流体が通流する円形の外管と円形の内管とから構成される二重管において、
前記内管は非磁性体で構成し、
前記外管は所定値以下の巾からなる帯状磁性体で前記内管をスパイラル状に巻いて構成する二重管。
In a double tube composed of a circular outer tube and a circular inner tube through which a fluid heated by induction heating flows,
The inner tube is made of a non-magnetic material,
The outer tube is a double tube formed by winding the inner tube in a spiral shape with a belt-like magnetic body having a width of a predetermined value or less.
JP2010160890A 2010-07-15 2010-07-15 Induction heating apparatus and double tube for the same Withdrawn JP2012022934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010160890A JP2012022934A (en) 2010-07-15 2010-07-15 Induction heating apparatus and double tube for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010160890A JP2012022934A (en) 2010-07-15 2010-07-15 Induction heating apparatus and double tube for the same

Publications (1)

Publication Number Publication Date
JP2012022934A true JP2012022934A (en) 2012-02-02

Family

ID=45777037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010160890A Withdrawn JP2012022934A (en) 2010-07-15 2010-07-15 Induction heating apparatus and double tube for the same

Country Status (1)

Country Link
JP (1) JP2012022934A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050920A (en) * 2010-08-31 2012-03-15 Ricoh Co Ltd Waste liquid treatment apparatus
CN112567886A (en) * 2018-08-16 2021-03-26 巴斯夫欧洲公司 Apparatus and method for heating a fluid in a conduit

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4976151A (en) * 1972-11-25 1974-07-23
JPS63216332A (en) * 1987-03-04 1988-09-08 Fujitsu Ltd Vapor growth device
JPH01116584A (en) * 1987-10-29 1989-05-09 Hideo Nagasaka Production of heat fixing roll for copying machine
JPH07213420A (en) * 1994-01-31 1995-08-15 Toshiba Home Technol Corp Electromagnetic induction heating container
JPH113683A (en) * 1996-11-05 1999-01-06 Toshiba Lighting & Technol Corp Multiple-tube type fluorescent lamp and lighting system
JPH11179519A (en) * 1997-12-17 1999-07-06 Toshiba Mach Co Ltd Duct tube for transporting molten metal
JP2000241022A (en) * 1999-02-23 2000-09-08 Fuji Electric Co Ltd Instant heater for water
JP2001027370A (en) * 1999-07-15 2001-01-30 Uc Industrial Co Ltd Heat-insulated hose
JP2002252176A (en) * 2001-02-23 2002-09-06 Shikusuon:Kk Cvd device and thin-film manufacturing method
JP2002275514A (en) * 2001-03-15 2002-09-25 Nippon Steel Corp Cooling tube in stave cooler
JP2003317915A (en) * 2002-04-26 2003-11-07 Omron Corp Fluid heating apparatus
JP2004026574A (en) * 2002-06-26 2004-01-29 Matsushita Electric Ind Co Ltd Molding equipment
JP2004209445A (en) * 2003-01-08 2004-07-29 Jfe Steel Kk Device and method for treating halogenated hydrocarbon-containing gas
JP2009079821A (en) * 2007-09-26 2009-04-16 Fuji Denki Thermosystems Kk Fluid heating device
JP2009172160A (en) * 2008-01-24 2009-08-06 Hoya Corp Flexible tube for endoscope
JP2009243582A (en) * 2008-03-31 2009-10-22 Showa Denko Kenzai Kk Earthquake-proof and fire-proof double-layer tube and drain pipe system using the same

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4976151A (en) * 1972-11-25 1974-07-23
JPS63216332A (en) * 1987-03-04 1988-09-08 Fujitsu Ltd Vapor growth device
JPH01116584A (en) * 1987-10-29 1989-05-09 Hideo Nagasaka Production of heat fixing roll for copying machine
JPH07213420A (en) * 1994-01-31 1995-08-15 Toshiba Home Technol Corp Electromagnetic induction heating container
JPH113683A (en) * 1996-11-05 1999-01-06 Toshiba Lighting & Technol Corp Multiple-tube type fluorescent lamp and lighting system
JPH11179519A (en) * 1997-12-17 1999-07-06 Toshiba Mach Co Ltd Duct tube for transporting molten metal
JP2000241022A (en) * 1999-02-23 2000-09-08 Fuji Electric Co Ltd Instant heater for water
JP2001027370A (en) * 1999-07-15 2001-01-30 Uc Industrial Co Ltd Heat-insulated hose
JP2002252176A (en) * 2001-02-23 2002-09-06 Shikusuon:Kk Cvd device and thin-film manufacturing method
JP2002275514A (en) * 2001-03-15 2002-09-25 Nippon Steel Corp Cooling tube in stave cooler
JP2003317915A (en) * 2002-04-26 2003-11-07 Omron Corp Fluid heating apparatus
JP2004026574A (en) * 2002-06-26 2004-01-29 Matsushita Electric Ind Co Ltd Molding equipment
JP2004209445A (en) * 2003-01-08 2004-07-29 Jfe Steel Kk Device and method for treating halogenated hydrocarbon-containing gas
JP2009079821A (en) * 2007-09-26 2009-04-16 Fuji Denki Thermosystems Kk Fluid heating device
JP2009172160A (en) * 2008-01-24 2009-08-06 Hoya Corp Flexible tube for endoscope
JP2009243582A (en) * 2008-03-31 2009-10-22 Showa Denko Kenzai Kk Earthquake-proof and fire-proof double-layer tube and drain pipe system using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050920A (en) * 2010-08-31 2012-03-15 Ricoh Co Ltd Waste liquid treatment apparatus
CN112567886A (en) * 2018-08-16 2021-03-26 巴斯夫欧洲公司 Apparatus and method for heating a fluid in a conduit
JP2021534552A (en) * 2018-08-16 2021-12-09 ベーアーエスエフ・エスエー Devices and methods for heating fluids in pipelines

Similar Documents

Publication Publication Date Title
EP2213140B1 (en) Flow-through induction heater
JP2010071624A (en) Fluid heating device
KR20200029988A (en) Superheated Steam Generator
JP2013057482A (en) Induction heating type liquid heater and induction heating type liquid heating apparatus
JP2012022934A (en) Induction heating apparatus and double tube for the same
JP5023555B2 (en) Induction heating device
CN103167657B (en) Cyclic metal piece induction heating equipment and cup-shaped metalwork induction heating equipment
JP2014229395A (en) Induction heating apparatus
JP2021025079A (en) Electromagnetic induction heating device
RU2674999C1 (en) Device for induction heating
US10616960B2 (en) Heating coil
RU2663366C1 (en) Method for heating metallic wall shell
JP6586371B2 (en) Heating coil
KR20090079421A (en) Induction Heating Apparatus using High Frequency
JP2014229486A (en) Induction heating apparatus
JP2010027470A (en) Transverse induction heating device
RU2007139257A (en) FLUID INDUCTION HEATER
JP2007294207A (en) High-frequency induction heating apparatus and its heating method
CN205305151U (en) Electromagnetism heat pipe
CN106851879B (en) Bundling electromagnetic heat pipe
JP5969184B2 (en) Induction heating device
JP2006008479A (en) Induction heating-type molding apparatus
JP2012038652A (en) Electromagnetic induction heating device
JP6317244B2 (en) Coil unit for induction heating and induction heating device
JP2014216129A (en) Induction heating device and induction heating apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20140414