JP5969184B2 - Induction heating device - Google Patents

Induction heating device Download PDF

Info

Publication number
JP5969184B2
JP5969184B2 JP2011200574A JP2011200574A JP5969184B2 JP 5969184 B2 JP5969184 B2 JP 5969184B2 JP 2011200574 A JP2011200574 A JP 2011200574A JP 2011200574 A JP2011200574 A JP 2011200574A JP 5969184 B2 JP5969184 B2 JP 5969184B2
Authority
JP
Japan
Prior art keywords
induction heating
electromagnetic coil
fluid
tubular member
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011200574A
Other languages
Japanese (ja)
Other versions
JP2013062175A (en
Inventor
泰士 山田
泰士 山田
壮次郎 木村
壮次郎 木村
良政 平松
良政 平松
養祐 福岡
養祐 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Dai Ichi High Frequency Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd, Dai Ichi High Frequency Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2011200574A priority Critical patent/JP5969184B2/en
Publication of JP2013062175A publication Critical patent/JP2013062175A/en
Application granted granted Critical
Publication of JP5969184B2 publication Critical patent/JP5969184B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Induction Heating (AREA)

Description

本発明は、誘導加熱装置に関する。   The present invention relates to an induction heating apparatus.

近年、電磁誘導の原理を利用した誘導加熱(IH)装置が普及している(例えば、特許文献1−4を参照)。誘導加熱装置は、加熱効率が良く、温度の制御も容易である。   In recent years, induction heating (IH) devices using the principle of electromagnetic induction have become widespread (see, for example, Patent Documents 1-4). The induction heating device has good heating efficiency and easy temperature control.

特開2008−082700号公報JP 2008-082700 A 特開2003−123949号公報JP 2003-123949 A 特開2003−100426号公報JP 2003-100426 A 特開2001−250666号公報JP 2001-250666 A

管内を流れる流体を誘導加熱する場合に、管内に配置した発熱体を電磁誘導で発熱させると、流体を均一に加熱することが難しい。そこで、上述した特許文献1−3のように、熱伝導性に優れる部材を管内に多数配置することにより、流体を加熱する際の均一性を図ることも可能である。しかし、このような構成であっても、管内の中心付近は、伝熱によって加熱されることになるので、誘導加熱によって発熱する発熱体が配置されている管内の壁面付近に比べると加熱力が劣る。このような傾向は、流体を流す管の径が大きくなるにつれて著しくなり、管の中心付近とその周辺との間で温度差が生じてしまう。   When the fluid flowing in the pipe is induction-heated, if the heating element disposed in the pipe is heated by electromagnetic induction, it is difficult to uniformly heat the fluid. Therefore, as in Patent Documents 1 to 3 described above, by arranging a large number of members having excellent thermal conductivity in the pipe, it is possible to achieve uniformity when heating the fluid. However, even in such a configuration, the vicinity of the center in the tube is heated by heat transfer, so that the heating power is higher than that in the vicinity of the wall surface in the tube where the heating element generating heat by induction heating is arranged. Inferior. Such a tendency becomes conspicuous as the diameter of the pipe through which the fluid flows increases, and a temperature difference occurs between the vicinity of the center of the pipe and the periphery thereof.

このような熱伝導性に起因する問題を解決するものとして、例えば、上述した特許文献4のように、熱伝導性に優れるヒートパイプを用いることも考案されているが、作動液の保有熱量が大きいため、誘導コイルの電流を調整しても流体の熱的な応答が緩慢であり、許容される温度条件が厳しいと温度制御が難しい。   In order to solve such problems caused by thermal conductivity, for example, as described in Patent Document 4, it has been devised to use a heat pipe having excellent thermal conductivity. Therefore, even if the current of the induction coil is adjusted, the thermal response of the fluid is slow, and if the allowable temperature conditions are severe, temperature control is difficult.

例えば、各種の溶剤や可塑剤を用いてフィルムを製造する工程などにおいては、各薬液類の沸点に応じた温度の加熱空気を吹き付けることが行われるが、許容される温度条件は製造物の品質を担保する観点から非常に狭い範囲に制限されていることがあり、精密な温度制御が要求される。   For example, in the process of manufacturing a film using various solvents and plasticizers, heated air having a temperature corresponding to the boiling point of each chemical solution is blown, but the allowable temperature condition is the quality of the product. From the standpoint of ensuring that the temperature is limited to a very narrow range, precise temperature control is required.

本願は、上記事項に鑑みてなされたものであり、加熱する流体の熱的な均一性を向上させ、且つ温度調整の制御性にも優れる誘導加熱装置を提供することを課題とする。   This application is made in view of the said matter, and makes it a subject to provide the induction heating apparatus which improves the thermal uniformity of the fluid to heat, and is excellent also in controllability of temperature control.

上記課題を解決するため、本発明は、流体が通過する流路内に導電性の管状部材を配置し、この管状部材を電磁誘導によって発熱させるための交流電流を流す電磁コイルを、管状部材の内部に配置することにした。   In order to solve the above-mentioned problems, the present invention provides an electromagnetic coil in which a conductive tubular member is disposed in a flow path through which a fluid passes and an alternating current for generating heat by electromagnetic induction is passed through the tubular member. I decided to place it inside.

詳細には、本発明は、流体を加熱する誘導加熱装置であって、前記流体が通過する流路内に配置される導電性の管状部材と、前記管状部材の内部に、前記管状部材と電気的に接触しない状態で前記管状部材の長手方向に沿って延在し、前記管状部材を電磁誘導によって発熱させる交流電流が流れる電磁コイルと、を備える。   More specifically, the present invention relates to an induction heating apparatus for heating a fluid, and is a conductive tubular member disposed in a flow path through which the fluid passes, and the tubular member and the electric member inside the tubular member. And an electromagnetic coil that flows along the longitudinal direction of the tubular member without contact and that flows an alternating current that causes the tubular member to generate heat by electromagnetic induction.

空気や水といった非金属の流体は、金属に比べて熱伝導率が著しく小さいため、流路内に高温の熱源を配置するだけでは流体を均一に昇温することが難しい。そこで、熱源を流路内に均等に配置することが考えられるが、例えば、電気ヒータを熱源とする場合には必要な熱量やコイルの許容電流といった各種の制約により、精密な温度制御を実現する回路を構成することが難しい。一方、誘導加熱の原理によれば、電磁コイルに流れる電流を制御することで、精密な温度制御を容易に実現できることが知られている。   Non-metallic fluids such as air and water have remarkably lower thermal conductivity than metals, so it is difficult to raise the temperature of the fluid uniformly only by arranging a high-temperature heat source in the flow path. Therefore, it is conceivable to arrange the heat source evenly in the flow path. For example, when an electric heater is used as the heat source, precise temperature control is realized by various restrictions such as the amount of heat required and the allowable current of the coil. It is difficult to construct a circuit. On the other hand, according to the principle of induction heating, it is known that precise temperature control can be easily realized by controlling the current flowing through the electromagnetic coil.

ここで、誘導加熱の原理を用いる場合には、一般的に、巻線状にした電磁コイルの内部に導電性の部材を配置することにより、この部材に渦電流を発生させて発熱させることが行なわれるが、この場合には、加熱する流体を電磁コイル内部に配置した導電性部材の中に流さざるを得ない。このような態様によれば、導電性部材の内部に構成された流路の中心付近が周辺部分より不可避的に低温になり、流体の均一な昇温を実現できない。   Here, when the principle of induction heating is used, it is generally possible to generate an eddy current in the member by arranging a conductive member inside the wound electromagnetic coil to generate heat. However, in this case, the fluid to be heated must flow through the conductive member disposed inside the electromagnetic coil. According to such an aspect, the vicinity of the center of the flow path formed inside the conductive member inevitably becomes lower in temperature than the peripheral portion, and uniform temperature rise of the fluid cannot be realized.

そこで、上記誘導加熱装置は、電磁コイルを導電性の管状部材の内部に配置することにより、流体を流す流路を、従来のような電磁コイルの内側から、電磁コイルを内置した管状部材の外側とすることにより、流路を構成する際の規制を排除している。これにより、誘導加熱によって発熱する管状部材を流路内に自由に配置することが可能となり、加熱する流体の熱的な均一性の向上や、温度調整の制御性の向上を図ることが可能になる。   Therefore, the induction heating device has an electromagnetic coil disposed inside the conductive tubular member, so that the flow path for flowing the fluid is from the inside of the conventional electromagnetic coil to the outside of the tubular member in which the electromagnetic coil is installed. By doing so, the restriction when configuring the flow path is eliminated. This makes it possible to freely arrange the tubular member that generates heat by induction heating in the flow path, and to improve the thermal uniformity of the fluid to be heated and the controllability of temperature adjustment. Become.

ここで、前記管状部材は、前記流路内に多数配置されており、前記電磁コイルは、1本の導線が前記各管状部材を順に通過するように形成されていてもよい。誘導加熱装置がこのように構成されていれば、各管状部材が概ね均一に発熱するので、加熱する流体の熱的な均一性の向上を図ることが可能である。   Here, a large number of the tubular members may be arranged in the flow path, and the electromagnetic coil may be formed so that one conductive wire passes through the tubular members in order. If the induction heating device is configured in this way, each tubular member generates heat almost uniformly, so that it is possible to improve the thermal uniformity of the fluid to be heated.

また、前記管状部材は、前記流体の流れ方向に交差するように前記流路内に配置されており、前記誘導加熱装置は、前記流体の流れ方向に沿って伝熱面が延在し、少なくとも前記管状部材に固定されて前記管状部材の熱を前記伝熱面から前記流体へ伝えるフィンを更に備えるものであってもよい。誘導加熱装置がこのように構成されていれば、管状部材の熱がフィンを介して速やかに流体へ伝達されるので、加熱する流体の熱的な均一性が更に向上し、また、温度調整の制御性の更なる向上を図ることができる。また、フィンが流体の流れに支障をきたすことも無い。   The tubular member is disposed in the flow path so as to intersect the fluid flow direction, and the induction heating device has a heat transfer surface extending along the fluid flow direction, and at least A fin that is fixed to the tubular member and transmits heat of the tubular member from the heat transfer surface to the fluid may be further provided. If the induction heating device is configured in this way, the heat of the tubular member is quickly transmitted to the fluid via the fins, so that the thermal uniformity of the fluid to be heated is further improved, and the temperature adjustment is performed. The controllability can be further improved. Further, the fins do not disturb the fluid flow.

また、前記管状部材より下流側の前記流体の温度を計測する温度センサを更に備え、前記電磁コイルには、前記温度センサが所定の温度となるように制御された前記交流電流が流れるものであってもよい。電磁コイルを流れる電流がこのように制御されることにより、上記誘導加熱装置が有する、温度調整の高い制御性の効果が有効に発揮される。   Further, a temperature sensor for measuring the temperature of the fluid downstream from the tubular member is further provided, and the alternating current that is controlled so that the temperature sensor has a predetermined temperature flows through the electromagnetic coil. May be. By controlling the current flowing through the electromagnetic coil in this way, the effect of controllability with high temperature adjustment that the induction heating device has is effectively exhibited.

上記誘導加熱装置であれば、加熱する流体の熱的な均一性が向上し、且つ温度調整の制御性にも優れる。   If it is the said induction heating apparatus, the thermal uniformity of the fluid to heat improves and it is excellent also in controllability of temperature control.

実施形態に係る誘導加熱装置を、フィルムを生産するラインのドライヤー工程に適用した場合のシステム構成の一例を示した図である。It is the figure which showed an example of the system configuration at the time of applying the induction heating apparatus which concerns on embodiment to the dryer process of the line which produces a film. 実施形態に係る誘導加熱装置の構成図である。It is a block diagram of the induction heating apparatus which concerns on embodiment. 流体加熱ユニットを正面から見た場合の内部構造図である。It is an internal structure figure at the time of seeing a fluid heating unit from the front. 電磁コイルを挿通した管部材の断面図である。It is sectional drawing of the pipe member which penetrated the electromagnetic coil. 流体加熱ユニットの側面図である。It is a side view of a fluid heating unit. 実施形態に係る誘導加熱装置の回路の概要を示した図である。It is the figure which showed the outline | summary of the circuit of the induction heating apparatus which concerns on embodiment. 従来例に係る誘導加熱装置の回路の概要を示した図である。It is the figure which showed the outline | summary of the circuit of the induction heating apparatus which concerns on a prior art example. 比較実験の概要を示した図である。It is the figure which showed the outline | summary of the comparative experiment. 温度センサの配置図である。It is an arrangement view of a temperature sensor. 実施形態に係る誘導加熱装置の実験結果を示した表である。It is the table | surface which showed the experimental result of the induction heating apparatus which concerns on embodiment. 従来例に係る電気ヒータを用いた流体加熱ユニットの実験結果を示した表である。It is the table | surface which showed the experimental result of the fluid heating unit using the electric heater which concerns on a prior art example.

以下、本願発明の実施形態について説明する。下記実施形態は、本願発明の一態様を示したものであり、本願発明の技術的範囲を下記の実施形態に限定するものではない。   Hereinafter, embodiments of the present invention will be described. The following embodiment shows one aspect of the present invention, and the technical scope of the present invention is not limited to the following embodiment.

実施形態に係る誘導加熱装置を、フィルムを生産するラインのドライヤー工程に適用した場合のシステム構成を図1に示す。本実施形態に係る誘導加熱装置1は、ブロワ2を設けた温風供給装置3に内蔵されており、フィルム4が通過するケーシング5内に送風する空気を加熱する。各種の製品を製造するプラントや、各種の実験を行なう実験設備等においては、例えば、図1に示すドライヤー工程のように、温風を供給する設備が必要とされることがある。   FIG. 1 shows a system configuration when the induction heating device according to the embodiment is applied to a dryer process of a line for producing a film. The induction heating device 1 according to the present embodiment is built in a hot air supply device 3 provided with a blower 2 and heats air blown into a casing 5 through which a film 4 passes. In plants for manufacturing various products, experimental facilities for performing various experiments, etc., for example, a facility for supplying hot air may be required as in the dryer process shown in FIG.

特に、フィルムの乾燥工程においては、様々な温度の空気を必要とする場合がある。ここで、フィルムの製造に用いる各種の溶剤を除去し、あるいは乾燥させる際の温風が正確に温度調整されていないと、気中に含まれる物質が化学変化を起こしたりすることにより、製品に重大な影響を及ぼすことがあるため、精度の高い温度制御が必要になる。そこで、本実施形態に係る誘導加熱装置1は、正確に温度調整した温風を供給するべく、以下のように構成されている。   In particular, in the film drying process, air at various temperatures may be required. Here, if the temperature of the hot air when removing various solvents used for film production or drying is not accurately adjusted, substances contained in the air may cause chemical changes, resulting in Highly accurate temperature control is required because it can have serious effects. Therefore, the induction heating device 1 according to the present embodiment is configured as follows to supply hot air whose temperature is accurately adjusted.

誘導加熱装置1の構成を図2に示す。この誘導加熱装置1は、図2に示すように、流体加熱ユニット6、温度監視ボックス7、高周波電源装置8、冷却水循環装置9を備えている。誘導加熱装置1は、単相100Vの交流電源および3相200Vの交流電源に接続する。なお、図1では温風供給装置3の内面流路を横切って誘導加熱装置1が図示されているが、流体加熱ユニット6のみをそのように配置して、その他の機器(温度監視ボックス7、高周波電源装置8、冷却水循環装置9)は温風供給装置3の機外や温風供給装置3の部材スペース等の流路外に配置することが望ましい。   The configuration of the induction heating device 1 is shown in FIG. As shown in FIG. 2, the induction heating device 1 includes a fluid heating unit 6, a temperature monitoring box 7, a high frequency power supply device 8, and a cooling water circulation device 9. The induction heating device 1 is connected to a single-phase 100V AC power source and a three-phase 200V AC power source. In FIG. 1, the induction heating device 1 is illustrated across the inner surface flow path of the hot air supply device 3, but only the fluid heating unit 6 is arranged in that way, and other devices (temperature monitoring box 7, The high-frequency power supply device 8 and the cooling water circulation device 9) are preferably arranged outside the hot air supply device 3 or outside the flow path such as the member space of the hot air supply device 3.

流体加熱ユニット6は、ブロワ2に吸引される空気を電気的に加熱する装置であり、流体加熱ユニット6に内置した温度センサによって温度を監視する温度監視ボックス7からの信号に基づいて適当に調整された高周波電源装置8からの高周波電流が後述する電磁コイルを流れると、後述する管部材が高温となりブロワ2に吸引される空気が加熱される。なお、ブロワ2は、過熱防止のため、通常はヒータの上流側へ配置するのが一般的であるが、撹拌により空気をより均一に加熱するため、ヒータである流体加熱ユニット6の下流側に配置してもよい。その場合、ブロワ2は、高温の空気が流入しても運転が継続できるよう、耐熱性の高い部材を用いることが望ましい。   The fluid heating unit 6 is a device that electrically heats the air sucked into the blower 2, and is appropriately adjusted based on a signal from a temperature monitoring box 7 that monitors the temperature by a temperature sensor installed in the fluid heating unit 6. When a high-frequency current from the high-frequency power supply device 8 flows through an electromagnetic coil, which will be described later, a tube member, which will be described later, becomes hot and air sucked into the blower 2 is heated. In order to prevent overheating, the blower 2 is generally arranged upstream of the heater. However, in order to heat the air more uniformly by stirring, the blower 2 is disposed downstream of the fluid heating unit 6 as a heater. You may arrange. In that case, the blower 2 is desirably made of a member having high heat resistance so that the operation can be continued even when high-temperature air flows.

温度監視ボックス7は、流体加熱ユニット6に内置した温度センサの信号を高周波電源装置8へ送る。   The temperature monitoring box 7 sends the signal of the temperature sensor installed in the fluid heating unit 6 to the high frequency power supply device 8.

高周波電源装置8は、高周波電流を発生するインバータ回路を内蔵しており、数十kHzの交流電流を発生させて、流体加熱ユニット6の電磁コイルに高周波電流を供給することができる。高周波電源装置8は、温度センサから温度監視ボックス7を介して送られる温度の情報に基づいて出力を制御しており、具体的な制御対象は電流、電圧、電力の何れであってもよい。   The high frequency power supply device 8 incorporates an inverter circuit that generates a high frequency current, and can generate an alternating current of several tens of kHz to supply the high frequency current to the electromagnetic coil of the fluid heating unit 6. The high frequency power supply device 8 controls the output based on the temperature information sent from the temperature sensor via the temperature monitoring box 7, and the specific control target may be any of current, voltage, and power.

冷却水循環装置9は、流体加熱ユニット6の電磁コイル内に通水する冷却水を冷却しながら循環させる装置であり、冷却水ホース10を介して流体加熱ユニット6の電磁コイルの両端部に繋がっている。電磁コイルは、発熱体(後述する管部材に相当する)を誘導加熱するだけでなく、自身も電流が流れることによって発熱する。また、誘導加熱によって発熱する発熱体からの輻射もあるため、電磁コイルは極めて高温になる。電磁コイルが高温になると、加熱効率の低下や断線といったトラブルを招く虞があるため、冷却水循環装置9が管状の電磁コイル内に冷却水を通水することにより、電磁コイルを冷却する。なお、冷却水の温度は、電磁コイルの溶損を防止し且つ結露による電気的なトラブルの生じる虞が無い温度が望ましく、例えば、25〜35℃程度とする。   The cooling water circulation device 9 is a device that circulates while cooling the cooling water passing through the electromagnetic coil of the fluid heating unit 6, and is connected to both ends of the electromagnetic coil of the fluid heating unit 6 via the cooling water hose 10. Yes. The electromagnetic coil not only inductively heats a heating element (corresponding to a tube member to be described later), but also generates heat when current flows. Further, since there is radiation from a heating element that generates heat by induction heating, the electromagnetic coil becomes extremely hot. When the temperature of the electromagnetic coil becomes high, there is a possibility of causing problems such as a reduction in heating efficiency or disconnection. Therefore, the cooling water circulating device 9 cools the electromagnetic coil by passing cooling water through the tubular electromagnetic coil. The temperature of the cooling water is preferably a temperature that prevents melting of the electromagnetic coil and does not cause an electrical trouble due to condensation, and is about 25 to 35 ° C., for example.

冷却水循環装置9は、電磁コイルを冷却するため、冷却水タンク11や放熱部12、循環ポンプ13を内蔵している。冷却水循環装置9は、電磁コイル内を通って加熱された冷却水を放熱部12が冷却すると共に、冷却水タンク11内の冷却水を循環ポンプ13が電磁コイルの管内へ送り込むことにより、電磁コイルを連続的に冷却する。   The cooling water circulation device 9 includes a cooling water tank 11, a heat radiating unit 12, and a circulation pump 13 in order to cool the electromagnetic coil. The cooling water circulating device 9 is configured such that the cooling water heated through the electromagnetic coil is cooled by the heat radiating unit 12 and the cooling water in the cooling water tank 11 is fed into the pipe of the electromagnetic coil by the circulation pump 13. Cool continuously.

電磁コイルの管内へ送り込まれる冷却水は、循環ポンプ13によって適当な圧力に昇圧された後、電磁コイルの管内へ送り込まれるようになっている。循環ポンプ13の吐出圧力は、内径の小さい電磁コイルの管内であっても十分な量の冷却水が循環するよう、例えば、0.5MPa程度になるようにポンプや循環経路が設計されている。   The cooling water fed into the electromagnetic coil pipe is boosted to an appropriate pressure by the circulation pump 13 and then fed into the electromagnetic coil pipe. The pump and the circulation path are designed so that the discharge pressure of the circulation pump 13 is, for example, about 0.5 MPa so that a sufficient amount of cooling water circulates even in the pipe of the electromagnetic coil having a small inner diameter.

なお、冷却水循環装置9の異常に伴う電磁コイルの過熱を防止するため、冷却水の循環経路にはフロースイッチ14が設けられており、何らかの理由によって冷却水の循環が停止したことをフロースイッチ14が検知すると、高周波電源装置8が停止するようになっている。   In order to prevent overheating of the electromagnetic coil due to the abnormality of the cooling water circulation device 9, a flow switch 14 is provided in the circulation path of the cooling water, and the flow switch 14 indicates that the circulation of the cooling water has stopped for some reason. Is detected, the high frequency power supply 8 is stopped.

流体加熱ユニット6を正面から見た場合の内部構造図を図3に示す。流体加熱ユニット6は、図3に示すように、ケーシング24や管部材15、フィン16、電磁コイル17を備えている。ブロワ2へ吸い込まれる空気は、ケーシング24の内部を、図3の紙面に対して直交する方向に流れる。   FIG. 3 shows the internal structure when the fluid heating unit 6 is viewed from the front. As shown in FIG. 3, the fluid heating unit 6 includes a casing 24, pipe members 15, fins 16, and electromagnetic coils 17. The air sucked into the blower 2 flows inside the casing 24 in a direction perpendicular to the paper surface of FIG.

ケーシング24は、SEHC(電気亜鉛メッキ鋼板)で構成された四角い枠状の部材であり、ブロワ2へ吸い込まれる空気の流路の一部を形成する部材である。すなわち、ケーシング24は、図3の紙面に対して直交する方向に開口している。   The casing 24 is a square frame-shaped member made of SEHC (electrogalvanized steel plate), and is a member that forms a part of a flow path of air sucked into the blower 2. That is, the casing 24 opens in a direction orthogonal to the paper surface of FIG.

管部材15は、呼び径が10AのSGP管(配管用炭素鋼管)であり、ブロワ2へ吸い込まれる空気の進行方向と直交する方向に伸びた直管がケーシング24の内部に多数配置されている。管部材15は、ケーシング24の両脇に配置された板状の支持部材18によって支持されているが、ケーシング24等の代替手段によって十分支持可能であれば、支持部材18を必ずしも設ける必要は無い。なお、管部材15は、このような素材を用いたものに限定されるものではないが、誘導加熱を行なう際の発熱体とするため、導電性の部材であることを要する。また、管部材15は、このような直管であるものに限定されるものでなく、電磁コイル17がフレキシブルなものであれば、管部材15が途中で曲がっていてもよい。また、管部材15の端部は、電磁コイル17を露出させていてもよいが、例えば、隣接する管部材15の両端同士をU字状に繋ぎ、電磁コイル17のU字部分を管部材で覆うようにしてもよい。この場合、U字部分は、セラミックスなどの非導電体を用いると、U字部分の発熱を防ぐことができる。   The pipe member 15 is an SGP pipe (carbon steel pipe for piping) having a nominal diameter of 10 A, and a large number of straight pipes extending in a direction orthogonal to the direction of travel of air sucked into the blower 2 are arranged inside the casing 24. . The pipe member 15 is supported by plate-like support members 18 arranged on both sides of the casing 24. However, the support member 18 is not necessarily provided as long as the tube member 15 can be sufficiently supported by alternative means such as the casing 24. . In addition, although the pipe member 15 is not limited to the thing using such a raw material, in order to make it a heat generating body at the time of performing induction heating, it needs to be an electroconductive member. The tube member 15 is not limited to such a straight tube, and the tube member 15 may be bent in the middle as long as the electromagnetic coil 17 is flexible. Moreover, although the electromagnetic coil 17 may be exposed, the edge part of the pipe member 15 connects the both ends of the adjacent pipe member 15 in U shape, for example, and the U-shaped part of the electromagnetic coil 17 is a pipe member. You may make it cover. In this case, if a non-conductor such as ceramic is used for the U-shaped portion, heat generation of the U-shaped portion can be prevented.

フィン16は、平板状のSGCC(溶融亜鉛メッキ鋼板)を一定の間隔で配置したものであり、管部材15の熱が空気に十分伝わるよう、十分な大きさの伝熱面積を確保することにより、加熱効率を高める。フィン16は、ブロワ2へ吸い込まれる空気の進行方向に
沿って熱交換面が延在するように配列されており、熱交換面を貫く管部材15に接合されることで、管部材15の熱がフィン16へ伝わるようになっている。接合部は、管部材15からフィン16へ伝熱可能であれば、機械的に圧着されていてもよいし、或いは溶接されていてもよい。フィン16の厚さやピッチは、空気の流速や風量、誘導加熱の発熱量に応じて適宜決定されており、例えば、厚さを0.3mmとし、ピッチを3〜5mm程度にする。
The fins 16 are plate-shaped SGCCs (hot dip galvanized steel sheets) arranged at regular intervals, and by ensuring a sufficiently large heat transfer area so that the heat of the tube member 15 is sufficiently transferred to the air. , Increase the heating efficiency. The fins 16 are arranged so that the heat exchange surfaces extend along the traveling direction of the air sucked into the blower 2, and are joined to the tube members 15 penetrating the heat exchange surfaces, so that the heat of the tube members 15 can be obtained. Is transmitted to the fin 16. As long as heat can be transferred from the tube member 15 to the fin 16, the joint may be mechanically pressure-bonded or welded. The thickness and pitch of the fins 16 are appropriately determined according to the flow rate of air, the air volume, and the amount of heat generated by induction heating. For example, the thickness is 0.3 mm and the pitch is about 3 to 5 mm.

なお、フィン16の材質は、伝熱性及び耐熱性に優れるものであれば如何なるものであってもよく、例えば、銅板やアルミニウム板等であってもよい。   The material of the fin 16 may be any material as long as it has excellent heat conductivity and heat resistance, and may be, for example, a copper plate or an aluminum plate.

電磁コイル17は、外径が10mmで内径が8mmの銅管であり、各管部材15の端部で折れ曲がって蛇行しながら各管部材15を順に通過するように、各管部材15の内部に挿通されている。電磁コイル17を挿通した管部材15の断面を図4に示す。電磁コイル17は、各管部材15と電気的に接触しないよう、電磁コイル17の表面にシリコン被覆が施されている。電磁コイル17の内部には、上述した冷却水循環装置9の冷却水が流れる。   The electromagnetic coil 17 is a copper tube having an outer diameter of 10 mm and an inner diameter of 8 mm. The electromagnetic coil 17 is disposed inside each tube member 15 so as to pass through each tube member 15 in turn while bending and meandering at the end of each tube member 15. It is inserted. A cross section of the tube member 15 through which the electromagnetic coil 17 is inserted is shown in FIG. The electromagnetic coil 17 has a silicon coating on the surface of the electromagnetic coil 17 so as not to be in electrical contact with each tube member 15. Inside the electromagnetic coil 17, the cooling water of the cooling water circulation device 9 described above flows.

流体加熱ユニット6の側面図を図5に示す。電磁コイル17は、図5に示すように、各管部材15の端部で折れ曲がっており、隣の管部材15の内部に挿通されることで蛇行を繰り返し、最終的に全ての管部材15を通過するようになっている。そして、符号Aおよび符号Bで示される電磁コイル17の両端が、電気ケーブルを介して高周波電源装置8と電気的に接続されると共に、電磁コイル17の内側の管路の両端が冷却水ホース10を介して冷却水循環装置9と接続されている。   A side view of the fluid heating unit 6 is shown in FIG. As shown in FIG. 5, the electromagnetic coil 17 is bent at the end of each pipe member 15, and is repeatedly meandered by being inserted into the adjacent pipe member 15, and finally all the pipe members 15 are It has come to pass. Then, both ends of the electromagnetic coil 17 indicated by reference signs A and B are electrically connected to the high frequency power supply device 8 via an electric cable, and both ends of the pipe line inside the electromagnetic coil 17 are connected to the cooling water hose 10. Is connected to the cooling water circulation device 9.

このように構成される誘導加熱装置1は、電源がオンになると、冷却水循環装置9の循環ポンプ13が起動して冷却水の循環を開始し、高周波電源装置8が電磁コイル17に高周波電流を流す。電磁コイル17に高周波電流が流れると、金属で形成された管部材15には、電磁コイル17の周囲に発生する高周波磁界を打ち消す方向(レンツの法則)、換言すると、電磁コイル17を流れる電流とは逆向きの方向に渦電流が流れる。この誘導加熱装置1の回路の概要を図6に示す。電磁コイル17に高周波電流が流れて、管部材15に渦電流が流れると、管部材15には電気抵抗があるため、ジュールの法則に従い、下記の数式1に示されるジュール熱が発生する。このとき、各管部材15に流れる渦電流は一様になるので、各管部材15は均一に加熱される。

Figure 0005969184
In the induction heating apparatus 1 configured as described above, when the power supply is turned on, the circulation pump 13 of the cooling water circulation device 9 is activated to start circulation of the cooling water, and the high frequency power supply device 8 supplies a high frequency current to the electromagnetic coil 17. Shed. When a high-frequency current flows through the electromagnetic coil 17, the tube member 15 made of metal has a direction (Lenz's law) that cancels the high-frequency magnetic field generated around the electromagnetic coil 17, in other words, a current flowing through the electromagnetic coil 17. Eddy current flows in the opposite direction. An outline of the circuit of the induction heating apparatus 1 is shown in FIG. When a high-frequency current flows through the electromagnetic coil 17 and an eddy current flows through the tube member 15, the tube member 15 has an electrical resistance. Therefore, Joule heat represented by the following Equation 1 is generated according to Joule's law. At this time, since the eddy current flowing through each tube member 15 becomes uniform, each tube member 15 is heated uniformly.
Figure 0005969184

この誘導加熱装置1は、図7に示すように、発熱体の外側に電磁コイルを巻回した従来からある一般的な誘導加熱装置のような構成ではなく、管部材15内部に電磁コイル17を挿通した構成としているので、各管部材15の軸方向(長手方向)に渦電流が流れるが、各管部材15は、その一端側から他端側まで全体的にほぼ同一径、同一材質で形成されており、軸方向の電気抵抗が一様なので、軸方向に流れる電流も全体的に一様になる。   As shown in FIG. 7, this induction heating device 1 is not configured as a conventional general induction heating device in which an electromagnetic coil is wound around the outside of a heating element, but an electromagnetic coil 17 is provided inside a tube member 15. Since it is configured to be inserted, an eddy current flows in the axial direction (longitudinal direction) of each tube member 15, but each tube member 15 is formed of substantially the same diameter and the same material as a whole from one end side to the other end side. Since the electric resistance in the axial direction is uniform, the current flowing in the axial direction is also uniform as a whole.

なお、誘導加熱において発熱体(管部材15に相当する)に入力される入力電力は、発熱体の表皮抵抗に比例し、渦電流の発生源である磁界の強さの2乗に比例する。発熱体の表皮抵抗は、発熱体を構成する材料の電気抵抗率と透磁率、電磁コイルを流れる電流の周波数の平方根に比例する。ここで、発熱体を効果的に発熱させるには、発熱体自身に流れる渦電流が大きくなるように、入力電力を大きくすればよい。そこで、誘導加熱装置1を
通過する空気が所望の温度に達するにするには、入力電力が適切な大きさとなるよう、電磁コイル17を流れる電流や周波数を高くすればよい。
The input power input to the heating element (corresponding to the tube member 15) in induction heating is proportional to the skin resistance of the heating element and proportional to the square of the strength of the magnetic field that is the source of eddy current. The skin resistance of the heating element is proportional to the square root of the electrical resistivity and permeability of the material constituting the heating element and the frequency of the current flowing through the electromagnetic coil. Here, in order to effectively generate heat from the heating element, the input power may be increased so that the eddy current flowing in the heating element itself increases. Therefore, in order for the air passing through the induction heating device 1 to reach a desired temperature, the current and frequency flowing through the electromagnetic coil 17 may be increased so that the input power has an appropriate magnitude.

電磁コイル17を流れる電流を大きくする場合、電磁コイル17の低損失化や高耐圧化を図る必要があり、具体的には、電磁コイル17の太さや肉厚の適切な選定、シリコン被覆の強化といった対応を採る必要がある。また、電磁コイル17を流れる電流の周波数を高くする場合、高周波電源装置8の半導体スイッチング素子がON−OFF動作する回数が周波数に比例して増えるため、半導体スイッチング素子のスイッチング損失の増大を抑制するべく、例えば、ゼロ電流スイッチング回路等を設けてスイッチングの際の低損失化を図ることが好ましい。   When the current flowing through the electromagnetic coil 17 is increased, it is necessary to reduce the loss and the breakdown voltage of the electromagnetic coil 17. Specifically, the thickness and thickness of the electromagnetic coil 17 are appropriately selected and the silicon coating is strengthened. It is necessary to take such measures. Further, when the frequency of the current flowing through the electromagnetic coil 17 is increased, the number of times the semiconductor switching element of the high frequency power supply device 8 is turned on and off increases in proportion to the frequency, so that an increase in switching loss of the semiconductor switching element is suppressed. Therefore, for example, it is preferable to provide a zero current switching circuit or the like to reduce the loss during switching.

このように構成される誘導加熱装置1であれば、管部材15全体が誘導加熱によって均一に発熱する。これにより、誘導加熱装置1の内部を通過する空気を加熱することができる。また、管部材15が保有可能な熱量は、電磁コイル17の誘導加熱によって発生する熱量に比べて小さいため、電磁コイル17に流す電流の大きさや周波数を変化させると、管部材15の温度が速やかに追従する。よって、電磁コイル17を流れる電流の大きさや周波数を制御することにより、ブロワ2に送る空気を所望の温度に精密且つ迅速に調整することができる。   With the induction heating device 1 configured as described above, the entire tube member 15 generates heat uniformly by induction heating. Thereby, the air which passes the inside of the induction heating apparatus 1 can be heated. In addition, since the amount of heat that can be held by the tube member 15 is smaller than the amount of heat generated by induction heating of the electromagnetic coil 17, the temperature of the tube member 15 quickly increases when the magnitude or frequency of the current flowing through the electromagnetic coil 17 is changed. Follow. Therefore, the air sent to the blower 2 can be precisely and quickly adjusted to a desired temperature by controlling the magnitude and frequency of the current flowing through the electromagnetic coil 17.

本実施形態に係る誘導加熱装置1と、電気ヒータを用いた従来例との比較実験を行なった。図8は、本比較実験の概要を示した図である。本比較実験は、図8において符号19として示す供試品として内置する、誘導加熱装置1の流体加熱ユニット6あるいは電気ヒータを用いた流体加熱ユニットを内置した実験ダクト20に、実験用の送風機21を接続し、実験ダクト20内に空気を送風機21で送り込む。供試品19の上流側には温度センサ22−Uを設けてあり、供試品19の下流側には風速および温度を検知するセンサ22−Dを設けてある。また、実験ダクト20の下流側には、供試品19の温度分布を赤外線で測定するサーモカメラ23を設けてある。なお、温度センサ22−Uと温度センサ22−Dは、それぞれ5つずつ設けられており、図9に示すように配置されている。 A comparative experiment was performed between the induction heating apparatus 1 according to the present embodiment and a conventional example using an electric heater. FIG. 8 is a diagram showing an outline of this comparative experiment. In this comparative experiment, an experimental blower 21 is placed in an experimental duct 20 in which a fluid heating unit 6 of the induction heating apparatus 1 or a fluid heating unit using an electric heater is installed as a test sample indicated by reference numeral 19 in FIG. And air is sent into the experimental duct 20 by the blower 21. A temperature sensor 22 -U is provided on the upstream side of the specimen 19, and a sensor 22 -D for detecting the wind speed and temperature is provided on the downstream side of the specimen 19. In addition, a thermo camera 23 that measures the temperature distribution of the specimen 19 with infrared rays is provided on the downstream side of the experimental duct 20. Note that five temperature sensors 22 -U and five temperature sensors 22 -D are provided, and are arranged as shown in FIG.

実験結果を示した表を図10および図11に示す。図10は、本実施形態に係る誘導加熱装置1の実験結果を示した表であり、図11は、従来例に係る電気ヒータを用いた流体加熱ユニットの実験結果を示した表である。図10および図11の表に示す丸数字が、記述した図9の丸数字で示す温度センサの位置に対応している。   The table | surface which showed the experimental result is shown in FIG. 10 and FIG. FIG. 10 is a table showing experimental results of the induction heating apparatus 1 according to this embodiment, and FIG. 11 is a table showing experimental results of a fluid heating unit using an electric heater according to a conventional example. The circled numbers shown in the tables of FIGS. 10 and 11 correspond to the positions of the temperature sensors indicated by the circled numbers in FIG. 9 described.

図10と図11に示した2つの表を比べると明らかなように、従来例に係る電気ヒータを用いた流体加熱ユニットの場合、出口側の空気の温度が測定部位によって大きく異なっており、特にダクトの中心付近が著しく高温になっている。すなわち、温度ムラが著しい。一方、本実施形態に係る誘導加熱装置1の流体加熱ユニットの場合、出口側の空気の温度が測定部位に関係なく一様である。このことから、本実施形態に係る誘導加熱装置1であれば、ブロワ2に送る空気を所望の温度に精密に調整することができることが判る。   As is clear from the comparison between the two tables shown in FIGS. 10 and 11, in the case of the fluid heating unit using the electric heater according to the conventional example, the temperature of the air on the outlet side varies greatly depending on the measurement site. Near the center of the duct is extremely hot. That is, temperature unevenness is remarkable. On the other hand, in the case of the fluid heating unit of the induction heating apparatus 1 according to this embodiment, the temperature of the air on the outlet side is uniform regardless of the measurement site. From this, it can be seen that the induction heating device 1 according to the present embodiment can precisely adjust the air sent to the blower 2 to a desired temperature.

また、図示していないが、サーモカメラ23によって得たサーモグラフィで見た供試品19の温度分布について、従来例に係る電気ヒータを用いた流体加熱ユニットの場合には明らかな温度分布のばらつきが確認されたのに対し、本実施形態に係る誘導加熱装置1の流体加熱ユニットの場合には温度分布の有意なばらつきを確認することができなかった。   Although not shown in the drawing, the temperature distribution of the specimen 19 as seen by the thermography obtained by the thermo camera 23 has a clear temperature distribution variation in the case of the fluid heating unit using the electric heater according to the conventional example. In contrast, in the case of the fluid heating unit of the induction heating apparatus 1 according to the present embodiment, a significant variation in the temperature distribution could not be confirmed.

この実験結果から、上記誘導加熱装置1であれば、精度の高い温度制御が可能なため、例えば、フィルムの乾燥工程のように、溶剤の化学変化等を防止する観点から、厳しい温度条件が課せられるプロセスに適用しても、製品に重大な影響を与えにくいことが判る。   From this experimental result, since the induction heating apparatus 1 can control the temperature with high accuracy, for example, a severe temperature condition is imposed from the viewpoint of preventing a chemical change of the solvent as in the film drying process. It can be seen that even if it is applied to a certain process, the product is hardly affected.

一方、電気ヒータを使い、サーミスタを用いて電流をオンオフしながら乾燥空気を所定の温度範囲に制御すると、温度が時間の経過と共に絶えず変化するため、精密な温度制御が必要な工程に適用することが難しい。更に、電気ヒータの場合、上記実験結果から明らかなように、空気の温度がダクト内の部位に応じてばらついており、温度ムラが著しいため、これを製品の乾燥等に適用すると製品の一部に支障を生じる虞がある。このような温度ムラを解消する方策として、電気ヒータをダクト全体に配置することも考えられるが、そうすると昇温や降温の速度が早くなるため、電気ヒータが頻繁にオンオフを繰り返し、設備の寿命を縮める虞がある。一方、上記誘導加熱装置1であれば、略一定の温度で精密に温度制御されるため、電気ヒータのようなオンオフの繰り返しによる電気回路の接点損傷や熱変化に伴う膨張収縮による機械的ストレスを与えることもない。   On the other hand, if dry air is controlled to a specified temperature range while using an electric heater and current is turned on and off using a thermistor, the temperature will constantly change over time, so it should be applied to processes that require precise temperature control. Is difficult. Furthermore, in the case of an electric heater, as is apparent from the above experimental results, the temperature of air varies depending on the location in the duct, and the temperature unevenness is significant. May cause trouble. As a measure to eliminate such temperature unevenness, it is conceivable to place an electric heater in the entire duct. There is a risk of shrinking. On the other hand, in the induction heating device 1, since the temperature is precisely controlled at a substantially constant temperature, mechanical stress due to contact damage of an electric circuit due to repeated on / off, such as an electric heater, or expansion / contraction due to thermal change is applied. I don't give it.

なお、上記実施形態では、フィルムを生産するラインのドライヤー工程に適用した場合を例に挙げて、誘導加熱装置1の構成や動作を説明したが、本発明は、このような態様に限定されるものではない。すなわち、本発明に係る誘導加熱装置は、加熱する流体の熱的な均一性を向上させることが望ましい箇所や、精密な温度制御が要求される箇所に用いると好適であるが、このような場面のみならず、単に流体を加熱するものであれば、要求される熱的な均一性や制御性の如何に関わらず、あらゆる場面に適用することが可能である。適用対象の流体としては、上記実施形態のように空気に限定されるものでなく、例えば、空気以外の気体や液体などであってもよい。   In the above embodiment, the configuration and operation of the induction heating apparatus 1 have been described by taking as an example a case where the present invention is applied to a dryer process of a film production line, but the present invention is limited to such an embodiment. It is not a thing. That is, the induction heating device according to the present invention is suitable for use in a place where it is desirable to improve the thermal uniformity of the fluid to be heated or a place where precise temperature control is required. In addition, the present invention can be applied to any scene as long as the fluid is simply heated, regardless of the required thermal uniformity and controllability. The fluid to be applied is not limited to air as in the above embodiment, and may be, for example, a gas or liquid other than air.

1・・誘導加熱装置,2・・ブロワ,3・・温風供給装置,4・・フィルム,5,24・・ケーシング,6・・流体加熱ユニット,7・・温度監視ボックス,8・・高周波電源装置,9・・冷却水循環装置,10・・冷却水ホース,11・・冷却水タンク,12・・放熱部,13・・循環ポンプ,14・・フロースイッチ,15・・管部材,16・・フィン,17・・電磁コイル,18・・支持部材,19・・供試品,20・・実験ダクト,21・・送風機,22−U・・温度センサ,22−D・・センサ,23・・サーモカメラ 1 .. Induction heating device, 2 .... Blower, 3 .... Hot air supply device, 4 .... Film, 5, 24 ... Casing, 6 .... Fluid heating unit, 7 .... Temperature monitoring box, 8 .... High frequency Power supply device, 9 ... Cooling water circulation device, 10 ... Cooling water hose, 11 ... Cooling water tank, 12 ... Heat radiation part, 13 ... Circulation pump, 14 ... Flow switch, 15 ... Pipe member, 16 ... · Fins, 17 · · Electromagnetic coils, 18 · · Support members, 19 · · Test specimens, · · · Test ducts, 21 · · Blowers, 22 -U · · Temperature sensor, 22 -D · · · sensor, 23・ Thermo camera

Claims (4)

温風供給装置に内蔵され、前記温風供給装置内の空気経路を流れる流体を加熱する誘導加熱装置であって、
前記流体が通過する流路内に配置される導電性の管状部材と、
前記管状部材の内部に、前記管状部材と電気的に接触しない状態で前記管状部材の長手方向に沿って前記管状部材の軸方向に渦電流が流れるように延在し、前記管状部材を電磁誘導によって発熱させる交流電流が流れる電磁コイルと、を備え
前記電磁コイルは、内部に冷却水が流通する、
誘導加熱装置。
An induction heating device that is built in a hot air supply device and heats a fluid flowing through an air path in the hot air supply device ,
A conductive tubular member disposed in a flow path through which the fluid passes;
The tubular member extends in the axial direction of the tubular member along the longitudinal direction of the tubular member without being in electrical contact with the tubular member, and the tubular member is electromagnetically induced. And an electromagnetic coil through which an alternating current that generates heat is generated ,
In the electromagnetic coil, cooling water flows inside.
Induction heating device.
前記管状部材は、前記流路内に多数配置されており、
前記電磁コイルは、1本の導線が前記各管状部材を順に通過するように形成されている、
請求項1に記載の誘導加熱装置。
A large number of the tubular members are arranged in the flow path,
The electromagnetic coil is formed so that one conductive wire passes through the tubular members in order.
The induction heating apparatus according to claim 1.
前記管状部材は、前記流体の流れ方向に交差するように前記流路内に配置されており、
前記誘導加熱装置は、前記流体の流れ方向に沿って伝熱面が延在し、少なくとも前記管状部材に固定されて前記管状部材の熱を前記伝熱面から前記流体へ伝えるフィンを更に備える、
請求項1または2に記載の誘導加熱装置。
The tubular member is disposed in the flow path so as to intersect the flow direction of the fluid,
The induction heating device further includes a fin having a heat transfer surface extending along a flow direction of the fluid, and being fixed to at least the tubular member and transferring heat of the tubular member from the heat transfer surface to the fluid.
The induction heating apparatus according to claim 1 or 2.
前記管状部材より下流側の前記流体の温度を計測する温度センサを更に備え、
前記電磁コイルには、前記温度センサが所定の温度となるように制御された前記交流電流が流れる、
請求項1から3の何れか一項に記載の誘導加熱装置。
A temperature sensor for measuring the temperature of the fluid downstream from the tubular member;
The alternating current that is controlled so that the temperature sensor has a predetermined temperature flows through the electromagnetic coil.
The induction heating device according to any one of claims 1 to 3.
JP2011200574A 2011-09-14 2011-09-14 Induction heating device Active JP5969184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011200574A JP5969184B2 (en) 2011-09-14 2011-09-14 Induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011200574A JP5969184B2 (en) 2011-09-14 2011-09-14 Induction heating device

Publications (2)

Publication Number Publication Date
JP2013062175A JP2013062175A (en) 2013-04-04
JP5969184B2 true JP5969184B2 (en) 2016-08-17

Family

ID=48186659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011200574A Active JP5969184B2 (en) 2011-09-14 2011-09-14 Induction heating device

Country Status (1)

Country Link
JP (1) JP5969184B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6051000B2 (en) * 2012-10-01 2016-12-21 株式会社豊電子工業 Sleeve heating device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56121939A (en) * 1980-02-29 1981-09-25 High Frequency Heattreat Co Ltd Method and apparatus for heating inflammable liquid at constant temperature safely
JPH0668993B2 (en) * 1989-02-17 1994-08-31 ハイデック株式会社 Low frequency electromagnetic induction heater
JP2010190531A (en) * 2009-02-20 2010-09-02 Panasonic Corp Hot air heater

Also Published As

Publication number Publication date
JP2013062175A (en) 2013-04-04

Similar Documents

Publication Publication Date Title
JP5230746B2 (en) Flowing water induction heater
JP3842512B2 (en) Fluid heating device
US20090065494A1 (en) Systems and methods for providing localized heat treatment of gas turbine components
ES2736498T3 (en) Procedure and apparatus for a direct flow electrically heated continuous flow chemical reactor
JP2022164731A (en) Induction heating method and induction heating device
JP2009041885A (en) Fluid heating device
JP2013057482A (en) Induction heating type liquid heater and induction heating type liquid heating apparatus
JP5969184B2 (en) Induction heating device
JP6383540B2 (en) Spinning molding equipment
Prasad et al. Critical conditions for melting of metallic wire in induction heating system through numerical simulation and experiments
KR101983731B1 (en) Apparatus for rapidly heating of fluid and system for processing object using the same
WO2015098045A1 (en) Spin forming device
RU2417563C2 (en) Plant of induction liquid heating
CN207310373U (en) A kind of heating roller of Tire production
JP6586371B2 (en) Heating coil
JPH06147636A (en) Tap-controlled electric hot-water supplier
JP2012022934A (en) Induction heating apparatus and double tube for the same
Makimura et al. Improvement of superheated steam generator by induction heating
RU2759438C1 (en) Induction heating device for flow-through liquids
JP2013093269A (en) Induction heating liquid heater and liquid heating system using the same
TWI669401B (en) Thermal treatment apparatus
JP2005098553A (en) Heat exchanger
JP2022003624A (en) Heater
JP7352434B2 (en) Superheated steam generator
US10050497B2 (en) Method of assembling rotary electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160513

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160707

R150 Certificate of patent or registration of utility model

Ref document number: 5969184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150