JP2022164731A - Induction heating method and induction heating device - Google Patents

Induction heating method and induction heating device Download PDF

Info

Publication number
JP2022164731A
JP2022164731A JP2022131414A JP2022131414A JP2022164731A JP 2022164731 A JP2022164731 A JP 2022164731A JP 2022131414 A JP2022131414 A JP 2022131414A JP 2022131414 A JP2022131414 A JP 2022131414A JP 2022164731 A JP2022164731 A JP 2022164731A
Authority
JP
Japan
Prior art keywords
coil
heated
shaft hole
heating
induction heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022131414A
Other languages
Japanese (ja)
Other versions
JP7362061B2 (en
Inventor
英司 鈴木
Eiji Suzuki
昌訓 西村
Masanori Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyaden Co Ltd
Original Assignee
Miyaden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyaden Co Ltd filed Critical Miyaden Co Ltd
Priority to JP2022131414A priority Critical patent/JP7362061B2/en
Publication of JP2022164731A publication Critical patent/JP2022164731A/en
Application granted granted Critical
Publication of JP7362061B2 publication Critical patent/JP7362061B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an induction heating method and an induction heating device capable of efficiently heating the inner surface of a shaft hole of an object to be heated, sufficiently increasing the heating efficiency of the inner surface of the shaft hole, heating well top and bottom surfaces and edges of the object to be heated, and perform induction heating uniformly on the entire area of the object to be heated.
SOLUTION: An induction heating device is configured to supply a high-frequency current of a predetermined frequency from a high-frequency power source to a heating coil arranged in the inner surface of a shaft hole of an object to be heated to inductively heat the inner surface of the shaft hole of the object to be heated, measure the heating temperature of the inner surface of the shaft hole during the induction heating using a radiation thermometer, and stop supplying high-frequency current from the high-frequency power source to the heating coil when the measured temperature reaches a predetermined temperature.
SELECTED DRAWING: Figure 7
COPYRIGHT: (C)2023,JPO&INPIT

Description

本発明は、誘導加熱可能な金属等の材質からなる円筒状部材やリング状部材等であって、その中心位置に軸孔を有する被加熱物の内周面(内径面)と外周面(外径面)を同時に誘導加熱する際に使用される誘導加熱方法及び誘導加熱装置に関する。 The present invention relates to a cylindrical member, a ring-shaped member, or the like made of a material such as a metal that can be heated by induction, and having an axial hole at its center. It relates to an induction heating method and an induction heating apparatus used when simultaneously induction heating the diameter surface).

従来、この種の誘導加熱コイルとしては、例えば特許文献1に開示されている。この誘導加熱コイル(円筒物用誘導加熱装置)は、被加熱物の内周面と外周面にそれぞれ隣接する内側コイルと外側コイルを設け、内側コイルと外側コイルが、互いに同位相の電流が同方向に流れるように一つの高周波電源に直列接続されると共に、内側コイルの巻き数が外側コイルの巻き数より少なくとも1巻き多く巻回するようにしたものである。 Conventionally, this type of induction heating coil is disclosed in Patent Document 1, for example. This induction heating coil (induction heating device for cylindrical objects) is provided with an inner coil and an outer coil that are adjacent to the inner and outer peripheral surfaces of the object to be heated, respectively, and the inner coil and the outer coil have the same phase current. It is connected in series to one high-frequency power supply so as to flow in a direction, and the number of turns of the inner coil is at least one more than the number of turns of the outer coil.

特許第4098076号公報Japanese Patent No. 4098076

しかしながら、このような誘導加熱コイルにあっては、内側コイルと外側コイルが共に断面円形の丸パイプを所定回数巻回することにより形成され、これらが被加熱物の内周面や外周面に所定の間隙を有して近接配置されると共に、外側コイルの巻回状態が被加熱物の軸方向において均等となっているため、内側コイルや外側コイルによる被加熱物の加熱効率が劣ると共に、軸孔内周面や外周面、上下面等の被加熱物の全体を均一に加熱することが難しいという不都合を有している。 However, in such an induction heating coil, both the inner coil and the outer coil are formed by winding round pipes having a circular cross section a predetermined number of times, and these are wound on the inner and outer peripheral surfaces of the object to be heated. Since the outer coils are closely arranged with a gap and the winding state of the outer coil is uniform in the axial direction of the object to be heated, the heating efficiency of the object to be heated by the inner coil and the outer coil is inferior, and the axial It has the disadvantage that it is difficult to uniformly heat the entire object to be heated, such as the inner peripheral surface of the hole, the outer peripheral surface, and the upper and lower surfaces.

すなわち、丸パイプを所定回数巻回した内側コイルが単に被加熱物の軸孔に挿入配置され、同コイルへの高周波電流の通電時にその丸パイプ内に冷却水が循環供給されて当該コイルの発熱を抑制する構造であることから、内側コイルを丸パイプの内面側からしか冷却することができず、通電時の内側コイル自体の発熱を十分に抑えることが難しい。その結果、被加熱物の軸孔内周面を誘導加熱する際に、その全域を均一に加熱することが困難であると共に、内側コイルによる加熱効率も劣り、例えば加熱時間が長くなる等、加熱効率を十分に高めることも困難である。 That is, an inner coil formed by winding a round pipe a predetermined number of times is simply inserted into an axial hole of the object to be heated, and when a high-frequency current is applied to the inner coil, cooling water is circulated in the round pipe to generate heat in the coil. , the inner coil can only be cooled from the inner surface side of the round pipe, and it is difficult to sufficiently suppress the heat generation of the inner coil itself during energization. As a result, when the inner peripheral surface of the shaft hole of the object to be heated is induction-heated, it is difficult to uniformly heat the entire area, and the heating efficiency of the inner coil is also inferior. It is also difficult to increase the efficiency sufficiently.

また、被加熱物の外周面側に配置される巻き数の少ない外側コイルが、被加熱物の外周面の軸方向全域に亘って均等に巻回配置されると共に、被加熱物の軸孔内に挿入配置される巻き数の多い内側コイルも軸方向に均等に巻回配置されていることから、これらの両コイルで被加熱物を誘導加熱した場合、被加熱物の内周面や外周面はより加熱されるが上下面はその磁束の通過が弱く外周面等に比べて加熱され難くなると共に、被加熱物の内外周面のエッジ部分にも磁束が集中し易く当該エッジ部分が高温に加熱され、その他の内外周面や上下面が低温に加熱される状態となり、結果として、被加熱物全体を均一な温度で加熱することが一層困難となる。 Further, the outer coil with a small number of turns arranged on the outer peripheral surface side of the object to be heated is uniformly wound over the entire axial direction of the outer peripheral surface of the object to be heated, and is arranged inside the axial hole of the object to be heated. Since the inner coil with a large number of turns inserted and arranged is also arranged to be wound evenly in the axial direction, when the object to be heated is induction-heated by both of these coils, the inner and outer peripheral surfaces of the object to be heated However, the upper and lower surfaces are less likely to be heated compared to the outer peripheral surface because the passage of the magnetic flux is weaker. As a result, the other inner and outer peripheral surfaces and upper and lower surfaces are heated to a low temperature, and as a result, it becomes more difficult to heat the entire object to be heated at a uniform temperature.

本発明は、このような事情に鑑みてなされたもので、その目的は、内側コイルの冷却を促進し得て被加熱物の軸孔内周面全域を効率良く加熱でき、被加熱物の軸孔内周面の加熱効率を十分に高めつつ被加熱物の全体を均一に誘導加熱可能な誘導加熱方法及び誘導加熱装置を提供することにある。また、他の目的は、前記目的に加え、被加熱物の上下面や内外周面のエッジ部分を良好に加熱し得て被加熱物全体を一層均一な温度で加熱することが可能な誘導加熱方法及び誘導加熱装置を提供することにある。 SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and its object is to efficiently heat the entire inner peripheral surface of the shaft hole of the object to be heated by accelerating the cooling of the inner coil, and to An object of the present invention is to provide an induction heating method and an induction heating apparatus capable of uniformly performing induction heating on the entire object to be heated while sufficiently increasing the heating efficiency of the inner peripheral surface of a hole. Another object of the present invention is, in addition to the above object, induction heating capable of heating the entire object to be heated at a more uniform temperature by satisfactorily heating the upper and lower surfaces of the object to be heated and the edge portions of the inner and outer peripheral surfaces. The object is to provide a method and an induction heating device.

かかる目的を達成するために、本発明の請求項1に記載の発明は、被加熱物の軸孔内に配置された加熱コイルに高周波電源から所定周波数の高周波電流を供給して前記被加熱物の軸孔内面を誘導加熱すると共に、該誘導加熱時の軸孔内面の加熱温度を放射温度計で測定し、該測定された温度が所定温度となった際に前記高周波電源から前記加熱コイルへの高周波電流の供給を停止させることを特徴とする。 In order to achieve this object, the invention according to claim 1 of the present invention supplies a high-frequency current of a predetermined frequency from a high-frequency power supply to a heating coil arranged in an axial hole of an object to be heated, thereby heating the object to be heated. The inner surface of the shaft hole is induction-heated, and the heating temperature of the inner surface of the shaft hole during the induction heating is measured with a radiation thermometer, and when the measured temperature reaches a predetermined temperature, the high-frequency power source transfers to the heating coil characterized by stopping the supply of the high-frequency current to the

また、請求項2に記載の発明は、前記放射温度計が前記加熱コイルを支持する支持ブロックに配設され、前記被加熱物の軸孔内面からの放射光を受光して前記軸孔内面の加熱温度を測定することを特徴とする。また、請求項3に記載の発明は、前記被加熱物が、その軸孔が上下方向となるようにセットされて当該軸孔に円筒状の加熱コイルが上方から嵌挿配置され、加熱コイルの外周面と前記被加熱物の軸孔内面間から上方に放射される放射光が前記放射温度計で測定されることを特徴とする。 In the invention according to claim 2, the radiation thermometer is disposed on a support block that supports the heating coil, and receives radiation light from the inner surface of the shaft hole of the object to be heated to detect the inner surface of the shaft hole. It is characterized by measuring the heating temperature. Further, in the invention according to claim 3, the object to be heated is set so that the shaft hole thereof is oriented vertically, and a cylindrical heating coil is fitted and arranged in the shaft hole from above. The radiation thermometer is used to measure radiation emitted upward from between the outer peripheral surface and the inner surface of the axial hole of the object to be heated.

また、請求項4に記載の発明は、被加熱物の軸孔内に配置され高周波電源から所定周波数の高周波電流が供給されて前記被加熱物の軸孔内面を誘導加熱する加熱コイルと、該加熱コイルによる誘導加熱時の軸孔内面の加熱温度を測定し測定された温度が所定温度となった際に前記高周波電源から前記加熱コイルへの高周波電流の供給を停止させる制御装置と、を備えることを特徴とする。 Further, the invention according to claim 4 is a heating coil arranged in a shaft hole of an object to be heated and supplied with a high-frequency current of a predetermined frequency from a high-frequency power supply to induction-heat the inner surface of the shaft hole of the object to be heated; a control device that measures the heating temperature of the inner surface of the shaft hole during induction heating by the heating coil, and stops supply of the high-frequency current from the high-frequency power source to the heating coil when the measured temperature reaches a predetermined temperature. It is characterized by

本発明のうち請求項1ないし4に記載の発明によれば、放射温度計が加熱コイルの支持ブロック等に一体的に配設されると共に、放射温度計の指向方向が加熱コイルの外周側と被加熱物の軸孔内周面(内部)間に指向し、かつ軸孔内部の放射が的確に受光できるように設定されていることから、誘導加熱コイルをセットしたまま(加熱状態のまま)で軸孔内部の所望位置(例えば軸方向の中央に近い位置)の加熱温度を精度良く逐次に測定できて、結果として軸孔内周面の略全域を所望温度で略均一に加熱することができる。 According to the first to fourth aspects of the present invention, the radiation thermometer is disposed integrally with the support block or the like of the heating coil, and the orientation direction of the radiation thermometer is the outer peripheral side of the heating coil. Directed between the inner peripheral surfaces (inside) of the shaft hole of the object to be heated, and set so that the radiation inside the shaft hole can be accurately received, the induction heating coil remains set (in the heated state). , the heating temperature at a desired position inside the shaft hole (for example, a position near the center in the axial direction) can be measured sequentially with high accuracy, and as a result, substantially the entire inner peripheral surface of the shaft hole can be heated substantially uniformly at the desired temperature. can.

本発明に係わる誘導加熱コイルの一実施形態を示す斜視図1 is a perspective view showing an embodiment of an induction heating coil according to the present invention; FIG. 同その側面図Side view of the same 同内側コイルの斜視図Perspective view of the same inner coil 同その縦断面図Longitudinal cross-sectional view of the same 同内側コイルのコイル導体を示す(a)が正面図、(b)がその縦断面図(a) is a front view showing the coil conductor of the inner coil, and (b) is a vertical cross-sectional view thereof. 同その(a)が図5(b)のA部拡大図、(b)が図5(b)のB部拡大図、(c)が図5(a)のC-C線矢視図(a) is an enlarged view of the A part of FIG. 5(b), (b) is an enlarged view of the B part of FIG. 5(b), and (c) is a CC line view of FIG. 5(a) 同使用状態の説明図Explanatory diagram of the same use condition

以下、本発明を実施するための形態を図面に基づいて詳細に説明する。
図1及び図2は、本発明に係わる誘導加熱コイルの一実施形態を示している。図1及び図2に示すように、誘導加熱コイル1(加熱コイル1という)は、内側コイル2と外側コイル3及びこれらを支持するホルダー4を備えている。
EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing this invention is demonstrated in detail based on drawing.
1 and 2 show an embodiment of an induction heating coil according to the invention. As shown in FIGS. 1 and 2, an induction heating coil 1 (referred to as heating coil 1) includes an inner coil 2, an outer coil 3, and a holder 4 for supporting them.

前記ホルダー4は、所定幅で所定長さの長尺状の一対の銅板4aを有し、この銅板4aが絶縁板4bを介して圧接されると共に、これらが前記内側コイル2と外側コイル3の両端部を支持するそれぞれ一対の支持板4c、4dとボルト4e等により圧接固定状態とされている。 The holder 4 has a pair of elongated copper plates 4a with a predetermined width and a predetermined length. A pair of supporting plates 4c, 4d and bolts 4e, etc., which support both end portions, are used to press and fix.

前記内側コイル2は、被加熱物としてのロータWの軸孔Wa内に挿入配置され、その内部に後述するコイル導体2a1が挿入配置されたコイルカバー2a2と、このコイルカバー2a2の基端部を支持する円盤状の支持ブロック2b等を有し、コイルカバー2a2から支持ブロック2bの上面側に所定寸法突出した第1パイプ及び第2パイプとしての丸銅パイプ2c1、2c2が、前記ホルダー4の銅板4aの外面(表面)に支持板4cとボルト4eにより固定支持されている。 The inner coil 2 is inserted into an axial hole Wa of a rotor W as an object to be heated. Round copper pipes 2c1 and 2c2 as a first pipe and a second pipe, which have a disk-shaped support block 2b and the like for supporting, project from the coil cover 2a2 to the upper surface side of the support block 2b by a predetermined dimension, are the copper plates of the holder 4. It is fixedly supported by a support plate 4c and bolts 4e on the outer surface (surface) of 4a.

また、前記外側コイル3は、そのコイル部3aが前記ロータWの外周面Wbの外側に近接配置され、その両端部の上方に延設された基端部3bが前記ホルダー4の銅板4aの外面に支持板4dとボルト4eにより固定支持されている。なお、各銅板4aの外面で内側コイル2と外側コイル3用の支持板4c、4d間には、銅の角パイプからなる側面視コ字状の冷却パイプ5がそれぞれロー付け固着されている。そして、この一対の冷却パイプ5(一方のみ示す)の上方への各突出両端部と、前記内側コイル2の支持板4cから上方に突出した一対の両端部及び前記外側コイル3の支持板4dから上方に突出した一対の両端部には、ホースジョイント6がそれぞれ(合計8個)固着されている。 The outer coil 3 has its coil portion 3a arranged close to the outside of the outer peripheral surface Wb of the rotor W, and its base end portion 3b extending upward from both ends of the outer coil 3 is arranged close to the outer surface of the copper plate 4a of the holder 4. is fixedly supported by a support plate 4d and bolts 4e. Between the support plates 4c and 4d for the inner coil 2 and the outer coil 3 on the outer surface of each copper plate 4a, cooling pipes 5 made of rectangular pipes of copper and having a U shape when viewed from the side are fixed by brazing. From both ends of the pair of cooling pipes 5 (only one is shown) protruding upward, from the pair of both ends protruding upward from the support plate 4c of the inner coil 2, and from the support plate 4d of the outer coil 3, Hose joints 6 (a total of eight pieces) are fixed to the pair of both end portions that protrude upward.

次に、前記内側コイル2の具体的な構成を、図3~図6に基づいて説明する。内側コイル2は、図3に示すように、コイル部2aと、このコイル部2aの基端側(図4に置いて上方側)を支持する前記支持ブロック2b等を備えている。前記コイル部2aは、図4に示すように、扁平パイプを軸方向に均等ピッチで所定回数コイル状に巻回したコイル導体2a1と、このコイル導体2a1の外周側と先端側とを覆うベーク材等の絶縁体で形成された有底筒状のコイルカバー2a2を有している。 Next, a specific configuration of the inner coil 2 will be described with reference to FIGS. 3 to 6. FIG. As shown in FIG. 3, the inner coil 2 includes a coil portion 2a and the support block 2b that supports the base end side (upper side in FIG. 4) of the coil portion 2a. As shown in FIG. 4, the coil portion 2a includes a coil conductor 2a1 formed by winding a flat pipe in the axial direction at an equal pitch a predetermined number of times in a coil shape, and a baking material covering the outer peripheral side and the tip side of the coil conductor 2a1. It has a bottomed tubular coil cover 2a2 made of an insulating material such as.

このとき、コイル導体2a1は、導体である所定径の丸銅パイプを直径(断面)方向に潰すことで、内部に扁平空間9(図6参照)を有した潰し銅パイプが使用され、この潰し銅パイプを直線状の軸芯に沿って所定回数一定ピッチで巻回することによりコイル状に形成されている。なお、コイル導体2a1の基端側には、巻回されることなく上方に所定長さ一体的に延設された直線部2a3が設けられている。 At this time, as the coil conductor 2a1, a flat copper pipe having a flat space 9 (see FIG. 6) is used by crushing a round copper pipe having a predetermined diameter as a conductor in the diameter (cross section) direction. A coil is formed by winding a copper pipe a predetermined number of times at a constant pitch along a linear axis. A linear portion 2a3 is provided on the base end side of the coil conductor 2a1 so as to integrally extend upward for a predetermined length without being wound.

また、コイル導体2a1の一方の端部となる先端部(図4において下方端部)と他方の端部となる直線部2a3の基端部には、一対の直線状の前記丸銅パイプ2c1、2c2の先端部がそれぞれロー付け固着され、一方の丸銅パイプ2c1は、コイル導体2a1の軸心位置を貫通する状態でその基端部が上方に所定長さ延設されている。また、他方の丸銅パイプ2c2は、その上端位置が丸銅パイプ2c1と同一となるように長さが短く設定されて、その先端部がコイル導体2a1の前記直線部2a3の基端部にロー付け固着されている。 A pair of linear round copper pipes 2c1, The ends of 2c2 are fixed by brazing, and the base end of one round copper pipe 2c1 extends upward for a predetermined length while passing through the axial center position of the coil conductor 2a1. The other round copper pipe 2c2 is set to be short in length so that its upper end position is the same as that of the round copper pipe 2c1, and its distal end portion is rolled into the base end portion of the straight portion 2a3 of the coil conductor 2a1. It is attached.

そして、一方の丸銅パイプ2c1の先端部には、図6(b)に示すように、連通孔7aが形成されてコイル導体2a1の先端部の扁平空間9に連通状態とされ、他方の丸銅パイプ2c2の先端部にも、図6(a)に示すように、連通孔7bが形成されてコイル導体2a1の基端部(直線部2a3)の扁平空間9に連通状態とされている。なお、丸銅パイプ2c1と丸銅パイプ2c2の先端部(下端)は開口されて、それぞれコイルカバー2a2内に連通状態とされている。また、コイルカバー2a2は、その開口部となる上端部が、後述する支持ブロック2bにその内部空間が気密状態となるように支持されている。 As shown in FIG. 6(b), a communicating hole 7a is formed at the tip of one round copper pipe 2c1 to communicate with the flat space 9 at the tip of the coil conductor 2a1. As shown in FIG. 6A, the distal end of the copper pipe 2c2 is also formed with a communicating hole 7b to communicate with the flat space 9 at the proximal end (straight line portion 2a3) of the coil conductor 2a1. The end portions (lower ends) of the round copper pipe 2c1 and the round copper pipe 2c2 are opened so as to communicate with the inside of the coil cover 2a2. Further, the coil cover 2a2 is supported by a support block 2b, which will be described later, at its upper end, which is an opening, so that the internal space thereof is airtight.

これにより、例えば一方の丸銅パイプ2c1の基端部から供給された冷却媒体としての冷却水が、丸銅パイプ2c1内を流れてその先端の開口からコイルカバー2a2の底部内に所定圧で噴出供給され、底部内面で跳ね返された冷却水がコイルカバー2a2内を上方に流れると共に、連通孔7aを介してコイル導体2a1の先端部からその扁平空間9内に流入して該扁平空間9内を上方に流れ、その基端部から他方の丸銅パイプ2c2内に流入する。 As a result, for example, cooling water as a cooling medium supplied from the base end of one of the round copper pipes 2c1 flows through the inside of the round copper pipe 2c1 and is jetted into the bottom of the coil cover 2a2 from the opening at the tip thereof at a predetermined pressure. The cooling water supplied and bounced off the inner surface of the bottom portion flows upward in the coil cover 2a2, flows into the flat space 9 from the tip portion of the coil conductor 2a1 through the communication hole 7a, and flows through the flat space 9. It flows upward and flows into the other round copper pipe 2c2 from its base end.

また同時に、コイルカバー2a2内を上部まで流れた冷却水も、他方の丸銅パイプ2c2の先端部内に流入する。つまり、一方の丸銅パイプ2c1からコイルカバー2a2の底部に供給される冷却水が、コイルカバー2a2内を流通する流路と、コイル導体2a1の扁平空間9内を流通する二系統の流路で流れ、コイル導体2a1がその外部(外面側)と内部(内面側)から同時に冷却されることになる。 At the same time, the cooling water that has flowed to the upper part of the coil cover 2a2 also flows into the tip of the other round copper pipe 2c2. In other words, the cooling water supplied to the bottom of the coil cover 2a2 from one of the round copper pipes 2c1 has two flow paths, one through which the coil cover 2a2 circulates and the other through which the coil conductor 2a1 circulates in the flat space 9. As a result, the coil conductor 2a1 is simultaneously cooled from its outside (outer surface side) and inside (inside surface side).

前記内側コイル2の支持ブロック2bは、図3及び図4に示すように、それぞれ絶縁材で形成された、カバー固定ナット2b1、センサ支持板2b2及び分割状態のコイルクランプ2b3等を有し、全体として円盤形状を呈し、コイルカバー2aの上端部を気密状態で支持している。 As shown in FIGS. 3 and 4, the support block 2b for the inner coil 2 has a cover fixing nut 2b1, a sensor support plate 2b2, a split coil clamp 2b3, etc., which are all made of insulating material. , and supports the upper end of the coil cover 2a in an airtight state.

なお、前記センサ支持板2b2(及びカバー固定ナット2b1)には、センサ取付孔8(センサ取付部)が上下方向に貫通状態で設けられており、このセンサ取付孔8に図示しない放射温度センサが下方(ロータWの軸孔Wa方向)に指向する状態で装着されて、ロータWの軸孔Wa内面の高さ(深さ)方向の所定位置の温度を検出可能となっている。そして、内側コイル2は、カバー固定ナット2b1等により、前記コイル部2aの基端部が丸銅パイプ2c1、2c2等を介して支持ブロック2bに支持されつつ、ホルダー4に支持されている。 The sensor support plate 2b2 (and the cover fixing nut 2b1) is provided with a sensor mounting hole 8 (sensor mounting portion) penetrating therethrough in the vertical direction. It is mounted downward (in the direction of the shaft hole Wa of the rotor W) and is capable of detecting the temperature at a predetermined position in the height (depth) direction of the inner surface of the shaft hole Wa of the rotor W. The inner coil 2 is supported by the cover fixing nut 2b1 and the like while the base end of the coil portion 2a is supported by the support block 2b via round copper pipes 2c1 and 2c2 and the like, and supported by the holder 4. As shown in FIG.

一方、前記外側コイル3は、図1及び図2に示すように、外周面が絶縁材で覆われた導体パイプとしての丸銅パイプを所定回数巻回(図では略4巻)することで形成されたコイル部3aと、このコイル部3aの両端部を上方(ホルダー4方向)に直線状に延設した一対の基端部3bを有している。このとき、コイル部3aは、ロータWの軸方向両端の上面Wdと下面Weに近接配置される上端部分3a1及び下端部分3a2が、例えばそれぞれ略1.5巻に設定(密に巻回)され、この一対の上端部分3a1と下端部分3a2間の巻き数が略1巻に設定(粗に巻回)されている。 On the other hand, as shown in FIGS. 1 and 2, the outer coil 3 is formed by winding a round copper pipe as a conductor pipe whose outer peripheral surface is covered with an insulating material a predetermined number of turns (approximately four turns in the figure). and a pair of proximal end portions 3b linearly extending upward (in the direction of the holder 4) from both ends of the coil portion 3a. At this time, in the coil portion 3a, the upper end portion 3a1 and the lower end portion 3a2, which are arranged close to the upper surface Wd and the lower surface We at both ends in the axial direction of the rotor W, are each set to have, for example, about 1.5 turns (closely wound). , the number of turns between the pair of upper end portion 3a1 and lower end portion 3a2 is set to approximately one (roughly wound).

このように構成された前記加熱コイル1は、図7に示すように、誘導加熱装置10に接続されて使用される。すなわち、誘導加熱装置10は、高周波電源としてのトランジスタインバータ11と、このトランジスタインバータ11の出力端子に銅板等で固定的に接続されるかもしくは可撓性ケーブルを介して移動可能に接続される出力変成器12と、冷却器や冷却水タンク等を有する冷却媒体供給手段としての冷却水供給装置13と、図示しない制御装置等を備えている。 The heating coil 1 configured in this manner is used by being connected to an induction heating device 10, as shown in FIG. That is, the induction heating device 10 includes a transistor inverter 11 as a high-frequency power supply, and an output terminal which is fixedly connected to the output terminal of the transistor inverter 11 by a copper plate or the like or movably connected via a flexible cable. It comprises a transformer 12, a cooling water supply device 13 as cooling medium supply means having a cooler, a cooling water tank, etc., and a control device (not shown).

そして、出力変成器12の一対の出力端子に、前記ホルダー4の一対の銅板4aが図示しない例えば固定ボルト等で直接固定接続されるか、適宜のケーブルを介して固定接続される。この接続により、一対の銅板4aに内側コイル2と外側コイル3の丸銅パイプ2c1、2c2や基端部3bがそれぞれ接続されることから、出力変成器12(高周波電源)の出力端子に内側コイル2と外側コイル3が並列接続された状態となる。 A pair of output terminals of the output transformer 12 are directly fixedly connected to the pair of copper plates 4a of the holder 4 by, for example, fixing bolts (not shown), or fixedly connected via an appropriate cable. With this connection, the round copper pipes 2c1 and 2c2 and the base end 3b of the inner coil 2 and the outer coil 3 are connected to the pair of copper plates 4a, respectively, so that the inner coil is connected to the output terminal of the output transformer 12 (high frequency power supply). 2 and the outer coil 3 are connected in parallel.

また、前記冷却水供給装置13は、その供給口が内側コイル2、外側コイル3及び冷却パイプ5の一方のホースジョイント6にホースを介してそれぞれ接続され、その戻り口が内側コイル2、外側コイル3及び冷却パイプ5の他方のホースジョイント6にホースを介してそれぞれ接続される。つまり、冷却水供給装置13に内側コイル2と外側コイル3のコイル部2a、3a及び冷却パイプ5が並列接続された状態となる。 The cooling water supply device 13 has a supply port connected to the inner coil 2, the outer coil 3 and one hose joint 6 of the cooling pipe 5 via a hose, and a return port to the inner coil 2 and the outer coil. 3 and a hose joint 6 on the other side of the cooling pipe 5 are connected via hoses. That is, the cooling pipe 5 and the coil portions 2 a and 3 a of the inner coil 2 and the outer coil 3 are connected in parallel to the cooling water supply device 13 .

なお、この冷却水の循環流路(接続形態)は、並列接続状態に限らず、例えば内側コイル2と外側コイル3及び冷却パイプ5を全て直列状態で接続したり、あるいはこれら3つの内の2つを直列状態で接続することも勿論可能である。また、例えば冷却水供給装置13に冷却水の供給圧力が異なる複数の供給口を設けて内側コイル2と外側コイル3への冷却水の供給圧力を異なる(内側コイル2への圧力を外側コイル3への圧力より高く設定する)ようにして、冷却水の循環量を最適に設定しても良い。 Note that this cooling water circulation flow path (connection form) is not limited to a parallel connection state. Of course, it is also possible to connect two in series. Further, for example, the cooling water supply device 13 is provided with a plurality of supply ports having different supply pressures of cooling water so that the cooling water supply pressures to the inner coil 2 and the outer coil 3 are different (the pressure to the inner coil 2 is different from the pressure to the outer coil 3). The amount of circulation of the cooling water may be optimally set by setting the pressure higher than the pressure to .

そして、図7の接続状態で加熱コイル1を、図示しないセット台上にセットされているロータWの上面Wd側から下降させて、内側コイル2のコイルカバー2a2部分をロータWの軸孔Wa内に挿入配置すると共に、外側コイル3のコイル部3aをロータWの外周面Wbの外周側に近接配置する。このとき、内側コイル2は、そのコイルカバー2a2の先端部がロータWの下面Weから所定寸法突出し、外側コイル3は、コイル部3aの上端部分3a1と下端部分3a2がロータWの上面Wdと下面Weに略対向するように設定する。 Then, in the connected state of FIG. , and the coil portion 3a of the outer coil 3 is arranged close to the outer peripheral side of the outer peripheral surface Wb of the rotor W. As shown in FIG. At this time, the tip portion of the coil cover 2a2 of the inner coil 2 protrudes from the lower surface We of the rotor W by a predetermined distance, and the outer coil 3 includes the upper end portion 3a1 and the lower end portion 3a2 of the coil portion 3a of the upper surface Wd and the lower surface of the rotor W. It is set so as to substantially face We.

この状態で、誘導加熱装置10のトランジスタインバータ11と冷却水供給装置13を作動させると、トランジスタインバータ11から高周波電流が、出力変成器12、ホルダー4を介して、内側コイル2(コイル導体2a1)に供給(給電)されると同時に外側コイル3(コイル部3a)にも供給される。両コイル2、3に高周波電流が供給されると、ロータWの軸孔Wa内周面やロータWの外周面Wb、上面Wd、下面We等に渦電流が誘起されてロータWが誘導加熱される。 In this state, when the transistor inverter 11 and the cooling water supply device 13 of the induction heating device 10 are operated, a high frequency current is supplied from the transistor inverter 11 through the output transformer 12 and the holder 4 to the inner coil 2 (coil conductor 2a1). is supplied (powered) to the outside coil 3 (coil portion 3a) at the same time. When high-frequency currents are supplied to both coils 2 and 3, eddy currents are induced in the inner peripheral surface of the shaft hole Wa of the rotor W, the outer peripheral surface Wb of the rotor W, the upper surface Wd, the lower surface We, etc., and the rotor W is induction-heated. be.

このとき、内側コイル2のコイル導体2a1が扁平銅パイプであることから、その幅が広くなって軸孔Waの内周面に対向する導体の表面積を例えば単なる丸銅パイプ等に比較して大きく、すなわちコイル導体2a1から軸孔Wa内周面に向けて照射される磁力線の数を増大でき、効率的な誘導加熱状態が得られることになる。 At this time, since the coil conductor 2a1 of the inner coil 2 is a flat copper pipe, the width of the coil conductor 2a1 is widened and the surface area of the conductor facing the inner peripheral surface of the shaft hole Wa is made larger than, for example, a mere round copper pipe or the like. That is, the number of magnetic lines of force radiated from the coil conductor 2a1 toward the inner peripheral surface of the shaft hole Wa can be increased, and an efficient induction heating state can be obtained.

この誘導加熱による軸孔Waの内周面の加熱温度は、放射温度センサ(図示せず)で逐次測定され、その信号が誘導加熱装置10の制御装置(図示せず)に入力される。そして、測定温度が制御装置に予め設定してある設定温度となった時点で、例えばトランジスタインバータ11の作動を停止させる。これにより、ロータWの軸孔Wa内周面が所定温度で誘導加熱されることになる。 The heating temperature of the inner peripheral surface of the shaft hole Wa by this induction heating is sequentially measured by a radiation temperature sensor (not shown), and the signal is input to the controller (not shown) of the induction heating device 10 . Then, when the measured temperature reaches a set temperature preset in the control device, for example, the operation of the transistor inverter 11 is stopped. As a result, the inner peripheral surface of the shaft hole Wa of the rotor W is induction-heated at a predetermined temperature.

なお、放射光を受光する放射温度センサが、内側コイル2の支持ブロック2bのセンサ支持板2b2等に一体的に配設されると共に、放射光の指向方向がコイルカバー2bの外周側とロータWの軸孔Wa内周面(内部)間に指向し、かつ軸孔Wa内部の放射が的確に受光できるように設定されていることから、加熱コイル1をセットしたまま(加熱状態のまま)で軸孔Wa内部の所望位置(例えば軸方向の中央に近い位置)の加熱温度を精度良く逐次に測定できて、結果として軸孔Wa内周面の略全域を所望温度で略均一に加熱できることになる。 A radiation temperature sensor for receiving radiant light is provided integrally with the sensor support plate 2b2 of the support block 2b of the inner coil 2, etc. , and is set so that the radiation inside the shaft hole Wa can be accurately received. The heating temperature at a desired position (for example, a position near the center in the axial direction) inside the shaft hole Wa can be measured successively with high accuracy, and as a result, substantially the entire inner peripheral surface of the shaft hole Wa can be substantially uniformly heated at a desired temperature. Become.

一方、内側コイル2の誘導加熱と同時に外側コイル3による誘導加熱でロータWの外周面Wb等も所定温度まで誘導加熱される。この外周面Wbの誘導加熱時において、外側コイル3のコイル部3aの巻き状態がロータWの上面Wdと下面We部分が中間部分より密に設定(巻回)されていることから、上面Wdと下面Weやエッジ部分Wcの磁束を制御できて、これらを内外周面と略同一に加熱、すなわち、ロータWの全体を均一に誘導加熱することが可能になる。 Simultaneously with the induction heating of the inner coil 2, the outer peripheral surface Wb of the rotor W is also induction-heated to a predetermined temperature by the induction heating of the outer coil 3. As shown in FIG. During the induction heating of the outer peripheral surface Wb, the winding state of the coil portion 3a of the outer coil 3 is set (wound) more densely at the upper surface Wd and the lower surface We of the rotor W than at the intermediate portion. The magnetic flux of the lower surface We and the edge portion Wc can be controlled, and these can be heated substantially the same as the inner and outer peripheral surfaces, that is, the entire rotor W can be induction-heated uniformly.

なお、トランジスタインバータ11と例えば略同時に冷却水供給装置13が作動すると、冷却水が内側コイル2の一対のホースジョイント6を介してコイルカバー2a2内やコイル導体2a1内に循環供給されて、内側コイル2のコイル導体2a1が外面側と内面側から冷却、つまり、内側コイル2のコイル導体2a1に、その内部に冷却水が流通する流路と、コイルカバー2a2内に冷却水が流通する流路の二系統の冷却水流路が形成されることになる。 For example, when the cooling water supply device 13 operates substantially simultaneously with the transistor inverter 11, the cooling water is circulated and supplied through the pair of hose joints 6 of the inner coil 2 into the coil cover 2a2 and the coil conductor 2a1. The coil conductor 2a1 of the inner coil 2 is cooled from the outer surface side and the inner surface side. Two systems of cooling water flow paths are formed.

これにより、冷却水がコイルカバー2a2内を流通してコイル導体2a1を冷却することから、コイル導体2a1が冷却水中に浸漬状態で冷却されると共に、扁平空間9内面と表面(外面)に冷却水が確実に接触しつつ冷却されて、通電時のコイル導体2aの発熱が効率的に抑制されることになる。 As a result, the cooling water flows through the coil cover 2a2 to cool the coil conductor 2a1, so that the coil conductor 2a1 is cooled while being immersed in the cooling water. are cooled while reliably contacting each other, and the heat generation of the coil conductor 2a during energization is efficiently suppressed.

また、冷却水供給装置13から供給される冷却水は、外側コイル3の丸銅パイプ内にも循環供給されて、外側コイル3が内面側から冷却される。このとき、外側コイル3は内側コイル2に比較して外径が大径でかつ巻き数の少ない丸銅パイプであることから、丸銅パイプ内を冷却水が良好に流通して外側コイル3に内側コイル2と略同程度の冷却状態が容易に得られることになる。 The cooling water supplied from the cooling water supply device 13 is also circulated inside the round copper pipe of the outer coil 3 to cool the outer coil 3 from the inner surface side. At this time, since the outer coil 3 is a round copper pipe having a larger outer diameter and fewer turns than the inner coil 2, the cooling water flows well through the round copper pipe and reaches the outer coil 3. A cooling state substantially equal to that of the inner coil 2 can be easily obtained.

また、内側コイル2と外側コイル3の支持板4c、4d間の銅板4a外面(表面)に冷却パイプ5が固着されていることから、支持板4a、4c間の銅板4a自体の発熱が抑えられることになる。つまり、内側コイル2や外側コイル3自体の発熱や両コイル2、3を支持する銅板4a自体の発熱が抑えられて、通電的の加熱コイル1自体の発熱による加熱効率の低下が防止されることになる。 Further, since the cooling pipe 5 is fixed to the outer surface (surface) of the copper plate 4a between the support plates 4c and 4d of the inner coil 2 and the outer coil 3, heat generation of the copper plate 4a itself between the support plates 4a and 4c is suppressed. It will be. In other words, the heat generation of the inner coil 2 and the outer coil 3 themselves and the heat generation of the copper plate 4a supporting both coils 2 and 3 are suppressed, thereby preventing the deterioration of the heating efficiency due to the heat generation of the electrically conductive heating coil 1 itself. become.

そして、このようにして加熱コイル1で軸孔Wa内周面や外周面Wcが加熱されたロータ10は、エッジ部分Wcの異常な加熱によるロータWを構成する積層珪素鋼板端部等の薄利や浮き等の変形が防止され、高品質なロータWを容易に得ることが可能になる。その結果、例えば加熱状態のロータWの軸孔Waへの回転軸の焼き嵌め等の作業が簡単かつ高精度に行えることになる。 In the rotor 10 whose inner peripheral surface of the shaft hole Wa and outer peripheral surface Wc are heated by the heating coil 1 in this way, the edge portions Wc of the rotor W are abnormally heated, and the end portions of the laminated silicon steel sheets constituting the rotor W become thin and brittle. Deformation such as floating is prevented, and a high-quality rotor W can be easily obtained. As a result, for example, work such as shrink fitting of the rotary shaft into the shaft hole Wa of the heated rotor W can be performed easily and with high accuracy.

このように、前記加熱コイル1によれば、内側コイル2が、コイル導体2a1と該コイル導体2a1の外周側を覆う有底筒状のコイルカバー2a2を有して、コイル導体2a1の両端部がトランジスタインバータ11に出力変成器12を介して接続されると共に、冷却水供給装置13からコイルカバー2a2内に冷却水が循環供給されるため、コイルカバー2a2内に循環供給される冷却水によりコイル導体2a1を冷却水中に浸漬(どぶ漬け)状態で冷却でき、内側コイル2自体の発熱を良好に抑制しつつロータWの軸孔Wa内周面を効率良く加熱できて、その加熱効率を十分に高めることが可能になる。 Thus, according to the heating coil 1, the inner coil 2 has the coil conductor 2a1 and the bottomed cylindrical coil cover 2a2 that covers the outer peripheral side of the coil conductor 2a1, and both ends of the coil conductor 2a1 are Since it is connected to the transistor inverter 11 via the output transformer 12 and the cooling water is circulated from the cooling water supply device 13 into the coil cover 2a2, the cooling water circulated into the coil cover 2a2 causes the coil conductor to move. 2a1 can be cooled while immersed in cooling water, heat generation of the inner coil 2 itself can be effectively suppressed, and the inner peripheral surface of the shaft hole Wa of the rotor W can be efficiently heated, and the heating efficiency can be sufficiently enhanced. becomes possible.

また、外側コイル3が、ロータWの外周面Wbの上下両端部分が密に巻回されその他の部分が粗に巻回されているため、ロータWの上下面Wd、Weやエッジ部分Wcの磁束を制御できて、ロータW全体を均一な温度で加熱することができ、高品質なロータWを容易に得ることができる。 In addition, since the outer coil 3 is tightly wound at the upper and lower end portions of the outer peripheral surface Wb of the rotor W and loosely wound at other portions, the magnetic flux of the upper and lower surfaces Wd and We of the rotor W and the edge portion Wc is reduced. can be controlled, the entire rotor W can be heated at a uniform temperature, and a high-quality rotor W can be easily obtained.

また、内側コイル2のコイル導体2a1がコイル状扁平パイプで形成され、このコイル導体2a1の軸心位置に丸銅パイプ2c1が挿通されて、この丸銅パイプ2c1の先端部とコイル状扁平パイプの先端部が連結されると共に、丸銅パイプ2c1、2c2が支持ブロック2bに支持されているため、丸銅パイプ2c1でコイル導体2a1を確実に支持しつつコイルカバー2a2内に安定配置できると共に、内側コイル2自体をホルダー4に安定支持させることができる。 A coil conductor 2a1 of the inner coil 2 is formed of a coil-shaped flat pipe, and a round copper pipe 2c1 is inserted through the axial center position of the coil conductor 2a1. Since the end portions are connected and the round copper pipes 2c1 and 2c2 are supported by the support block 2b, the coil conductor 2a1 can be stably arranged in the coil cover 2a2 while the coil conductor 2a1 is reliably supported by the round copper pipe 2c1. The coil 2 itself can be stably supported by the holder 4 .

特に、内側コイル2のコイル導体2a1の構成により、次のような格別な作用効果を得ることができる。すなわち、コイル部2aを軸孔Wa内に挿入配置した状態で、コイル導体2a1にトランジスタインバータ11から高周波電流を供給すると共に、冷却水供給装置13からコイルカバー2a2内とコイル導体2a1の扁平空間9内に冷却水を供給して、ロータWの軸孔Wa内周面を誘導加熱するため、コイル導体2a1の外周面の全域と扁平空間9内面を冷却水で同時に冷却できて、コイル導体2a1の通電時の発熱を効果的に抑制しその加熱効率を一層高めることができる。 In particular, due to the configuration of the coil conductors 2a1 of the inner coil 2, the following special effects can be obtained. That is, in a state in which the coil portion 2a is inserted into the axial hole Wa, a high-frequency current is supplied from the transistor inverter 11 to the coil conductor 2a1, and a flat space 9 between the coil cover 2a2 and the coil conductor 2a1 is supplied from the cooling water supply device 13. Since the inner peripheral surface of the shaft hole Wa of the rotor W is induction-heated by supplying cooling water to the inner surface of the rotor W, the entire outer peripheral surface of the coil conductor 2a1 and the inner surface of the flat space 9 can be simultaneously cooled by the cooling water. Heat generation during energization can be effectively suppressed, and the heating efficiency can be further enhanced.

また同時に、コイル導体2a1が、丸銅パイプを扁平状に潰した潰し銅パイプで形成されているため、丸銅パイプを潰して巻回することでコイル状導体2a1を容易に形成することができて、加熱コイル1のコストアップを抑えることが可能になる。 At the same time, since the coil conductor 2a1 is formed of a crushed copper pipe obtained by crushing a round copper pipe into a flat shape, the coil-shaped conductor 2a1 can be easily formed by crushing and winding the round copper pipe. Therefore, it is possible to suppress the cost increase of the heating coil 1.

また、丸銅パイプ2c1の先端部がコイルカバー2a2の底部内部に連通すると共にコイル導体2a1の先端部に連通孔7aで連通しているため、例えば丸銅パイプ2c1から供給される冷却水をコイルカバー2a2の底部から該カバー2a2内に供給できると共に、冷却水を連通孔7aによりコイル導体2a1内にも供給できて、コイルカバー2a2やコイル導体2a1内に冷却水を一層良好に循環させて、内側コイル2自体の発熱を一層良好に抑制することができる。 In addition, since the tip portion of the round copper pipe 2c1 communicates with the inside of the bottom portion of the coil cover 2a2 and communicates with the tip portion of the coil conductor 2a1 through the communication hole 7a, for example, the cooling water supplied from the round copper pipe 2c1 can flow through the coil. The cooling water can be supplied from the bottom of the cover 2a2 into the cover 2a2, and the cooling water can also be supplied into the coil conductor 2a1 through the communication hole 7a. Heat generation of the inner coil 2 itself can be suppressed even better.

特に、冷却水供給装置13からの冷却水が、コイル導体2a1の扁平空間9とコイルカバー2b内に供給可能であるため、コイルカバー2b内の冷却水流路を二系統として、ロータWの形態等に応じて冷却系統を設定でき、コイル導体2a1の冷却効果をより最適に設定することができる。このとき、コイル導体2a1の扁平空間9内やコイルカバー2a2内への冷却水の供給を、コイルカバー2a2内の冷却水の温度に基づいて制御するように構成すれば、コイル導体2a1の冷却状態に応じた一層最適な条件での冷却が可能になる。 In particular, the cooling water from the cooling water supply device 13 can be supplied to the flat space 9 of the coil conductor 2a1 and the coil cover 2b. The cooling system can be set according to the condition, and the cooling effect of the coil conductor 2a1 can be set more optimally. At this time, if the supply of cooling water to the flat space 9 of the coil conductor 2a1 and the coil cover 2a2 is controlled based on the temperature of the cooling water in the coil cover 2a2, the cooling state of the coil conductor 2a1 It is possible to cool under more optimal conditions according to the

またさらに、内側コイル2と外側コイル3が高周波電源に並列接続されるため、例えば高周波電源を複数台使用することも可能となり内側コイル2と外側コイル3に供給される高周波電流を調整できる等、ロータWの形態に応じて最適条件の高周波電流の供給が可能になり、各種形態のロータWに容易に対応することができる。 Furthermore, since the inner coil 2 and the outer coil 3 are connected in parallel to the high-frequency power source, it is possible to use, for example, a plurality of high-frequency power sources. It is possible to supply a high-frequency current under optimum conditions according to the form of the rotor W, and it is possible to easily deal with rotors W of various forms.

なお、前記実施形態においては、内側コイル2のコイル導体2a1として、内部に扁平空間9を有する潰し銅パイプからなるコイル状扁平パイプを使用したが、例えば銅の薄板等の内部に空間を有さない中実状の適宜導体をコイル導体として使用することもでき、この場合は、丸銅パイプ2c1、2c2から供給される冷却水は、コイルカバー2a1内にのみ循環供給するように構成すれば良い。 In the above-described embodiment, the coil conductor 2a1 of the inner coil 2 is a coiled flat pipe made of a crushed copper pipe having a flat space 9 inside. It is also possible to use a suitable solid conductor as the coil conductor. In this case, the cooling water supplied from the round copper pipes 2c1 and 2c2 may be configured to circulate only within the coil cover 2a1.

また、前記実施形態における、内側コイル2や外側コイル3の巻き数及び粗密の形態、内側コイル2の支持ブロック2bやホルダー4の形態、冷却媒体の形態、誘導加熱装置10の形態等は一例であって、例えば内側コイル2のコイル導体2a1の巻回形態を均等ピッチではなく軸孔Waの上下開口部分と中心部分とで異ならせて、軸孔Wa内周面の全域に一層均一な加熱状態が得られるようにする等、前記実施形態と同等の作用効果が得られかつ本発明に係わる各発明の要旨を逸脱しない範囲で適宜に変更することができる。 In addition, the number of turns of the inner coil 2 and the outer coil 3, the form of coarseness and denseness, the form of the support block 2b and the holder 4 of the inner coil 2, the form of the cooling medium, the form of the induction heating device 10, etc. in the above-described embodiment are only examples. For example, the winding form of the coil conductor 2a1 of the inner coil 2 is not uniform, but different between the upper and lower opening portions and the central portion of the shaft hole Wa, so that the entire inner peripheral surface of the shaft hole Wa is heated more uniformly. can be appropriately modified within the scope of obtaining the same effect as the above-described embodiment and not departing from the gist of each invention related to the present invention.

本発明は、ロータ等の被加熱物への適用に限らず、中心位置の軸孔と外周面に誘導加熱が必要な全ての被加熱物に利用できる。 The present invention can be applied not only to an object to be heated such as a rotor, but also to all objects to be heated that require induction heating of the axial hole at the center position and the outer peripheral surface.

1・・・誘導加熱コイル、2・・・内側コイル、2a・・・コイル部、2a1・・・コイル導体、2a2・・・コイルカバー、2a3・・・直線部、2b・・・支持ブロック、2b1・・・カバー固定ナット、2b2・・・センサ支持板、2b3・・・コイルクランプ、2c1、2c2・・・丸銅パイプ、3・・・外側コイル、3a・・・コイル部、3b・・・基端部、4・・・ホルダー、4a・・・銅板、4c、4d・・・支持板、5・・・冷却パイプ、6・・・ホースジョイント、7a、7b・・・連通孔、9・・・扁平空間、10・・・誘導加熱装置、11・・・トランジスタインバータ、12・・・出力変成器、13・・・冷却水供給装置、W・・・ロータ、Wa・・・軸孔、Wb・・・外周面、Wc・・・エッジ部分、Wd・・・上面、We・・・下面。 DESCRIPTION OF SYMBOLS 1... Induction heating coil, 2... Inner coil, 2a... Coil part, 2a1... Coil conductor, 2a2... Coil cover, 2a3... Straight part, 2b... Support block, 2b1... cover fixing nut, 2b2... sensor support plate, 2b3... coil clamp, 2c1, 2c2... round copper pipe, 3... outer coil, 3a... coil portion, 3b... Base end portion 4 Holder 4a Copper plate 4c, 4d Support plate 5 Cooling pipe 6 Hose joint 7a, 7b Communication hole 9 Flat space 10 Induction heating device 11 Transistor inverter 12 Output transformer 13 Cooling water supply device W Rotor Wa Shaft hole , Wb: outer peripheral surface, Wc: edge portion, Wd: upper surface, We: lower surface.

また、請求項4に記載の発明は、被加熱物の軸孔内に配置され高周波電源から所定周波数の高周波電流が供給されて前記被加熱物の軸孔内面を誘導加熱する加熱コイルと、該加熱コイルによる誘導加熱時の軸孔内面の加熱温度を測定し測定された温度が所定温度となった際に前記高周波電源から前記加熱コイルへの高周波電流の供給を停止させる制御装置と、を備えることを特徴とする。このとき、前記軸孔内面の加熱温度は、請求項5に記載の発明のように、前記軸孔内面からの放射光を受光することが可能な放射温度計で測定されることが好ましい。
Further, the invention according to claim 4 is a heating coil arranged in a shaft hole of an object to be heated and supplied with a high-frequency current of a predetermined frequency from a high-frequency power supply to induction-heat the inner surface of the shaft hole of the object to be heated; a control device that measures the heating temperature of the inner surface of the shaft hole during induction heating by the heating coil, and stops supply of the high-frequency current from the high-frequency power source to the heating coil when the measured temperature reaches a predetermined temperature. It is characterized by At this time, the heating temperature of the inner surface of the shaft hole is preferably measured by a radiation thermometer capable of receiving radiation from the inner surface of the shaft hole.

本発明のうち請求項1ないし5に記載の発明によれば、放射温度計が加熱コイルの支持ブロック等に一体的に配設されると共に、放射温度計の指向方向が加熱コイルの外周側と被加熱物の軸孔内周面(内部)間に指向し、かつ軸孔内部の放射が的確に受光できるように設定されていることから、誘導加熱コイルをセットしたまま(加熱状態のまま)で軸孔内部の所望位置(例えば軸方向の中央に近い位置)の加熱温度を精度良く逐次に測定できて、結果として軸孔内周面の略全域を所望温度で略均一に加熱することができる。
According to the invention of claims 1 to 5 of the present invention, the radiation thermometer is disposed integrally with the support block or the like of the heating coil, and the directivity direction of the radiation thermometer is the outer peripheral side of the heating coil. Directed between the inner peripheral surfaces (inside) of the shaft hole of the object to be heated, and set so that the radiation inside the shaft hole can be accurately received, the induction heating coil remains set (in the heated state). , the heating temperature at a desired position inside the shaft hole (for example, a position near the center in the axial direction) can be measured sequentially with high accuracy, and as a result, substantially the entire inner peripheral surface of the shaft hole can be heated substantially uniformly at the desired temperature. can.

Claims (4)

被加熱物の軸孔内に配置された加熱コイルに高周波電源から所定周波数の高周波電流を供給して前記被加熱物の軸孔内面を誘導加熱すると共に、該誘導加熱時の軸孔内面の加熱温度を放射温度計で測定し、該測定された温度が所定温度となった際に前記高周波電源から前記加熱コイルへの高周波電流の供給を停止させることを特徴とする誘導加熱方法。 A high-frequency current of a predetermined frequency is supplied from a high-frequency power supply to a heating coil arranged in a shaft hole of an object to be heated to induction-heat the inner surface of the shaft hole, and the inner surface of the shaft hole is heated during the induction heating. An induction heating method characterized by measuring temperature with a radiation thermometer, and stopping supply of high-frequency current from said high-frequency power source to said heating coil when said measured temperature reaches a predetermined temperature. 前記放射温度計は前記加熱コイルを支持する支持ブロックに配設され、前記被加熱物の軸孔内面からの放射光を受光して前記軸孔内面の加熱温度を測定することを特徴とする請求項1に記載の誘導加熱方法。 The radiation thermometer is disposed on a support block that supports the heating coil, and measures the heating temperature of the inner surface of the shaft hole by receiving radiation from the inner surface of the shaft hole of the object to be heated. Item 1. The induction heating method according to item 1. 前記被加熱物は、その軸孔が上下方向となるようにセットされて当該軸孔に円筒状の加熱コイルが上方から嵌挿配置され、加熱コイルの外周面と前記被加熱物の軸孔内面間から上方に放射される放射光が前記放射温度計で測定されることを特徴とする請求項1または2に記載の誘導加熱方法。 The object to be heated is set so that its axial hole extends vertically, and a cylindrical heating coil is inserted into the axial hole from above. 3. The induction heating method according to claim 1, wherein the radiant light radiated upward from the space is measured by the radiation thermometer. 被加熱物の軸孔内に配置され高周波電源から所定周波数の高周波電流が供給されて前記被加熱物の軸孔内面を誘導加熱する加熱コイルと、該加熱コイルによる誘導加熱時の軸孔内面の加熱温度を測定し測定された温度が所定温度となった際に前記高周波電源から前記加熱コイルへの高周波電流の供給を停止させる制御装置と、を備えることを特徴とする誘導加熱装置。 a heating coil arranged in a shaft hole of an object to be heated and supplied with a high-frequency current of a predetermined frequency from a high-frequency power source to induction-heat the inner surface of the shaft hole of the object to be heated; and a control device that measures a heating temperature and stops supply of high-frequency current from the high-frequency power source to the heating coil when the measured temperature reaches a predetermined temperature.
JP2022131414A 2019-01-17 2022-08-20 Induction heating method and induction heating device Active JP7362061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022131414A JP7362061B2 (en) 2019-01-17 2022-08-20 Induction heating method and induction heating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019006347A JP7129012B2 (en) 2019-01-17 2019-01-17 induction heating coil
JP2022131414A JP7362061B2 (en) 2019-01-17 2022-08-20 Induction heating method and induction heating device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019006347A Division JP7129012B2 (en) 2019-01-17 2019-01-17 induction heating coil

Publications (2)

Publication Number Publication Date
JP2022164731A true JP2022164731A (en) 2022-10-27
JP7362061B2 JP7362061B2 (en) 2023-10-17

Family

ID=71778642

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2019006347A Active JP7129012B2 (en) 2019-01-17 2019-01-17 induction heating coil
JP2022063695A Active JP7376865B2 (en) 2019-01-17 2022-04-07 induction heating device
JP2022131414A Active JP7362061B2 (en) 2019-01-17 2022-08-20 Induction heating method and induction heating device

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2019006347A Active JP7129012B2 (en) 2019-01-17 2019-01-17 induction heating coil
JP2022063695A Active JP7376865B2 (en) 2019-01-17 2022-04-07 induction heating device

Country Status (1)

Country Link
JP (3) JP7129012B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7129012B2 (en) * 2019-01-17 2022-09-01 株式会社ミヤデン induction heating coil
JP7024131B1 (en) 2021-07-21 2022-02-22 高雄工業株式会社 Heating coil for high frequency heating equipment
JP7333108B1 (en) * 2022-02-17 2023-08-24 ティーケーエンジニアリング株式会社 Heating coil for high frequency heating equipment
JP7223460B1 (en) 2022-02-17 2023-02-16 ティーケーエンジニアリング株式会社 Heating coil for high frequency heating equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55135045U (en) * 1979-03-20 1980-09-25
JPH0722168A (en) * 1993-07-02 1995-01-24 Toshiba Corp Work heating device and method manufacturing motor for it
JP2005005061A (en) * 2003-06-10 2005-01-06 Canon Inc Heating device and image forming device
JP3621685B2 (en) * 2002-02-28 2005-02-16 島田理化工業株式会社 Inner surface induction heating coil
JP2008072825A (en) * 2006-09-13 2008-03-27 Toyota Motor Corp Stator heating method
JP4109676B2 (en) * 2003-01-08 2008-07-02 松下電器産業株式会社 Image heating apparatus and image forming apparatus
JP2013083683A (en) * 2011-10-06 2013-05-09 Sharp Corp Belt fixing device and image forming device including the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7129012B2 (en) * 2019-01-17 2022-09-01 株式会社ミヤデン induction heating coil

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55135045U (en) * 1979-03-20 1980-09-25
JPH0722168A (en) * 1993-07-02 1995-01-24 Toshiba Corp Work heating device and method manufacturing motor for it
JP3621685B2 (en) * 2002-02-28 2005-02-16 島田理化工業株式会社 Inner surface induction heating coil
JP4109676B2 (en) * 2003-01-08 2008-07-02 松下電器産業株式会社 Image heating apparatus and image forming apparatus
JP2005005061A (en) * 2003-06-10 2005-01-06 Canon Inc Heating device and image forming device
JP2008072825A (en) * 2006-09-13 2008-03-27 Toyota Motor Corp Stator heating method
JP2013083683A (en) * 2011-10-06 2013-05-09 Sharp Corp Belt fixing device and image forming device including the same

Also Published As

Publication number Publication date
JP2022082732A (en) 2022-06-02
JP7362061B2 (en) 2023-10-17
JP7376865B2 (en) 2023-11-09
JP7129012B2 (en) 2022-09-01
JP2020115428A (en) 2020-07-30

Similar Documents

Publication Publication Date Title
JP2022164731A (en) Induction heating method and induction heating device
RU2357383C1 (en) Inductive heating device for metal plate
US20160234885A1 (en) Induction heating coil, induction heating device, and heating method
JP2009002616A (en) Induction heating water heater
JP5473127B2 (en) Induction heating coil
JP7299582B2 (en) induction heating coil
US3800115A (en) Method for inductively heating an elongated, slotted workpiece
JP2007173253A (en) Heat-treatment device
JP7045128B2 (en) Induction heating coil
JP7215663B2 (en) induction heating coil
JP7231901B2 (en) induction heating coil
JP2019009097A (en) Induction heating coil
JP4187635B2 (en) High frequency induction heating coil
JP7074290B2 (en) Output transformer for induction heating
JP3752115B2 (en) High frequency induction heating unit
JP7463876B2 (en) Heating device
JP5969184B2 (en) Induction heating device
JP2013135057A (en) Method and apparatus for producing resin burying metal component
JP5285746B2 (en) Induction heating roll
JP5193655B2 (en) Induction heating apparatus and induction heating method
JP2005122986A (en) Induction heating device
JP2006040714A (en) Induction heating type fluid heating arrangement
JP2021060161A (en) Superheated steam generator
SU907878A1 (en) Induction heating device
JP2017130432A (en) Induction heating coil

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230925

R150 Certificate of patent or registration of utility model

Ref document number: 7362061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150