JP7362061B2 - Induction heating method and induction heating device - Google Patents

Induction heating method and induction heating device Download PDF

Info

Publication number
JP7362061B2
JP7362061B2 JP2022131414A JP2022131414A JP7362061B2 JP 7362061 B2 JP7362061 B2 JP 7362061B2 JP 2022131414 A JP2022131414 A JP 2022131414A JP 2022131414 A JP2022131414 A JP 2022131414A JP 7362061 B2 JP7362061 B2 JP 7362061B2
Authority
JP
Japan
Prior art keywords
coil
shaft hole
heating
heated
induction heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022131414A
Other languages
Japanese (ja)
Other versions
JP2022164731A (en
Inventor
英司 鈴木
昌訓 西村
Original Assignee
株式会社ミヤデン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミヤデン filed Critical 株式会社ミヤデン
Priority to JP2022131414A priority Critical patent/JP7362061B2/en
Publication of JP2022164731A publication Critical patent/JP2022164731A/en
Application granted granted Critical
Publication of JP7362061B2 publication Critical patent/JP7362061B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)

Description

本発明は、誘導加熱可能な金属等の材質からなる円筒状部材やリング状部材等であって、その中心位置に軸孔を有する被加熱物の内周面(内径面)と外周面(外径面)を同時に誘導加熱する際に使用される誘導加熱コイル方法及び誘導加熱装置に関する。 The present invention relates to a cylindrical member, a ring-shaped member, etc. made of a material such as a metal that can be heated by induction, and which has a shaft hole at its center. The present invention relates to an induction heating coil method and an induction heating device used when simultaneously induction heating a radial surface.

従来、この種の誘導加熱コイルとしては、例えば特許文献1に開示されている。この誘導加熱コイル(円筒物用誘導加熱装置)は、被加熱物の内周面と外周面にそれぞれ隣接する内側コイルと外側コイルを設け、内側コイルと外側コイルが、互いに同位相の電流が同方向に流れるように一つの高周波電源に直列接続されると共に、内側コイルの巻き数が外側コイルの巻き数より少なくとも1巻き多く巻回するようにしたものである。 Conventionally, this type of induction heating coil is disclosed in, for example, Patent Document 1. This induction heating coil (induction heating device for cylindrical objects) is provided with an inner coil and an outer coil that are adjacent to the inner and outer circumferential surfaces of the object to be heated, respectively, and the inner and outer coils have the same current of the same phase. The coil is connected in series to one high-frequency power source so that the current flows in the same direction, and the number of turns of the inner coil is at least one more turn than the number of turns of the outer coil.

特許第4098076号公報Patent No. 4098076

しかしながら、このような誘導加熱コイルにあっては、内側コイルと外側コイルが共に断面円形の丸パイプを所定回数巻回することにより形成され、これらが被加熱物の内周面や外周面に所定の間隙を有して近接配置されると共に、外側コイルの巻回状態が被加熱物の軸方向において均等となっているため、内側コイルや外側コイルによる被加熱物の加熱効率が劣ると共に、軸孔内周面や外周面、上下面等の被加熱物の全体を均一に加熱することが難しいという不都合を有している。 However, in such an induction heating coil, both the inner coil and the outer coil are formed by winding a round pipe with a circular cross section a predetermined number of times, and these coils are wrapped around the inner circumferential surface or outer circumferential surface of the object to be heated in a predetermined manner. Because they are arranged close to each other with a gap, and the winding state of the outer coil is uniform in the axial direction of the object to be heated, the heating efficiency of the object to be heated by the inner and outer coils is poor, and the axial This method has the disadvantage that it is difficult to uniformly heat the entire object to be heated, such as the inner peripheral surface of the hole, the outer peripheral surface, and the upper and lower surfaces.

すなわち、丸パイプを所定回数巻回した内側コイルが単に被加熱物の軸孔に挿入配置され、同コイルへの高周波電流の通電時にその丸パイプ内に冷却水が循環供給されて当該コイルの発熱を抑制する構造であることから、内側コイルを丸パイプの内面側からしか冷却することができず、通電時の内側コイル自体の発熱を十分に抑えることが難しい。その結果、被加熱物の軸孔内周面を誘導加熱する際に、その全域を均一に加熱することが困難であると共に、内側コイルによる加熱効率も劣り、例えば加熱時間が長くなる等、加熱効率を十分に高めることも困難である。 In other words, an inner coil made by winding a round pipe a predetermined number of times is simply inserted into the shaft hole of the object to be heated, and when a high-frequency current is applied to the coil, cooling water is circulated and supplied within the round pipe, causing the coil to generate heat. Because of the structure that suppresses heat generation, the inner coil can only be cooled from the inner surface of the round pipe, making it difficult to sufficiently suppress the heat generated by the inner coil itself when energized. As a result, when induction heating the inner peripheral surface of the shaft hole of the object to be heated, it is difficult to uniformly heat the entire area, and the heating efficiency of the inner coil is also poor, for example, the heating time becomes longer, etc. It is also difficult to sufficiently increase efficiency.

また、被加熱物の外周面側に配置される巻き数の少ない外側コイルが、被加熱物の外周面の軸方向全域に亘って均等に巻回配置されると共に、被加熱物の軸孔内に挿入配置される巻き数の多い内側コイルも軸方向に均等に巻回配置されていることから、これらの両コイルで被加熱物を誘導加熱した場合、被加熱物の内周面や外周面はより加熱されるが上下面はその磁束の通過が弱く外周面等に比べて加熱され難くなると共に、被加熱物の内外周面のエッジ部分にも磁束が集中し易く当該エッジ部分が高温に加熱され、その他の内外周面や上下面が低温に加熱される状態となり、結果として、被加熱物全体を均一な温度で加熱することが一層困難となる。 In addition, the outer coil with a small number of turns is arranged on the outer peripheral surface of the object to be heated, and is evenly wound over the entire axial direction of the outer peripheral surface of the object to be heated. The inner coil, which has a large number of turns inserted in the Although the upper and lower surfaces are more heated, the magnetic flux does not pass through the upper and lower surfaces, making them difficult to heat compared to the outer circumferential surface, etc., and the magnetic flux also tends to concentrate on the edges of the inner and outer circumferential surfaces of the object to be heated, causing these edge portions to reach high temperatures. The other inner and outer circumferential surfaces and upper and lower surfaces are heated to a low temperature, and as a result, it becomes more difficult to heat the entire object to be heated at a uniform temperature.

本発明は、このような事情に鑑みてなされたもので、その目的は、加熱コイルの冷却を促進し得て被加熱物の軸孔内周面全域を効率良く加熱でき、被加熱物の軸孔内周面の加熱効率を十分に高めつつ被加熱物の全体を均一に誘導加熱可能な誘導加熱方法及び誘導加熱装置を提供することにある。また、他の目的は、前記目的に加え、被加熱物の上下面や内外周面のエッジ部分を良好に加熱し得て被加熱物全体を一層均一な温度で加熱することが可能な誘導加熱方法及び誘導加熱装置を提供することにある。 The present invention has been made in view of the above circumstances, and its purpose is to promote cooling of the heating coil , efficiently heat the entire inner circumferential surface of the shaft hole of the object to be heated, and to An object of the present invention is to provide an induction heating method and an induction heating device that can uniformly inductively heat the entire object to be heated while sufficiently increasing the heating efficiency of the inner peripheral surface of the hole. In addition to the above-mentioned objectives, another purpose is induction heating, which can satisfactorily heat the upper and lower surfaces of the object to be heated and the edge portions of the inner and outer circumferential surfaces of the object to be heated, and can heat the entire object to be heated at a more uniform temperature. An object of the present invention is to provide a method and an induction heating device.

かかる目的を達成するために、本発明の請求項1に記載の発明は、被加熱物の軸孔内に配置された円筒状の加熱コイルに高周波電源から所定周波数の高周波電流を供給して前記被加熱物の軸孔内周面の全域を誘導加熱し、該誘導加熱時の軸孔内周面の加熱温度を前記被加熱物の軸孔方向に指向する状態でかつ軸孔内部の放射光が受光できるように設定された放射温度計で測定し、該測定された温度が所定温度となった際に制御装置により前記高周波電源から前記加熱コイルへの高周波電流の供給を停止させることを特徴とする。 In order to achieve this object, the invention according to claim 1 of the present invention supplies a high frequency current of a predetermined frequency from a high frequency power source to a cylindrical heating coil disposed in the shaft hole of the object to be heated. The entire area of the inner peripheral surface of the shaft hole of the object to be heated is heated by induction, and the heating temperature of the inner peripheral surface of the shaft hole during the induction heating is directed in the direction of the shaft hole of the object to be heated, and the emitted light inside the shaft hole is heated. is measured with a radiation thermometer set to receive light , and when the measured temperature reaches a predetermined temperature , a control device stops supplying the high frequency current from the high frequency power source to the heating coil. shall be.

また、請求項2に記載の発明は、前記放射温度計が、前記加熱コイルを支持する支持ブロックに配設されていることを特徴とする。また、請求項3に記載の発明は、前記被加熱物は、その軸孔前記加熱コイルが嵌挿配置され、前記加熱コイルの外周面と前記被加熱物の軸孔内周面の間から放射される放射光に基づき前記放射温度計で前記加熱温度が測定されることを特徴とする。さらに、請求項4に記載の発明は、前記加熱コイルが、所定回数コイル状に巻回したコイル導体と該コイル導体の外周側と先端側を覆うコイルカバーを有することを特徴とする。 Moreover, the invention according to claim 2 is characterized in that the radiation thermometer is disposed on a support block that supports the heating coil . In addition, the invention according to claim 3 provides that the heating coil is inserted into the shaft hole of the heated object, and the heating coil is inserted into the shaft hole of the heated object, and the heating coil is inserted between the outer peripheral surface of the heating coil and the inner peripheral surface of the shaft hole of the heated object. The heating temperature is measured by the radiation thermometer based on the emitted radiation light. Furthermore, the invention according to claim 4 is characterized in that the heating coil has a coil conductor wound in a coil shape a predetermined number of times, and a coil cover that covers the outer peripheral side and the tip side of the coil conductor.

また、請求項5に記載の発明は、所定回数コイル状に巻回したコイル導体と該コイル導体の外周側と先端側を覆うコイルカバーを有して、被加熱物の軸孔内に配置され高周波電源から所定周波数の高周波電流が供給されて前記被加熱物の軸孔内周面の全域を誘導加熱する円筒状の加熱コイルと、前記被加熱物の軸孔方向に指向する状態でかつ軸孔内部の放射光が受光できるように設定されて前記加熱コイルによる誘導加熱時の軸孔内周面の加熱温度を測定する放射温度計と、該測定された温度が所定温度となった際に前記高周波電源から前記加熱コイルへの高周波電流の供給を停止させる制御装置と、を備えることを特徴とする。 Further, the invention according to claim 5 has a coil conductor wound in a coil shape a predetermined number of times, and a coil cover that covers the outer peripheral side and the tip side of the coil conductor, and is arranged in the shaft hole of the object to be heated. A cylindrical heating coil that is supplied with a high-frequency current of a predetermined frequency from a high-frequency power source to inductively heat the entire inner peripheral surface of the shaft hole of the object to be heated; a radiation thermometer that is set to receive radiation light inside the hole and measures the heating temperature of the inner peripheral surface of the shaft hole during induction heating by the heating coil; The heating coil is characterized by comprising a control device that stops supplying high-frequency current from the high-frequency power source to the heating coil .

本発明のうち請求項1ないし5に記載の発明によれば、放射温度計が加熱コイルの支持ブロック等に一体的に配設されると共に、放射温度計の指向方向が加熱コイルの外周側と被加熱物の軸孔内周面(内部)間に指向し、かつ軸孔内部の放射が的確に受光できるように設定されていることから、誘導加熱コイルをセットしたまま(加熱状態のまま)で軸孔内部の所望位置(例えば軸方向の中央に近い位置)の加熱温度を精度良く逐次に測定できて、結果として軸孔内周面の略全域を所望温度で略均一に加熱することができる。 According to the invention described in claims 1 to 5 of the present invention, the radiation thermometer is integrally disposed on the support block of the heating coil, and the pointing direction of the radiation thermometer is aligned with the outer peripheral side of the heating coil. Since it is set so that it is directed between the inner peripheral surface (inside) of the shaft hole of the object to be heated and the radiation inside the shaft hole can be accurately received, the induction heating coil can be left in place (while it is being heated). The heating temperature at a desired position inside the shaft hole (for example, a position near the center in the axial direction) can be measured successively with high accuracy, and as a result, almost the entire inner peripheral surface of the shaft hole can be heated almost uniformly at the desired temperature. can.

本発明に係わる誘導加熱コイルの一実施形態を示す斜視図A perspective view showing an embodiment of an induction heating coil according to the present invention 同その側面図Same side view 同内側コイルの斜視図Perspective view of the inner coil 同その縦断面図Vertical sectional view of the same 同内側コイルのコイル導体を示す(a)が正面図、(b)がその縦断面図(a) is a front view showing the coil conductor of the inner coil, and (b) is its longitudinal cross-sectional view. 同その(a)が図5(b)のA部拡大図、(b)が図5(b)のB部拡大図、(c)が図5(a)のC-C線矢視図(a) is an enlarged view of part A in Fig. 5(b), (b) is an enlarged view of part B in Fig. 5(b), and (c) is a view taken along the line CC in Fig. 5(a). 同使用状態の説明図An explanatory diagram of the same usage condition

以下、本発明を実施するための形態を図面に基づいて詳細に説明する。
図1及び図2は、本発明に係わる誘導加熱コイルの一実施形態を示している。図1及び図2に示すように、誘導加熱コイル1(加熱コイル1という)は、内側コイル2と外側コイル3及びこれらを支持するホルダー4を備えている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail based on the drawings.
1 and 2 show one embodiment of an induction heating coil according to the present invention. As shown in FIGS. 1 and 2, an induction heating coil 1 (referred to as heating coil 1) includes an inner coil 2, an outer coil 3, and a holder 4 that supports them.

前記ホルダー4は、所定幅で所定長さの長尺状の一対の銅板4aを有し、この銅板4aが絶縁板4bを介して圧接されると共に、これらが前記内側コイル2と外側コイル3の両端部を支持するそれぞれ一対の支持板4c、4dとボルト4e等により圧接固定状態とされている。 The holder 4 has a pair of long copper plates 4a having a predetermined width and a predetermined length, and the copper plates 4a are pressed together via an insulating plate 4b, and these are connected to the inner coil 2 and the outer coil 3. A pair of support plates 4c and 4d supporting both ends and bolts 4e are used to press and fix them.

前記内側コイル2は、被加熱物としてのロータWの軸孔Wa内に挿入配置され、その内部に後述するコイル導体2a1が挿入配置されたコイルカバー2a2と、このコイルカバー2a2の基端部を支持する円盤状の支持ブロック2b等を有し、コイルカバー2a2から支持ブロック2bの上面側に所定寸法突出した第1パイプ及び第2パイプとしての丸銅パイプ2c1、2c2が、前記ホルダー4の銅板4aの外面(表面)に支持板4cとボルト4eにより固定支持されている。 The inner coil 2 is inserted into a shaft hole Wa of a rotor W as an object to be heated, and includes a coil cover 2a2 into which a coil conductor 2a1, which will be described later, is inserted, and a base end portion of this coil cover 2a2. Round copper pipes 2c1 and 2c2 as a first pipe and a second pipe, which have a disk-shaped support block 2b, etc. to support, and protrude by a predetermined dimension from the coil cover 2a2 to the upper surface side of the support block 2b, are connected to the copper plate of the holder 4. It is fixedly supported on the outer surface (surface) of 4a by a support plate 4c and bolts 4e.

また、前記外側コイル3は、そのコイル部3aが前記ロータWの外周面Wbの外側に近接配置され、その両端部の上方に延設された基端部3bが前記ホルダー4の銅板4aの外面に支持板4dとボルト4eにより固定支持されている。なお、各銅板4aの外面で内側コイル2と外側コイル3用の支持板4c、4d間には、銅の角パイプからなる側面視コ字状の冷却パイプ5がそれぞれロー付け固着されている。そして、この一対の冷却パイプ5(一方のみ示す)の上方への各突出両端部と、前記内側コイル2の支持板4cから上方に突出した一対の両端部及び前記外側コイル3の支持板4dから上方に突出した一対の両端部には、ホースジョイント6がそれぞれ(合計8個)固着されている。 Further, the outer coil 3 has a coil portion 3a disposed close to the outside of the outer circumferential surface Wb of the rotor W, and a base end portion 3b extending above both ends thereof on the outer surface of the copper plate 4a of the holder 4. It is fixedly supported by a support plate 4d and bolts 4e. Incidentally, on the outer surface of each copper plate 4a, between the support plates 4c and 4d for the inner coil 2 and outer coil 3, cooling pipes 5 made of square copper pipes and having a U-shape in side view are fixed by brazing. From both ends of the pair of cooling pipes 5 (only one shown) projecting upward, from the pair of ends projecting upward from the support plate 4c of the inner coil 2, and from the support plate 4d of the outer coil 3. Hose joints 6 (eight in total) are fixed to each of the pair of upwardly protruding ends.

次に、前記内側コイル2の具体的な構成を、図3~図6に基づいて説明する。内側コイル2は、図3に示すように、コイル部2aと、このコイル部2aの基端側(図4に置いて上方側)を支持する前記支持ブロック2b等を備えている。前記コイル部2aは、図4に示すように、扁平パイプを軸方向に均等ピッチで所定回数コイル状に巻回したコイル導体2a1と、このコイル導体2a1の外周側と先端側とを覆うベーク材等の絶縁体で形成された有底筒状のコイルカバー2a2を有している。 Next, the specific structure of the inner coil 2 will be explained based on FIGS. 3 to 6. As shown in FIG. 3, the inner coil 2 includes a coil portion 2a and the support block 2b that supports the base end side (upper side in FIG. 4) of the coil portion 2a. As shown in FIG. 4, the coil portion 2a includes a coil conductor 2a1 formed by winding a flat pipe into a coil shape a predetermined number of times at an even pitch in the axial direction, and a baking material that covers the outer circumferential side and the tip side of the coil conductor 2a1. The coil cover 2a2 has a cylindrical shape with a bottom and is made of an insulator such as the like.

このとき、コイル導体2a1は、導体である所定径の丸銅パイプを直径(断面)方向に潰すことで、内部に扁平空間9(図6参照)を有した潰し銅パイプが使用され、この潰し銅パイプを直線状の軸芯に沿って所定回数一定ピッチで巻回することによりコイル状に形成されている。なお、コイル導体2a1の基端側には、巻回されることなく上方に所定長さ一体的に延設された直線部2a3が設けられている。 At this time, the coil conductor 2a1 is a crushed copper pipe having a flat space 9 (see FIG. 6) inside by crushing a round copper pipe of a predetermined diameter as a conductor in the diametrical (cross-sectional) direction. It is formed into a coil shape by winding a copper pipe a predetermined number of times at a constant pitch along a linear axis. Note that a straight portion 2a3 is provided on the base end side of the coil conductor 2a1, and is not wound but integrally extends upward for a predetermined length.

また、コイル導体2a1の一方の端部となる先端部(図4において下方端部)と他方の端部となる直線部2a3の基端部には、一対の直線状の前記丸銅パイプ2c1、2c2の先端部がそれぞれロー付け固着され、一方の丸銅パイプ2c1は、コイル導体2a1の軸心位置を貫通する状態でその基端部が上方に所定長さ延設されている。また、他方の丸銅パイプ2c2は、その上端位置が丸銅パイプ2c1と同一となるように長さが短く設定されて、その先端部がコイル導体2a1の前記直線部2a3の基端部にロー付け固着されている。 In addition, a pair of straight round copper pipes 2c1 are provided at the distal end (lower end in FIG. 4) that is one end of the coil conductor 2a1 and the base end of the straight portion 2a3 that is the other end. The distal ends of the round copper pipes 2c2 are fixed by brazing, respectively, and the base end of the round copper pipe 2c1 extends upward a predetermined length while passing through the axial center position of the coil conductor 2a1. Further, the length of the other round copper pipe 2c2 is set to be short so that its upper end position is the same as that of the round copper pipe 2c1, and its tip is connected to the base end of the straight portion 2a3 of the coil conductor 2a1. It is attached and fixed.

そして、一方の丸銅パイプ2c1の先端部には、図6(b)に示すように、連通孔7aが形成されてコイル導体2a1の先端部の扁平空間9に連通状態とされ、他方の丸銅パイプ2c2の先端部にも、図6(a)に示すように、連通孔7bが形成されてコイル導体2a1の基端部(直線部2a3)の扁平空間9に連通状態とされている。なお、丸銅パイプ2c1と丸銅パイプ2c2の先端部(下端)は開口されて、それぞれコイルカバー2a2内に連通状態とされている。また、コイルカバー2a2は、その開口部となる上端部が、後述する支持ブロック2bにその内部空間が気密状態となるように支持されている。 As shown in FIG. 6(b), a communication hole 7a is formed at the tip of one of the round copper pipes 2c1 and communicates with the flat space 9 at the tip of the coil conductor 2a1. As shown in FIG. 6(a), a communication hole 7b is also formed at the tip of the copper pipe 2c2, communicating with the flat space 9 of the base end (straight portion 2a3) of the coil conductor 2a1. Note that the tips (lower ends) of the round copper pipe 2c1 and the round copper pipe 2c2 are opened and communicated with the inside of the coil cover 2a2. Further, the upper end of the coil cover 2a2, which is the opening thereof, is supported by a support block 2b, which will be described later, so that the inner space thereof is airtight.

これにより、例えば一方の丸銅パイプ2c1の基端部から供給された冷却媒体としての冷却水が、丸銅パイプ2c1内を流れてその先端の開口からコイルカバー2a2の底部内に所定圧で噴出供給され、底部内面で跳ね返された冷却水がコイルカバー2a2内を上方に流れると共に、連通孔7aを介してコイル導体2a1の先端部からその扁平空間9内に流入して該扁平空間9内を上方に流れ、その基端部から他方の丸銅パイプ2c2内に流入する。 As a result, for example, cooling water as a cooling medium supplied from the base end of one of the round copper pipes 2c1 flows inside the round copper pipe 2c1 and is ejected at a predetermined pressure from the opening at its tip into the bottom of the coil cover 2a2. The cooling water that is supplied and bounced off the inner surface of the bottom flows upward inside the coil cover 2a2, and flows into the flat space 9 from the tip of the coil conductor 2a1 through the communication hole 7a, and flows inside the flat space 9. It flows upward and flows into the other round copper pipe 2c2 from its base end.

また同時に、コイルカバー2a2内を上部まで流れた冷却水も、他方の丸銅パイプ2c2の先端部内に流入する。つまり、一方の丸銅パイプ2c1からコイルカバー2a2の底部に供給される冷却水が、コイルカバー2a2内を流通する流路と、コイル導体2a1の扁平空間9内を流通する二系統の流路で流れ、コイル導体2a1がその外部(外面側)と内部(内面側)から同時に冷却されることになる。 At the same time, the cooling water that has flowed up to the top inside the coil cover 2a2 also flows into the tip of the other round copper pipe 2c2. In other words, the cooling water supplied from one round copper pipe 2c1 to the bottom of the coil cover 2a2 flows through two channels: one through the coil cover 2a2, and the other through the flat space 9 of the coil conductor 2a1. As a result, the coil conductor 2a1 is simultaneously cooled from the outside (outer surface side) and the inside (inner surface side).

前記内側コイル2の支持ブロック2bは、図3及び図4に示すように、それぞれ絶縁材で形成された、カバー固定ナット2b1、センサ支持板2b2及び分割状態のコイルクランプ2b3等を有し、全体として円盤形状を呈し、コイルカバー2aの上端部を気密状態で支持している。 As shown in FIGS. 3 and 4, the support block 2b of the inner coil 2 includes a cover fixing nut 2b1, a sensor support plate 2b2, a divided coil clamp 2b3, etc., each made of an insulating material, and the whole The coil cover 2a has a disk shape and supports the upper end of the coil cover 2a in an airtight manner.

なお、前記センサ支持板2b2(及びカバー固定ナット2b1)には、センサ取付孔8(センサ取付部)が上下方向に貫通状態で設けられており、このセンサ取付孔8に図示しない放射温度センサが下方(ロータWの軸孔Wa方向)に指向する状態で装着されて、ロータWの軸孔Wa内面の高さ(深さ)方向の所定位置の温度を検出可能となっている。そして、内側コイル2は、カバー固定ナット2b1等により、前記コイル部2aの基端部が丸銅パイプ2c1、2c2等を介して支持ブロック2bに支持されつつ、ホルダー4に支持されている。 Note that the sensor support plate 2b2 (and cover fixing nut 2b1) is provided with a sensor mounting hole 8 (sensor mounting portion) penetrating in the vertical direction, and a radiation temperature sensor (not shown) is installed in this sensor mounting hole 8. It is mounted so as to be oriented downward (in the direction of the shaft hole Wa of the rotor W), so that the temperature at a predetermined position in the height (depth) direction of the inner surface of the shaft hole Wa of the rotor W can be detected. The inner coil 2 is supported by the holder 4, with the base end of the coil portion 2a supported by the support block 2b via the round copper pipes 2c1, 2c2, etc., using a cover fixing nut 2b1.

一方、前記外側コイル3は、図1及び図2に示すように、外周面が絶縁材で覆われた導体パイプとしての丸銅パイプを所定回数巻回(図では略4巻)することで形成されたコイル部3aと、このコイル部3aの両端部を上方(ホルダー4方向)に直線状に延設した一対の基端部3bを有している。このとき、コイル部3aは、ロータWの軸方向両端の上面Wdと下面Weに近接配置される上端部分3a1及び下端部分3a2が、例えばそれぞれ略1.5巻に設定(密に巻回)され、この一対の上端部分3a1と下端部分3a2間の巻き数が略1巻に設定(粗に巻回)されている。 On the other hand, as shown in FIGS. 1 and 2, the outer coil 3 is formed by winding a round copper pipe as a conductor pipe whose outer peripheral surface is covered with an insulating material a predetermined number of times (approximately 4 turns in the figure). The coil portion 3a has a coil portion 3a, and a pair of base end portions 3b formed by linearly extending both ends of the coil portion 3a upward (in the direction of the holder 4). At this time, in the coil portion 3a, the upper end portion 3a1 and the lower end portion 3a2, which are arranged close to the upper surface Wd and the lower surface We at both axial ends of the rotor W, are each set to approximately 1.5 turns (closely wound), for example. The number of turns between the pair of upper end portions three a1 and lower end portions three a2 is set to approximately one turn (roughly wound).

このように構成された前記加熱コイル1は、図7に示すように、誘導加熱装置10に接続されて使用される。すなわち、誘導加熱装置10は、高周波電源としてのトランジスタインバータ11と、このトランジスタインバータ11の出力端子に銅板等で固定的に接続されるかもしくは可撓性ケーブルを介して移動可能に接続される出力変成器12と、冷却器や冷却水タンク等を有する冷却媒体供給手段としての冷却水供給装置13と、図示しない制御装置等を備えている。 The heating coil 1 configured in this way is used by being connected to an induction heating device 10, as shown in FIG. That is, the induction heating device 10 includes a transistor inverter 11 as a high-frequency power source, and an output that is fixedly connected to the output terminal of the transistor inverter 11 with a copper plate or the like or movably connected via a flexible cable. It includes a shift converter 12, a cooling water supply device 13 as a cooling medium supply means having a cooler, a cooling water tank, etc., and a control device (not shown).

そして、出力変成器12の一対の出力端子に、前記ホルダー4の一対の銅板4aが図示しない例えば固定ボルト等で直接固定接続されるか、適宜のケーブルを介して固定接続される。この接続により、一対の銅板4aに内側コイル2と外側コイル3の丸銅パイプ2c1、2c2や基端部3bがそれぞれ接続されることから、出力変成器12(高周波電源)の出力端子に内側コイル2と外側コイル3が並列接続された状態となる。 The pair of copper plates 4a of the holder 4 are directly fixedly connected to the pair of output terminals of the output transformer 12 using, for example, fixing bolts (not shown) or fixedly connected via an appropriate cable. Through this connection, the round copper pipes 2c1, 2c2 and base end 3b of the inner coil 2 and outer coil 3 are connected to the pair of copper plates 4a, so that the output terminal of the output transformer 12 (high frequency power supply) is connected to the inner coil. 2 and the outer coil 3 are connected in parallel.

また、前記冷却水供給装置13は、その供給口が内側コイル2、外側コイル3及び冷却パイプ5の一方のホースジョイント6にホースを介してそれぞれ接続され、その戻り口が内側コイル2、外側コイル3及び冷却パイプ5の他方のホースジョイント6にホースを介してそれぞれ接続される。つまり、冷却水供給装置13に内側コイル2と外側コイル3のコイル部2a、3a及び冷却パイプ5が並列接続された状態となる。 In addition, the cooling water supply device 13 has its supply ports connected to the inner coil 2, outer coil 3, and one hose joint 6 of the cooling pipe 5 through hoses, and its return ports to the inner coil 2, outer coil 3, and one hose joint 6 of the cooling pipe 5. 3 and the other hose joint 6 of the cooling pipe 5 via hoses. In other words, the coil parts 2a and 3a of the inner coil 2 and the outer coil 3 and the cooling pipe 5 are connected in parallel to the cooling water supply device 13.

なお、この冷却水の循環流路(接続形態)は、並列接続状態に限らず、例えば内側コイル2と外側コイル3及び冷却パイプ5を全て直列状態で接続したり、あるいはこれら3つの内の2つを直列状態で接続することも勿論可能である。また、例えば冷却水供給装置13に冷却水の供給圧力が異なる複数の供給口を設けて内側コイル2と外側コイル3への冷却水の供給圧力を異なる(内側コイル2への圧力を外側コイル3への圧力より高く設定する)ようにして、冷却水の循環量を最適に設定しても良い。 Note that this cooling water circulation flow path (connection form) is not limited to the parallel connection state; for example, the inner coil 2, outer coil 3, and cooling pipe 5 may all be connected in series, or two of these three may be connected in series. Of course, it is also possible to connect two in series. In addition, for example, the cooling water supply device 13 may be provided with a plurality of supply ports having different cooling water supply pressures, so that the cooling water supply pressures to the inner coil 2 and the outer coil 3 are different (the pressure to the inner coil 2 is different from the pressure to the outer coil 3). The circulating amount of cooling water may be optimally set by setting the pressure higher than that of the cooling water.

そして、図7の接続状態で加熱コイル1を、図示しないセット台上にセットされているロータWの上面Wd側から下降させて、内側コイル2のコイルカバー2a2部分をロータWの軸孔Wa内に挿入配置すると共に、外側コイル3のコイル部3aをロータWの外周面Wbの外周側に近接配置する。このとき、内側コイル2は、そのコイルカバー2a2の先端部がロータWの下面Weから所定寸法突出し、外側コイル3は、コイル部3aの上端部分3a1と下端部分3a2がロータWの上面Wdと下面Weに略対向するように設定する。 Then, in the connected state shown in FIG. 7, the heating coil 1 is lowered from the upper surface Wd side of the rotor W set on a setting table (not shown), and the coil cover 2a2 portion of the inner coil 2 is inserted into the shaft hole Wa of the rotor W. At the same time, the coil portion 3a of the outer coil 3 is placed close to the outer circumferential side of the outer circumferential surface Wb of the rotor W. At this time, the tip of the coil cover 2a2 of the inner coil 2 protrudes by a predetermined dimension from the lower surface We of the rotor W, and the outer coil 3 has an upper end portion 3a1 and a lower end portion 3a2 of the coil portion 3a on the upper surface Wd and the lower surface of the rotor W. Set so that it is approximately opposite to We.

この状態で、誘導加熱装置10のトランジスタインバータ11と冷却水供給装置13を作動させると、トランジスタインバータ11から高周波電流が、出力変成器12、ホルダー4を介して、内側コイル2(コイル導体2a1)に供給(給電)されると同時に外側コイル3(コイル部3a)にも供給される。両コイル2、3に高周波電流が供給されると、ロータWの軸孔Wa内周面やロータWの外周面Wb、上面Wd、下面We等に渦電流が誘起されてロータWが誘導加熱される。 In this state, when the transistor inverter 11 and cooling water supply device 13 of the induction heating device 10 are operated, a high frequency current is transmitted from the transistor inverter 11 to the inner coil 2 (coil conductor 2a1) via the output transformer 12 and the holder 4. At the same time, it is also supplied to the outer coil 3 (coil portion 3a). When a high frequency current is supplied to both coils 2 and 3, eddy currents are induced in the inner circumferential surface of the shaft hole Wa of the rotor W, the outer circumferential surface Wb, the upper surface Wd, the lower surface We, etc. of the rotor W, and the rotor W is heated by induction. Ru.

このとき、内側コイル2のコイル導体2a1が扁平銅パイプであることから、その幅が広くなって軸孔Waの内周面に対向する導体の表面積を例えば単なる丸銅パイプ等に比較して大きく、すなわちコイル導体2a1から軸孔Wa内周面に向けて照射される磁力線の数を増大でき、効率的な誘導加熱状態が得られることになる。 At this time, since the coil conductor 2a1 of the inner coil 2 is a flat copper pipe, its width is increased, and the surface area of the conductor facing the inner circumferential surface of the shaft hole Wa is larger than that of, for example, a simple round copper pipe. That is, the number of magnetic lines of force irradiated from the coil conductor 2a1 toward the inner peripheral surface of the shaft hole Wa can be increased, and an efficient induction heating state can be obtained.

この誘導加熱による軸孔Waの内周面の加熱温度は、放射温度センサ(図示せず)で逐次測定され、その信号が誘導加熱装置10の制御装置(図示せず)に入力される。そして、測定温度が制御装置に予め設定してある設定温度となった時点で、例えばトランジスタインバータ11の作動を停止させる。これにより、ロータWの軸孔Wa内周面が所定温度で誘導加熱されることになる。 The heating temperature of the inner circumferential surface of the shaft hole Wa due to this induction heating is successively measured by a radiation temperature sensor (not shown), and the signal thereof is input to a control device (not shown) of the induction heating device 10. Then, when the measured temperature reaches a set temperature preset in the control device, for example, the operation of the transistor inverter 11 is stopped. As a result, the inner circumferential surface of the shaft hole Wa of the rotor W is induction heated at a predetermined temperature.

なお、放射光を受光する放射温度センサが、内側コイル2の支持ブロック2bのセンサ支持板2b2等に一体的に配設されると共に、放射光の指向方向がコイルカバー2bの外周側とロータWの軸孔Wa内周面(内部)間に指向し、かつ軸孔Wa内部の放射が的確に受光できるように設定されていることから、加熱コイル1をセットしたまま(加熱状態のまま)で軸孔Wa内部の所望位置(例えば軸方向の中央に近い位置)の加熱温度を精度良く逐次に測定できて、結果として軸孔Wa内周面の略全域を所望温度で略均一に加熱できることになる。 Note that a radiation temperature sensor that receives radiation light is integrally disposed on the sensor support plate 2b2 of the support block 2b of the inner coil 2, and the direction of radiation light is directed between the outer peripheral side of the coil cover 2b and the rotor W. Since it is set so that it is directed between the inner circumferential surface (inside) of the shaft hole Wa and the radiation inside the shaft hole Wa can be accurately received, the heating coil 1 can be left in place (in the heating state). The heating temperature at a desired position inside the shaft hole Wa (for example, a position near the center in the axial direction) can be measured successively with high accuracy, and as a result, almost the entire inner peripheral surface of the shaft hole Wa can be heated almost uniformly at the desired temperature. Become.

一方、内側コイル2の誘導加熱と同時に外側コイル3による誘導加熱でロータWの外周面Wb等も所定温度まで誘導加熱される。この外周面Wbの誘導加熱時において、外側コイル3のコイル部3aの巻き状態がロータWの上面Wdと下面We部分が中間部分より密に設定(巻回)されていることから、上面Wdと下面Weやエッジ部分Wcの磁束を制御できて、これらを内外周面と略同一に加熱、すなわち、ロータWの全体を均一に誘導加熱することが可能になる。 On the other hand, simultaneously with the induction heating of the inner coil 2, the outer peripheral surface Wb of the rotor W is also induction heated to a predetermined temperature by induction heating by the outer coil 3. During induction heating of the outer circumferential surface Wb, the winding state of the coil portion 3a of the outer coil 3 is such that the upper surface Wd and lower surface We portions of the rotor W are set (wound) more densely than the intermediate portion. The magnetic flux of the lower surface We and the edge portion Wc can be controlled, and these can be heated substantially in the same manner as the inner and outer circumferential surfaces, that is, the entire rotor W can be uniformly heated by induction.

なお、トランジスタインバータ11と例えば略同時に冷却水供給装置13が作動すると、冷却水が内側コイル2の一対のホースジョイント6を介してコイルカバー2a2内やコイル導体2a1内に循環供給されて、内側コイル2のコイル導体2a1が外面側と内面側から冷却、つまり、内側コイル2のコイル導体2a1に、その内部に冷却水が流通する流路と、コイルカバー2a2内に冷却水が流通する流路の二系統の冷却水流路が形成されることになる。 Note that, when the cooling water supply device 13 operates, for example, at approximately the same time as the transistor inverter 11, cooling water is circulated and supplied into the coil cover 2a2 and the coil conductor 2a1 via the pair of hose joints 6 of the inner coil 2, and the inner coil The coil conductor 2a1 of the inner coil 2 is cooled from the outer surface side and the inner surface side, that is, the coil conductor 2a1 of the inner coil 2 has a flow path through which cooling water flows and a flow path through which cooling water flows inside the coil cover 2a2. Two systems of cooling water flow paths are formed.

これにより、冷却水がコイルカバー2a2内を流通してコイル導体2a1を冷却することから、コイル導体2a1が冷却水中に浸漬状態で冷却されると共に、扁平空間9内面と表面(外面)に冷却水が確実に接触しつつ冷却されて、通電時のコイル導体2aの発熱が効率的に抑制されることになる。 As a result, the cooling water flows through the coil cover 2a2 and cools the coil conductor 2a1, so that the coil conductor 2a1 is cooled while being immersed in the cooling water, and the cooling water is applied to the inner surface and surface (outer surface) of the flat space 9. are cooled while being in reliable contact with each other, and heat generation of the coil conductor 2a during energization is efficiently suppressed.

また、冷却水供給装置13から供給される冷却水は、外側コイル3の丸銅パイプ内にも循環供給されて、外側コイル3が内面側から冷却される。このとき、外側コイル3は内側コイル2に比較して外径が大径でかつ巻き数の少ない丸銅パイプであることから、丸銅パイプ内を冷却水が良好に流通して外側コイル3に内側コイル2と略同程度の冷却状態が容易に得られることになる。 Further, the cooling water supplied from the cooling water supply device 13 is also circulated and supplied into the round copper pipe of the outer coil 3, so that the outer coil 3 is cooled from the inner surface side. At this time, since the outer coil 3 is a round copper pipe with a larger outer diameter and fewer turns than the inner coil 2, cooling water flows well through the round copper pipe and flows into the outer coil 3. A cooling state approximately the same as that of the inner coil 2 can be easily obtained.

また、内側コイル2と外側コイル3の支持板4c、4d間の銅板4a外面(表面)に冷却パイプ5が固着されていることから、支持板4a、4c間の銅板4a自体の発熱が抑えられることになる。つまり、内側コイル2や外側コイル3自体の発熱や両コイル2、3を支持する銅板4a自体の発熱が抑えられて、通電的の加熱コイル1自体の発熱による加熱効率の低下が防止されることになる。 Furthermore, since the cooling pipe 5 is fixed to the outer surface (surface) of the copper plate 4a between the support plates 4c and 4d of the inner coil 2 and outer coil 3, the heat generation of the copper plate 4a itself between the support plates 4a and 4c is suppressed. It turns out. In other words, the heat generation of the inner coil 2 and outer coil 3 themselves and the heat generation of the copper plate 4a itself that supports both coils 2 and 3 is suppressed, and a decrease in heating efficiency due to the heat generation of the energized heating coil 1 itself is prevented. become.

そして、このようにして加熱コイル1で軸孔Wa内周面や外周面Wcが加熱されたロータ10は、エッジ部分Wcの異常な加熱によるロータWを構成する積層珪素鋼板端部等の薄利や浮き等の変形が防止され、高品質なロータWを容易に得ることが可能になる。その結果、例えば加熱状態のロータWの軸孔Waへの回転軸の焼き嵌め等の作業が簡単かつ高精度に行えることになる。 The rotor 10, in which the inner circumferential surface of the shaft hole Wa and the outer circumferential surface Wc are heated by the heating coil 1 in this manner, has thin margins such as the end portion of the laminated silicon steel plate constituting the rotor W due to abnormal heating of the edge portion Wc. Deformation such as floating is prevented, and a high-quality rotor W can be easily obtained. As a result, operations such as shrink-fitting the rotating shaft into the shaft hole Wa of the heated rotor W can be performed easily and with high precision.

このように、前記加熱コイル1によれば、内側コイル2が、コイル導体2a1と該コイル導体2a1の外周側を覆う有底筒状のコイルカバー2a2を有して、コイル導体2a1の両端部がトランジスタインバータ11に出力変成器12を介して接続されると共に、冷却水供給装置13からコイルカバー2a2内に冷却水が循環供給されるため、コイルカバー2a2内に循環供給される冷却水によりコイル導体2a1を冷却水中に浸漬(どぶ漬け)状態で冷却でき、内側コイル2自体の発熱を良好に抑制しつつロータWの軸孔Wa内周面を効率良く加熱できて、その加熱効率を十分に高めることが可能になる。 As described above, according to the heating coil 1, the inner coil 2 has the coil conductor 2a1 and the coil cover 2a2 having a bottomed cylindrical shape that covers the outer peripheral side of the coil conductor 2a1, and both ends of the coil conductor 2a1 are It is connected to the transistor inverter 11 via the output transformer 12, and cooling water is circulated and supplied into the coil cover 2a2 from the cooling water supply device 13, so that the coil conductor is 2a1 can be cooled by being immersed in cooling water, and the inner peripheral surface of the shaft hole Wa of the rotor W can be efficiently heated while the heat generation of the inner coil 2 itself is well suppressed, and the heating efficiency can be sufficiently increased. becomes possible.

また、外側コイル3が、ロータWの外周面Wbの上下両端部分が密に巻回されその他の部分が粗に巻回されているため、ロータWの上下面Wd、Weやエッジ部分Wcの磁束を制御できて、ロータW全体を均一な温度で加熱することができ、高品質なロータWを容易に得ることができる。 In addition, since the outer coil 3 is tightly wound at both upper and lower end portions of the outer circumferential surface Wb of the rotor W, and the other portions are wound loosely, the magnetic flux on the upper and lower surfaces Wd, We and the edge portion Wc of the rotor W is can be controlled, the entire rotor W can be heated at a uniform temperature, and a high-quality rotor W can be easily obtained.

また、内側コイル2のコイル導体2a1がコイル状扁平パイプで形成され、このコイル導体2a1の軸心位置に丸銅パイプ2c1が挿通されて、この丸銅パイプ2c1の先端部とコイル状扁平パイプの先端部が連結されると共に、丸銅パイプ2c1、2c2が支持ブロック2bに支持されているため、丸銅パイプ2c1でコイル導体2a1を確実に支持しつつコイルカバー2a2内に安定配置できると共に、内側コイル2自体をホルダー4に安定支持させることができる。 Further, the coil conductor 2a1 of the inner coil 2 is formed of a coiled flat pipe, and a round copper pipe 2c1 is inserted through the axial center position of the coil conductor 2a1, and the tip of the round copper pipe 2c1 and the coiled flat pipe are connected to each other. Since the tip portions are connected and the round copper pipes 2c1 and 2c2 are supported by the support block 2b, the coil conductor 2a1 can be reliably supported by the round copper pipe 2c1 and placed stably inside the coil cover 2a2, and the inside The coil 2 itself can be stably supported by the holder 4.

特に、内側コイル2のコイル導体2a1の構成により、次のような格別な作用効果を得ることができる。すなわち、コイル部2aを軸孔Wa内に挿入配置した状態で、コイル導体2a1にトランジスタインバータ11から高周波電流を供給すると共に、冷却水供給装置13からコイルカバー2a2内とコイル導体2a1の扁平空間9内に冷却水を供給して、ロータWの軸孔Wa内周面を誘導加熱するため、コイル導体2a1の外周面の全域と扁平空間9内面を冷却水で同時に冷却できて、コイル導体2a1の通電時の発熱を効果的に抑制しその加熱効率を一層高めることができる。 In particular, depending on the configuration of the coil conductor 2a1 of the inner coil 2, the following special effects can be obtained. That is, with the coil portion 2a inserted into the shaft hole Wa, a high frequency current is supplied from the transistor inverter 11 to the coil conductor 2a1, and the cooling water supply device 13 supplies the inside of the coil cover 2a2 and the flat space 9 of the coil conductor 2a1. In order to inductively heat the inner circumferential surface of the shaft hole Wa of the rotor W by supplying cooling water, the entire outer circumferential surface of the coil conductor 2a1 and the inner surface of the flat space 9 can be simultaneously cooled with the cooling water. Heat generation during energization can be effectively suppressed and heating efficiency can be further increased.

また同時に、コイル導体2a1が、丸銅パイプを扁平状に潰した潰し銅パイプで形成されているため、丸銅パイプを潰して巻回することでコイル状導体2a1を容易に形成することができて、加熱コイル1のコストアップを抑えることが可能になる。 At the same time, since the coil conductor 2a1 is formed of a crushed copper pipe obtained by crushing a round copper pipe into a flat shape, the coiled conductor 2a1 can be easily formed by crushing and winding the round copper pipe. Therefore, it becomes possible to suppress an increase in the cost of the heating coil 1.

また、丸銅パイプ2c1の先端部がコイルカバー2a2の底部内部に連通すると共にコイル導体2a1の先端部に連通孔7aで連通しているため、例えば丸銅パイプ2c1から供給される冷却水をコイルカバー2a2の底部から該カバー2a2内に供給できると共に、冷却水を連通孔7aによりコイル導体2a1内にも供給できて、コイルカバー2a2やコイル導体2a1内に冷却水を一層良好に循環させて、内側コイル2自体の発熱を一層良好に抑制することができる。 In addition, since the tip of the round copper pipe 2c1 communicates with the inside of the bottom of the coil cover 2a2 and communicates with the tip of the coil conductor 2a1 through the communication hole 7a, cooling water supplied from the round copper pipe 2c1 can be transferred to the coil. The cooling water can be supplied into the cover 2a2 from the bottom of the cover 2a2, and can also be supplied into the coil conductor 2a1 through the communication hole 7a, allowing the cooling water to circulate better within the coil cover 2a2 and the coil conductor 2a1. Heat generation of the inner coil 2 itself can be suppressed even better.

特に、冷却水供給装置13からの冷却水が、コイル導体2a1の扁平空間9とコイルカバー2b内に供給可能であるため、コイルカバー2b内の冷却水流路を二系統として、ロータWの形態等に応じて冷却系統を設定でき、コイル導体2a1の冷却効果をより最適に設定することができる。このとき、コイル導体2a1の扁平空間9内やコイルカバー2a2内への冷却水の供給を、コイルカバー2a2内の冷却水の温度に基づいて制御するように構成すれば、コイル導体2a1の冷却状態に応じた一層最適な条件での冷却が可能になる。 In particular, since the cooling water from the cooling water supply device 13 can be supplied to the flat space 9 of the coil conductor 2a1 and the inside of the coil cover 2b, the shape of the rotor W etc. The cooling system can be set accordingly, and the cooling effect of the coil conductor 2a1 can be set more optimally. At this time, if the supply of cooling water to the flat space 9 of the coil conductor 2a1 and the coil cover 2a2 is controlled based on the temperature of the cooling water inside the coil cover 2a2, the cooling state of the coil conductor 2a1 can be controlled. This makes it possible to perform cooling under more optimal conditions.

またさらに、内側コイル2と外側コイル3が高周波電源に並列接続されるため、例えば高周波電源を複数台使用することも可能となり内側コイル2と外側コイル3に供給される高周波電流を調整できる等、ロータWの形態に応じて最適条件の高周波電流の供給が可能になり、各種形態のロータWに容易に対応することができる。 Furthermore, since the inner coil 2 and the outer coil 3 are connected in parallel to the high frequency power supply, it is possible to use multiple high frequency power supplies, for example, and the high frequency current supplied to the inner coil 2 and the outer coil 3 can be adjusted. It becomes possible to supply high-frequency current under optimal conditions depending on the form of the rotor W, and it is possible to easily accommodate rotors W of various forms.

なお、前記実施形態においては、内側コイル2のコイル導体2a1として、内部に扁平空間9を有する潰し銅パイプからなるコイル状扁平パイプを使用したが、例えば銅の薄板等の内部に空間を有さない中実状の適宜導体をコイル導体として使用することもでき、この場合は、丸銅パイプ2c1、2c2から供給される冷却水は、コイルカバー2a1内にのみ循環供給するように構成すれば良い。 In the embodiment described above, a coiled flat pipe made of a crushed copper pipe having a flat space 9 inside was used as the coil conductor 2a1 of the inner coil 2. An appropriate solid conductor may be used as the coil conductor, and in this case, the cooling water supplied from the round copper pipes 2c1 and 2c2 may be configured to be circulated and supplied only within the coil cover 2a1.

また、前記実施形態における、内側コイル2や外側コイル3の巻き数及び粗密の形態、内側コイル2の支持ブロック2bやホルダー4の形態、冷却媒体の形態、誘導加熱装置10の形態等は一例であって、例えば内側コイル2のコイル導体2a1の巻回形態を均等ピッチではなく軸孔Waの上下開口部分と中心部分とで異ならせて、軸孔Wa内周面の全域に一層均一な加熱状態が得られるようにする等、前記実施形態と同等の作用効果が得られかつ本発明に係わる各発明の要旨を逸脱しない範囲で適宜に変更することができる。 In addition, in the embodiment, the number of turns and the density of the inner coil 2 and the outer coil 3, the form of the support block 2b of the inner coil 2 and the holder 4, the form of the cooling medium, the form of the induction heating device 10, etc. are merely examples. Therefore, for example, the winding form of the coil conductor 2a1 of the inner coil 2 is not set at a uniform pitch, but is made different between the upper and lower opening portions and the center portion of the shaft hole Wa, thereby achieving a more uniform heating state over the entire inner circumferential surface of the shaft hole Wa. The present invention can be modified as appropriate without departing from the gist of each invention related to the present invention, such as by making it possible to obtain the same effects as those of the embodiments described above.

本発明は、ロータ等の被加熱物への適用に限らず、中心位置の軸孔と外周面に誘導加熱が必要な全ての被加熱物に利用できる。 The present invention is not limited to application to objects to be heated such as rotors, but can be used for all objects to be heated that require induction heating of the shaft hole at the center and the outer peripheral surface.

1・・・誘導加熱コイル、2・・・内側コイル、2a・・・コイル部、2a1・・・コイル導体、2a2・・・コイルカバー、2a3・・・直線部、2b・・・支持ブロック、2b1・・・カバー固定ナット、2b2・・・センサ支持板、2b3・・・コイルクランプ、2c1、2c2・・・丸銅パイプ、3・・・外側コイル、3a・・・コイル部、3b・・・基端部、4・・・ホルダー、4a・・・銅板、4c、4d・・・支持板、5・・・冷却パイプ、6・・・ホースジョイント、7a、7b・・・連通孔、9・・・扁平空間、10・・・誘導加熱装置、11・・・トランジスタインバータ、12・・・出力変成器、13・・・冷却水供給装置、W・・・ロータ、Wa・・・軸孔、Wb・・・外周面、Wc・・・エッジ部分、Wd・・・上面、We・・・下面。
DESCRIPTION OF SYMBOLS 1... Induction heating coil, 2... Inner coil, 2a... Coil part, 2a1... Coil conductor, 2a2... Coil cover, 2a3... Straight line part, 2b... Support block, 2b1... Cover fixing nut, 2b2... Sensor support plate, 2b3... Coil clamp, 2c1, 2c2... Round copper pipe, 3... Outer coil, 3a... Coil part, 3b... - Base end, 4...Holder, 4a...Copper plate, 4c, 4d...Support plate, 5...Cooling pipe, 6...Hose joint, 7a, 7b...Communication hole, 9 ... flat space, 10 ... induction heating device, 11 ... transistor inverter, 12 ... output transformer, 13 ... cooling water supply device, W ... rotor, Wa ... shaft hole , Wb...outer peripheral surface, Wc...edge portion, Wd...upper surface, We...lower surface.

Claims (5)

被加熱物の軸孔内に配置された円筒状の加熱コイルに高周波電源から所定周波数の高周波電流を供給して前記被加熱物の軸孔内周面の全域を誘導加熱し、該誘導加熱時の軸孔内周面の加熱温度を前記被加熱物の軸孔方向に指向する状態でかつ軸孔内部の放射光が受光できるように設定された放射温度計で測定し、該測定された温度が所定温度となった際に制御装置により前記高周波電源から前記加熱コイルへの高周波電流の供給を停止させることを特徴とする誘導加熱方法。 A high-frequency current of a predetermined frequency is supplied from a high-frequency power supply to a cylindrical heating coil disposed in the shaft hole of the object to be heated to induction heat the entire inner peripheral surface of the shaft hole of the object to be heated, and during the induction heating. The heating temperature of the inner circumferential surface of the shaft hole of the object to be heated is measured with a radiation thermometer that is oriented in the direction of the shaft hole of the object to be heated and is set so that it can receive radiation light inside the shaft hole, and the measured temperature is An induction heating method, characterized in that a control device stops supplying high frequency current from the high frequency power supply to the heating coil when the temperature reaches a predetermined temperature. 前記放射温度計は、前記加熱コイルを支持する支持ブロックに配設されていることを特徴とする請求項1に記載の誘導加熱方法。 The induction heating method according to claim 1 , wherein the radiation thermometer is disposed on a support block that supports the heating coil . 前記被加熱物は、その軸孔前記加熱コイルが嵌挿配置され、前記加熱コイルの外周面と前記被加熱物の軸孔内周面の間から放射される放射光に基づき前記放射温度計で前記加熱温度が測定されることを特徴とする請求項1または2に記載の誘導加熱方法。 The heating coil is fitted into the shaft hole of the object to be heated, and the radiation thermometer is measured based on the radiation light emitted from between the outer peripheral surface of the heating coil and the inner peripheral surface of the shaft hole of the object to be heated. The induction heating method according to claim 1 or 2, wherein the heating temperature is measured at . 前記加熱コイルは、所定回数コイル状に巻回したコイル導体と該コイル導体の外周側と先端側を覆うコイルカバーを有することを特徴とする請求項1ないし3のいずれかに記載の誘導加熱方法。 The induction heating method according to any one of claims 1 to 3, wherein the heating coil has a coil conductor wound in a coil shape a predetermined number of times, and a coil cover that covers the outer peripheral side and the tip side of the coil conductor. . 所定回数コイル状に巻回したコイル導体と該コイル導体の外周側と先端側を覆うコイルカバーを有して、被加熱物の軸孔内に配置され高周波電源から所定周波数の高周波電流が供給されて前記被加熱物の軸孔内周面の全域を誘導加熱する円筒状の加熱コイルと、前記被加熱物の軸孔方向に指向する状態でかつ軸孔内部の放射光が受光できるように設定されて前記加熱コイルによる誘導加熱時の軸孔内周面の加熱温度を測定する放射温度計と、該測定された温度が所定温度となった際に前記高周波電源から前記加熱コイルへの高周波電流の供給を停止させる制御装置と、を備えることを特徴とする誘導加熱装置。 It has a coil conductor wound in a coil shape a predetermined number of times and a coil cover that covers the outer circumferential side and the tip side of the coil conductor, and is placed in the shaft hole of the object to be heated and is supplied with a high frequency current of a predetermined frequency from a high frequency power source. a cylindrical heating coil for inductively heating the entire area of the inner peripheral surface of the shaft hole of the object to be heated; a radiation thermometer that measures the heating temperature of the inner circumferential surface of the shaft hole during induction heating by the heating coil; and a radiation thermometer that transmits a high-frequency current from the high-frequency power source to the heating coil when the measured temperature reaches a predetermined temperature. An induction heating device characterized by comprising: a control device for stopping the supply of .
JP2022131414A 2019-01-17 2022-08-20 Induction heating method and induction heating device Active JP7362061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022131414A JP7362061B2 (en) 2019-01-17 2022-08-20 Induction heating method and induction heating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019006347A JP7129012B2 (en) 2019-01-17 2019-01-17 induction heating coil
JP2022131414A JP7362061B2 (en) 2019-01-17 2022-08-20 Induction heating method and induction heating device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019006347A Division JP7129012B2 (en) 2019-01-17 2019-01-17 induction heating coil

Publications (2)

Publication Number Publication Date
JP2022164731A JP2022164731A (en) 2022-10-27
JP7362061B2 true JP7362061B2 (en) 2023-10-17

Family

ID=71778642

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2019006347A Active JP7129012B2 (en) 2019-01-17 2019-01-17 induction heating coil
JP2022063695A Active JP7376865B2 (en) 2019-01-17 2022-04-07 induction heating device
JP2022131414A Active JP7362061B2 (en) 2019-01-17 2022-08-20 Induction heating method and induction heating device

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2019006347A Active JP7129012B2 (en) 2019-01-17 2019-01-17 induction heating coil
JP2022063695A Active JP7376865B2 (en) 2019-01-17 2022-04-07 induction heating device

Country Status (1)

Country Link
JP (3) JP7129012B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7129012B2 (en) * 2019-01-17 2022-09-01 株式会社ミヤデン induction heating coil
JP7024131B1 (en) 2021-07-21 2022-02-22 高雄工業株式会社 Heating coil for high frequency heating equipment
JP7333108B1 (en) * 2022-02-17 2023-08-24 ティーケーエンジニアリング株式会社 Heating coil for high frequency heating equipment
JP7223460B1 (en) 2022-02-17 2023-02-16 ティーケーエンジニアリング株式会社 Heating coil for high frequency heating equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005061A (en) 2003-06-10 2005-01-06 Canon Inc Heating device and image forming device
JP3621685B2 (en) 2002-02-28 2005-02-16 島田理化工業株式会社 Inner surface induction heating coil
JP2008072825A (en) 2006-09-13 2008-03-27 Toyota Motor Corp Stator heating method
JP4109676B2 (en) 2003-01-08 2008-07-02 松下電器産業株式会社 Image heating apparatus and image forming apparatus
JP2013083683A (en) 2011-10-06 2013-05-09 Sharp Corp Belt fixing device and image forming device including the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576531Y2 (en) * 1979-03-20 1982-02-06
JP3274911B2 (en) * 1993-07-02 2002-04-15 東芝キヤリア株式会社 Work heating apparatus and motor manufacturing method
JP7129012B2 (en) * 2019-01-17 2022-09-01 株式会社ミヤデン induction heating coil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3621685B2 (en) 2002-02-28 2005-02-16 島田理化工業株式会社 Inner surface induction heating coil
JP4109676B2 (en) 2003-01-08 2008-07-02 松下電器産業株式会社 Image heating apparatus and image forming apparatus
JP2005005061A (en) 2003-06-10 2005-01-06 Canon Inc Heating device and image forming device
JP2008072825A (en) 2006-09-13 2008-03-27 Toyota Motor Corp Stator heating method
JP2013083683A (en) 2011-10-06 2013-05-09 Sharp Corp Belt fixing device and image forming device including the same

Also Published As

Publication number Publication date
JP2020115428A (en) 2020-07-30
JP7376865B2 (en) 2023-11-09
JP7129012B2 (en) 2022-09-01
JP2022164731A (en) 2022-10-27
JP2022082732A (en) 2022-06-02

Similar Documents

Publication Publication Date Title
JP7362061B2 (en) Induction heating method and induction heating device
JP2009218176A (en) Coil head
JP5473127B2 (en) Induction heating coil
JP7299582B2 (en) induction heating coil
JP2007328917A (en) Induction-heating cooker
JPH07249480A (en) Electromagnetic cooking apparatus
US6166359A (en) Induction heating apparatus and method for pipeline welding operations
US10582575B2 (en) Heating coil
JP7175458B2 (en) induction heating coil
JP7045128B2 (en) Induction heating coil
JP2019009097A (en) Induction heating coil
JP7231901B2 (en) induction heating coil
JP7074290B2 (en) Output transformer for induction heating
JP4187635B2 (en) High frequency induction heating coil
KR102141875B1 (en) Induction heater for vehicle
JP2006040714A (en) Induction heating type fluid heating arrangement
JP2005325421A (en) High-frequency induction heating device
JP2008292010A (en) Fluid temperature rising device and heating cooker
JP5285746B2 (en) Induction heating roll
US20170099703A1 (en) Heating coil
JP6697801B2 (en) Induction heating coil
KR20240122466A (en) Elements of an induction heating device suitable for receiving coolant
JP4515894B2 (en) Heating device
JP6872935B2 (en) Plasma generator
KR101875061B1 (en) Heat plate for heating apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230925

R150 Certificate of patent or registration of utility model

Ref document number: 7362061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150