JPH0798216B2 - Manufacturing method of metal double tube - Google Patents

Manufacturing method of metal double tube

Info

Publication number
JPH0798216B2
JPH0798216B2 JP2037205A JP3720590A JPH0798216B2 JP H0798216 B2 JPH0798216 B2 JP H0798216B2 JP 2037205 A JP2037205 A JP 2037205A JP 3720590 A JP3720590 A JP 3720590A JP H0798216 B2 JPH0798216 B2 JP H0798216B2
Authority
JP
Japan
Prior art keywords
hollow billet
carbon steel
steel
boundary
billet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2037205A
Other languages
Japanese (ja)
Other versions
JPH03243212A (en
Inventor
俊英 小寺
武海 山田
岳志 ▲桑▼野
秀憲 安岡
Original Assignee
日本鋼管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本鋼管株式会社 filed Critical 日本鋼管株式会社
Priority to JP2037205A priority Critical patent/JPH0798216B2/en
Publication of JPH03243212A publication Critical patent/JPH03243212A/en
Publication of JPH0798216B2 publication Critical patent/JPH0798216B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B19/00Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work
    • B21B19/02Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work the axes of the rollers being arranged essentially diagonally to the axis of the work, e.g. "cross" tube-rolling ; Diescher mills, Stiefel disc piercers or Stiefel rotary piercers
    • B21B19/06Rolling hollow basic material, e.g. Assel mills

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【発明の詳細な説明】 「発明の目的」 本発明は金属二重管の製造方法に係り、耐食性に優れ且
つ高強度であると共に接合強度も高いクラッド鋼管を低
コスト且つ的確に製造することのできる方法を提供しよ
うとするものである。
DETAILED DESCRIPTION OF THE INVENTION “Object of the Invention” The present invention relates to a method for manufacturing a metal double pipe, and to manufacture a clad steel pipe excellent in corrosion resistance, high in strength and high in joint strength at low cost and accurately. It seeks to provide a way to do it.

(産業上の利用分野) 高Niオーステナイト鋼と炭素鋼または低合金鋼などより
成る金属二重管の製造技術。
(Industrial field of application) Manufacturing technology for metal double tubes made of high Ni austenitic steel and carbon steel or low alloy steel.

(従来の技術) 腐食性のガスや油類などの流体を輸送するラインパイプ
や油井管あるいは化学プラント用配管などにおいては十
分な機械的強度に加え、優れた耐食性が要求される。然
してNi、Cr、Mo、Feを主成分とする高Niオーステナイト
鋼は耐食性に優れているものの高価であり、また比較的
耐力が低いという欠点を有している。これを解決するた
めに炭素鋼または低合金鋼による外管の内側に高耐食性
材料による内管を接合させたクラッド管の採用が計られ
ている。
(Prior Art) In addition to sufficient mechanical strength, excellent corrosion resistance is required for line pipes, oil well pipes, and chemical plant pipes that transport fluids such as corrosive gases and oils. However, the high Ni austenitic steels containing Ni, Cr, Mo and Fe as the main components are excellent in corrosion resistance but expensive, and have relatively low yield strength. In order to solve this, a clad tube in which an inner tube made of a highly corrosion-resistant material is joined to the inner side of an outer tube made of carbon steel or low alloy steel has been adopted.

このようなクラッド管の製造は、従来において外管と
内管とを各別に製造した後に嵌め合わせ、機械的な処理
および熱処理を加えることによって接合することが、特
公平1−27805に発表され、又母材の周囲に合わせ材
の溶湯を供給して連続的に凝固させ、更に、熱間加工
を施して二重管とする方法が特開平1−157744に開示さ
れている。更に外内管を別々に製造した後、嵌め合わ
せ、熱間あるいは冷間でプラグあるいはマンドレル圧延
する方法が特開平1−22413に発表されている。
Japanese Patent Publication No. 1-27805 discloses that in the production of such a clad pipe, conventionally, an outer pipe and an inner pipe are separately produced and then fitted, and joined by mechanical treatment and heat treatment, Further, Japanese Patent Application Laid-Open No. 1-157744 discloses a method in which a molten material for a joining material is supplied around a base material to continuously solidify the material and then hot working is performed to form a double pipe. Further, Japanese Patent Laid-Open No. 1-222413 discloses a method in which outer and inner pipes are manufactured separately, and then fitted and hot or cold rolled or mandrel rolled.

(発明が解決しようとする課題) 上記したような従来法によるのものはそれなりにメ
リットを有するとしても工程が煩雑で工数が嵩み、能率
的でないなどの傾向があるが、のマンネスマンプラグ
ミルでシームレス鋼管を製造する方法は製造可能サイズ
範囲が広いこと、および高能率であることなどで優れた
点が多い。しかし炭素鋼の外管材と、高Ni合金の内管材
を組み合わた二重ビレットをマンネスマンプラグミルで
熱間圧延する場合、両者の熱間における変形能が著しく
異るため、圧延中に剥離したり、内外管にずれが生じた
りし、接合欠陥が多発するなどの欠点がある。
(Problems to be Solved by the Invention) Although the conventional method as described above has a certain merit, the process is complicated and the man-hours are large, and it tends to be inefficient. The method for producing a seamless steel pipe has many excellent points such as a wide range of manufacturable sizes and high efficiency. However, when hot rolling a double billet that combines an outer tube of carbon steel and an inner tube of a high Ni alloy in a Mannesmann plug mill, the deformability between the two is significantly different, so that it may peel off during rolling. However, there are drawbacks such as misalignment of the inner and outer tubes and frequent occurrence of bonding defects.

「発明の構成」 (課題を解決するための手段) 本発明は上記のような従来技術における課題を解決する
ために検討を重ねて創案されたものであって、炭素鋼と
高Niオーステナイト等のように高温での変形能が著しく
異なるような場合においても剥離やずれ等による接合欠
陥のない二重管をマンネスマンプラグミル等の傾斜ロー
ル圧延工程の如きによる製管プロセスにより的確に製造
することに成功したものであって以下の如くである。
"Structure of the Invention" (Means for Solving the Problems) The present invention was devised through repeated studies in order to solve the problems in the conventional techniques as described above, and includes carbon steel and high Ni austenite. Even when the deformability at high temperature is significantly different, it is necessary to accurately manufacture a double pipe without joint defects due to peeling, misalignment, etc. by a pipe manufacturing process such as an inclined roll rolling process such as Mannesmann plug mill. It was successful and is as follows.

1.炭素鋼または低合金鋼中空ビレット内に高合金中空ビ
レットとの間隔を下式で示すように嵌め合わせ、境界端
部をシール溶接した後、加熱して境界面を拡散接合し、
次いで傾斜ロール圧延することを特徴とする金属二重管
の製造方法。
1.Fit in the carbon steel or low alloy steel hollow billet with the space between the high alloy hollow billet as shown in the following formula, seal weld the boundary end, and heat to diffuse and bond the boundary surface.
Then, a method for producing a metal double tube, which comprises rolling with an inclined roll.

d≦900D1(K0−K1) 但し上式において、 d;炭素鋼又は低合金鋼中空ビレットと高合金中空ビレッ
トとの間隔 D1;高合金中空ビレットの外径 K0;炭素鋼又は低合金鋼中空ビレットの線膨張係数 K1;高合金中空ビレットの線膨張係数 である。
d ≦ 900D 1 (K 0 −K 1 ) However, in the above formula, d; Distance between carbon steel or low alloy steel hollow billet and high alloy hollow billet D 1 ; Outer diameter of high alloy hollow billet K 0 ; Carbon steel or Linear expansion coefficient of low alloy steel hollow billet K 1 ; Linear expansion coefficient of high alloy hollow billet.

2.炭素鋼または低合金鋼中空ビレットと高合金中空ビレ
ットとの隙間を不活性ガス雰囲気とした状態で境界端部
をシール溶接する請求項1に記載の金属二重管の製造方
法。
2. The method for producing a metal double tube according to claim 1, wherein the boundary ends are seal-welded with the inert gas atmosphere in the gap between the carbon steel or low alloy steel hollow billet and the high alloy hollow billet.

3.炭素鋼または低合金鋼中空ビレットと高合金鋼中空ビ
レットとの隙間を真空状態として境界端部をシール溶接
する請求項1に記載の金属二重管の製造方法。
3. The method for producing a metal double tube according to claim 1, wherein a boundary between the carbon steel or low alloy steel hollow billet and the high alloy steel hollow billet is vacuum-welded and the boundary ends are seal-welded.

4.炭素鋼または低合金鋼中空ビレットの内表面粗さ及び
高合金中空ビレットの外表面粗さを50μm以下とした請
求項1ないし3の何れか1つの記載の金属二重管の製造
方法。
4. The method for producing a metal double tube according to any one of claims 1 to 3, wherein the inner surface roughness of the carbon steel or low alloy steel hollow billet and the outer surface roughness of the high alloy hollow billet are 50 µm or less.

(作用) 炭素鋼または低合金鋼中空ビレット内に高合金中空ビレ
ットとの間隔を次式で示すように嵌め合わせ、境界端部
シール溶接した後、加熱して境界面を拡散接合すること
により二重ビレットの内外管境界部におけるせん断強度
を高く得ることができ、次いで傾斜ロール圧延すること
によって好ましい製品が得られる。
(Function) The gap between the carbon steel or low alloy steel hollow billet and the high alloy hollow billet is fitted as shown by the following formula, and the seal welding is performed at the boundary end portion, and then heat is applied to diffuse and bond the boundary surface. A high shear strength can be obtained at the boundary portion between the inner and outer tubes of the heavy billet, and a preferable product can be obtained by performing the inclined roll rolling.

d≦900D1(K0−K1) 但し上式において、 d;炭素鋼又は低合金鋼中空ビレットと高合金中空ビレッ
トとの間隔 D1;高合金中空ビレットの外径 K0;炭素鋼又は低合金鋼中空ビレットの線膨張係数 K1;高合金中空ビレットの線膨張係数 である。
d ≦ 900D 1 (K 0 −K 1 ) However, in the above formula, d; Distance between carbon steel or low alloy steel hollow billet and high alloy hollow billet D 1 ; Outer diameter of high alloy hollow billet K 0 ; Carbon steel or Linear expansion coefficient of low alloy steel hollow billet K 1 ; Linear expansion coefficient of high alloy hollow billet.

この間の事情について説明すると、外管材が炭素鋼また
は低合金鋼で、内管材が高合金の二重管ビレットをマン
ネスマンプラグミル等の傾斜ロール圧延する製造プロセ
スで製管する場合に、内外管の熱間円形抵抗が著しく異
るため、外管材内面と内管材外面の境界部にせん断応力
が発生し、その結果圧延中に内外管が剥離したり、ずれ
を生ずる原因をなしていることは前述の通りで、本発明
者等は斯様な圧延中の剥離や内外管のずれ防止を図るた
め種々の条件で二重ビレットを組立て、マンネスマンプ
ラグミルで圧延試験を行った結果、圧延前の二重ビレッ
トにおける内外管境界部のせん断強度を高めることによ
り適切に防止することが可能で、特にこのせん断強度が
2kgf/mm2以上であれば有効に防止し、接合欠陥のない二
重管の圧延が可能であることを見出し、このようなせん
断強度は境界端部をシール溶接した後境界面を拡散接合
することにより適切に得られる。この拡散接合のための
加熱温度としては900〜1300℃程度が好ましい。
Explaining the circumstances during this, when the outer pipe material is carbon steel or low alloy steel and the inner pipe material is a high alloy double pipe billet in the manufacturing process of inclined roll rolling such as Mannesmann plug mill, Since the circular hot resistance is remarkably different, shear stress is generated at the boundary between the inner surface of the outer pipe and the outer surface of the inner pipe, and as a result, the inner and outer pipes may peel or shift during rolling. As described above, the present inventors assembled double billets under various conditions in order to prevent such peeling during the rolling and misalignment of the inner and outer pipes, and performed a rolling test with a Mannesmann plug mill. It can be properly prevented by increasing the shear strength at the boundary between the inner and outer pipes of the heavy billet.
It has been found that if it is 2 kgf / mm 2 or more, it is possible to effectively prevent it, and it is possible to roll a double pipe without joint defects. With such shear strength, the boundary edges are seal-welded and then the boundary surfaces are diffusion-bonded. It can be properly obtained. The heating temperature for this diffusion bonding is preferably about 900 to 1300 ° C.

又上記したシール溶接するに当り、窒素雰囲気などの不
活性雰囲気または真空状態を採用することにより隙間に
残存した窒素ガスが拡散接合のための加熱で内外管鋼中
に吸収され上記のようなせん断強度がより高められる。
In addition, when performing the seal welding described above, by adopting an inert atmosphere such as a nitrogen atmosphere or a vacuum state, the nitrogen gas remaining in the gap is absorbed in the inner and outer pipe steel by the heating for diffusion bonding and sheared as described above. Strength is further increased.

更に炭素鋼または低合金鋼中空ビレットの内表面粗さ及
び高合金中空ビレットの外表面粗さを50μm以下として
このせん断強度の向上を効果的に得しめる。
Further, the inner surface roughness of the carbon steel or low alloy steel hollow billet and the outer surface roughness of the high alloy hollow billet are set to 50 μm or less so that the improvement of the shear strength can be effectively obtained.

内外管の隙間としては下記(1)式により定められたも
のとすることが適切である。
It is appropriate that the gap between the inner and outer pipes is determined by the following equation (1).

d≦900D1(K0−K1) ……(1) 但し上式において、 d;炭素鋼又は低合金鋼中空ビレットと高合金中空ビレッ
トとの間隔 D1;高合金中空ビレットの外径 K0;炭素鋼又は低合金鋼中空ビレットの線膨張係数 K1;高合金中空ビレットの線膨張係数 である。
d ≦ 900D 1 (K 0 −K 1 ) (1) In the above equation, d: Distance between carbon steel or low alloy steel hollow billet and high alloy hollow billet D 1 ; Outer diameter of high alloy hollow billet K 0 ; linear expansion coefficient of carbon steel or low alloy steel hollow billet K 1 ; linear expansion coefficient of high alloy hollow billet.

(実施例) 本発明によるものの具体的な実施例の若干について説明
すると、以下の如くである。
(Examples) Some specific examples according to the present invention will be described below.

実施例1 外管としてSTPT42(炭素鋼)、内管にインコネル625
(高Ni合金)を用い、窒素ガス雰囲気で組立てた。
Example 1 STPT42 (carbon steel) as the outer pipe and Inconel 625 as the inner pipe
(High Ni alloy) and assembled in a nitrogen gas atmosphere.

即ち、前記素材についての線膨張係数はそれぞれ12.0×
10-6、16.1×10-6で、STPT42は700〜860℃の温度範囲で
フェライトからオーステナイトに変態するため線膨張係
数はインコネルより小さい。ビレットの形状は外管の外
径300.0mm、内径200.0mm、内表面粗さ24μm、内管の外
径199.5mm、内径160.0mm、外表面粗さ27μmでいずれも
機械加工により製造した。外内管の内外径差は0.5mmで
あり本発明における算出式(1)より求めたd値0.74mm
より小さい。両端のシール溶接は窒素雰囲気で行ない酸
素の侵入を防止した。加熱拡散接合は900℃以上で可能
であるが、作業能率向上のため1200℃で行なった。接合
後の常温での境界部せん断強度をASTM A265により求め
たところ13.5kgf/mm2であった。この二重ビレットをマ
ンネスマンプラグ圧延したところ内外管のずれや剥離も
無くUST欠陥も無い接合状態の良好な二重管が得られ
た。
That is, the coefficient of linear expansion for each of the above materials is 12.0 x
At 10 -6 and 16.1 x 10 -6 , STPT42 has a coefficient of linear expansion smaller than that of Inconel because STPT42 transforms from ferrite to austenite in the temperature range of 700 to 860 ° C. The billet was manufactured by machining with an outer tube having an outer diameter of 300.0 mm, an inner diameter of 200.0 mm, an inner surface roughness of 24 μm, an inner tube outer diameter of 199.5 mm, an inner diameter of 160.0 mm, and an outer surface roughness of 27 μm. The difference between the inner and outer diameters of the outer and inner tubes is 0.5 mm, and the d value obtained from the calculation formula (1) in the present invention is 0.74 mm
Smaller than Seal welding at both ends was performed in a nitrogen atmosphere to prevent oxygen from entering. Although heat diffusion bonding can be performed at 900 ℃ or higher, it was performed at 1200 ℃ to improve work efficiency. The boundary shear strength at room temperature after joining was determined by ASTM A265 to be 13.5 kgf / mm 2 . When this double billet was subjected to Mannesmann plug rolling, a double tube with good joining condition was obtained without any deviation or separation of the inner and outer tubes and no UST defects.

実施例2 外管にAPI−5L−X65(低合金鋼)、内管にインコロイ82
5(高Ni合金)を用いた例である。線膨張係数は、それ
ぞれ11.9×10-6および17.5×10-6である。ビレット形状
は外管の外径300.0mm、内径200.0mm、内表面粗さ32μ
m、内管の外径199.4mm、内径160.0mm、外表面粗さ12μ
mで外内管の内外径差は0.6mmであり、算出式(1)で
求めたd値1.00mmより小さい。1200℃での加熱接合後の
境界部せん断強度は17.3kgf/mm2でこの二重ビレットを
マンネスマンプラグ圧延したところ内外管のずれや剥離
も無く、UST結果を良好な二重管が得られた。
Example 2 API-5L-X65 (low alloy steel) for the outer pipe and Incoloy 82 for the inner pipe
This is an example using 5 (high Ni alloy). The linear expansion coefficients are 11.9 × 10 -6 and 17.5 × 10 -6 , respectively. The billet has an outer diameter of 300.0 mm, inner diameter of 200.0 mm, and inner surface roughness of 32μ.
m, inner tube outer diameter 199.4 mm, inner diameter 160.0 mm, outer surface roughness 12 μ
At m, the difference between the inner and outer diameters of the outer and inner tubes is 0.6 mm, which is smaller than the d value 1.00 mm obtained by the calculation formula (1). Boundary shear strength after heating and joining at 1200 ℃ was 17.3kgf / mm 2 , and when this double billet was rolled by Mannesmann plug, there was no deviation or peeling of the inner and outer tubes, and a double tube with good UST results was obtained. .

実施例3 外管にSTPT42(炭素鋼)、内管にインコロイ825(高Ni
合金)を用いた例である。ビレット形状は外管の外径20
0.0mm、内径140.0mm、内管の外径139.5mm、内径110.0mm
で表面粗さはいずれも50μm以下であり、また外内管の
内外径差は0.5mmでd値(0.69mm)より小さい。1200℃
の加熱接合後の境界部せん断強度は14.7kgf/mm2でマン
ネスマンプラグ圧延により欠陥の無い二重管が得られ
た。
Example 3 STPT42 (carbon steel) was used as the outer pipe, and Incoloy 825 (high Ni was used as the inner pipe.
Alloy). Billet shape is the outer diameter of the outer tube 20
0.0mm, inner diameter 140.0mm, inner tube outer diameter 139.5mm, inner diameter 110.0mm
The surface roughness is 50 μm or less, and the difference between the inner and outer diameters of the outer and inner tubes is 0.5 mm, which is smaller than the d value (0.69 mm). 1200 ° C
The boundary shear strength after heat-bonding was 14.7 kgf / mm 2 and a double tube without defects was obtained by Mannesmann plug rolling.

実施例4 外管にSTPT42(炭素鋼)、内管にSUS316L(線膨張係数1
9.1×10-6)を用いた例である。二重ビレット外管の外
径200.0mm、内径130.0mm、内管の外径129.4mm、内径10
0.0mmでそのすきまは0.6mmとd値(0.82mm)より小さ
い。1250℃の加熱接合後の境界部せん断強度は15.7kg/m
m2でマンネスマンプラグ圧延により欠陥の無い二重管を
製造した。
Example 4 STPT42 (carbon steel) for the outer pipe and SUS316L (linear expansion coefficient 1 for the inner pipe)
This is an example using 9.1 × 10 -6 ). Double billet outer tube outer diameter 200.0mm, inner diameter 130.0mm, inner tube outer diameter 129.4mm, inner diameter 10
At 0.0 mm, the clearance is 0.6 mm, which is smaller than the d value (0.82 mm). Boundary shear strength after heat bonding at 1250 ℃ is 15.7kg / m
Defect-free double tubes were produced by Mannesmann plug rolling at m 2 .

実施例5 外管API−5L−X65(低合金鋼)、内管SUS316Lの例であ
る。二重ビレットはやや小さく外管の外径150.0mm、内
径100.0mm、内管の外径99.5mm、内径70.0mmで外内管の
内外径差0.5mmはd値(0.65mm)より小さい。1250℃で
の加熱接合後の境界部せん断強度は12.1kgf/mm2でマン
ネスマンプラグ圧延により接合欠陥の無い二重管が得ら
れた。
Example 5 This is an example of API-5L-X65 (low alloy steel) outer pipe and SUS316L inner pipe. The double billet is slightly smaller, and the outer diameter of the outer tube is 150.0 mm, the inner diameter is 100.0 mm, the outer diameter of the inner tube is 99.5 mm, the inner diameter is 70.0 mm, and the difference between the inner and outer diameters of the outer and inner tubes is 0.5 mm, which is smaller than the d value (0.65 mm). The boundary shear strength after heat-bonding at 1250 ° C was 12.1 kgf / mm 2 , and a double tube without bonding defects was obtained by Mannesmann plug rolling.

実施例6 外管API−5L−X65(低合金鋼)、内管SUS329J2L(線膨
張係数14.5×10-6)の例である。二重ビレット外管の外
径300.0mm、内径200.0mm、内管の外径199.6mm、内径16
0.0mmでその内外径差は0.4mmとd値(0.47mm)より小さ
い。1250℃での加熱接合後の境界部せん断強度は12.5kg
f/mm2で、マンネスマンプラグ圧延により接合欠陥の無
い二重管を得た。
Example 6 An example of outer pipe API-5L-X65 (low alloy steel) and inner pipe SUS329J2L (coefficient of linear expansion 14.5 × 10 −6 ). Double billet outer tube outer diameter 300.0mm, inner diameter 200.0mm, inner tube outer diameter 199.6mm, inner diameter 16
The difference between the inner and outer diameters is 0.4 mm, which is less than the d value (0.47 mm) at 0.0 mm. Boundary shear strength after heat bonding at 1250 ℃ is 12.5kg.
A double tube with no joint defects was obtained by Mannesmann plug rolling at f / mm 2 .

実施例7 外管にSTPT42(炭素鋼)、内管インコロイ825(高Ni合
金)の例であるが、外内管の内外径差が0.6mmとd値
(0.49mm)より大きく、また内管外面の表面粗さも50μ
m以上であった。1200℃の加熱接合後のせん断強度は5.
2kgf/mm2でマンネスマンプラグ圧延により内外管のずれ
および内管剥離が発生したが、なお利用可能なものであ
った。
Example 7 In the example of STPT42 (carbon steel) and inner pipe Incoloy 825 (high Ni alloy) as the outer pipe, the difference between the inner and outer diameters of the outer and inner pipes is 0.6 mm, which is larger than the d value (0.49 mm). External surface roughness is 50μ
It was m or more. Shear strength after heat bonding at 1200 ℃ is 5.
The Mannesmann plug rolling at 2 kgf / mm 2 caused slippage of the inner and outer tubes and peeling of the inner tube, but it was still usable.

実施例8 外管にSTPT42(炭素鋼)、内管SUS316Lの例であるが、
外内管の内外径差は0.8mmとd値(1.27mm)より小さい
ものの内外管の表面粗さはいずれも50μm以上であっ
た。1250℃の加熱接合後のせん断強度は9.2kgf/mm2でマ
ンネスマンプラグ圧延の結果内外管のずれの発生は無か
ったが、剥離が若干発生しUST結果軽度の指示があっ
た。
Example 8 An example of STPT42 (carbon steel) as the outer pipe and SUS316L as the inner pipe,
The difference between the inner and outer diameters of the outer and inner tubes was 0.8 mm, which was smaller than the d value (1.27 mm), but the surface roughness of both the inner and outer tubes was 50 μm or more. The shear strength after heat-bonding at 1250 ° C was 9.2 kgf / mm 2 , and there was no deviation of the inner and outer tubes as a result of the Mannesmann plug rolling, but some peeling occurred and the UST result indicated a slight indication.

実施例9 外管API−5L−X65(低合金鋼)、内管SUS329J2Lの例で
ある。外内管の内外径差は0.6mmとd値(0.30mm)より
大きい。1250℃の加熱接合後のせん断強度は3.7kgf/mm2
でマンネスマンプラグ圧延により内外管にずれがそれな
りに発生したが、用途により利用可能なものであった。
Example 9 This is an example of an outer pipe API-5L-X65 (low alloy steel) and an inner pipe SUS329J2L. The difference between the inner and outer diameters of the outer and inner tubes is 0.6 mm, which is larger than the d value (0.30 mm). Shear strength after heating and joining at 1250 ℃ is 3.7kgf / mm 2
However, due to the Mannesmann plug rolling, some deviation occurred in the inner and outer tubes, but it could be used depending on the application.

なお比較例として、この実施例9のものと同じ条件で、
加熱接合の温度を1150℃としたものは加熱接合後のせん
断強度が1.7kgf/mm2であって、マンネスマンプラグ圧延
により内外管のずれが相当に大きく好ましい利用をなし
得ないものであった。
As a comparative example, under the same conditions as in Example 9,
When the temperature of heat-bonding was set to 1150 ° C, the shear strength after heat-bonding was 1.7 kgf / mm 2 , and the deviation of the inner and outer tubes was considerably large due to Mannesmann plug rolling, which could not be used favorably.

上記したような各実施例の結果を要約して示すと次の表
1の如くである。
The results of each of the above examples are summarized in Table 1 below.

「発明の効果」 以上説明したような本発明によれば、高Niオーステナイ
ト合金その他の高合金と炭素鋼または低合金鋼の中空ビ
レットを用い金属二重管を得るに当り、境界部における
接合強度を適切に高めマンネスマンプラグ圧延によって
好ましい二重管を製造せしめ、接合欠陥のない製品を提
供し、その製造可能範囲を拡大すると共に大量生産を可
能ならしめて低コストに有利な製品を得しめるなどの効
果を有し、工業的にその効果の大きい発明である。
[Advantages of the Invention] According to the present invention as described above, in obtaining a metal double pipe using a hollow billet of high Ni austenitic alloy or other high alloy and carbon steel or low alloy steel, the joint strength at the boundary portion is obtained. To produce a preferable double tube by Mannesmann plug rolling, to provide a product with no joint defects, to expand the manufacturable range and to enable mass production to obtain a product advantageous in low cost. It is an invention that has an effect and has a large effect industrially.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安岡 秀憲 東京都千代田区丸の内1丁目1番2号 日 本鋼管株式会社内 (56)参考文献 特開 平1−224113(JP,A) 特開 平1−197081(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hidenori Yasuoka 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (56) Reference JP-A-1-224113 (JP, A) JP-A 1-197081 (JP, A)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】炭素鋼または低合金鋼中空ビレット内に高
合金中空ビレットとの間隔を下式で示すように嵌め合わ
せ、境界端部をシール溶接した後、加熱して境界面を拡
散接合し、次いで傾斜ロール圧延することを特徴とする
金属二重管の製造方法。 d≦900D1(K0−K1) 但し上式において、 d;炭素鋼又は低合金鋼中空ビレットと高合金中空ビレッ
トとの間隔 D1;高合金中空ビレットの外径 K0;炭素鋼又は低合金鋼中空ビレットの線膨張係数 K1;高合金中空ビレットの線膨張係数 である。
1. A carbon steel or low alloy steel hollow billet is fitted to a high alloy hollow billet with a gap as shown by the following formula, and after the boundary end portion is seal-welded, it is heated to diffuse-bond the boundary surface. Then, a method for producing a metal double tube, which comprises rolling with an inclined roll. d ≦ 900D 1 (K 0 −K 1 ) However, in the above formula, d; Distance between carbon steel or low alloy steel hollow billet and high alloy hollow billet D 1 ; Outer diameter of high alloy hollow billet K 0 ; Carbon steel or Linear expansion coefficient of low alloy steel hollow billet K 1 ; Linear expansion coefficient of high alloy hollow billet.
【請求項2】炭素鋼または低合金鋼中空ビレットと高合
金中空ビレットとの隙間を不活性ガス雰囲気とした状態
で境界端部をシール溶接する請求項1に記載の金属二重
管の製造方法。
2. The method for producing a metal double tube according to claim 1, wherein the boundary ends are seal-welded with the inert gas atmosphere in the gap between the carbon steel or low alloy steel hollow billet and the high alloy hollow billet. .
【請求項3】炭素鋼または低合金鋼中空ビレットと高合
金鋼中空ビレットとの隙間を真空状態として境界端部を
シール溶接する請求項1に記載の金属二重管の製造方
法。
3. The method for producing a metal double pipe according to claim 1, wherein the boundary ends are seal-welded with the gap between the carbon steel or low alloy steel hollow billet and the high alloy steel hollow billet being in a vacuum state.
【請求項4】炭素鋼または低合金鋼中空ビレットの内表
面粗さ及び高合金中空ビレットの外表面粗さを50μm以
下とした請求項1ないし3の何れか1つに記載の金属二
重管の製造方法。
4. The metal double tube according to claim 1, wherein the inner surface roughness of the carbon steel or low alloy steel hollow billet and the outer surface roughness of the high alloy hollow billet are 50 μm or less. Manufacturing method.
JP2037205A 1990-02-20 1990-02-20 Manufacturing method of metal double tube Expired - Lifetime JPH0798216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2037205A JPH0798216B2 (en) 1990-02-20 1990-02-20 Manufacturing method of metal double tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2037205A JPH0798216B2 (en) 1990-02-20 1990-02-20 Manufacturing method of metal double tube

Publications (2)

Publication Number Publication Date
JPH03243212A JPH03243212A (en) 1991-10-30
JPH0798216B2 true JPH0798216B2 (en) 1995-10-25

Family

ID=12491088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2037205A Expired - Lifetime JPH0798216B2 (en) 1990-02-20 1990-02-20 Manufacturing method of metal double tube

Country Status (1)

Country Link
JP (1) JPH0798216B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5630152B2 (en) * 2010-08-31 2014-11-26 株式会社リコー Waste liquid treatment equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677855B2 (en) * 1988-01-29 1994-10-05 住友金属工業株式会社 High corrosion resistance double metal pipe manufacturing method
JPH01224113A (en) * 1988-03-04 1989-09-07 Nippon Steel Corp Fitting method for circular pipe

Also Published As

Publication number Publication date
JPH03243212A (en) 1991-10-30

Similar Documents

Publication Publication Date Title
US4966748A (en) Methods of producing clad metals
US4917969A (en) Process for the production of clad hot rolled strip and the resulting product
CN109694989B (en) 825/X70 nickel-based alloy composite plate and production method thereof
WO2006132164A1 (en) Ferrite stainless steel sheet for bellows stock pipe
JP2007516351A (en) Manufacturing method of stainless steel pipe used for piping system
CN112718912A (en) Preparation method of metallurgical composite steel pipe
JPH0798216B2 (en) Manufacturing method of metal double tube
JP2707852B2 (en) Manufacturing method of double metal tube
KR100543136B1 (en) Welded pipe without seams
WO2008103122A1 (en) Method of manufacturing a component and use of said method
CN216078650U (en) Metallurgical composite steel pipe
JP4051042B2 (en) ERW steel pipe containing Cr and method for producing the same
DE602005023043D1 (en) PIPE FOR PETROLEUM AND GAS PRODUCT PIPELINES AND MANUFACTURING METHOD THEREFOR
JP2864397B2 (en) Manufacturing method of clad pipe
JP3475885B2 (en) Welding material for low thermal expansion alloy, method for manufacturing welded pipe, and method for circumferential welding of welded pipe
JP2852315B2 (en) Method of manufacturing hot large-diameter rectangular steel pipe in which material of corner R does not deteriorate
JPH01197081A (en) Manufacture of high corrosion resistant double metal pipe
JP2000343135A (en) Welding steel pipe superior in workability and manufacture thereof
JP2817587B2 (en) Wear resistant multi-layer steel pipe for boiler and method for producing the same
JP7493737B1 (en) Manufacturing method of half pipe joint
JPS6245486A (en) Production of clad steel pipe
JPH02195097A (en) Telescoping pipe fitting and production thereof
JP4975354B2 (en) Manufacturing method of high strength welded steel pipe
JPS5935826A (en) Manufacture of small aperture and long-sized double pipe
CN117531828A (en) Rolling method of steel wire rod for ultrahigh-chromium heat-resistant welding