JP2817587B2 - Wear resistant multi-layer steel pipe for boiler and method for producing the same - Google Patents

Wear resistant multi-layer steel pipe for boiler and method for producing the same

Info

Publication number
JP2817587B2
JP2817587B2 JP23117793A JP23117793A JP2817587B2 JP 2817587 B2 JP2817587 B2 JP 2817587B2 JP 23117793 A JP23117793 A JP 23117793A JP 23117793 A JP23117793 A JP 23117793A JP 2817587 B2 JP2817587 B2 JP 2817587B2
Authority
JP
Japan
Prior art keywords
steel pipe
nitriding
steel
boiler
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23117793A
Other languages
Japanese (ja)
Other versions
JPH0790540A (en
Inventor
信茂 平石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP23117793A priority Critical patent/JP2817587B2/en
Publication of JPH0790540A publication Critical patent/JPH0790540A/en
Application granted granted Critical
Publication of JP2817587B2 publication Critical patent/JP2817587B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、石炭焚きの流動床ボイ
ラに必要な、管外表面層が未燃焼石炭微粉末および石炭
燃焼灰分などの衝突に対して優れた耐摩耗性を有する硬
質層からなるボイラ用耐摩耗複層鋼管とその製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hard bed having an outer surface layer required for a coal-fired fluidized-bed boiler, the outer layer of which has excellent abrasion resistance against collisions of unburned coal fine powder and coal-burning ash. And a method for producing the same.

【0002】[0002]

【従来の技術】近年、エネルギー源の多様化により、石
油に代わって再び石炭をエネルギー源として利用する傾
向にある。特に石炭焚きの流動床ボイラ、加圧流動床ボ
イラは発電効率が高く、窒素酸化物の発生量を抑制でき
る上、硫黄を含む、しかも灰分含有量が高い石炭および
石炭アッシュなどの原料も使用できるので、一層注目さ
れている。
2. Description of the Related Art In recent years, with the diversification of energy sources, there has been a tendency to use coal again as an energy source instead of oil. In particular, coal-fired fluidized bed boilers and pressurized fluidized bed boilers have high power generation efficiency, can suppress the generation of nitrogen oxides, and can also use raw materials such as coal and coal ash that contain sulfur and have a high ash content. So it is getting more attention.

【0003】しかしこれらの発電方式では、未燃焼石炭
微粉末や石炭燃焼灰分などの硬い粒子がボイラ内で飛散
し、加熱器管、蒸発管などのボイラ部材に高速で衝突す
ることによって生じる高温固体粒子によるエロージョン
が、ボイラ部材の重大な損傷形態として強く認識される
ようになってきている。特に最近では、一基あたりの発
電能力や発電効率が、石油火力発電に匹敵する能力を有
することが望まれているので、ますます苛酷な条件でも
エロージョン損傷が起こりにくいボイラ部材が必要とな
る。
[0003] However, in these power generation methods, hard particles such as unburned coal fine powder and coal-burning ash are scattered in the boiler, causing high-temperature solids generated by high-speed collision with boiler members such as heater tubes and evaporator tubes. Particle erosion is becoming increasingly recognized as a serious form of damage to boiler components. In particular, recently, since it is desired that the power generation capacity and power generation efficiency per unit are comparable to those of oil-fired power generation, a boiler member that is less likely to undergo erosion damage even under increasingly severe conditions is required.

【0004】ステライトなどのCo基合金のような硬質材
料をボイラ・熱交換器用鋼管の表層に肉盛り溶射して耐
エロージョン性を改善することができるが、このような
硬質材料は冷間加工性が劣るので曲げ加工ができず、現
場での溶射施工が必要になるという煩わしさが生ずる。
またCo基合金は、高価な材料であるため製造コストがか
さむ欠点がある。
[0004] Hard materials such as Co-based alloys such as stellite can be overlaid and sprayed on the surface layer of steel pipes for boilers and heat exchangers to improve erosion resistance. Is inferior, so that bending cannot be performed, and there is a trouble that on-site thermal spraying is required.
Further, the Co-based alloy has a disadvantage that the production cost is increased because it is an expensive material.

【0005】特開昭57-16149号公報および同57−16151
号公報には、C:0.3〜0.9 %、Si:1.5 %以下、Mn:1.5
%以下、Cr:3.5〜12%を基本組成とし、必要によりNi、
Al、Cu、Mo、W、Vなどを含有する析出硬化型耐摩耗性
窒化用鋼が示されている。これらの鋼は、被削性改善の
ために多量のSを含有しており、このような鋼をボイラ
用耐摩耗複層鋼管の外層管に適用しようとしても、低融
点化合物が析出して熱間脆性が著しくなり、熱間押出し
加工が困難である。
JP-A-57-16149 and JP-A-57-16151
In the publication, C: 0.3 to 0.9%, Si: 1.5% or less, Mn: 1.5%
%, Cr: 3.5 to 12% as the basic composition, Ni,
A precipitation hardening wear resistant nitriding steel containing Al, Cu, Mo, W, V, etc. is shown. These steels contain a large amount of S in order to improve machinability, and even if such steels are applied to the outer layer of wear-resistant multi-layer steel pipes for boilers, low melting point compounds are precipitated and heat is generated. The brittleness becomes remarkable, and hot extrusion is difficult.

【0006】特開昭60-196502 号公報には、ボイラ・熱
交換器用鋼管とその外面に積層された耐高温粒子エロー
ジョン性に優れる外層鋼とで構成されることを特徴とす
る石炭焚きボイラ用二層鋼管が提案されている。しか
し、この外層鋼は、極く一般的な高Si、高Crをベースと
する鋼であり、耐エロージョン性が十分とは言えず、石
炭焚きボイラ部材としては不十分である。
Japanese Unexamined Patent Publication No. Sho 60-196502 discloses a coal-fired boiler comprising a steel pipe for a boiler / heat exchanger and an outer layer steel having excellent high-temperature particle erosion resistance laminated on the outer surface thereof. Double-walled steel pipes have been proposed. However, this outer layer steel is an extremely common steel based on high Si and high Cr, cannot be said to have sufficient erosion resistance, and is insufficient as a coal-fired boiler member.

【0007】特開昭61-110714 号公報には、ボイラ・熱
交換器用鋼管とその外面に積層された析出硬化性を有す
る合金の外層鋼管とで構成され、この二層鋼管に曲げお
よび溶接などの加工を加えた後、時効処理を行い外層鋼
管を硬化させることを特徴とする伝熱管が提案されてい
る。しかしこの方法では、時効処理により硬度は上昇す
るが、その硬度はHv350程度までであって、過酷な環境
での耐高温粒子エロージョン性に対して十分な性能を有
する伝熱管は得られない。
Japanese Patent Application Laid-Open No. 61-110714 discloses a steel pipe for a boiler / heat exchanger and an outer layer steel pipe of a precipitation hardening alloy laminated on the outer surface thereof. A heat transfer tube characterized by hardening the outer layer steel pipe by performing aging treatment after adding the above process has been proposed. However, in this method, although the hardness is increased by the aging treatment, the hardness is up to about Hv350, and a heat transfer tube having sufficient performance for high-temperature particle erosion resistance in a severe environment cannot be obtained.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、次の
諸特性を有するボイラ用耐摩耗複層鋼管およびその製造
方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a wear-resistant multi-layer steel pipe for a boiler having the following characteristics and a method for producing the same.

【0009】石炭焚きの加圧流動床ボイラにおけるよ
うな、高温かつ高硬度粒子の衝突による摩耗に対しても
十分な外層管表面の耐摩耗性とボイラ鋼管としての強度
をあわせ持つこと。
It is necessary to have sufficient abrasion resistance on the outer layer tube surface against wear due to collision of high-temperature and high-hardness particles, as in a coal-fired pressurized fluidized-bed boiler, and to have strength as a boiler steel tube.

【0010】内層管となるボイラ・熱交換器用鋼管に
対する熱処理によって、外層管の硬度も大きく上昇する
こと。
[0010] The heat treatment of the steel tube for the boiler / heat exchanger as the inner tube also significantly increases the hardness of the outer tube.

【0011】外層管の鋼は、ガス窒化処理により高硬
度の窒化層が得られやすいこと。
[0011] The steel of the outer tube is easy to obtain a high hardness nitrided layer by gas nitriding.

【0012】高硬度層を有する外層管と内層管のボイ
ラ・熱交換器用鋼管とが完全に密着して、熱伝導に支障
がなく、局部的な密着不良によるホットスポットが生じ
ないこと。
[0012] The outer tube having a high hardness layer and the steel tube for the boiler / heat exchanger of the inner tube are completely adhered to each other, so that there is no hindrance to heat conduction and no hot spot due to poor local adhesion is generated.

【0013】流動床ボイラでは、曲管部の摩耗も発生
するので、複層鋼管の曲管部材も製造できること。
In the fluidized-bed boiler, a bent pipe portion is also worn, so that a bent pipe member of a multilayer steel pipe can be manufactured.

【0014】[0014]

【課題を解決するための手段】本発明の要旨は、次の
(1)、(2) のボイラ用耐摩耗複層鋼管と (3)〜(5) のそ
の製造方法にある。
The gist of the present invention is as follows.
(1) The wear-resistant multi-layer steel pipe for a boiler according to (2) and the production method thereof according to (3) to (5).

【0015】(1)内層がボイラ・熱交換器用鋼管であ
り、外層が重量%で、C:0.1〜1.2 %、Si:0.1〜1.5
%、Mn:0.1〜1.5 %、Cr:6〜20%、Mo:0.1〜10%、
V:0.1〜4%、Nb:0.1〜3%およびAl:0.1〜3%を含有
し、残部がFeおよび不可避的不純物からなり、不純物中
のPは0.01%以下、Sは0.01%以下の析出硬化型窒化用
鋼を窒化処理した鋼管であることを特徴とするボイラ用
耐摩耗複層鋼管。
(1) The inner layer is a steel tube for a boiler / heat exchanger, and the outer layer is by weight, C: 0.1-1.2%, Si: 0.1-1.5.
%, Mn: 0.1-1.5%, Cr: 6-20%, Mo: 0.1-10%,
V: 0.1 to 4%, Nb: 0.1 to 3% and Al: 0.1 to 3%, the balance being Fe and inevitable impurities, P in the impurities is 0.01% or less, and S is 0.01% or less in the impurities. A wear-resistant multi-layer steel pipe for a boiler, which is a steel pipe obtained by nitriding hardening type steel for nitriding.

【0016】(2)外層が重量%で、上記(1) 記載の化学
成分に加えてさらに、Cu:2%以下、Ni:4%以下、
W:4%以下、Ti:3%以下、Zr:1%以下およびTa:
1%以下のうちの1種以上を含有する析出硬化型窒化用
鋼を窒化処理した鋼管であることを特徴とする上記(1)
記載のボイラ用耐摩耗複層鋼管。
(2) The weight percentage of the outer layer is, in addition to the chemical components described in (1) above, Cu: 2% or less, Ni: 4% or less,
W: 4% or less, Ti: 3% or less, Zr: 1% or less, and Ta:
The above-mentioned (1), which is a steel pipe obtained by nitriding a precipitation hardening type nitriding steel containing at least one of 1% or less.
The wear-resistant multi-layer steel pipe for a boiler according to the above.

【0017】(3)ボイラ・熱交換器用鋼管と、この鋼管
の外側に上記(1) または(2) 記載の化学組成を有する析
出硬化型窒化用鋼から製造された鋼管を配置して中空複
合ビレットを組み立て、この複合ビレットを熱間押出し
加工してクラッド鋼管を製造し、次いでボイラ・熱交換
器用鋼管に対する焼ならし処理を行った後焼戻し処理を
施し、さらに窒化処理を施して外側の析出硬化型窒化用
鋼管に表面硬化層を形成させることを特徴とするボイラ
用耐摩耗複層鋼管の製造方法。
(3) A steel pipe for a boiler / heat exchanger and a steel pipe manufactured from a precipitation hardening type nitriding steel having the chemical composition described in the above (1) or (2) are arranged outside the steel pipe. The billet is assembled, the composite billet is hot-extruded to produce a clad steel pipe, then the steel pipe for a boiler / heat exchanger is subjected to a normalizing treatment, a tempering treatment is then performed, and a nitriding treatment is further performed to precipitate outside. A method for producing a wear-resistant multi-layer steel pipe for a boiler, comprising forming a surface hardened layer on a hardening type steel pipe for nitriding.

【0018】(4)ボイラ・熱交換器用鋼管の外側に薄肉
の金属円筒を同心に並べて、鋼管と円筒の片側を円盤部
材で固定して鋼管と円筒で形成されたカプセル管とし、
このカプセル管の環状の隙間に、上記(1) または(2) 記
載の化学組成を有する析出硬化型窒化用鋼粉末を充填し
た後、カプセル管の開放されている端部を第二の円盤部
材で密封して中空複合ビレットを組み立て、この複合ビ
レットを熱間押出し加工してクラッド鋼管を製造し、次
いでボイラ・熱交換器用鋼管に対する焼ならし処理を行
った後焼戻し処理を施し、さらに窒化処理を施して外側
の析出硬化型窒化用鋼管に表面硬化層を形成させること
を特徴とする石炭ボイラ用耐摩耗複層鋼管の製造方法。
(4) A thin-walled metal cylinder is concentrically arranged outside the steel pipe for a boiler / heat exchanger, and one side of the steel pipe and the cylinder is fixed with a disk member to form a capsule pipe formed of a steel pipe and a cylinder.
After filling the precipitation-hardening type nitriding steel powder having the chemical composition described in the above (1) or (2) into the annular gap of the capsule tube, the open end of the capsule tube is placed in the second disk member. To form a hollow composite billet, hot extruding this composite billet to produce a clad steel pipe, then normalizing the steel pipe for boilers and heat exchangers, then tempering it, and then nitriding And forming a hardened surface layer on the outer precipitation hardening type steel pipe for nitriding by using a method for producing a wear-resistant multilayer steel pipe for a coal boiler.

【0019】(5)上記(3) または(4) 記載の製造方法に
おいて、中空複合ビレットを熱間押出し加工してクラッ
ド鋼管を製造し、次いで曲げ加工を施した後、ボイラ・
熱交換器用鋼管に対する焼ならし処理を行った後焼戻し
処理を施し、、さらに窒化処理を施して外側の析出硬化
型窒化用鋼管に表面硬化層を形成させることを特徴とす
るボイラ用耐摩耗複層鋼管の製造方法。
(5) In the manufacturing method described in the above (3) or (4), the hollow composite billet is hot-extruded to produce a clad steel pipe, and then subjected to a bending process.
A heat-resistant steel pipe for a heat exchanger, which is subjected to a normalizing treatment, then to a tempering treatment, and further to a nitriding treatment to form a hardened layer on the outer precipitation hardening type steel pipe for nitriding. A method for manufacturing a layered steel pipe.

【0020】[0020]

【作用】石炭焚きの流動床ボイラにおけるような、高温
かつ高硬度粒子の衝突による摩耗に対して、十分な外面
の耐摩耗性とボイラ鋼管としての強度をあわせ持つ鋼管
としては、設備の運転条件に合致したボイラ・熱交換器
用鋼管に適用される鋼管( 例えばJIS G 3461に規定され
ているボイラ・熱交換器用炭素鋼鋼管、JIS G 3462に規
定されているボイラ・熱交換器用合金鋼鋼管、またさら
にJIS G 3463に規定されているボイラ・熱交換器用ステ
ンレス鋼鋼管など)を内層管とし、この外層に高温で高
硬度を有する材料を複層・密着させたクラッド鋼管が最
適である。
[Action] As a coal-fired fluidized-bed boiler, a steel pipe that has both sufficient abrasion resistance on the outer surface and the strength of a boiler steel pipe against abrasion due to the collision of high-temperature and high-hardness particles, the operating conditions of the equipment Steel pipes applicable to steel pipes for boilers and heat exchangers conforming to (for example, carbon steel pipes for boilers and heat exchangers specified in JIS G 3461, alloy steel pipes for boilers and heat exchangers specified in JIS G 3462, Further, a clad steel pipe in which a high-temperature, high-hardness material is multi-layered and adhered to the outer layer of the inner layer pipe, which is a stainless steel pipe for boilers and heat exchangers specified in JIS G 3463, is most suitable.

【0021】管外層に密着させる高硬度材料として、析
出硬化型窒化用鋼を使用する。この析出硬化型窒化用鋼
は析出硬化処理によって硬度が上昇し、さらに窒化処理
を施すことによって表面硬度が上昇し、その到達値は本
発明の目的を満足するものであると同時に、肉盛り材料
であるステライトあるいは工具材料である高速度鋼や超
硬合金と比較して安価である。
A precipitation hardening type nitriding steel is used as a high hardness material to be adhered to the outer layer of the tube. The hardness of the precipitation hardening type nitriding steel is increased by the precipitation hardening treatment, and the surface hardness is increased by performing the nitriding treatment, and the attained value satisfies the object of the present invention. Stellite, or high speed steel or cemented carbide as a tool material.

【0022】このような硬度向上効果や超硬合金などに
対するコストの優位性は、溶製法で製造された溶製材に
よる析出硬化型窒化用鋼、あるいはN2 またはArガスア
トマイズ法などで製造された粉末材による析出硬化型窒
化用鋼のいずれの場合でも同じである。
The advantages of such a hardness-improving effect and cost advantages over cemented carbides can be attributed to precipitation hardening-type nitriding steel using an ingot produced by the ingot method, or powder produced by the N 2 or Ar gas atomizing method. The same is true in any case of precipitation hardening type nitriding steel.

【0023】上記の析出硬化型窒化用鋼の合金元素とそ
の適正含有量を前記のように定めた理由、およびこの鋼
の特徴を詳細に説明する。
The reason why the alloying elements of the precipitation hardening type nitriding steel and the appropriate contents thereof are determined as described above and the characteristics of this steel will be described in detail.

【0024】C: 0.1〜1.2 % 0.1 %未満では窒化層が脆弱になる。一方、1.2 %を超
えると窒化が困難となる。よって、C含有量の範囲は
0.1〜1.2 %とした。
C: 0.1-1.2% If less than 0.1%, the nitride layer becomes brittle. On the other hand, if it exceeds 1.2%, nitriding becomes difficult. Therefore, the range of the C content is
0.1 to 1.2%.

【0025】Si: 0.1〜1.5 % 脱酸剤であり、この効果を得るには0.1 %以上の含有量
が必要である。一方、1.5 %を超えると脆化する。よっ
て、Si含有量の範囲は 0.1〜1.5 %とした。
Si: 0.1-1.5% Deoxidizing agent, a content of 0.1% or more is required to obtain this effect. On the other hand, if it exceeds 1.5%, it becomes brittle. Therefore, the range of the Si content is set to 0.1 to 1.5%.

【0026】Mn: 0.1〜1.5 % 焼入れ性を改善するために必要な元素である。この効果
を得るには0.1 %以上の含有量が必要である。一方、1.
5 %を超えると脆化する。よって、Mn含有量の範囲は
0.1〜1.5 %とした。
Mn: 0.1-1.5% Mn is an element necessary for improving hardenability. To obtain this effect, a content of 0.1% or more is required. Meanwhile, 1.
If it exceeds 5%, it becomes brittle. Therefore, the range of Mn content is
0.1 to 1.5%.

【0027】Cr:6〜20% 6%未満ではエロージョン摩耗が著しくなる。しかし、
20%を超える巨大炭化物を形成して靱性を悪化させる。
よって、Cr含有量の範囲は6〜20%とした。
Cr: 6 to 20% At less than 6%, erosion wear becomes significant. But,
Forms over 20% of giant carbides and deteriorates toughness.
Therefore, the range of the Cr content is set to 6 to 20%.

【0028】Mo: 0.1〜10% 焼戻し脆性防止および固溶強化のために含有させる。0.
1 %未満ではこの効果が得られない。しかし、10%を超
えるとその効果は飽和してくるので、経済性が悪化す
る。よって、Mo含有量の範囲は 0.1〜10%とした。
Mo: 0.1-10% Mo is contained to prevent temper brittleness and strengthen solid solution. 0.
If less than 1%, this effect cannot be obtained. However, if it exceeds 10%, the effect will be saturated, and the economic efficiency will deteriorate. Therefore, the range of the Mo content is set to 0.1 to 10%.

【0029】V: 0.1〜4%、 内層管であるボイラ・熱交換器用鋼管に対する焼戻し処
理時に、外層管をも析出硬化させるために含有させる。
0.1 %未満ではこの効果が得られない。一方、4%を超
えるとその効果は飽和してくるので、経済性が悪化す
る。よって、V含有量の範囲は 0.1〜4%とした。
V: 0.1-4%, for tempering the steel pipe for the boiler / heat exchanger, which is the inner pipe, so that the outer pipe is also precipitated and hardened.
If less than 0.1%, this effect cannot be obtained. On the other hand, if it exceeds 4%, the effect will be saturated and the economic efficiency will deteriorate. Therefore, the range of the V content is set to 0.1 to 4%.

【0030】Nb: 0.1〜3% 炭化物および窒化物生成元素であり、耐摩耗性と耐熱性
を改善するために含有させる。0.1 %未満ではこの効果
が得られない。一方、3%を超えるとその効果は飽和し
てくるので、経済性が悪化する。よって、Nb含有量の範
囲は 0.1〜3%とした。
Nb: 0.1-3% Nb is a carbide and nitride forming element and is contained in order to improve wear resistance and heat resistance. If less than 0.1%, this effect cannot be obtained. On the other hand, if it exceeds 3%, the effect becomes saturated, so that the economic efficiency deteriorates. Therefore, the range of the Nb content is set to 0.1 to 3%.

【0031】Al: 0.1〜3% 窒化物生成元素であり、窒化処理により表面硬度を上昇
させるために含有させる。0.1 %未満ではこの効果が得
られない。一方、3%を超えると鋼の融点が低下し熱間
加工性が悪化してくる。よって、Al含有量の範囲は 0.1
〜3%とした。
Al: 0.1 to 3% Al is a nitride-forming element and is contained to increase the surface hardness by nitriding. If less than 0.1%, this effect cannot be obtained. On the other hand, if it exceeds 3%, the melting point of the steel decreases and hot workability deteriorates. Therefore, the range of Al content is 0.1
To 3%.

【0032】析出硬化型窒化用鋼の性状をさらに改善す
る場合には、必要に応じて次のCu、Ni、W、Ti、Zrおよ
びTaのうちから1種以上を選んで含有させる。
In order to further improve the properties of the precipitation hardening type nitriding steel, one or more of the following Cu, Ni, W, Ti, Zr and Ta are selected and contained as required.

【0033】Cu:2%以下 金属間化合物を生成させ析出強化を行うために含有させ
る。しかし、2%を超えると熱間加工性が悪化するた
め、上限は2%とした。
Cu: 2% or less Cu is contained in order to form an intermetallic compound and strengthen precipitation. However, if it exceeds 2%, the hot workability deteriorates, so the upper limit was made 2%.

【0034】Ni:4%以下 延性を向上させるとともに、金属間化合物を生成させ析
出強化を行うために含有させる。しかし、4%を超える
と窒化層の形成を抑制する作用があるため、上限は4%
とした。
Ni: 4% or less Ni is added to improve ductility and to form an intermetallic compound to strengthen precipitation. However, when the content exceeds 4%, the effect of suppressing the formation of the nitride layer is obtained.
And

【0035】W:4%以下 焼戻し軟化抵抗を増大させるために含有させる。しか
し、4%を超えると巨大炭化物を形成して靱性を悪化さ
せるため、上限は4%とした。
W: 4% or less W is contained in order to increase the tempering softening resistance. However, if it exceeds 4%, a large carbide is formed to deteriorate the toughness, so the upper limit was made 4%.

【0036】Ti:3%以下 窒化物および炭化物生成元素であり、耐摩耗性と耐熱性
を改善するために含有させる。しかし、3%を超えると
その効果は飽和してくる.経済性を考慮してTi含有量の
上限は3%とした。
Ti: 3% or less Ti is an element forming nitride and carbide, and is contained in order to improve wear resistance and heat resistance. However, above 3% the effect saturates. The upper limit of the Ti content is set to 3% in consideration of economy.

【0037】Zr:1%以下 窒化物および炭化物生成元素であり、耐摩耗性と耐熱性
を改善するために含有させる。しかし、1%を超えると
その効果は飽和してくる。経済性を考慮してZr含有量の
上限は1%とした。
Zr: 1% or less Zr is an element for forming nitride and carbide, and is contained in order to improve wear resistance and heat resistance. However, if it exceeds 1%, the effect is saturated. The upper limit of the Zr content is set to 1% in consideration of economy.

【0038】Ta:1%以下 窒化物および炭化物窒化物生成元素であり、耐摩耗性と
耐熱性を改善するために含有させる。しかし、1%を超
えるとその効果は飽和してくる。経済性を考慮してTa含
有量の上限は1.0 %とした。
Ta: 1% or less Nitride and carbide Nitride forming element contained in order to improve wear resistance and heat resistance. However, if it exceeds 1%, the effect is saturated. In consideration of economy, the upper limit of the Ta content is set to 1.0%.

【0039】PおよびS:PおよびSは不純物である
が、ともに0.01%を超えると低融点化合物が析出し、熱
間脆性が著しくなり、押出し加工が困難になるので、い
ずれも0.01%以下としなければならない。
P and S: P and S are impurities, but if both exceed 0.01%, a low-melting-point compound is precipitated, hot brittleness becomes remarkable, and extrusion becomes difficult. There must be.

【0040】上記のような析出硬化型窒化用鋼から製造
された鋼管は、内層管となるボイラ・熱交換器用鋼管に
対する焼ならし処理(JIS G3461、JIS G3462およびJI
S G3463に規定されているもの)後の焼戻し処理の際、
炭化物が析出し、鋼管全体の硬度が大きく上昇する。
The steel pipe manufactured from the precipitation hardening type nitriding steel as described above is subjected to a normalizing treatment (JIS G3461, JIS G3462 and JIS G3462) for the boiler / heat exchanger steel pipe as the inner layer pipe.
(Specified in SG3463)
Carbide precipitates, and the hardness of the entire steel pipe greatly increases.

【0041】この窒化用鋼は、窒化処理により硬化させ
る温度がかなり低い温度(約500 ℃) でよいため、ボイ
ラ・熱交換器用鋼管に対する焼戻し処理後に窒化処理し
ても、その特性に悪影響を与えることはない。したがっ
て、直管のボイラ用耐摩耗複層鋼管は、従来のボイラ用
鋼管の製造工程を用いて加工、熱処理し、その後窒化処
理する方法で製造することができる。
Since the nitriding steel can be cured at a considerably low temperature (about 500 ° C.) by the nitriding treatment, even if the nitriding treatment is performed after the tempering treatment on the steel pipe for the boiler / heat exchanger, its properties are adversely affected. Never. Therefore, the wear-resistant multi-layer steel pipe for a boiler of a straight pipe can be manufactured by a method of processing, heat-treating, and then nitriding using a conventional manufacturing process of a steel pipe for a boiler.

【0042】さらに、熱間押出し加工後のクラッド鋼管
から、熱間、温間または冷間で、望ましくは熱間または
温間で曲管加工を行った後、上記熱処理を施した後に窒
化処理を行う方法で、外層管が高硬度の複層曲管部も製
造できる。
Further, after the hot extruded clad steel pipe is subjected to hot, warm or cold, preferably hot or warm curved pipe processing, and then subjected to the above-mentioned heat treatment, followed by nitriding treatment. By performing this method, it is also possible to manufacture a multi-layer curved pipe portion having an outer layer pipe having a high hardness.

【0043】上記のボイラ・熱交換器用鋼管に対する熱
処理後の窒化用鋼管の硬度は、高温(350℃)硬度でHv
350 以上、窒化処理後の最表面高温硬度は、同じくHv
600以上とするのが望ましい。通常、外層の析出硬化型
窒化鋼管の肉厚は、2〜4mm程度までで十分であり、例
えばこの肉厚を4mm、熱処理で全体の高温硬度をHv400
、さらに窒化処理で最表面高温硬度をHv 1000にした
とき、外層の析出硬化型窒化鋼管の深さ(厚さ)方向の
高温硬度分布は、約0.2mm の深さで約Hv 800、約0.5mm
の深さから4mmまでHv 400 となる。
The hardness of the steel pipe for nitriding after heat treatment of the steel pipe for boiler / heat exchanger is Hv at high temperature (350 ° C.).
350 or more, the highest surface hardness after nitriding is Hv
It is desirable to be 600 or more. Usually, the thickness of the outer layer of the precipitation hardening type nitrided steel pipe is sufficient to be about 2 to 4 mm. For example, this thickness is 4 mm, and the whole high temperature hardness is Hv400 by heat treatment.
When the outermost surface high-temperature hardness is set to Hv 1000 by nitriding treatment, the high-temperature hardness distribution in the depth (thickness) direction of the precipitation hardening type nitrided steel tube of the outer layer is about Hv 800, about 0.5 mm
Hv 400 from the depth of 4mm to 4mm.

【0044】上記の析出硬化型窒化鋼の特徴、利点はス
テライトや工具鋼では得られないものである。すなわ
ち、ステライトは熱処理などでも軟化しないため、密着
二層管のボイラ鋼管を製造するとき、冷間圧延では5%
以下の圧下率で割れが発生し、寸法矯正のための冷間加
工も実質的に不可能である。また工具鋼では、ボイラ鋼
管に対する熱処理によって硬度低下を招く。
The features and advantages of the above precipitation hardening type nitrided steel cannot be obtained with stellite or tool steel. That is, since stellite does not soften even by heat treatment or the like, when manufacturing a boiler steel tube of an intimate two-layer tube, 5% is used in cold rolling.
Cracks occur at the following rolling reduction, and cold working for dimensional correction is practically impossible. In the case of tool steel, the heat treatment of the boiler steel pipe causes a decrease in hardness.

【0045】次に、本発明の製造方法において熱間押出
し加工の対象となる中空複合ビレットの成形方法を図1
〜図3に基づいて説明する。
Next, a method of forming a hollow composite billet to be subjected to hot extrusion in the production method of the present invention is shown in FIG.
This will be described with reference to FIG.

【0046】図1は析出硬化型窒化用鋼粉末を用いる場
合の例を示す複合ビレットの縦断面図である。ボイラ・
熱交換器用鋼管である内層鋼管1の外側に薄肉の低炭素
鋼円筒2を同心に配置し、その片側(図1では下側)を
炭素鋼円盤部材4で固定してカプセル管を形成し、この
隙間に粒径 500μm 以下の析出硬化型窒化用鋼粉末3を
充填して、開放されている端部(図1では上側)を第二
の炭素鋼円盤部材4′により密封し、望ましくは約400
MPaの圧力で冷間静水圧を加えて粉末3の層を圧縮成形
し、粉末3が高密度化された中空複合ビレットとする。
この場合、低炭素鋼円筒2が存在するままで加熱、熱間
押出ししてクラッド鋼管とした後、これに相当する部分
を切削加工などにより除去する必要がある。
FIG. 1 is a longitudinal sectional view of a composite billet showing an example in which a precipitation hardening type steel powder for nitriding is used. boiler·
A thin-walled low-carbon steel cylinder 2 is concentrically arranged outside an inner-layer steel pipe 1 which is a steel pipe for a heat exchanger, and one side (the lower side in FIG. 1) is fixed with a carbon steel disk member 4 to form a capsule pipe. This gap is filled with precipitation hardening type steel powder 3 having a particle size of 500 μm or less, and the open end (upper side in FIG. 1) is sealed with a second carbon steel disk member 4 ′, preferably about 400
A layer of the powder 3 is compression-molded by applying a cold isostatic pressure at a pressure of MPa to obtain a hollow composite billet in which the powder 3 is densified.
In this case, it is necessary to form a clad steel pipe by heating and hot extruding in the presence of the low carbon steel cylinder 2, and then to remove a portion corresponding to the clad steel pipe by cutting or the like.

【0047】窒化用鋼粉末を用いる場合に、冷間静水圧
成形法を適用する理由は、次のとおりである。まず、熱
間押出し加工時の据込み状態においては、析出硬化型窒
化用鋼粉末が内層管であるボイラ用鋼管よりも高硬度で
あるため、粉末層が鋼管表面に食い込んだ状態となり、
鋼管表面の酸化膜を破壊する。押出し加工にともなって
界面が伸展するため、この酸化膜が分断される。このよ
うな状況下では、粉末層と鋼管の界面で元素の拡散が起
こって強固な接合が達成される。また、粉末3が冷間静
水圧を用いる圧縮成形により高密度化されているため、
中空複合ビレットの加熱時にその温度分布が安定化され
る。
The reason for applying the cold isostatic pressing method when using the steel powder for nitriding is as follows. First, in the upsetting state at the time of hot extrusion, since the precipitation hardening type steel powder for nitriding is higher in hardness than the steel pipe for the boiler, which is the inner layer pipe, the powder layer enters the steel pipe surface,
Destroys the oxide film on the steel pipe surface. Since the interface is extended with the extrusion, the oxide film is divided. Under such circumstances, diffusion of elements occurs at the interface between the powder layer and the steel pipe, and a strong bond is achieved. Also, since the powder 3 is densified by compression molding using cold isostatic pressure,
When the hollow composite billet is heated, its temperature distribution is stabilized.

【0048】図2は、通常の溶製法で製造された析出硬
化型窒化用鋼による鋼管を用いて、冷間圧入法で成形す
る場合の例を示す複合ビレットの縦断面図である。内層
鋼管1の外面に、析出硬化型窒化用鋼による鋼管5を冷
間圧入して密着させ、望ましくは両端部(図では上下)
を炭素鋼円盤部材4で密封し、中空複合ビレットとす
る。
FIG. 2 is a longitudinal sectional view of a composite billet showing an example in which a steel pipe made of a precipitation hardening type nitriding steel manufactured by a normal melting method is formed by a cold press-fitting method. A steel pipe 5 made of precipitation hardening type steel for nitriding is cold-pressed and closely attached to the outer surface of the inner steel pipe 1, preferably at both ends (up and down in the figure).
Is sealed with a carbon steel disk member 4 to form a hollow composite billet.

【0049】炭素鋼円盤部材4で密封すると、熱間押出
し前の加熱時に、両鋼管1および5はともに熱膨張を起
こすが、その影響で界面に隙間が生じて界面が酸化する
のを防止する効果がある。冷間圧入を用いるのは、内層
鋼管の外面と外層鋼管の内面とを密着させることによ
り、熱間押出し加工前の加熱時に界面において元素の拡
散を起こさせ、加工後に界面密着のよいクラッド鋼管を
製造するためである。
When sealed with the carbon steel disk member 4, both the steel pipes 1 and 5 undergo thermal expansion during heating before hot extrusion, but the effect is to prevent a gap from being formed at the interface and prevent the interface from being oxidized. effective. Cold injection is used because the outer surface of the inner steel pipe and the inner surface of the outer steel pipe are in close contact with each other, causing the diffusion of elements at the interface during heating before hot extrusion, and forming a clad steel pipe with good interface adhesion after processing. It is for manufacturing.

【0050】冷間圧入の際の、内層鋼管の外径と外層鋼
管の内径との関係は、等しいかまたは内径が外径よりも
0.00〜1.00mm小さくして、圧入時の密着が十分に行われ
るようにするのが望ましい。
The relationship between the outer diameter of the inner steel pipe and the inner diameter of the outer steel pipe at the time of cold press fitting is equal or the inner diameter is larger than the outer diameter.
It is desirable to reduce the thickness by 0.00 to 1.00 mm so that close contact at the time of press-fitting is sufficiently performed.

【0051】図3は、析出硬化型窒化用鋼による鋼管を
用いて、挿入方法で成形する場合の例を示す中空複合ビ
レットの縦断面図である。内層鋼管1の外面に、析出硬
化型窒化用鋼による鋼管5を挿入して、両端部(図では
上下)を炭素鋼円盤部材4で密封する。
FIG. 3 is a longitudinal sectional view of a hollow composite billet showing an example of a case where a steel pipe made of a precipitation hardening type steel for nitriding is formed by an insertion method. A steel pipe 5 of precipitation hardening type nitriding steel is inserted into the outer surface of the inner steel pipe 1, and both ends (upper and lower in the figure) are sealed with a carbon steel disk member 4.

【0052】挿入法とする場合の、内層鋼管1の外径と
外層の析出硬化型窒化用鋼管5の内径との関係は、内径
を外径よりも 0.1〜2.0 mm大きくする。両鋼管の隙間が
あまり過大になると、熱間押出し加工後のクラッド鋼管
の界面に密着不十分となる箇所が生ずるためである。こ
の場合は単なる挿入であり、もちろん両鋼管の隙間には
空気が存在するから、図示するようにクラッド面となる
一箇所に脱気管6を取付けて真空脱気処理する。その
後、脱気管6を溶接で封口して中空複合ビレットとす
る。
In the case of the insertion method, the relation between the outer diameter of the inner steel pipe 1 and the inner diameter of the precipitation hardening type steel pipe 5 of the outer layer is such that the inner diameter is 0.1 to 2.0 mm larger than the outer diameter. This is because if the gap between the two steel pipes is too large, there will be places where the interface between the clad steel pipes after hot extrusion becomes insufficiently adhered. In this case, it is merely insertion, and since air is present in the gap between the two steel pipes, the deaeration pipe 6 is attached to one place serving as a clad surface as shown in the figure to perform vacuum deaeration. Thereafter, the deaeration tube 6 is sealed by welding to form a hollow composite billet.

【0053】このような三種類の方法を用いて、中空複
合ビレットの加熱時にクラッド面に生成しやすい酸化膜
を抑制する。なお、図1に示す析出硬化型窒化用鋼粉末
を用いる場合の方法において、図3に示す脱気管6を用
いることもできるが、これは必ずしも必要ではない。粉
末3の層に残存する空気が析出硬化型窒化用鋼粉末に固
溶してピックアップする酸素と窒素の合計量は、約0.01
重量%程度であり、接合やボイラ用複層鋼管としての機
械的性質にほとんど影響を及ぼさないからである。
By using these three kinds of methods, an oxide film which is easily formed on the clad surface when the hollow composite billet is heated is suppressed. In the method using the precipitation hardening type nitriding steel powder shown in FIG. 1, the degassing pipe 6 shown in FIG. 3 can be used, but this is not always necessary. The total amount of oxygen and nitrogen to be picked up by the air remaining in the layer of powder 3 being dissolved in the precipitation hardening type steel powder for nitriding is about 0.01.
This is because it is about weight%, and hardly affects the mechanical properties of the joining or the multi-layer steel pipe for boilers.

【0054】上記の中空複合ビレットでは、冷間静水圧
成形法および冷間圧入法によるものは加熱時点から、挿
入法によるものは熱間押出し加工時に、粉末と鋼管との
界面または両鋼管の界面で元素の拡散が生じて良好な接
合が形成され、界面密着性の優れたクラッド鋼管を得る
ことができる。
In the above-mentioned hollow composite billet, the interface between the powder and the steel pipe or the interface between the both steel pipes is obtained by the cold isostatic pressing method or the cold press-fitting method from the time of heating, and the insertion method by the hot extrusion method. Thus, diffusion of elements occurs, and good bonding is formed, and a clad steel pipe having excellent interface adhesion can be obtained.

【0055】[0055]

【実施例】【Example】

〔本発明例1〕N2 ガスアトマイズ法により、表1に示
す種別1から種別9および種別15から種別18までの化学
組成の析出硬化型窒化用鋼粉末を製造し、図1に示す方
法を用いて、JIS 規格のSTBA22の内層鋼管1(外径130m
m 、内径31mm、長さ780mm)と外側の薄肉の低炭素鋼円筒
2の間に、粒径500 μm 以下の窒化用鋼粉末3を充填し
て炭素鋼円盤部材4、4′により密封し、400 MPaの圧
力で冷間静水圧成形して外径174mm 、内径31mm、長さ80
0mm の中空複合ビレットを作製した。このビレットを12
00℃に加熱した後、押出比12で熱間押出し加工して外径
57mm×内径28mm×長さ7m のクラッド鋼管を製造し、外
側の薄肉の低炭素鋼円筒2に相当する部分を切削加工に
より除去した。
[Invention Example 1] A precipitation hardening type nitriding steel powder having a chemical composition of type 1 to type 9 and type 15 to type 18 shown in Table 1 was produced by the N 2 gas atomizing method, and the method shown in FIG. 1 was used. JIS STBA22 inner steel pipe 1 (outer diameter 130m
m, an inner diameter of 31 mm, a length of 780 mm) and an outer thin-walled low carbon steel cylinder 2 filled with a nitriding steel powder 3 having a particle diameter of 500 μm or less and sealed with carbon steel disk members 4 and 4 ′, Cold isostatic pressing at a pressure of 400 MPa, outer diameter 174mm, inner diameter 31mm, length 80
A hollow composite billet of 0 mm was produced. 12 this billet
After heating to 00 ° C, hot extrusion at an extrusion ratio of 12
A clad steel pipe having a size of 57 mm × inner diameter 28 mm × length 7 m was manufactured, and a portion corresponding to the outer thin low-carbon steel cylinder 2 was removed by cutting.

【0056】これらのクラッド鋼管を、950 ℃で10分間
加熱し、熱間で曲げ半径2D(鋼管の直径Dの2倍)で
曲管加工を行った後、960 ℃×10分で焼ならし処理し、
680℃×60分で焼戻し処理(窒化用鋼管部は析出硬化処
理に相当する)した後、分解アンモニアガス中で530 ℃
×40時間の窒化処理により、表面を窒化して複層鋼管を
製造した。その後、それぞれ曲管部の表層部からサンプ
ルを切り出して次の評価試験を実施した。
These clad steel pipes were heated at 950 ° C. for 10 minutes, subjected to hot bending at a bending radius of 2D (twice the diameter D of the steel pipe), and then annealed at 960 ° C. × 10 minutes. Process,
After tempering at 680 ° C for 60 minutes (the steel pipe for nitriding is equivalent to precipitation hardening), the temperature is 530 ° C in decomposed ammonia gas.
The surface was nitrided by nitriding treatment for × 40 hours to produce a multilayer steel pipe. Thereafter, samples were cut out from the surface layer portion of the curved pipe portion, and the following evaluation tests were performed.

【0057】(1)高温硬度試験:高温ビッカース硬度試
験機を用いて荷重50g 、試験温度 350℃の条件で測定。
位置は最表面層より 0.1mm。
(1) High-temperature hardness test: Measured at a load of 50 g and a test temperature of 350 ° C. using a high-temperature Vickers hardness tester.
The position is 0.1mm from the outermost layer.

【0058】(2)耐温間エロージョン試験:ブラスト式
エロージョン試験装置を用いて表2に示す条件で5時間
実施し、そのときの減肉速度を測定。
(2) Warm erosion test: The test was carried out for 5 hours under the conditions shown in Table 2 using a blast erosion test apparatus, and the thinning rate at that time was measured.

【0059】〔本発明例2〕Arガスアトマイズ法によ
り、表1に示す種別10から種別12までの化学組成の粒径
250 μm 以下の析出硬化型窒化用鋼粉末を製造し、本発
明例1と同じ方法で同じ寸法の中空複合ビレットを作製
した。このビレットを1150℃に加熱した後、押出比15で
熱間押出し加工して外径53mm×内径28mm×長さ9m のク
ラッド鋼管を製造し、外側の薄肉の低炭素鋼円筒2に相
当する部分を切削加工により除去した。
[Invention Example 2] Particle diameters of the chemical compositions of types 10 to 12 shown in Table 1 by Ar gas atomizing method.
A precipitation hardening type steel powder for nitriding of 250 μm or less was produced, and a hollow composite billet having the same dimensions as in Example 1 of the present invention was produced. After heating this billet to 1150 ° C., it was hot-extruded at an extrusion ratio of 15 to produce a clad steel pipe having an outer diameter of 53 mm × inner diameter of 28 mm × length of 9 m, and a portion corresponding to an outer thin-walled low carbon steel cylinder 2. Was removed by cutting.

【0060】これらのクラッド鋼管を、930 ℃×20分で
焼ならし処理し、680 ℃×30分で焼戻し処理(窒化用鋼
管部は析出硬化処理に相当する)した後、分解アンモニ
アガス中で500 ℃×20時間保持し、さらに530 ℃×40時
間の窒化処理により、表面を窒化して複層鋼管を製造し
た。その後、それぞれ表層部からサンプルを切り出して
本発明例1と同じ評価試験を実施した。
These clad steel pipes were subjected to a normalizing treatment at 930 ° C. for 20 minutes and a tempering treatment at 680 ° C. for 30 minutes (the steel pipe portion for nitriding corresponds to a precipitation hardening treatment). The multi-layered steel pipe was manufactured by holding at 500 ° C. × 20 hours and further nitriding the surface at 530 ° C. × 40 hours. After that, samples were cut out from the respective surface layers, and the same evaluation test as in Example 1 of the present invention was performed.

【0061】〔本発明例3〕表1に示す種別13の化学組
成の析出硬化型窒化用鋼溶製材から外層用鋼管(外径17
2mm 、内径139.9mm 、長さ680 mm) を製造し、図2に示
す方法を用いて、JIS 規格のSTBA22の内層鋼管1(外径
140mm 、内径31mm、長さ680mm)の外側に、窒化用鋼管5
をプレスにより冷間圧入した後、両端部を炭素鋼円盤部
材4により密封し、外径172mm 、内径31mm、長さ700mm
の中空複合ビレットを作製した。このビレットを1200℃
に加熱した後、押出比20で熱間押出し加工して外径48mm
×内径28mm×長さ12m のクラッド鋼管を製造した。
[Invention Example 3] An outer layer steel pipe (outer diameter of 17) was prepared from an ingot of precipitation hardening type nitriding steel having a chemical composition of type 13 shown in Table 1.
2mm, inner diameter 139.9mm, length 680mm), and using the method shown in Fig. 2, the inner layer steel pipe 1 (outer diameter) of JIS standard STBA22
140mm, 31mm inside diameter, 680mm length)
After cold-pressing with a press, both ends are sealed with a carbon steel disk member 4, and the outer diameter is 172mm, the inner diameter is 31mm, and the length is 700mm.
Was prepared. This billet is 1200 ℃
After being heated to an extrusion ratio of 20, the product was hot-extruded to an outside diameter of 48 mm.
A clad steel pipe having an inner diameter of 28 mm and a length of 12 m was manufactured.

【0062】このクラッド鋼管を、冷間で曲げ半径2D
で曲管加工を行った後、1000℃×10分で焼ならし処理
し、さらに660 ℃×60分で焼戻し処理(窒化用鋼管部は
析出硬化処理に相当する)した後、分解アンモニアガス
中で530 ℃×40時間の窒化処理により、表面を窒化して
複層鋼管を製造した。その後、曲管部の表層部からサン
プルを切り出して次の評価試験を実施した。
The clad steel pipe is bent in a cold at a bending radius of 2D.
After bending at 1000 ° C x 10 minutes, normalize at 1000 ° C x 10 minutes, and then temper at 660 ° C x 60 minutes (the steel pipe for nitriding is equivalent to precipitation hardening). By nitriding at 530 ° C. for 40 hours, the surface was nitrided to produce a multi-layer steel pipe. Thereafter, a sample was cut out from the surface layer portion of the curved tube portion, and the following evaluation test was performed.

【0063】(1)高温硬度試験:高温ビッカース硬度試
験機を用いて荷重100g、試験温度 350℃の条件で測定。
位置は最表面層より 0.1mm。
(1) High-temperature hardness test: Measured under the conditions of a load of 100 g and a test temperature of 350 ° C. using a high-temperature Vickers hardness tester.
The position is 0.1mm from the outermost layer.

【0064】(2)耐温間エロージョン試験:ブラスト式
エロージョン試験装置を用いて表2に示す条件で2時間
実施し、そのときの減肉速度を測定。
(2) Warm erosion test: The test was carried out for 2 hours under the conditions shown in Table 2 using a blast type erosion test apparatus, and the thinning rate at that time was measured.

【0065】〔本発明例4〕表1に示す種別14の化学組
成の析出硬化型窒化用鋼溶製材からから外層用鋼管( 外
径172mm 、内径140.1mm 、長さ680mm)を製造し、図3に
示す方法を用いて、JIS 規格のSTBA22の内層鋼管1(外
径140mm 、内径31mm、長さ680mm)の外側に、窒化用鋼管
5を挿入した後、両端部を炭素鋼円盤部材4により密封
するとともに脱気管6を取付け、ロータリーポンプで1
時間脱気し、脱気管6を溶接で封口して、外径172mm 、
内径31mm、長さ700mm の中空複合ビレットを作製した。
このビレットを1200℃に加熱した後、押出比12で熱間押
出し加工して外径57mm×内径28mm×長さ8m のクラッド
鋼管を製造した。
[Invention Example 4] An outer layer steel pipe (outer diameter 172 mm, inner diameter 140.1 mm, length 680 mm) was manufactured from a precipitation hardening type ingot for nitriding steel having a chemical composition of type 14 shown in Table 1, and Using a method shown in FIG. 3, a nitriding steel pipe 5 is inserted outside the inner steel pipe 1 (outer diameter 140 mm, inner diameter 31 mm, length 680 mm) of STBA22 of JIS standard. Seal and attach a deaeration pipe 6 and use a rotary pump to
After degassing for a time, the degassing pipe 6 is sealed by welding, and the outer diameter is 172 mm.
A hollow composite billet having an inner diameter of 31 mm and a length of 700 mm was produced.
The billet was heated to 1200 ° C. and then hot-extruded at an extrusion ratio of 12 to produce a clad steel pipe having an outer diameter of 57 mm, an inner diameter of 28 mm and a length of 8 m.

【0066】このクラッド鋼管を960 ℃×20分で焼なら
し処理し、さらに700 ℃×30分で焼戻し処理(窒化用鋼
管部は析出硬化処理に相当する)した後、分解アンモニ
アガス中で530 ℃×40時間の窒化処理により、表面を窒
化して複層鋼管を製造した。
The clad steel pipe was subjected to a normalizing treatment at 960 ° C. for 20 minutes and a tempering treatment at 700 ° C. for 30 minutes (the steel pipe portion for nitriding corresponds to a precipitation hardening treatment). The surface was nitrided by nitriding at 40 ° C. for 40 hours to produce a multi-layer steel pipe.

【0067】その後、表層部からサンプルを切り出して
本発明例3と同じ評価試験を実施した。
Thereafter, a sample was cut out from the surface layer and subjected to the same evaluation test as that of Example 3 of the present invention.

【0068】〔比較例〕表1に示す種別19の化学組成の
鋼(JIS 規格のSTBA22)の溶製材から、図4に示す通常
の中空ビレットを製造した。
Comparative Example A normal hollow billet shown in FIG. 4 was produced from ingots of steel (STBA22 of JIS standard) having a chemical composition of type 19 shown in Table 1.

【0069】図4は、通常のボイラ・熱交換器用合金鋼
管の製造に用いるビレットの縦断面図である。図におい
て、符号7は上記のSTBA22鋼から製造された外径174mm
、内径31mm、長さ700mm の中空ビレットである。
FIG. 4 is a longitudinal sectional view of a billet used for manufacturing a conventional alloy steel pipe for a boiler / heat exchanger. In the drawing, reference numeral 7 denotes an outer diameter of 174 mm manufactured from the above STBA22 steel.
It is a hollow billet with an inner diameter of 31 mm and a length of 700 mm.

【0070】このビレットを1200℃に加熱した後、押出
比20で熱間押出し加工して外径48mm×内径28mm×長さ12
m の単層鋼管を製造した。
After heating this billet to 1200 ° C., it was hot-extruded at an extrusion ratio of 20 to obtain an outer diameter of 48 mm × inner diameter of 28 mm × length of 12 mm.
m was produced.

【0071】次いで930 ℃×20分で焼ならし処理し、68
0 ℃×30分で焼戻し処理した後、冷間で曲げ半径2Dで
曲管加工を行い、この鋼管を分解アンモニアガス中で53
0 ℃×40時間の窒化処理により、表面を窒化した。その
後、曲管部の表層部からサンプルを切り出して本発明例
1と同じ評価試験を実施した。
Next, normalizing treatment was performed at 930 ° C. for 20 minutes,
After tempering at 0 ° C. for 30 minutes, the steel pipe is bent in a cold at a bending radius of 2D.
The surface was nitrided by a nitriding treatment at 0 ° C. × 40 hours. Thereafter, a sample was cut out from the surface layer portion of the curved tube portion, and the same evaluation test as in Example 1 of the present invention was performed.

【0072】これらの試験結果を表1に併せて示す。The results of these tests are also shown in Table 1.

【0073】[0073]

【表1(1)】 [Table 1 (1)]

【0074】[0074]

【表1(2)】 [Table 1 (2)]

【0075】[0075]

【表2】 [Table 2]

【0076】表1から明らかなように、本発明で定める
条件で製造された複層鋼管は、優れた耐エロージョン性
を有するものである。
As is clear from Table 1, the multilayer steel pipe manufactured under the conditions specified in the present invention has excellent erosion resistance.

【0077】[0077]

【発明の効果】本発明のボイラ用耐摩耗複層鋼管は、石
炭火力発電ボイラ用鋼管に要求される耐エロージョン
性、伝熱効率および施工性に優れたものであり、その製
造方法も通常の製造工程で実施できるものである。
The wear-resistant multi-layer steel pipe for a boiler according to the present invention is excellent in erosion resistance, heat transfer efficiency and workability required for a steel pipe for a coal-fired power generation boiler. It can be implemented in the process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】析出硬化型窒化用鋼粉末を用いる場合の中空複
合ビレットを例示する縦断面図である。
FIG. 1 is a longitudinal sectional view illustrating a hollow composite billet when a precipitation hardening type steel powder for nitriding is used.

【図2】析出硬化型窒化用鋼の溶製材から製造された鋼
管を用いる場合の、冷間圧入−密封法で作製された中空
複合ビレットを例示する縦断面図である。
FIG. 2 is a longitudinal sectional view illustrating a hollow composite billet manufactured by a cold press-sealing method when using a steel pipe manufactured from an ingot of precipitation hardening type steel for nitriding.

【図3】析出硬化型窒化用鋼の溶製材から製造された鋼
管を用いる場合の、挿入−密封−脱気法で作製された中
空複合ビレットを例示する縦断面図である。
FIG. 3 is a longitudinal sectional view illustrating a hollow composite billet manufactured by an insertion-sealing-degassing method when using a steel pipe manufactured from an ingot of precipitation hardening type steel for nitriding.

【図4】通常のボイラ・熱交換器用合金鋼管の製造に用
いるビレットを例示する縦断面図である。
FIG. 4 is a vertical cross-sectional view illustrating a billet used for manufacturing an alloy steel pipe for a normal boiler / heat exchanger.

【符号の説明】 1;内層鋼管、2:低炭素鋼円筒、3:析出硬化型窒化
用鋼粉末、4、4′:炭素鋼円盤部材、 5:析出
硬化型窒化用鋼溶製材鋼管、6:脱気管、 7:通常の
中空ビレット
[Explanation of Signs] 1; inner layer steel pipe, 2: low carbon steel cylinder, 3: precipitation hardening type steel powder for nitriding, 4, 4 ': carbon steel disk member, 5: precipitation hardening type steel pipe for nitriding steel, 6 : Deaeration tube, 7: Normal hollow billet

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内層がボイラ・熱交換器用鋼管であり、外
層が重量%で、C:0.1〜1.2 %、Si:0.1〜1.5 %、Mn:
0.1〜1.5 %、Cr:6〜20%、Mo:0.1〜10%、V:0.1〜
4%、Nb:0.1〜3%およびAl:0.1〜3%を含有し、残部
がFeおよび不可避的不純物からなり、不純物中のPは0.
01%以下、Sは0.01%以下の析出硬化型窒化用鋼を窒化
処理した鋼管であることを特徴とするボイラ用耐摩耗複
層鋼管。
1. The inner layer is a steel tube for a boiler / heat exchanger, and the outer layer is in weight%, C: 0.1-1.2%, Si: 0.1-1.5%, Mn:
0.1 to 1.5%, Cr: 6 to 20%, Mo: 0.1 to 10%, V: 0.1 to
4%, Nb: 0.1-3% and Al: 0.1-3%, the balance being Fe and unavoidable impurities.
A wear-resistant multi-layer steel pipe for boilers, characterized in that the pipe is a steel pipe obtained by nitriding a precipitation hardening type steel for nitriding of 0.01% or less and S of 0.01% or less.
【請求項2】内層がボイラ・熱交換器用鋼管であり、外
層が重量%で、C:0.1〜1.2 %、Si:0.1〜1.5 %、Mn:
0.1〜1.5 %、Cr:6〜20%、Mo:0.1〜10%、V:0.1〜
4%、Nb:0.1〜3%およびAl:0.1〜3%を含有し、さら
にCu:2%以下、Ni:4%以下、W:4%以下、Ti:3
%以下、Zr:1%以下およびTa:1%以下のうちの1種
以上を含有し、残部がFeおよび不可避的不純物からな
り、不純物中のPは0.01%以下、Sは0.01%以下の析出
硬化型窒化用鋼を窒化処理した鋼管であることを特徴と
するボイラ用耐摩耗複層鋼管。
2. The inner layer is a steel tube for a boiler / heat exchanger, and the outer layer is in weight%, C: 0.1-1.2%, Si: 0.1-1.5%, Mn:
0.1 to 1.5%, Cr: 6 to 20%, Mo: 0.1 to 10%, V: 0.1 to
4%, Nb: 0.1-3% and Al: 0.1-3%, Cu: 2% or less, Ni: 4% or less, W: 4% or less, Ti: 3
% Or less, Zr: 1% or less and Ta: 1% or less, with the balance being Fe and unavoidable impurities, where P is 0.01% or less and S is 0.01% or less. A wear-resistant multi-layer steel pipe for a boiler, which is a steel pipe obtained by nitriding hardening type steel for nitriding.
【請求項3】ボイラ・熱交換器用鋼管と、この鋼管の外
側に請求項1または請求項2記載の化学組成を有する析
出硬化型窒化用鋼から製造された鋼管を配置して中空複
合ビレットを組み立て、この複合ビレットを熱間押出し
加工してクラッド鋼管を製造し、次いでボイラ・熱交換
器用鋼管に対する焼ならし処理を行った後焼戻し処理を
施し、さらに窒化処理を施して外側の析出硬化型窒化用
鋼管に表面硬化層を形成させることを特徴とするボイラ
用耐摩耗複層鋼管の製造方法。
3. A hollow composite billet comprising a steel pipe for boiler / heat exchanger and a steel pipe made of precipitation hardening type nitriding steel having the chemical composition according to claim 1 or 2 disposed outside said steel pipe. Assembling, hot extruding this composite billet to produce clad steel pipes, then normalizing the steel pipes for boilers and heat exchangers, then performing tempering, and then nitriding to form the outer precipitation hardening type A method for producing a wear-resistant multi-layer steel pipe for a boiler, comprising forming a surface hardened layer on a steel pipe for nitriding.
【請求項4】ボイラ・熱交換器用鋼管の外側に薄肉の金
属円筒を同心に並べて、鋼管と円筒の片側を円盤部材で
固定して鋼管と円筒で形成されたカプセル管とし、この
カプセル管の環状の隙間に、請求項1または請求項2記
載の化学組成を有する析出硬化型窒化用鋼粉末を充填し
た後、カプセル管の開放されている端部を第二の円盤部
材で密封して中空複合ビレットを組み立て、この複合ビ
レットを熱間押出し加工してクラッド鋼管を製造し、次
いでボイラ・熱交換器用鋼管に対する焼ならし処理を行
った後焼戻し処理を施し、さらに窒化処理を施して外側
の析出硬化型窒化用鋼管に表面硬化層を形成させること
を特徴とするボイラ用耐摩耗複層鋼管の製造方法。
4. A thin-walled metal cylinder is arranged concentrically outside a steel pipe for a boiler / heat exchanger, and one side of the steel pipe and the cylinder is fixed with a disk member to form a capsule pipe formed of a steel pipe and a cylinder. After filling the annular gap with the precipitation hardening type steel powder for nitriding having the chemical composition according to claim 1 or 2, the open end of the capsule tube is sealed with a second disk member and hollow. Assembling the composite billet, hot extruding the composite billet to produce a clad steel pipe, then performing a normalizing process on the steel tube for a boiler / heat exchanger, performing a tempering process, further performing a nitriding process, and performing an outer nitriding process. A method for producing a wear-resistant multi-layer steel pipe for a boiler, comprising forming a surface hardened layer on a precipitation hardening type steel pipe for nitriding.
【請求項5】請求項3または請求項4記載の製造方法に
おいて、中空複合ビレットを熱間押出し加工してクラッ
ド鋼管を製造し、次いで曲げ加工を施した後、ボイラ・
熱交換器用鋼管に対する焼ならし処理を行った後焼戻し
処理を施し、、さらに窒化処理を施して外側の析出硬化
型窒化用鋼管に表面硬化層を形成させることを特徴とす
るボイラ用耐摩耗複層鋼管の製造方法。
5. The method according to claim 3, wherein the hollow composite billet is hot-extruded to produce a clad steel pipe, and then subjected to a bending process.
A heat-resistant steel pipe for a heat exchanger, which is subjected to a normalizing treatment, then to a tempering treatment, and further to a nitriding treatment to form a hardened layer on the outer precipitation hardening type steel pipe for nitriding. A method for manufacturing a layered steel pipe.
JP23117793A 1993-09-17 1993-09-17 Wear resistant multi-layer steel pipe for boiler and method for producing the same Expired - Lifetime JP2817587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23117793A JP2817587B2 (en) 1993-09-17 1993-09-17 Wear resistant multi-layer steel pipe for boiler and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23117793A JP2817587B2 (en) 1993-09-17 1993-09-17 Wear resistant multi-layer steel pipe for boiler and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0790540A JPH0790540A (en) 1995-04-04
JP2817587B2 true JP2817587B2 (en) 1998-10-30

Family

ID=16919528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23117793A Expired - Lifetime JP2817587B2 (en) 1993-09-17 1993-09-17 Wear resistant multi-layer steel pipe for boiler and method for producing the same

Country Status (1)

Country Link
JP (1) JP2817587B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT407648B (en) * 1999-05-10 2001-05-25 Boehler Edelstahl METALLIC MATERIAL WITH HIGH HARDNESS, HIGH WEAR RESISTANCE AND HIGH TOUGHNESS
JP6319121B2 (en) * 2015-01-29 2018-05-09 セイコーエプソン株式会社 Method for producing metal powder for powder metallurgy, compound, granulated powder and sintered body
KR20230106174A (en) 2020-11-13 2023-07-12 닛폰세이테츠 가부시키가이샤 Double pipe and welded joint
JP7400771B2 (en) * 2021-05-20 2023-12-19 Jfeスチール株式会社 Hot rolling roll outer layer material and hot rolling composite roll

Also Published As

Publication number Publication date
JPH0790540A (en) 1995-04-04

Similar Documents

Publication Publication Date Title
US10272497B2 (en) Cladded articles and methods of making the same
EP0834580B1 (en) Alloy having high corrosion resistance in environment of high corrosiveness, steel pipe of the same alloy and method of manufacturing the same steel pipe
US4016008A (en) Clad metal tubes
EP3558555B1 (en) A method for manufacturing a composite tube
EP0388968A2 (en) Method of producing clad metals
JP2833437B2 (en) Wear resistant multi-layer steel pipe for boiler and method for producing the same
JP2733016B2 (en) Liquid phase diffusion bonding alloy foil for heat resistant materials that can be bonded in oxidizing atmosphere
JP2817587B2 (en) Wear resistant multi-layer steel pipe for boiler and method for producing the same
US5403670A (en) Compound sleeve roll and method for producing same comprising chamfered axial ends
JP3222307B2 (en) Alloy and multi-layer steel pipe having corrosion resistance in an environment in which a fuel containing V, Na, S, Cl is burned
JPH0713243B2 (en) Method for producing highly corrosion resistant Ni-based alloy tube
JPH05263194A (en) Wear resistant double-layered steel tube for boiler and its manufacture
JPH03204106A (en) Plug for manufacturing hot seamless tube
JPH0741911A (en) Wear resistant double-layered steel for boiler tube and manufacture thereof
JP2707852B2 (en) Manufacturing method of double metal tube
JPH05263195A (en) Wear resistant double-layered steel tube for coal boiler and its manufacture
JPH03193204A (en) Plug for manufacturing hot seamless tube
US20190022801A1 (en) Method of making a corrosion resistant tube
JPH02203092A (en) Double layer steel pipe having corrosion resistance in environment burning fuel containing v, na, s, cl
JP2004167503A (en) Composite rolling roll made of cemented carbide
AU622458B2 (en) Extruder mandrel and process for its manufacture
JPH02247302A (en) Manufacture of titanium clad steel tube
JP2001107109A (en) Manufacture of composite-layered tube, composite- layered tube obtained thereby, and die used therefor
JP4320699B2 (en) Composite roll for rolling
JPS6213280A (en) High hard material joining type tool