JP4320699B2 - Composite roll for rolling - Google Patents
Composite roll for rolling Download PDFInfo
- Publication number
- JP4320699B2 JP4320699B2 JP2002301010A JP2002301010A JP4320699B2 JP 4320699 B2 JP4320699 B2 JP 4320699B2 JP 2002301010 A JP2002301010 A JP 2002301010A JP 2002301010 A JP2002301010 A JP 2002301010A JP 4320699 B2 JP4320699 B2 JP 4320699B2
- Authority
- JP
- Japan
- Prior art keywords
- roll
- cemented carbide
- rolling
- inner layer
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、靭性に優れる鋼系または鉄系材料からなる内層の外周に、高硬度の超硬合金からなる外層を形成した圧延用複合ロールに関する。本発明は、特に圧延中にロール温度が上昇する用途に用いられる熱間圧延用ロール等に好適なものである。
【0002】
【従来の技術】
熱間圧延においては、肌品質の向上、耐摩耗性の向上の要求から、従来はダクタイル鋳鉄、グレン系鋳鉄、チルド系鋳鉄ロールが広く用いられてきたが、近年は高品質な圧延用ロールの使用が進んでいる。特に耐摩耗性の要求が特に強い分野では、ハイス系ロールが用いられている。
【0003】
さらに最近では、ハイス系ロールなどに比べて耐摩耗性が格段に優れる超硬合金を用いたロールが提案されている。超硬合金は公知のごとく、WCをCo、Ni、Feなどの金属元素で結合した焼結合金であり、WCの他にTi、Ta、Nbなどの炭化物を含有することもしばしばある。
【0004】
例えば、特公昭58−39906号には、WC−Co−Ni−CrのWC系超硬合金で構成した線材圧延用ロールが記載されている。この線材圧延用ロールは、超硬合金単体を焼結した小型のスリーブロールであり、靭性に優れた鋼製のロール軸材に0.1/1000程度の焼嵌め率で嵌合し、そのスリーブロールの側面を固定リング、スぺーサーリングなどにより押圧固定して機械的に組立てたものである。この種の超硬合金製スリーブロールの寸法は、外径が100〜500mm、回転軸方向の長さが10〜300mm程度の比較的短尺なものである。
【0005】
このように超硬合金製スリーブをロール軸材に嵌合したロールの場合、固定リング、スぺーサーリング、皿バネ、ナットなど多くの部材が必要で組立て構造が複雑であり、かつ高い組立て精度を要求されるので組立てに係わる工数や費用がかかるという問題がある。また、ロール胴部の長さに対して、超硬合金の占める部分つまり圧延に使用できる部分が半分以下であり効率的でない問題がある。
【0006】
さらに、超硬合金は熱伝導率が高いため、圧延使用時に超硬合金の温度が上昇しやすく、その熱が鋼製のロール軸材に伝わりやすく、ロール軸材が大きく膨張する。そこで、超硬合金の熱膨張係数は鋼より小さいので、超硬合金製スリーブには半径方向および軸方向に引張り応力が付与される。焼嵌め時の締め代が大きい場合、半径方向の引張り応力が高くなり過ぎると、超硬合金製スリーブの内面から割れを引き起こすおそれがある。また、逆にこのような割れを懸念するあまり焼嵌め時の締め代が小さい場合、圧延中に超硬合金製スリーブが滑るおそれがある。
【0007】
また、超硬合金単体では、焼結時に自重の影響により成形体に大きな変形が生じやすいため大型長尺のスリーブロールが製造できない問題がある。
【0008】
このような組立式超硬ロールの欠点を克服するため、例えば特開平10−8212号には超硬合金と鋼材を金属的に接合した複合ロールが提案されている。これは鋼材からなる内層を形成するスリーブの外周に、周期律表のIVa〜VIa族元素の炭化物、窒化物および炭窒化物の硬質粒子の少なくとも1種または2種以上を60〜90重量%と、残部実質的にFe、Ni、Co、Cr、Mo及びWの少なくとも1種または2種以上の金属粉末とからなる混合粉末を焼結すると同時に拡散接合させた超硬合金製の外層を有し、外層表面に100MPa以上の円周方向の圧縮残留応力を付与した複合スリーブを、ロール軸材に嵌合固定したものである。また、特開平10−8213号には超硬合金と鋼製の中実軸材を金属的に接合した中実構造の複合ロールも提案されている。
【0009】
この種の超硬合金製複合ロールは、従来の組立式超硬ロールにおける固定リング、皿バネ、ナットなどが不要であり、ロール胴部長さの全表面を外層で構成するため圧延に使用できる部分を拡大できる利点を有する。
【0010】
【発明が解決しようとする課題】
しかしながら、外層を超硬合金、内層を鉄系あるいは鋼系の材料で構成した複合ロールの場合、内層が外層より熱膨張係数が大きいため、すなわち、内層の熱膨張係数が10〜12×10−6/℃、外層の熱膨張係数が5〜8×10−6/℃であるため、熱間圧延時等の圧延中のロール温度上昇により、外層の表面に引張応力が作用する。これを防止するため、ロールの外層表面に圧縮の残留応力を付与することもできるが、ロール温度が高い場合には、熱応力の方が大きくなり、合計の応力が引張になることもある。ロール表面に引張応力が作用した状態で圧延すると、圧延時の熱衝撃により、容易に表面にクラックが発生し進展する。外層を形成する超硬合金は、比較的靭性が低いので、表面にクラックが発生すると進展しやすく、ロールが割損することがある。
【0011】
したがって、本発明は、ロールの外層を耐摩耗性に優れた超硬合金で形成するとともに、圧延中にロール温度が上昇しても、内層が熱膨張することによる外層の引張応力の発生を抑えて、ロール表面にクラックが発生することを防止した圧延用複合ロールを提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明の圧延用複合ロールは、重量比でCを0.2%以上0.7%以下、Niを20%以上50%未満含む鋼系材料からなる内層の外周に超硬合金からなる外層が接合してなり、内層の20〜200℃間の平均線熱膨張係数が、8×10−6/℃以下であることを特徴とする。また、外層と内層の間に超硬合金等のサーメット系合金または金属で形成された中間層を少なくとも1層以上介在させることが望ましい。
【0013】
【作用】
外層を超硬合金、内層を鉄系あるいは鋼系の材料で構成した複合ロールにおいて、内層に外層の超硬合金と同等レベル以下の熱膨張係数を有する低熱膨張材料を用いることにより、圧延中温度上昇時にも、内層がより膨張することによる外層の引張応力の発生を防止することができる。
【0014】
このような低熱膨張係数を得るためには、内層は重量比でNiを20%以上50%未満含有する鋼系合金を使用することが有効である。さらに、超硬合金の外層と内層との接合界面において、超硬合金からのCの拡散移動を抑制し、良好な接合境界を得るためには、内層は重量比でCを0.2%以上0.7%以下含有することが望ましい。
【0015】
また、超硬合金からなる外層と、鋼系または鉄系材料からなる内層との間に超硬合金または金属で形成された中間層を少なくとも1層以上介在させることにより、外層と内層との接合強度を高められるので好ましい。この中間層は、その組成において、金属系のバインダー相の重量比率が30%以上のサーメット系材質であることがより望ましい。
【0016】
本発明の複合ロールの製造方法として、鋼系または鉄系材料からなる内層を用いて、真空焼結、加圧焼結ないしは熱間静水圧プレス(HIP)法により超硬合金からなる外層を接合させる。ロールの構成は、中実の複合ロールでもよく、複合スリーブロールを鋼等の軸材に焼嵌めて組み立てたものでも良い。
【0017】
【発明の実施の形態】
(実施例1)
まず、外層として、外径350mm、内径300mm、長さ600mmであり、組成がWC85重量%、Co15重量%の超硬合金製の焼結体からなる中空スリーブを作製した。次いで、外径355mm、長さ650mmの鋼で構成されるHIP缶の中央に、外径290mm、長さ600mmの表1に示す組成の低熱膨張材の内層を配置し、内層の周りに前記中空スリーブを挿入した。なお、表1において、内層の化学組成(重量%)とともに、その内層の20〜200℃間の平均線熱膨張係数(×10−6/℃)を示す。
【0018】
次いで、内層の外面と中空スリーブの外層の内面との間に形成された空隙に、中間層として重量比で平均粒径5μmのWC粉末30%、平均粒径1μmのCo粉末70%の混合粉末を充填した。その後、HIP缶を鋼の蓋で溶接密封した後、700℃にて真空ポンプで脱気処理を行なった。HIP缶にリークが生じていないことを確認した後、1250℃、1000気圧にてHIP処理を行なった。冷却後、HIP缶を加工除去し、超音波探傷検査にて、外層、中間層、内層の接合が健全であることを確認した。
【0019】
このようにして得られた超硬合金製複合ロールを、外径330mm、全長450mmに機械加工し、シャフトに焼き嵌めにより固定し、本発明例1の熱間圧延用ワークロールを作製した。
【0020】
(比較例1)
また、比較例として、外層にWC85重量%、Co15重量%の超硬合金製の焼結体からなる中空スリーブ、内層に表1に示す組成の合金鋼を用いて他は実施例1同様に比較例1の熱間圧延機用ワークロールを作製した。
【0021】
これらの本発明例および比較例の圧延機用ワークロールを平鋼用熱間圧延機に組み込み、普通鋼材の実機圧延を行なった。表2にこれらの結果を示す。
【0022】
【表1】
【0023】
【表2】
【0024】
また、他形態の方法で、本発明の圧延用複合ロールを製造した例を以下に説明する。
【0025】
(実施例2)
外径130mm、長さ2000mmの鋼で構成されるHIP缶に、外径80mm、長さ1900mmの内層となる表3に示す組成の中実の低熱膨張材料を設置し、その外側にWC85重量%、Co15重量%の超硬合金製の焼結体からなる外径125mm、長さ1950mm、内径90mmのスリーブ形状の外層を設置し、内層の外面と外層の内面との間に形成された空隙に、中間層として重量比で平均粒径5μmのWC粉末30%、平均粒径1μmのCo粉末70%の混合粉末を充填した。HIP缶を鋼の蓋で溶接密封した後、500℃にて真空ポンプで脱気処理を行なった。HIP缶にリークが生じていないことを確認した後、1250℃、1200気圧にてHIP処理を行なった。冷却後HIP缶を加工除去して本発明例2の超硬合金製複合ロールを作製した。なお、表3において、内層の化学組成(重量%)とともに、その内層の20〜200℃間の平均線熱膨張係数(×10−6/℃)を示す。
【0026】
【表3】
【0027】
本発明例2の圧延機用ワークロールを熱間圧延機に組み込み、普通鋼材の実機圧延を行なった結果、ロール表面にクラックは発生せず良好な圧延を行なうことができた。
【0028】
【発明の効果】
本発明によれば、超硬合金製の複合ロールの内層に低熱膨張材を用いることにより、圧延時の温度上昇時にも、内層の熱膨張による引張応力の発生を抑えることができ、圧延の熱衝撃による表面からのクラックを防止することが可能となる。この技術により、熱間圧延を始め、ロール温度が上昇する圧延用途に於いても信頼性の高い超硬複合ロールの供給が可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composite roll for rolling in which an outer layer made of a cemented carbide with high hardness is formed on the outer periphery of an inner layer made of a steel-based or iron-based material having excellent toughness. The present invention is particularly suitable for hot rolling rolls used for applications in which the roll temperature rises during rolling.
[0002]
[Prior art]
In hot rolling, ductile cast iron, glen cast iron, and chilled cast iron rolls have been widely used in the past due to demands for improved skin quality and wear resistance. Use is progressing. High-speed rolls are used particularly in fields where the requirement for wear resistance is particularly strong.
[0003]
Furthermore, recently, a roll using a cemented carbide which has much higher wear resistance than a high speed roll has been proposed. As is well known, cemented carbide is a sintered alloy in which WC is bonded with a metal element such as Co, Ni, and Fe, and often contains carbides such as Ti, Ta, and Nb in addition to WC.
[0004]
For example, Japanese Examined Patent Publication No. 58-39906 describes a wire-rolling roll made of a WC-Co-Ni-Cr WC cemented carbide. This wire rolling roll is a small sleeve roll obtained by sintering a cemented carbide single body, and is fitted to a steel roll shaft material with excellent toughness at a shrinkage fit of about 0.1 / 1000. The roll side is pressed and fixed by a fixing ring, a spacer ring or the like, and mechanically assembled. The size of this kind of cemented carbide sleeve roll is relatively short with an outer diameter of 100 to 500 mm and a length in the rotation axis direction of about 10 to 300 mm.
[0005]
In the case of a roll in which a cemented carbide sleeve is fitted to the roll shaft material in this way, many members such as a fixing ring, a spacer ring, a disc spring, and a nut are required, the assembly structure is complicated, and high assembly accuracy is achieved. Since this is required, there is a problem that man-hours and costs for assembly are required. In addition, the portion occupied by the cemented carbide, that is, the portion that can be used for rolling is less than half of the length of the roll body, which is not efficient.
[0006]
Furthermore, since the cemented carbide has a high thermal conductivity, the temperature of the cemented carbide is likely to rise during rolling, the heat is easily transferred to the steel roll shaft material, and the roll shaft material expands greatly. Therefore, since the thermal expansion coefficient of cemented carbide is smaller than that of steel, tensile stress is applied to the cemented carbide sleeve in the radial and axial directions. When the tightening allowance at the time of shrink fitting is large, if the tensile stress in the radial direction becomes too high, there is a risk of causing cracks from the inner surface of the cemented carbide sleeve. On the other hand, if the tightening allowance at the time of shrink fitting is so small that there is a concern about such cracking, the cemented carbide sleeve may slip during rolling.
[0007]
In addition, the cemented carbide alone has a problem that large and long sleeve rolls cannot be manufactured because large deformation is likely to occur in the formed body due to the influence of its own weight during sintering.
[0008]
In order to overcome the drawbacks of such an assembled cemented carbide roll, for example, Japanese Patent Application Laid-Open No. 10-8212 proposes a composite roll in which a cemented carbide alloy and a steel material are joined metallically. In the outer periphery of the sleeve forming the inner layer made of steel material, 60 to 90% by weight of at least one or more of carbides, nitrides, and carbonitrides of IVa to VIa group elements of the periodic table is used. A cemented carbide outer layer formed by sintering and simultaneously bonding a mixed powder composed of at least one or more metal powders of Fe, Ni, Co, Cr, Mo, and W. A composite sleeve having a circumferential compressive residual stress of 100 MPa or more applied to the outer layer surface is fitted and fixed to a roll shaft material. Japanese Laid-Open Patent Publication No. 10-8213 proposes a composite roll having a solid structure in which a cemented carbide and a steel solid shaft material are metallically joined.
[0009]
This kind of cemented carbide composite roll does not require a fixing ring, disc spring, nut, etc. in the conventional assembling type cemented carbide roll, and the part that can be used for rolling because the entire surface of the roll body length is composed of an outer layer. Has the advantage that can be expanded.
[0010]
[Problems to be solved by the invention]
However, in the case of a composite roll in which the outer layer is made of a cemented carbide and the inner layer is made of an iron-based or steel-based material, the inner layer has a larger thermal expansion coefficient than the outer layer, that is, the inner layer has a thermal expansion coefficient of 10 to 12 × 10 − Since the thermal expansion coefficient of 6 / ° C. and the outer layer is 5 to 8 × 10 −6 / ° C., tensile stress acts on the surface of the outer layer due to an increase in roll temperature during rolling such as during hot rolling. In order to prevent this, compressive residual stress can be applied to the outer layer surface of the roll. However, when the roll temperature is high, the thermal stress becomes larger, and the total stress may become tensile. When rolling is performed in a state where tensile stress is applied to the roll surface, cracks are easily generated and propagated due to thermal shock during rolling. Since the cemented carbide forming the outer layer has relatively low toughness, it tends to develop when cracks occur on the surface, and the roll may break.
[0011]
Therefore, according to the present invention, the outer layer of the roll is formed of a cemented carbide having excellent wear resistance, and even if the roll temperature rises during rolling, the occurrence of tensile stress in the outer layer due to the thermal expansion of the inner layer is suppressed. An object of the present invention is to provide a rolling composite roll that prevents cracks from being generated on the roll surface.
[0012]
[Means for Solving the Problems]
The rolling composite roll of the present invention has an outer layer made of a cemented carbide on the outer periphery of an inner layer made of a steel-based material containing 0.2% to 0.7% C by weight and 20% to less than 50% Ni. The average linear thermal expansion coefficient between 20 to 200 ° C. of the inner layer is 8 × 10 −6 / ° C. or less. In addition, it is desirable that at least one intermediate layer formed of a cermet alloy such as cemented carbide or metal is interposed between the outer layer and the inner layer.
[0013]
[Action]
In a composite roll composed of a cemented carbide outer layer and an iron or steel material in the inner layer, by using a low thermal expansion material having a thermal expansion coefficient equal to or lower than that of the outer cemented carbide in the inner layer, the temperature during rolling Even when it rises, it is possible to prevent generation of tensile stress in the outer layer due to further expansion of the inner layer.
[0014]
In order to obtain such a low thermal expansion coefficient, it is effective to use a steel alloy containing Ni in a weight ratio of 20% or more and less than 50%. Furthermore, in order to suppress the diffusion movement of C from the cemented carbide at the joining interface between the outer layer and the inner layer of the cemented carbide, and to obtain a good joining boundary, the inner layer has a weight ratio of C of 0.2% or more. It is desirable to contain 0.7% or less.
[0015]
Further, by joining at least one intermediate layer formed of cemented carbide or metal between the outer layer made of cemented carbide and the inner layer made of steel or iron-based material, the outer layer and the inner layer are joined. It is preferable because the strength can be increased. The intermediate layer is more preferably made of a cermet material having a composition in which the weight ratio of the metal-based binder phase is 30% or more.
[0016]
As a manufacturing method of the composite roll of the present invention, an outer layer made of cemented carbide is joined by vacuum sintering, pressure sintering or hot isostatic pressing (HIP) method using an inner layer made of steel or iron-based material. Let The roll configuration may be a solid composite roll or an assembly in which the composite sleeve roll is shrink-fitted onto a shaft such as steel.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Example 1
First, as an outer layer, a hollow sleeve made of a cemented carbide sintered body having an outer diameter of 350 mm, an inner diameter of 300 mm, and a length of 600 mm and a composition of WC 85 wt% and Co 15 wt% was manufactured. Next, an inner layer of a low thermal expansion material having the composition shown in Table 1 having an outer diameter of 290 mm and a length of 600 mm is arranged in the center of the HIP can made of steel having an outer diameter of 355 mm and a length of 650 mm, and the hollow is formed around the inner layer. A sleeve was inserted. In addition, in Table 1, the average linear thermal expansion coefficient (* 10 < -6 > / degreeC) between 20-200 degreeC of the inner layer is shown with the chemical composition (weight%) of an inner layer.
[0018]
Next, in the void formed between the outer surface of the inner layer and the inner surface of the outer layer of the hollow sleeve, a mixed powder of 30% WC powder having an average particle diameter of 5 μm and 70% Co powder having an average particle diameter of 1 μm as an intermediate layer. Filled. Thereafter, the HIP can was hermetically sealed with a steel lid, and then deaerated with a vacuum pump at 700 ° C. After confirming that no leak occurred in the HIP can, the HIP treatment was performed at 1250 ° C. and 1000 atm. After cooling, the HIP can was processed and removed, and it was confirmed by ultrasonic flaw detection that the joining of the outer layer, the intermediate layer, and the inner layer was sound.
[0019]
The composite roll made of cemented carbide thus obtained was machined to an outer diameter of 330 mm and a total length of 450 mm, and fixed to the shaft by shrink fitting to produce a work roll for hot rolling of Example 1 of the present invention.
[0020]
(Comparative Example 1)
Further, as a comparative example, a hollow sleeve made of a cemented carbide made of cemented carbide of WC 85 wt% and Co 15 wt% is used for the outer layer, and an alloy steel having the composition shown in Table 1 is used for the inner layer. A work roll for a hot rolling mill of Example 1 was produced.
[0021]
These work rolls for rolling mills according to the present invention and the comparative example were incorporated into a flat steel hot rolling mill, and ordinary steel was rolled. Table 2 shows these results.
[0022]
[Table 1]
[0023]
[Table 2]
[0024]
Moreover, the example which manufactured the composite roll for rolling of this invention with the method of another form is demonstrated below.
[0025]
(Example 2)
A HIP can made of steel with an outer diameter of 130 mm and a length of 2000 mm is provided with a solid low thermal expansion material having the composition shown in Table 3 as an inner layer with an outer diameter of 80 mm and a length of 1900 mm. A sleeve-shaped outer layer having an outer diameter of 125 mm, a length of 1950 mm, and an inner diameter of 90 mm made of a sintered body made of cemented carbide of Co 15 wt% is installed, and a gap formed between the outer surface of the inner layer and the inner surface of the outer layer As an intermediate layer, a mixed powder of 30% WC powder having an average particle diameter of 5 μm and 70% Co powder having an average particle diameter of 1 μm was filled in a weight ratio. The HIP can was hermetically sealed with a steel lid and then deaerated at 500 ° C. with a vacuum pump. After confirming that no leak occurred in the HIP can, the HIP treatment was performed at 1250 ° C. and 1200 atm. After cooling, the HIP can was processed and removed to produce a cemented carbide composite roll of Invention Example 2. In addition, in Table 3, the average linear thermal expansion coefficient (x10 < -6 > / degreeC) between 20-200 degreeC of the inner layer is shown with the chemical composition (weight%) of an inner layer.
[0026]
[Table 3]
[0027]
As a result of incorporating the work roll for a rolling mill of Example 2 of the present invention into a hot rolling mill and performing actual rolling of the normal steel material, no cracks were generated on the roll surface, and good rolling could be performed.
[0028]
【The invention's effect】
According to the present invention, by using a low thermal expansion material for the inner layer of the composite roll made of cemented carbide, it is possible to suppress the occurrence of tensile stress due to the thermal expansion of the inner layer even when the temperature rises during rolling. It is possible to prevent cracks from the surface due to impact. With this technology, it is possible to supply a cemented carbide composite roll with high reliability even in rolling applications where the roll temperature rises, including hot rolling.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002301010A JP4320699B2 (en) | 2002-10-15 | 2002-10-15 | Composite roll for rolling |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002301010A JP4320699B2 (en) | 2002-10-15 | 2002-10-15 | Composite roll for rolling |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004136297A JP2004136297A (en) | 2004-05-13 |
JP4320699B2 true JP4320699B2 (en) | 2009-08-26 |
Family
ID=32449513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002301010A Expired - Fee Related JP4320699B2 (en) | 2002-10-15 | 2002-10-15 | Composite roll for rolling |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4320699B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104271275A (en) * | 2012-07-09 | 2015-01-07 | 新日铁住金株式会社 | Composite roll and rolling method |
-
2002
- 2002-10-15 JP JP2002301010A patent/JP4320699B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104271275A (en) * | 2012-07-09 | 2015-01-07 | 新日铁住金株式会社 | Composite roll and rolling method |
US9676015B2 (en) | 2012-07-09 | 2017-06-13 | Nippon Steel & Sumitomo Metal Corporation | Composite rolling mill roll and rolling method |
Also Published As
Publication number | Publication date |
---|---|
JP2004136297A (en) | 2004-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106163704B (en) | Composite roller | |
JP4200479B2 (en) | Cemented carbide roll for rolling | |
JP4538794B2 (en) | Cemented carbide roll for rolling | |
JP3690617B2 (en) | Cemented carbide composite roll | |
JP2005262321A (en) | Composite roll made of cemented carbide | |
JP4320699B2 (en) | Composite roll for rolling | |
JP4392652B2 (en) | Composite roll for rolling made of cemented carbide and method for producing the same | |
JP3944612B2 (en) | Roll for assembly type rolling | |
JP2004243341A (en) | Composite roll for rolling made of cemented carbide | |
JP2004167503A (en) | Composite rolling roll made of cemented carbide | |
JP4427786B2 (en) | Cemented carbide roll for sheet rolling | |
JP4221703B2 (en) | Cemented carbide roll composite roll manufacturing method and roll | |
JP4735950B2 (en) | Cemented carbide roll for rolling | |
JP2001087805A (en) | Composite sleeve made of sintered hard alloy | |
JP4392653B2 (en) | Cemented carbide roll for rolling | |
JP2002301506A (en) | Composite roll made of sintered hard alloy | |
JP3690618B2 (en) | Cemented carbide composite roll | |
JP3919082B2 (en) | Cemented carbide roll for rolling | |
JP6354504B2 (en) | Cemented carbide composite roll and manufacturing method thereof | |
JP4288633B2 (en) | Cemented carbide composite roll | |
JP2004066242A (en) | Composite roll made of sintered hard alloy | |
JP2004243399A (en) | Composite sleeve roll made of cemented carbide for rolling plate | |
JP6794416B2 (en) | Composite roll | |
JP4221700B2 (en) | Cemented carbide composite roll | |
JP2004237290A (en) | Method for manufacturing composite rolling roll made of cemented carbide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050920 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070914 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070921 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080829 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081024 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090508 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090521 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120612 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120612 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130612 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |