JP2004243341A - Composite roll for rolling made of cemented carbide - Google Patents

Composite roll for rolling made of cemented carbide Download PDF

Info

Publication number
JP2004243341A
JP2004243341A JP2003033266A JP2003033266A JP2004243341A JP 2004243341 A JP2004243341 A JP 2004243341A JP 2003033266 A JP2003033266 A JP 2003033266A JP 2003033266 A JP2003033266 A JP 2003033266A JP 2004243341 A JP2004243341 A JP 2004243341A
Authority
JP
Japan
Prior art keywords
cemented carbide
roll
intermediate layer
layer
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003033266A
Other languages
Japanese (ja)
Inventor
Toshiyuki Hattori
敏幸 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2003033266A priority Critical patent/JP2004243341A/en
Publication of JP2004243341A publication Critical patent/JP2004243341A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite roll for rolling made of a cemented carbide in which the outer layer of the roll is formed of the cemented carbide excellent in wear resistance, and at the same time, which is provided with the intermediate layer with high strength made of the cemented carbide with the low WC content, and which has high reliability in strength. <P>SOLUTION: The composite roll for rolling made of the cemented carbide has the following characteristics. The outer layer made of the cemented carbide is joined to the outer periphery of the inner layer made of a steel-based or an iron-based material via the intermediate layer. The intermediate layer is made of the cemented carbide formed by using WC raw material powder with the average particle size of ≤ 3 μm. The content of the WC particles of the intermediate layer is ≤ 70 % at the weight ratio. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、靭性に優れる鋼系または鉄系材料からなる内層の外周に、高硬度の超硬合金からなる外層を形成した圧延用複合ロールに関する。特に、高い接合強度が要求される板圧延用ロールに関する。
【0002】
【従来の技術】
圧延においては、肌品質の向上、耐摩耗性の向上の要求から、高硬度の材質が用いられる傾向があり、最も耐摩耗性が要求される用途においては、粉末金属系材料や硬質粒子を含有するサーメット系ロールも用いられている。その中でも超硬合金ロールは、優れた耐摩耗性、耐クラック性を有することから、仕上スタンドを中心として多く用いられている。
【0003】
例えば、特許文献1には、WC−Co−Ni−CrのWC系超硬合金で構成した線材圧延用ロールが記載されている。この線材圧延用ロールは、超硬合金単体を焼結した小型のスリーブロールであり、靭性に優れた鋼製のロール軸材に0.1/1000程度の焼嵌め率で嵌合し、そのスリーブロールの側面を固定リング、スペーサーリングなどにより押圧固定して機械的に組立てたものである。この種の超硬合金製スリーブロールの寸法は、外径が100〜500mm、回転軸方向の長さが10〜300mm程度の比較的短尺なものである。
【0004】
このように超硬合金製スリーブをロール軸材に嵌合したロールの場合、固定リング、スペーサーリング、皿バネ、ナットなど多くの部材が必要で組立て構造が複雑であり、かつ高い組立て精度を要求されるので組立てに係わる工数や費用がかかるという問題がある。また、ロール胴部の長さに対して、超硬合金の占める部分つまり圧延に使用できる部分が半分以下であり効率的でない問題がある。
【0005】
さらに、超硬合金は熱伝導率が高いため、圧延使用時に超硬合金の温度が上昇しやすく、その熱が鋼製のロール軸材に伝わりやすく、ロール軸材が大きく膨張する。そこで、超硬合金の熱膨張係数は鋼より小さいので、超硬合金製スリーブには半径方向および軸方向に引張り応力が付与される。焼嵌め時の締め代が大きい場合、半径方向の引張り応力が高くなり過ぎると、超硬合金製スリーブの内面から割れを引き起こすおそれがある。また、逆にこのような割れを懸念するあまり焼嵌め時の締め代が小さい場合、圧延中に超硬合金製スリーブが滑るおそれがある。
【0006】
このような組立て式超硬ロールの欠点を克服するため、例えば特許文献2には超硬合金と鋼材を金属的に接合した複合ロールが提案されている。これは鋼材からなる内層を形成するスリーブの外周に、周期律表のIVa〜VIa族元素の炭化物、窒化物および炭窒化物の硬質粒子の少なくとも1種または2種以上を60〜90重量%と、残部実質的にFe、Ni、Co、Cr、Mo及びWの少なくとも1種または2種以上の金属粉末とからなる混合粉末を焼結すると同時に拡散接合させた超硬合金製の外層を有し、外層表面に100MPa以上の円周方向の圧縮残留応力を付与した複合スリーブを、ロール軸材に嵌合固定したものである。また、特許文献3には超硬合金と鋼製の中実軸材を金属的に接合した中実構造の複合ロールも提案されている。
【0007】
この種の超硬合金製複合ロールは、従来の組立て式超硬ロールにおける固定リング、皿バネ、ナットなどが不要であり、ロール胴部長さの全表面を外層で構成するため圧延に使用できる部分を拡大できる利点を有する。
【0008】
【特許文献1】
特公昭58−39906号公報
【特許文献2】
特開平10−8212号公報
【特許文献3】
特開平10−8213号公報
【0009】
【発明が解決しようとする課題】
超硬合金製複合ロールは、靭性の高い内層と複合化した構造であるから、ロール軸材との締結に焼嵌めやキー止めを用いることが可能なため、板圧延用ロールを含めた各種ロールへの適用が可能である。
【0010】
しかし、軸材への焼嵌めによる焼嵌め応力や、圧延の負荷による繰り返し応力がロールに作用し、ロール強度設計上、超硬合金の外層と鋼系材料等の内層との境界の接合層の強度が最もロール破壊に対して影響を与える。特に、ロール表面からの割損を防ぐため、ロール表面に圧縮残留応力を付与している場合、外層と内層との境界部にはロール半径方向に引張成分の残留応力が作用しており、さらに境界からロールが破壊するおそれが高まる。
【0011】
このようなロール割損を防ぐため、境界部の接合強度の増加が必要となる。超硬合金と鉄系あるいは鋼系の材料を直接接合すると、炭素活量の差により、超硬合金層から鉄あるいは鋼層に炭素が拡散移動し、境界近傍の超硬層の炭素が欠乏し、η相と呼ばれる層が形成され、材料強度の低下が起こる。
【0012】
このようなη相を防止する方法として、超硬合金層と鉄あるいは鋼系材質の中間に、比較的微細なWC粒子で形成した超硬合金からなる中間層を介在させることが有効である。さらに望ましくはWC粒子の含有量が70%以下の超硬合金からなる中間層を介在させることが有効である。本発明は、このような低WC含有量の超硬合金からなる高強度の中間層を具備させ、強度的に信頼性の高い超硬合金製圧延用複合ロールを提供するものである。
【0013】
【課題を解決するための手段】
本発明の超硬合金製圧延用複合ロールは、鋼系または鉄系材料からなる内層の外周に超硬合金からなる外層が中間層を介して接合してなり、前記中間層は平均粒径が3μm以下のWC原料粉末を用いて形成した超硬合金からなることを特徴とする。
【0014】
また、前記本発明の超硬合金製圧延用複合ロールにおいて、中間層のWC粒子の含有量が重量比率で70%以下であることを特徴とする。また、中間層の厚みが1mm以上であることを特徴とする。さらにはロール軸方向中央部の外層表面においてロール表面と平行な方向の残留応力として圧縮残留応力が付与されていることを特徴とする。
【0015】
【作用】
超硬合金の外層と鉄系あるいは鋼系材料の内層との境界には、接合強度を高めるため、中間層として、通常の超硬合金より比較的WC粒子の含有量の少ない超硬合金を用いるのが有効である。この中間層の強度は、WC粒子の粒径にも依存しており、微細なWC粒子を用いることにより、中間層の強度を増大させ、この部分からのロール破壊を防止することも可能となる。
【0016】
また、本発明の複合ロールにおいては十分な中間層強度を確保するために、中間層のWC粒子の含有量を重量比率で70%以下にすることが好ましい。さらに、中間層の厚みが1mm以上とすることが望ましい。中間層は外層と内層との間に2層以上介在させてもよい。
【0017】
また、ロール軸方向中央部の外層(ロール胴部)の表面に、ロール表面に対して平行に圧縮残留応力を付与することにより、耐事故性を十分向上させ、かつ外層と内層との境界部から剥離し難くなるので望ましい。この圧縮応力は境界部および内層の強度面も考慮して100〜500MPaであることが望ましい。
【0018】
本発明の複合ロールの製造方法として、鋼系または鉄系材料からなる内層を用いて、真空焼結、加圧焼結ないしは熱間静水圧プレス(HIP)法により超硬合金からなる外層を接合させる。ロールの構成は、中実の複合ロールでもよく、複合スリーブロールを鋼等の軸材に焼嵌めて組み立てたものでも良い。
【0019】
【発明の実施の形態】
(実施例1)
まず、外層形成用の超硬合金原料粉末として、平均粒径が10μmのWC原料粉末、平均粒径が1μmの1種類のCo原料粉末を用意し、それぞれを重量%でWC原料粉末80%、Co原料粉末20%の割合で配合し、ボールミルで20時間湿式混合した後、乾燥し、外層形成用の超硬合金原料粉末とした。
【0020】
また、外層と内層の間に配置する中間層形成用の超硬合金原料粉末として、平均粒径が3μm、5μmの2種類のWC原料粉末、平均粒径が1μmのCo粉末を用意し、それぞれ重量%でWC原料粉末50%、Co原料粉末50%の割合で配合し、また別にWC原料粉末75%、Co原料粉末25%の割合で配合し、ボールミルで20時間湿式混合した後、乾燥し、中間層形成用の超硬合金原料粉末とした。
【0021】
前述の外層形成用の超硬合金原料粉末を用いて、外径300mm、内径240mm、長さ500mmの超硬合金製の仮焼結体からなる中空スリーブを作製した。
【0022】
また、内径φ310mm、長さ550mmのHIP缶の中央に、内層として、外径φ220mm、内径φ160mm、長さ500mmの中空円筒状のSCM440を配置した。そして、前記超硬合金製の中空スリーブを内層の周りに挿入した。
【0023】
次いで、内層の外面と中空スリーブの外層の内面との間に形成された空隙に、前記の中間層形成用の超硬合金原料粉末をそれぞれ充填した。その後、HIP缶を鋼の蓋で溶接密封した後、700℃にて真空ポンプで脱気処理を行なった。HIP缶にリークが生じていないことを確認した後、1350℃、1400気圧にてHIP処理を行なった。冷却後、HIP缶を加工除去し、超音波探傷検査にて、外層、中間層および内層の接合が健全であることを確認した。
【0024】
このようにして、中間層を形成するのに用いたWC原料粉末の平均粒径がそれぞれ異なる種類毎に同一仕様のロールを複数本づつ製造した。
【0025】
また、境界接合部の強度を測定した。この境界接合部の強度の測定は、ロール直径方向に、内層、中間層および外層を含む境界接合部の抗折試験片を切り出し、JIS R1601に準拠した抗折試験を行ない坑折強度(MPa)を測定した。また、外層のロール軸方向中央部に歪ゲージを貼り、破壊法により外層におけるロール円周方向の残留応力(MPa)を測定した。これらの結果を表1に示す。表1において、WC粒径は中間層に用いたWC原料粉末の平均粒径(μm)、WC含有量は中間層のWC粒子の含有量(重量%)、残留応力のマイナス符号は圧縮を表す。
【0026】
表1
No WC粒径 WC含有量 坑折強度 残留応力 圧延時の状況
1 3 50 1653 −205 良好
2 5 50 1140 −233 境界から割れ発生
3 5 75 721 −241 境界から割れ発生
【0027】
表1から、No.2およびNo.3のロールは圧延に供したところ、境界部に割れが発生した。No.1(本発明例)のロールは、境界部に割れは発生せず、良好な結果を得ることができた。
【0028】
(実施例2)
外径730mm、長さ2300mmの鋼で構成されるHIP缶に、外径480mm、内径300mm、長さ2500mmの中空円筒状の内層となる鍛鋼を設置し、この内層の周囲に内径490mm、厚み2mmの仕切りとなる鋼管を配置した。
【0029】
平均粒径が10μmのWC原料粉末、平均粒径が1μmのCo原料粉末を用意し、WC原料粉末85%、Co原料粉末15%の割合で配合し、ボールミルで20時間湿式混合した後、乾燥し、外層形成用の超硬合金原料粉末を作製し、これをHIP缶の内面と鋼管の外面との間の空隙に充填した。
【0030】
また、鋼管の内面と内層の外面との間の空隙に中間層となる平均粒径3μmのWC粉末30%、平均粒径1μmのCo粉末70%の混合粉末を充填した。充填後、仕切りの鋼管を引き抜きいた後、次いでHIP缶を鋼の蓋で溶接密封し、700℃にて真空ポンプで脱気処理を行なった。HIP缶にリークが生じていないことを確認した後、1300℃、1400気圧にてHIP処理を行なった。冷却後HIP缶を加工除去して超硬合金製複合スリーブロールを作製した。この複合スリーブロールの内径を加工した後、クロムモリブデン鋼の軸材に焼嵌め、本発明の冷間圧延用組立式ロールを完成した。
【0031】
実施例1同様に、ロール直径方向に、内層、中間層および外層を含む境界接合部の抗折試験片を切り出し、JIS R1601に準拠した抗折試験を行ない坑折強度(MPa)を測定した。また、ロール円周方向の残留応力(MPa)を測定した。結果、坑折強度は1780(MPa)、残留応力は−320(MPa)であり十分な特性値を得ることができた。
【0032】
【発明の効果】
本発明の超硬合金製圧延用複合ロールによれば、ロールの外層は耐摩耗性に優れるとともに、低WC含有量の超硬合金からなる高強度の中間層を具備させ、強度的に信頼性の高い超硬合金製圧延用ロールを得ることができる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a composite roll for rolling in which an outer layer made of a high-hardness cemented carbide is formed on the outer periphery of an inner layer made of a steel or iron-based material having excellent toughness. In particular, the present invention relates to a roll for plate rolling that requires high bonding strength.
[0002]
[Prior art]
In rolling, materials with high hardness tend to be used in order to improve skin quality and abrasion resistance.In applications requiring the highest abrasion resistance, powdered metal-based materials and hard particles are contained. Cermet type rolls are also used. Among them, cemented carbide rolls are often used mainly in finishing stands because of their excellent wear resistance and crack resistance.
[0003]
For example, Patent Literature 1 describes a roll for rolling a wire made of a WC cemented carbide of WC-Co-Ni-Cr. This roll for wire rod rolling is a small-sized sleeve roll obtained by sintering a cemented carbide alone, and is fitted to a steel roll shaft having excellent toughness at a shrink fitting rate of about 0.1 / 1000. The rolls are mechanically assembled by pressing and fixing the side surfaces of the rolls with a fixing ring, a spacer ring, or the like. The dimensions of this type of cemented carbide sleeve roll are relatively short with an outer diameter of 100 to 500 mm and a length in the direction of the rotation axis of about 10 to 300 mm.
[0004]
In the case of a roll in which a cemented carbide sleeve is fitted to a roll shaft as described above, many components such as a fixing ring, a spacer ring, a disc spring, and a nut are required, and the assembly structure is complicated, and high assembly accuracy is required. Therefore, there is a problem that man-hours and costs related to assembly are required. In addition, there is a problem that the portion occupied by the cemented carbide, that is, the portion usable for rolling is less than half of the length of the roll body, which is not efficient.
[0005]
Further, since the cemented carbide has a high thermal conductivity, the temperature of the cemented carbide tends to rise during rolling use, and the heat is easily transmitted to the steel roll shaft, and the roll shaft expands significantly. Therefore, since the thermal expansion coefficient of the cemented carbide is smaller than that of steel, a tensile stress is applied to the cemented carbide sleeve in the radial direction and the axial direction. In the case where the interference at the time of shrink fitting is large, if the tensile stress in the radial direction becomes too high, there is a possibility that a crack may be caused from the inner surface of the cemented carbide sleeve. On the other hand, when the interference at the time of shrink fitting is so small that there is a concern about such cracking, the cemented carbide sleeve may slip during rolling.
[0006]
In order to overcome the drawbacks of the assembling type super hard roll, for example, Patent Literature 2 proposes a composite roll in which a super hard alloy and a steel material are metallically joined. This means that at least one or two or more of hard particles of carbides, nitrides and carbonitrides of elements IVa to VIa of the periodic table are added to the outer periphery of the sleeve forming the inner layer made of steel at 60 to 90% by weight. And a cemented carbide outer layer formed by sintering a mixed powder consisting essentially of at least one or two or more metal powders of Fe, Ni, Co, Cr, Mo and W and simultaneously diffusion-bonding the mixed powder. A composite sleeve in which a circumferential compressive residual stress of 100 MPa or more is applied to the outer layer surface is fitted and fixed to a roll shaft. Patent Document 3 also proposes a composite roll having a solid structure in which a cemented carbide and a steel solid shaft are metallically joined.
[0007]
This kind of cemented carbide composite roll eliminates the need for fixing rings, disc springs, nuts, etc. in conventional assembling cemented carbide rolls, and can be used for rolling because the entire surface of the roll body length is composed of an outer layer. Has the advantage that it can be expanded.
[0008]
[Patent Document 1]
JP-B-58-39906 [Patent Document 2]
JP-A-10-8212 [Patent Document 3]
JP 10-8213 A
[Problems to be solved by the invention]
Since cemented carbide composite rolls have a structure that is composited with an inner layer with high toughness, shrink-fitting and keying can be used for fastening to the roll shaft. It can be applied to
[0010]
However, shrink-fit stress due to shrink-fitting to the shaft material and repetitive stress due to rolling load act on the roll, and due to roll strength design, the joint layer at the boundary between the outer layer of cemented carbide and the inner layer of steel-based material etc. Strength most affects roll breakage. In particular, when compressive residual stress is applied to the roll surface to prevent breakage from the roll surface, the residual stress of the tensile component acts in the roll radial direction at the boundary between the outer layer and the inner layer, The risk of the roll breaking from the boundary increases.
[0011]
In order to prevent such roll breakage, it is necessary to increase the bonding strength at the boundary. When a cemented carbide and an iron-based or steel-based material are directly joined, carbon diffuses and moves from the cemented carbide layer to the iron or steel layer due to the difference in carbon activity, and the carbon in the cemented carbide layer near the boundary becomes depleted. , Η phase is formed, and the material strength is reduced.
[0012]
As a method for preventing such η phase, it is effective to interpose an intermediate layer made of a cemented carbide formed of relatively fine WC particles between the cemented carbide layer and iron or steel-based material. More preferably, it is effective to interpose an intermediate layer made of a cemented carbide having a WC particle content of 70% or less. An object of the present invention is to provide a cemented carbide rolling composite roll having a high-strength intermediate layer made of a cemented carbide having a low WC content and having high strength and reliability.
[0013]
[Means for Solving the Problems]
The cemented carbide rolling composite roll of the present invention has an outer layer made of a cemented carbide joined to an outer periphery of an inner layer made of a steel or iron material via an intermediate layer, and the intermediate layer has an average particle size. It is characterized by being made of a cemented carbide formed using WC raw material powder of 3 μm or less.
[0014]
Further, in the composite roll for cemented carbide rolling according to the present invention, the content of the WC particles in the intermediate layer is 70% or less by weight. Further, the thickness of the intermediate layer is 1 mm or more. Further, a compressive residual stress is provided as a residual stress in a direction parallel to the roll surface on the outer layer surface at the center in the roll axis direction.
[0015]
[Action]
At the boundary between the outer layer of the cemented carbide and the inner layer of the iron-based or steel-based material, a cemented carbide having a relatively low content of WC particles as an ordinary cemented carbide is used as an intermediate layer in order to increase the bonding strength. Is effective. The strength of the intermediate layer also depends on the particle size of the WC particles, and by using fine WC particles, the strength of the intermediate layer can be increased and roll breakage from this portion can be prevented. .
[0016]
Further, in the composite roll of the present invention, in order to secure sufficient intermediate layer strength, the content of WC particles in the intermediate layer is preferably set to 70% by weight or less. Further, it is desirable that the thickness of the intermediate layer be 1 mm or more. Two or more intermediate layers may be interposed between the outer layer and the inner layer.
[0017]
In addition, by applying compressive residual stress to the surface of the outer layer (roll body) at the center in the axial direction of the roll in parallel with the roll surface, the accident resistance is sufficiently improved, and the boundary between the outer layer and the inner layer is provided. It is desirable because it is difficult to peel from the surface. This compressive stress is desirably 100 to 500 MPa in consideration of the strength of the boundary portion and the inner layer.
[0018]
As a method for producing the composite roll of the present invention, an outer layer made of a cemented carbide is joined by vacuum sintering, pressure sintering or hot isostatic pressing (HIP) using an inner layer made of a steel or iron material. Let it. The configuration of the roll may be a solid composite roll, or may be a composite sleeve roll assembled by shrink fitting a shaft material such as steel.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
(Example 1)
First, WC raw material powder having an average particle size of 10 μm and one type of Co raw material powder having an average particle size of 1 μm were prepared as the cemented carbide raw material powder for forming the outer layer. Co raw material powder was mixed at a ratio of 20%, wet-mixed in a ball mill for 20 hours, and then dried to obtain a cemented carbide raw material powder for forming an outer layer.
[0020]
Also, as the cemented carbide material powder for forming the intermediate layer disposed between the outer layer and the inner layer, two types of WC material powder having an average particle diameter of 3 μm and 5 μm and Co powder having an average particle diameter of 1 μm were prepared. It is blended at a ratio of 50% by weight of WC raw material powder and 50% of Co raw material powder by weight, and is separately blended at a ratio of 75% of WC raw material powder and 25% of Co raw material powder. , A cemented carbide raw material powder for forming an intermediate layer.
[0021]
A hollow sleeve made of a cemented carbide temporary sintered body having an outer diameter of 300 mm, an inner diameter of 240 mm, and a length of 500 mm was prepared using the above-mentioned raw material powder of the hard alloy for forming the outer layer.
[0022]
A hollow cylindrical SCM440 having an outer diameter of 220 mm, an inner diameter of 160 mm, and a length of 500 mm was disposed as an inner layer in the center of a HIP can having an inner diameter of 310 mm and a length of 550 mm. Then, the hollow sleeve made of the cemented carbide was inserted around the inner layer.
[0023]
Next, the above-mentioned cemented carbide raw material powder for forming the intermediate layer was filled in the gap formed between the outer surface of the inner layer and the inner surface of the outer layer of the hollow sleeve. Thereafter, the HIP can was welded and sealed with a steel lid, and then deaerated by a vacuum pump at 700 ° C. After confirming that no leak occurred in the HIP can, HIP treatment was performed at 1350 ° C. and 1400 atm. After cooling, the HIP can was processed and removed, and the ultrasonic inspection was used to confirm that the bonding between the outer layer, the intermediate layer, and the inner layer was sound.
[0024]
In this way, a plurality of rolls having the same specifications were manufactured for each type of WC raw material powder used to form the intermediate layer, each of which had a different average particle size.
[0025]
Further, the strength of the boundary joint was measured. The strength of the boundary joint is measured by cutting out a bending test piece of the boundary joint including the inner layer, the intermediate layer, and the outer layer in the roll diameter direction, and performing a bending test in accordance with JIS R1601 to measure the bending strength (MPa). Was measured. Further, a strain gauge was attached to the center portion of the outer layer in the roll axis direction, and the residual stress (MPa) in the roll circumferential direction in the outer layer was measured by a breaking method. Table 1 shows the results. In Table 1, the WC particle size represents the average particle size (μm) of the WC raw material powder used for the intermediate layer, the WC content represents the content (% by weight) of the WC particles in the intermediate layer, and the minus sign of the residual stress represents compression. .
[0026]
Table 1
No WC grain size WC content Bending strength Residual stress Rolling condition 1 350 1653-205 Good 2 5 50 1140-233 Cracking at boundary 3 5 75 721-241 Cracking at boundary
From Table 1, No. 2 and No. When the roll No. 3 was subjected to rolling, cracks occurred at the boundary. No. With the roll No. 1 (Example of the present invention), no crack was generated at the boundary portion, and good results could be obtained.
[0028]
(Example 2)
In a HIP can composed of steel having an outer diameter of 730 mm and a length of 2300 mm, forged steel serving as a hollow cylindrical inner layer having an outer diameter of 480 mm, an inner diameter of 300 mm, and a length of 2500 mm is installed, and an inner diameter of 490 mm and a thickness of 2 mm is formed around the inner layer. A steel pipe serving as a partition was arranged.
[0029]
A WC raw material powder having an average particle size of 10 μm and a Co raw material powder having an average particle size of 1 μm are prepared, blended at a ratio of 85% WC raw material powder and 15% Co raw material powder, wet-mixed with a ball mill for 20 hours, and then dried. Then, a cemented carbide raw material powder for forming an outer layer was prepared, and this was filled in a gap between the inner surface of the HIP can and the outer surface of the steel pipe.
[0030]
Further, a gap between the inner surface of the steel pipe and the outer surface of the inner layer was filled with a mixed powder of 30% of WC powder having an average particle size of 3 μm and 70% of Co powder having an average particle size of 1 μm to become an intermediate layer. After filling, the steel pipe of the partition was pulled out, and then the HIP can was welded and sealed with a steel lid, and deaerated by a vacuum pump at 700 ° C. After confirming that no leak occurred in the HIP can, HIP treatment was performed at 1300 ° C. and 1400 atm. After cooling, the HIP can was processed and removed to produce a cemented carbide alloy sleeve roll. After machining the inner diameter of the composite sleeve roll, the composite sleeve roll was shrink-fitted to a chromium molybdenum steel shaft material to complete the cold rollable assembling roll of the present invention.
[0031]
In the same manner as in Example 1, a bending test piece at the boundary joint including the inner layer, the intermediate layer, and the outer layer was cut out in the roll diameter direction, and a bending test in accordance with JIS R1601 was performed to measure the bending strength (MPa). Further, the residual stress (MPa) in the circumferential direction of the roll was measured. As a result, the bending strength was 1780 (MPa) and the residual stress was -320 (MPa), and sufficient characteristic values could be obtained.
[0032]
【The invention's effect】
According to the cemented carbide rolling composite roll of the present invention, the outer layer of the roll is excellent in abrasion resistance and has a high-strength intermediate layer made of a cemented carbide having a low WC content, and has a high reliability in terms of strength. And a roll for cemented carbide rolling with a high hardness can be obtained.

Claims (4)

鋼系または鉄系材料からなる内層の外周に超硬合金からなる外層が中間層を介して接合してなり、前記中間層は平均粒径が3μm以下のWC原料粉末を用いて形成した超硬合金からなることを特徴とする超硬合金製圧延用複合ロール。An outer layer made of a cemented carbide is joined to an outer periphery of an inner layer made of a steel-based or iron-based material via an intermediate layer. A composite roll for cemented carbide rolling, comprising an alloy. 中間層のWC粒子の含有量が重量比率で70%以下であることを特徴とする請求項1に記載の超硬合金製圧延用複合ロール。2. The composite roll for cemented carbide rolling according to claim 1, wherein the content of WC particles in the intermediate layer is 70% or less by weight. 中間層の厚みが1mm以上であることを特徴とする請求項1または2に記載の超硬合金製圧延用複合ロール。3. The composite roll for cemented carbide rolling according to claim 1, wherein the thickness of the intermediate layer is 1 mm or more. ロール軸方向中央部の外層表面において、ロール表面と平行な方向の残留応力として圧縮残留応力が付与されていることを特徴とする請求項1〜3のいずれかに記載の超硬合金製圧延用複合ロール。4. The cemented carbide rolling according to claim 1, wherein a compressive residual stress is given as a residual stress in a direction parallel to the roll surface on the outer layer surface at a central portion in the roll axis direction. 5. Composite roll.
JP2003033266A 2003-02-12 2003-02-12 Composite roll for rolling made of cemented carbide Pending JP2004243341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003033266A JP2004243341A (en) 2003-02-12 2003-02-12 Composite roll for rolling made of cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003033266A JP2004243341A (en) 2003-02-12 2003-02-12 Composite roll for rolling made of cemented carbide

Publications (1)

Publication Number Publication Date
JP2004243341A true JP2004243341A (en) 2004-09-02

Family

ID=33019302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003033266A Pending JP2004243341A (en) 2003-02-12 2003-02-12 Composite roll for rolling made of cemented carbide

Country Status (1)

Country Link
JP (1) JP2004243341A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175456A (en) * 2004-12-21 2006-07-06 Hitachi Metals Ltd Composite rolling roll made of cemented carbide
JP2008520838A (en) * 2004-11-18 2008-06-19 ハネウェル・インターナショナル・インコーポレーテッド Method for forming a three-dimensional PVD target
WO2018043534A1 (en) 2016-09-02 2018-03-08 Jfeスチール株式会社 Roll outer layer material for rolling, and composite roll for rolling
KR20200111669A (en) * 2018-01-31 2020-09-29 히타치 긴조쿠 가부시키가이샤 Cemented carbide composite roll

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008520838A (en) * 2004-11-18 2008-06-19 ハネウェル・インターナショナル・インコーポレーテッド Method for forming a three-dimensional PVD target
JP2006175456A (en) * 2004-12-21 2006-07-06 Hitachi Metals Ltd Composite rolling roll made of cemented carbide
JP4538794B2 (en) * 2004-12-21 2010-09-08 日立金属株式会社 Cemented carbide roll for rolling
WO2018043534A1 (en) 2016-09-02 2018-03-08 Jfeスチール株式会社 Roll outer layer material for rolling, and composite roll for rolling
KR20190035834A (en) 2016-09-02 2019-04-03 제이에프이 스틸 가부시키가이샤 Rolled roll outer material and rolled composite roll
KR20200111669A (en) * 2018-01-31 2020-09-29 히타치 긴조쿠 가부시키가이샤 Cemented carbide composite roll
KR102553279B1 (en) * 2018-01-31 2023-07-06 가부시키가이샤 프로테리아루 Cemented carbide composite roll

Similar Documents

Publication Publication Date Title
EP3747564B1 (en) Cemented carbide composite roll and manufacturing method of cemented carbide composite roll
JP4200479B2 (en) Cemented carbide roll for rolling
JP4538794B2 (en) Cemented carbide roll for rolling
JP2004243341A (en) Composite roll for rolling made of cemented carbide
JPH105823A (en) Composite roll made of sintered hard alloy
JP4392652B2 (en) Composite roll for rolling made of cemented carbide and method for producing the same
JP2005262321A (en) Composite roll made of cemented carbide
JP4320699B2 (en) Composite roll for rolling
JP4735950B2 (en) Cemented carbide roll for rolling
JP3919082B2 (en) Cemented carbide roll for rolling
JP4427786B2 (en) Cemented carbide roll for sheet rolling
JP4288633B2 (en) Cemented carbide composite roll
JP4392653B2 (en) Cemented carbide roll for rolling
JP2002301506A (en) Composite roll made of sintered hard alloy
JP2004243399A (en) Composite sleeve roll made of cemented carbide for rolling plate
JP4221703B2 (en) Cemented carbide roll composite roll manufacturing method and roll
JP2004167503A (en) Composite rolling roll made of cemented carbide
JP6354504B2 (en) Cemented carbide composite roll and manufacturing method thereof
JP2004243339A (en) Composite roll for rolling made of cemented carbide
JP2004066242A (en) Composite roll made of sintered hard alloy
JP2004243340A (en) Composite roll for rolling made of cemented carbide
JP2004243338A (en) Composite roll for rolling made of cemented carbide
CN111356542B (en) Composite hard alloy roller
JP4340989B2 (en) Cemented carbide composite roll
JPS61219405A (en) Composite ring roll

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060113

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060404

A131 Notification of reasons for refusal

Effective date: 20080627

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090123