JP4340989B2 - Cemented carbide composite roll - Google Patents

Cemented carbide composite roll Download PDF

Info

Publication number
JP4340989B2
JP4340989B2 JP22321599A JP22321599A JP4340989B2 JP 4340989 B2 JP4340989 B2 JP 4340989B2 JP 22321599 A JP22321599 A JP 22321599A JP 22321599 A JP22321599 A JP 22321599A JP 4340989 B2 JP4340989 B2 JP 4340989B2
Authority
JP
Japan
Prior art keywords
layer material
cemented carbide
roll
inner layer
outer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22321599A
Other languages
Japanese (ja)
Other versions
JP2001047110A (en
Inventor
欣宏 神谷
拓已 大畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP22321599A priority Critical patent/JP4340989B2/en
Publication of JP2001047110A publication Critical patent/JP2001047110A/en
Application granted granted Critical
Publication of JP4340989B2 publication Critical patent/JP4340989B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Rolls And Other Rotary Bodies (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、薄帯板、板材、線材、棒材などの鋼材の圧延に用いられ、靭性に優れる材料からなる内層材の外周に、炭化タングステン(WC)系超硬合金からなる外層材が金属接合された超硬合金製複合ロールに関する。
【0002】
【従来の技術】
寸法精度の向上、表面疵の減少、表面光沢度の向上など圧延材に対する高品質化の要求に応えるために、耐摩耗性、耐肌荒れ性等に優れたWC系超硬合金が線材、棒鋼、平鋼などの圧延用ロールに適用されている。WC系超硬合金は公知のごとく、WCをCo、Ni、Feなどの金属元素で結合した焼結合金であり、WCの他にTi、Ta、Nbなどの炭化物を含有することもしばしばある。
【0003】
例えば、特公昭58−39906号には、WC−Co−Ni−CrのWC系超硬合金で構成した線材圧延用ロールが記載されている。この線材圧延用ロールは、超硬合金単体を焼結した小型のスリーブロールであり、靭性に優れた鋼製のロール軸材に0.1/1000程度の焼嵌め率で嵌合し、そのスリーブロールの側面を固定リング、スぺーサーリングなどにより押圧固定して機械的に組立てたものである。この種の超硬合金製スリーブロールの寸法は、外径が100〜500mm、回転軸方向の長さが10〜300mm程度の比較的短尺なものである。
【0004】
【発明が解決しようとする課題】
前記のような超硬合金製スリーブをロール軸材に嵌合したロールの場合、固定リング、スぺーサーリングなど多くの部材が必要で組立て構造が複雑であり、かつ高い組立て精度を要求されるので組立に係わる工数や費用がかかるという問題がある。また、ロール胴部長さに対して、超硬合金の占める部分つまり圧延に使用できる部分が半分以下であり効率的でない問題がある。
【0005】
さらに、超硬合金は熱伝導率が高いため、圧延使用時に超硬合金の温度が上昇しやすく、その熱が鋼製のロール軸材に伝わりやすく、ロール軸材が大きく膨張する。そこで、超硬合金の熱膨張係数は鋼より小さいので、超硬合金製スリーブには半径方向および軸方向に引張り応力が付与される。焼嵌め時の締め代が大きい場合、半径方向の引張り応力が高くなり過ぎると、超硬合金製スリーブの内面から割れを引き起こすおそれがある。また、逆にこのような割れを懸念するあまり焼嵌め時の締め代が小さい場合、圧延中に超硬合金製スリーブが滑るおそれがある。
【0006】
また、超硬合金単体では、焼結時に自重の影響により成形体に大きな変形が生じやすいため大型長尺のスリーブロールが製造できない問題がある。
【0007】
これらの問題を解決するものとして、例えば特願平8−158658号の超硬合金製複合ロールが提案されている。これは鋼材からなる内層材を形成するスリーブの外周に、周期律表のIVa〜VIa族元素の炭化物、窒化物および炭窒化物の硬質粒子の少なくとも1種または2種以上を60〜90重量%と、残部実質的にFe、Ni、Co、Cr、Mo及びWの少なくとも1種または2種以上の金属粉末とからなる混合粉末を焼結すると同時に拡散接合させた超硬合金製の外層材を有し、外層材表面に100MPa以上の円周方向の圧縮残留応力を付与した複合スリーブを、ロール軸材に嵌合固定したものである。
【0008】
このような超硬合金製複合ロールは、内層材の靭性が高いので、スリーブ全長を焼嵌めによりロール軸材に固定でき簡単な構造となる。また、ロール胴部長さの全表面を外層材で構成するため圧延に使用できる部分を拡大できる。そのため、ロール交換の頻度が少なくなり圧延の停止時間を短くすることができる。
【0009】
また、熱膨張係数の異なる内層材と外層材を金属接合することにより、外層材表面に圧縮残留応力を付与することができる。その結果、超硬合金単体ロールに比べ圧延時に発生するヒートクラックの進展を抑え、ロール改削量の軽減を図ることができる。また、圧延時に例えば1mm程度の大きなクラックが発生した場合でも、圧縮残留応力によりクラックの内部への進展を防ぐことができる。
【0010】
このように内層材の外周に超硬合金の外層材を金属接合させた超硬合金製複合ロールは多くの利点を有するが、外層材に圧縮残留応力を付与するとそれに概ね比例する大きさの半径方向引張り残留応力が生じるため、内層材と超硬合金の外層材との接合信頼性をさらに高める必要があり、本発明はこれに応えることを課題とする。
【0011】
【課題を解決するための手段】
本発明の超硬合金製複合ロールは、靭性に優れる材料からなる内層材の外周に、炭化タングステン(WC)系超硬合金からなる外層材が金属接合された超硬合金製複合ロールにおいて、内層材と外層材とが炭化物非形成元素を主成分とする金属層を介してHIP処理により接合されて、JIS R1601に準拠した抗折試験において、内層材、金属層および外層材を含む境界接合部の抗折試験片の抗折強度が600MPa以上であることを特徴とする。
【0012】
本発明の超硬合金製複合ロールにおいて、金属層が炭化物非形成元素を主成分とする、なかでもCoまたはNiを50重量%以上含有することが望ましい。また、金属層の厚みは10〜1000μmであるのが望ましい。ただし、1000μmを超えても本発明の所定の抗折強度を満足していれば差し支えない。
【0013】
また、JIS R1601に準拠した抗折試験において、境界接合部を含む抗折試験片の抗折強度が600MPa以上であることを特徴とする。より好ましくは、800MPa以上である。
【0014】
また、内層材または外層材の接合面に凹凸を設けることがよく、その凹凸は高さが10μm以上、ピッチが10μm以上であることが好ましい。
【0015】
【作用】
超硬合金の外層材と炭素(C)を含有する鋼製などの内層材とを金属的接合する際に、外層材から内層材へCの拡散が起こる。その結果、外層材と内層材の接合部近傍の超硬合金のWCが複炭化物(W、Co) に変わる。この複炭化物は、WCと比べて脆く境界接合部の強度を下げる要因となる。そこで、境界接合部にCo、Niなどの炭化物非形成元素からなる金属層を設けることにより、前記のCの拡散を抑えることができ、Co、Niは超硬合金の外層材にも含まれる元素であるから、外層材との親和性が良く接合強度を高めることができる。金属層の厚みが10〜1000μmではその効果が十分にある。ただし、境界接合部全体に亘って金属層の厚みを均一にすることは難しく、一部の境界接合部では10μm未満になることもある。また、1000μmを超えても本発明の所定の抗折強度を得ることができる場合にはこの限りでない。
【0016】
内層材または外層材の外表面に、予め螺旋状のネジ加工などを施して凹凸を設けることにより、接合部の表面積が大きくなり、境界接合部の強度が向上するとともに、仮にその部分をき裂が伝播しても凹凸に沿ってき裂が分岐するため伝播を阻止したり遅くしたりする効果がある。この凹凸は、円周方向や回転軸方向に溝加工を施して形成してもよい。この凹凸は微細過ぎると効果が十分でなくなるので、凹凸の高さ(深さ)が10μm以上、隣り合う凹間もしくは凸間のピッチが10μm以上であることが好ましい。
【0017】
以上の構成により、超硬合金製複合ロールに表面圧縮応力を付与したときに発生する境界接合部の半径方向の残留応力に耐えることができ、また圧延使用時の境界接合部からの剥離に対する安全率を高めることができる。
【0018】
本発明の超硬合金製複合ロールにおいて、WC系超硬合金からなる外層材は圧延用途に応じて、WC粒子の含有量を60〜95重量%、WC粒子の平均粒径は1〜10μmの範囲で適宜設定する。外層材のロール軸方向長さ(ロール胴部長さ)が250mm以上であれば、圧延に使用できる部分が拡大できるので望ましい。また、内層材は靭性に優れる鋼材もしくは鋳鉄材が好ましい。
【0019】
【発明の実施の形態】
(実施例1)
外径300mm、内径180mm、長さ700mmの中空円筒状のSNCM439鋼製内層材を準備した。内層材の外周面を旋盤で螺旋状にネジ加工を施して、高さが約1mm、ピッチが約1mmの凹凸を設けた。また、金属層を形成させるために、内層材に設けた凹凸面にNiめっきを施した。
【0020】
また、各々平均粒径が6μmのWC粉末、1μmのCo粉末、1μmのNi粉末、1μmのCr粉末を用意し、重量%でWC85%、Co9.3%、Ni4.7%、Cr1%の割合で配合し、ボールミルで20時間湿式混合した後、乾燥し、超硬合金の素材となる混合粉末を準備した。
【0021】
次いで、前記の鋼製内層材の外周に超硬合金の素材となる混合粉末を充填し、キャンニングして、脱気処理、封着した後、1320℃、100MPa、2時間で熱間等方圧(HIP)処理を行った。その後、冷却しHIP炉から取り出した後、機械加工によりHIP処理用カプセルを除去し、所定寸法に仕上げ加工を施し本発明の超硬合金製複合ロールを得た。
【0022】
この超硬合金製複合ロールを超音波探傷法により検査をしたところ境界接合部からの反射はほぼ一定で溶着不良がないことを確認した。また、本発明ロールの端部よりリング状のテストピースを切り出し組識調査したところ、内層材の凹凸面にあたる境界接合部に約100μm厚みのNiを主成分とする金属層が形成されており、金属層中の複炭化物(W、Co) は1面積%未満であった。
【0023】
また、境界接合部の強度を測定するために、JIS R1601に準拠した抗折試験を行った。ロール直径方向に、内層材、金属層および外層材を含む境界接合部の抗折試験片を切り出し試験をしたところ、抗折強度が平均で840MPaであった。
【0024】
(比較例1)
比較例1として、内層材の外周面が平滑であり、金属層を形成させるNiめっきを内層材に施さないで、他は実施例1同様に超硬合金製複合ロールを作製した。比較例1のロールの端部よりリング状のテストピースを切り出し組識を鏡面研磨したところ、境界接合部付近に外層材に含まれるWCとは色が異なり、かつ数10μmに成長した炭化物が確認された。村上氏液で腐食すると黒色になり組成の異なる複炭化物であることが判った。また、ロール直径方向に、内層材および外層材を含む境界接合部の抗折試験片を切り出し、JIS R1601に準拠して抗折試験を行ったところ、抗折強度が平均で310MPaと低いものであった。
【0025】
(実施例2)
実施例1と同様の手法により得られた本発明の超硬合金製複合ロールを、鋼からなるロール軸材の外周に焼嵌めて固定し、熱間線材圧延中間スタンド用ロールを作製した。従来から使用されているこの種のロールは、例えば超硬合金製スリーブ2個をロール軸材に焼嵌めた組立式ロールであり、圧延できる部分が約200〜250mmであった。これに対し、本発明のロールは圧延できる部分が500mmと拡大できた。その結果、ロール替えの頻度が従来の半分になった。また、境界接合部の強度が高いことから、外層材と内層材の収縮差により発生する半径方向の残留応力、焼嵌め応力に加えて、圧延時に発生する圧延応力、熱応力にも十分耐えることができた。
【0026】
【発明の効果】
本発明によれば、内層材と超硬合金の外層材との接合信頼性を高めることができ、さらに苛酷な圧延用途にも適用拡大できる。
[0001]
BACKGROUND OF THE INVENTION
The present invention is used for rolling steel materials such as strips, plates, wires, rods, and the like, and an outer layer material made of tungsten carbide (WC) cemented carbide is metal on the outer periphery of an inner layer material made of a material having excellent toughness. The present invention relates to a cemented cemented carbide composite roll.
[0002]
[Prior art]
In order to meet the demands for high quality rolling materials such as improved dimensional accuracy, reduced surface wrinkles, and improved surface gloss, WC cemented carbides with excellent wear resistance, rough skin resistance, etc. are used for wire rods, steel bars, It is applied to rolling rolls such as flat steel. As is well known, the WC cemented carbide is a sintered alloy in which WC is bonded with a metal element such as Co, Ni, and Fe, and often contains carbides such as Ti, Ta, and Nb in addition to WC.
[0003]
For example, Japanese Examined Patent Publication No. 58-39906 describes a wire-rolling roll made of a WC-Co-Ni-Cr WC cemented carbide. This wire rolling roll is a small sleeve roll obtained by sintering a cemented carbide single body, and is fitted to a steel roll shaft material with excellent toughness at a shrinkage fit of about 0.1 / 1000. The roll side is pressed and fixed by a fixing ring, a spacer ring or the like, and mechanically assembled. The size of this kind of cemented carbide sleeve roll is relatively short with an outer diameter of 100 to 500 mm and a length in the rotation axis direction of about 10 to 300 mm.
[0004]
[Problems to be solved by the invention]
In the case of a roll in which a sleeve made of a cemented carbide alloy as described above is fitted to a roll shaft material, a large number of members such as a fixing ring and a spacer ring are required, the assembly structure is complicated, and high assembly accuracy is required. There is a problem that man-hours and costs for assembly are required. Moreover, there is a problem that the portion occupied by the cemented carbide, that is, the portion that can be used for rolling is less than half of the length of the roll body, which is not efficient.
[0005]
Furthermore, since the cemented carbide has a high thermal conductivity, the temperature of the cemented carbide is likely to rise during rolling, the heat is easily transferred to the steel roll shaft material, and the roll shaft material expands greatly. Therefore, since the thermal expansion coefficient of cemented carbide is smaller than that of steel, tensile stress is applied to the cemented carbide sleeve in the radial and axial directions. When the tightening allowance at the time of shrink fitting is large, if the tensile stress in the radial direction becomes too high, there is a risk of causing cracks from the inner surface of the cemented carbide sleeve. On the other hand, if the tightening allowance at the time of shrink fitting is so small that there is a concern about such cracking, the cemented carbide sleeve may slip during rolling.
[0006]
In addition, the cemented carbide alone has a problem that large and long sleeve rolls cannot be manufactured because large deformation is likely to occur in the formed body due to the influence of its own weight during sintering.
[0007]
To solve these problems, for example, a cemented carbide composite roll disclosed in Japanese Patent Application No. 8-158658 has been proposed. 60% to 90% by weight of at least one or more of carbides, nitrides, and carbonitrides of IVa to VIa group elements in the periodic table are formed on the outer periphery of the sleeve forming the inner layer material made of steel. And a cemented carbide outer layer material obtained by sintering and simultaneously bonding a mixed powder composed of at least one or more metal powders of Fe, Ni, Co, Cr, Mo and W. A composite sleeve having a circumferential residual compressive stress of 100 MPa or more on the surface of the outer layer material is fitted and fixed to the roll shaft material.
[0008]
Since such a composite roll made of cemented carbide has a high toughness of the inner layer material, the entire length of the sleeve can be fixed to the roll shaft material by shrink fitting, resulting in a simple structure. Moreover, since the entire surface of the roll body length is constituted by the outer layer material, the portion that can be used for rolling can be enlarged. Therefore, the frequency of roll replacement is reduced, and the rolling stop time can be shortened.
[0009]
Also, compressive residual stress can be applied to the surface of the outer layer material by metal-bonding the inner layer material and the outer layer material having different thermal expansion coefficients. As a result, it is possible to suppress the progress of heat cracks that occur during rolling compared to a cemented carbide single roll, and to reduce the amount of roll rework. Further, even when a large crack of, for example, about 1 mm is generated during rolling, the progress of the crack into the interior can be prevented by the compressive residual stress.
[0010]
The composite roll made of cemented carbide in which the outer layer material of cemented carbide is metal-bonded to the outer periphery of the inner layer material in this way has many advantages. However, when compressive residual stress is applied to the outer layer material, the radius is roughly proportional to that. Since directional tensile residual stress is generated, it is necessary to further improve the bonding reliability between the inner layer material and the outer layer material of the cemented carbide, and it is an object of the present invention to respond to this.
[0011]
[Means for Solving the Problems]
The cemented carbide composite roll of the present invention is a cemented carbide composite roll in which an outer layer material made of tungsten carbide (WC) -based cemented carbide is metal-bonded to the outer periphery of an inner layer material made of a material having excellent toughness. Boundary member including inner layer material, metal layer and outer layer material in a bending test in accordance with JIS R1601, in which a material and an outer layer material are joined by a HIP process through a metal layer whose main component is a carbide non-forming element The bending strength of the bending test piece is 600 MPa or more.
[0012]
In the cemented carbide composite roll of the present invention, it is desirable that the metal layer contains a carbide non-forming element as a main component, and particularly contains Co or Ni in an amount of 50% by weight or more. The metal layer preferably has a thickness of 10 to 1000 μm. However, even if it exceeds 1000 μm, there is no problem as long as the predetermined bending strength of the present invention is satisfied.
[0013]
Moreover, in the bending test based on JIS R1601, the bending strength of the bending test piece including the boundary joint portion is 600 MPa or more. More preferably, it is 800 MPa or more.
[0014]
Moreover, it is preferable to provide unevenness on the joint surface of the inner layer material or the outer layer material, and the unevenness preferably has a height of 10 μm or more and a pitch of 10 μm or more.
[0015]
[Action]
C diffusion occurs from the outer layer material to the inner layer material when the outer layer material of the cemented carbide and the inner layer material such as steel containing carbon (C) are metallicly joined. As a result, the WC of the cemented carbide near the joint between the outer layer material and the inner layer material is changed to double carbide (W, Co) 6 C. This double carbide is fragile compared to WC and causes a reduction in the strength of the boundary joint. Therefore, by providing a metal layer made of a non-carbide element such as Co and Ni at the boundary junction, the diffusion of C can be suppressed, and Co and Ni are elements included in the outer layer material of the cemented carbide. Therefore, the affinity with the outer layer material is good and the bonding strength can be increased. The effect is sufficient when the thickness of the metal layer is 10 to 1000 μm. However, it is difficult to make the thickness of the metal layer uniform over the entire boundary junction, and in some boundary junctions, the thickness may be less than 10 μm. Moreover, it is not this limitation when the predetermined bending strength of this invention can be obtained even if it exceeds 1000 micrometers.
[0016]
The surface of the inner layer material or outer layer material is provided with irregularities by applying a spiral screw process or the like in advance, thereby increasing the surface area of the joint portion and improving the strength of the boundary joint portion. Propagation has the effect of preventing or slowing propagation because cracks diverge along the irregularities. The unevenness may be formed by performing groove processing in the circumferential direction or the rotation axis direction. If the unevenness is too fine, the effect is not sufficient. Therefore, the height (depth) of the unevenness is preferably 10 μm or more, and the pitch between adjacent recesses or protrusions is preferably 10 μm or more.
[0017]
With the above configuration, it is possible to withstand the residual stress in the radial direction of the boundary joint that occurs when surface compressive stress is applied to the cemented carbide composite roll, and it is safe against peeling from the boundary joint during rolling. The rate can be increased.
[0018]
In the composite roll made of cemented carbide according to the present invention, the outer layer material made of WC-based cemented carbide has a content of WC particles of 60 to 95% by weight and an average particle size of WC particles of 1 to 10 μm, depending on the rolling application. Set as appropriate within the range. If the length of the outer layer material in the roll axial direction (length of the roll body) is 250 mm or more, it is desirable because the portion that can be used for rolling can be expanded. The inner layer material is preferably a steel material or cast iron material having excellent toughness.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
(Example 1)
A hollow cylindrical SNCM439 steel inner layer material having an outer diameter of 300 mm, an inner diameter of 180 mm, and a length of 700 mm was prepared. The outer peripheral surface of the inner layer material was spirally threaded with a lathe to provide irregularities having a height of about 1 mm and a pitch of about 1 mm. Moreover, in order to form a metal layer, Ni plating was given to the uneven surface provided in the inner layer material.
[0020]
In addition, WC powder having an average particle diameter of 6 μm, 1 μm Co powder, 1 μm Ni powder, and 1 μm Cr powder were prepared, and the ratio of WC 85%, Co 9.3%, Ni 4.7%, and Cr 1% by weight%. Were mixed in a ball mill for 20 hours, followed by drying to prepare a mixed powder to be a cemented carbide material.
[0021]
Next, after filling the outer periphery of the steel inner layer material with a mixed powder as a cemented carbide material, canning, deaeration treatment and sealing, it is isothermal at 1320 ° C., 100 MPa for 2 hours. Pressure (HIP) treatment was performed. Then, after cooling and taking out from the HIP furnace, the capsule for HIP processing was removed by machining, and finish processing was performed to a predetermined dimension to obtain a cemented carbide composite roll of the present invention.
[0022]
When this cemented carbide composite roll was inspected by ultrasonic flaw detection, it was confirmed that the reflection from the boundary joint was almost constant and there was no welding failure. In addition, when a ring-shaped test piece was cut out from the end of the roll of the present invention and subjected to an organization investigation, a metal layer mainly composed of Ni having a thickness of about 100 μm was formed at the boundary joint corresponding to the uneven surface of the inner layer material. The double carbide (W, Co) 6 C in the metal layer was less than 1 area%.
[0023]
Moreover, in order to measure the intensity | strength of a boundary junction part, the bending test based on JISR1601 was done. When the bending test piece of the boundary joint portion including the inner layer material, the metal layer, and the outer layer material was cut out and tested in the roll diameter direction, the bending strength was 840 MPa on average.
[0024]
(Comparative Example 1)
As Comparative Example 1, a cemented carbide composite roll was produced in the same manner as in Example 1 except that the outer peripheral surface of the inner layer material was smooth and Ni plating for forming a metal layer was not performed on the inner layer material. When a ring-shaped test piece was cut out from the end of the roll of Comparative Example 1 and the tissue was mirror-polished, a carbide different in color from the WC contained in the outer layer material in the vicinity of the boundary joint and having grown to several tens of μm was confirmed. It was. When corroded by Mr. Murakami's solution, it turned black and turned out to be a double carbide with a different composition. Moreover, when a bending test piece of the boundary joint portion including the inner layer material and the outer layer material was cut out in the roll diameter direction and subjected to a bending test in accordance with JIS R1601, the bending strength was as low as 310 MPa on average. there were.
[0025]
(Example 2)
The composite roll made of cemented carbide of the present invention obtained by the same method as in Example 1 was shrink-fitted and fixed on the outer periphery of a roll shaft made of steel to produce a roll for hot wire rolling intermediate stand. This type of roll conventionally used is, for example, an assembly-type roll in which two sleeves made of cemented carbide are shrink-fitted on a roll shaft, and the rollable portion is about 200 to 250 mm. On the other hand, in the roll of the present invention, the part that can be rolled was enlarged to 500 mm. As a result, the frequency of roll change has been halved. In addition, since the strength of the boundary joint is high, it can withstand the rolling stress and thermal stress generated during rolling in addition to the residual stress and shrinkage stress in the radial direction caused by the shrinkage difference between the outer layer material and the inner layer material. I was able to.
[0026]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the joining reliability of an inner-layer material and the outer-layer material of a cemented carbide can be improved, and also it can expand application also to severe rolling applications.

Claims (3)

靭性に優れる材料からなる内層材の外周に、炭化タングステン(WC)系超硬合金からなる外層材が金属接合された超硬合金製複合ロールにおいて、内層材と外層材とが炭化物非形成元素を主成分とする金属層を介してHIP処理により接合されて、JIS R1601に準拠した抗折試験において、内層材、金属層および外層材を含む境界接合部の抗折試験片の抗折強度が600MPa以上であることを特徴とする超硬合金製複合ロール。In a cemented carbide composite roll in which an outer layer material made of tungsten carbide (WC) cemented carbide is metal-bonded to the outer periphery of an inner layer material made of a material having excellent toughness, the inner layer material and the outer layer material are made of carbide-free elements. In the bending test according to JIS R1601, the bending strength of the bending test piece of the boundary joint portion including the inner layer material, the metal layer, and the outer layer material is 600 MPa. A composite roll made of cemented carbide characterized by the above. 金属層がCoまたはNiを50重量%以上含有することを特徴とする請求項に記載の超硬合金製複合ロール。2. The cemented carbide composite roll according to claim 1 , wherein the metal layer contains 50% by weight or more of Co or Ni. 金属層が10〜1000μmの厚みを有することを特徴とする請求項1または2に記載の超硬合金製複合ロール。The composite layer made of cemented carbide according to claim 1 or 2 , wherein the metal layer has a thickness of 10 to 1000 µm.
JP22321599A 1999-08-06 1999-08-06 Cemented carbide composite roll Expired - Fee Related JP4340989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22321599A JP4340989B2 (en) 1999-08-06 1999-08-06 Cemented carbide composite roll

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22321599A JP4340989B2 (en) 1999-08-06 1999-08-06 Cemented carbide composite roll

Publications (2)

Publication Number Publication Date
JP2001047110A JP2001047110A (en) 2001-02-20
JP4340989B2 true JP4340989B2 (en) 2009-10-07

Family

ID=16794605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22321599A Expired - Fee Related JP4340989B2 (en) 1999-08-06 1999-08-06 Cemented carbide composite roll

Country Status (1)

Country Link
JP (1) JP4340989B2 (en)

Also Published As

Publication number Publication date
JP2001047110A (en) 2001-02-20

Similar Documents

Publication Publication Date Title
EP3116671B1 (en) Method of forming a compound roll
JP4200479B2 (en) Cemented carbide roll for rolling
JP4288633B2 (en) Cemented carbide composite roll
JP4538794B2 (en) Cemented carbide roll for rolling
JP4340989B2 (en) Cemented carbide composite roll
CN100420526C (en) Composite roller made of super-hard alloy used for rolling board
JP4392652B2 (en) Composite roll for rolling made of cemented carbide and method for producing the same
JP3649361B2 (en) Cemented carbide composite roll
JP2001087805A (en) Composite sleeve made of sintered hard alloy
JP4735950B2 (en) Cemented carbide roll for rolling
JP3919082B2 (en) Cemented carbide roll for rolling
JPS58128525A (en) Manufacture of composite roll
JP4392653B2 (en) Cemented carbide roll for rolling
JP3755758B2 (en) Composite roll for rolling
JP4221700B2 (en) Cemented carbide composite roll
JP2004243341A (en) Composite roll for rolling made of cemented carbide
JP2002301506A (en) Composite roll made of sintered hard alloy
JP4427786B2 (en) Cemented carbide roll for sheet rolling
KR20060015048A (en) Cemented carbide composite rolls for strip rolling
JP4103072B2 (en) Cemented carbide composite roll
JP3755757B2 (en) Composite roll for sheet rolling
JP4221703B2 (en) Cemented carbide roll composite roll manufacturing method and roll
JP4320699B2 (en) Composite roll for rolling
JP2003311304A (en) Composite rolling roll made of sintered hard alloy
JP2004066242A (en) Composite roll made of sintered hard alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees