JPS6245486A - Production of clad steel pipe - Google Patents
Production of clad steel pipeInfo
- Publication number
- JPS6245486A JPS6245486A JP18548585A JP18548585A JPS6245486A JP S6245486 A JPS6245486 A JP S6245486A JP 18548585 A JP18548585 A JP 18548585A JP 18548585 A JP18548585 A JP 18548585A JP S6245486 A JPS6245486 A JP S6245486A
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- inner tube
- steel
- phase
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、超塑性を示す2相ステンレス鋼を内管、炭素
鋼又は低合金鋼を外管に使用した耐食性に優れ、接合強
度が高く、コスト的にも優れたクラッド鋼管の製造方法
に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention uses duplex stainless steel exhibiting superplasticity for the inner tube and carbon steel or low alloy steel for the outer tube, which has excellent corrosion resistance and high joint strength. , relates to a method for manufacturing clad steel pipes that is also cost-effective.
油送管、油井管のような腐食性流体を通じる管体では、
十分な機械的強度のほかに、高度の耐食性が要求される
。耐食性に優れた金属材料としてステンレス鋼が一般的
であるが、この材料はCr。In pipe bodies that pass corrosive fluids, such as oil pipes and oil country tubular goods,
In addition to sufficient mechanical strength, a high degree of corrosion resistance is required. Stainless steel is commonly used as a metal material with excellent corrosion resistance, but this material is Cr.
Niを多く含み、コスト的な面から使用が制限される。Contains a large amount of Ni, and its use is restricted due to cost considerations.
クラッド鋼管は、外管の内側に内管を接合させた2重管
の一種で、内外管の材料の選択によって多くの機能を持
たせることができる。例えば、内管をステンレス鋼、外
管を炭素鋼又は低合金鋼としたものは、内部に通じる腐
食性流体に強く、また機械的強度も高く、更にステンレ
ス鋼単体の鋼管と比べてもスト的に著しく優れたものと
なっている。Clad steel pipes are a type of double-walled pipe in which an inner pipe is joined to the inside of an outer pipe, and can be given many functions by selecting the materials for the inner and outer pipes. For example, a tube made of stainless steel for the inner tube and carbon steel or low-alloy steel for the outer tube is resistant to corrosive fluids flowing inside, has high mechanical strength, and is more durable than a tube made of stainless steel alone. It is significantly superior.
このようなりラッド鋼管の製造方法としては、予め製造
したクラッド鋼板を成形、溶接する方法と、外管と内管
を別々につくり最終的に両者を接合する方法の2つがあ
る。There are two methods for manufacturing such a clad steel pipe: one is to form and weld pre-manufactured clad steel plates, and the other is to separately create an outer pipe and an inner pipe and finally join them together.
前者は一般的な方法であるが、その溶接E程において2
種類の材料を別々に溶接しなければならず、作業が複雑
でコストがかさむのみならず、溶接部に品質上の問題が
残る。これに対し、後者はンームレス管の導入により溶
接工程を省略でき、溶接に伴う問題は全て解決される。The former is a common method, but in the welding step E, 2
Different types of materials must be welded separately, which not only complicates the work and increases costs, but also leaves quality problems in the welds. On the other hand, in the latter case, the welding process can be omitted by introducing a seamless pipe, and all problems associated with welding are solved.
ところが管の接合は板の接合はど容易でなく、種々の接
合形態が提案されているにもかかわらず、十分な接合強
度を得ていないのが実状である。However, joining pipes is not as easy as joining plates, and although various joining forms have been proposed, the reality is that sufficient joining strength has not been achieved.
クラッド鋼管における内外管の接合についての従来の基
本的な考え方は、外管と内管との間にいかに大きな締付
は力を作用させるかということであり、外管と内管との
界面に冶金的結合は存在しない。また、たとえ冶金的結
合を得ようとしても、板の接合の場合に問題となるよう
に、被接合面に鏡面仕上げが必要となり、加工工数を著
しく増大させる。The conventional basic idea for joining the inner and outer tubes of clad steel pipes is to determine how large a tightening force can be exerted between the outer tube and the inner tube, and how to apply force to the interface between the outer tube and the inner tube. There is no metallurgical bond. Furthermore, even if a metallurgical bond is to be obtained, mirror finishing is required on the surfaces to be joined, which is a problem when joining plates, which significantly increases the number of processing steps.
例えば、特開昭55−117515号公報や特開昭57
−85684号公報に記載されたクラッド鋼管の製造方
法は、いずれも内管と外管の温度差を利用した膨張、収
縮に因る締付は力で接合強度を確保しており、界面に冶
金的結合は存在しない。そのため、あとから熱が加わっ
た場合には、締付は力がゆるむ等の危険が残る。For example, JP-A-55-117515 and JP-A-57
In all of the manufacturing methods for clad steel pipes described in Publication No. 85684, the joint strength is secured by force by tightening due to expansion and contraction using the temperature difference between the inner pipe and the outer pipe, and metallurgical material is used at the interface. There are no physical connections. Therefore, if heat is applied later, there remains a risk that the tightening force may loosen.
本発明の目的は、内管と外管との界面において冶金的結
合を形成し、しかも被接合面の鏡面仕上げを不要ならし
める高能率な製造方法を提供することにある。An object of the present invention is to provide a highly efficient manufacturing method that forms a metallurgical bond at the interface between an inner tube and an outer tube and eliminates the need for mirror finishing of the surfaces to be joined.
本発明の製造方法は、内表面粗さを30μm以下とした
炭素鋼又は低合金鋼からなる外管内に、固溶窒素含有量
が0.05〜0.25%のFe 、 Cr 、 Niを
計成分とする2相ステンレス鋼からなる内管を加熱後内
嵌挿入するか、又は内嵌挿入後加熱し、その内管温度が
750〜1100℃である間に内管内側より圧力を加え
て外管内面に密着接合させるものである。In the manufacturing method of the present invention, Fe, Cr, and Ni with a solid solution nitrogen content of 0.05 to 0.25% are added to an outer tube made of carbon steel or low alloy steel with an inner surface roughness of 30 μm or less. The inner tube made of duplex stainless steel is heated and then inserted into the inner tube, or heated after the inner tube is inserted, and while the inner tube temperature is 750 to 1100℃, pressure is applied from the inside of the inner tube to the outside. It is closely bonded to the inner surface of the tube.
周知のように、2相ステンレス鋼はα(フェライト)相
とγ(オーステナイト)相の混合組織を有し、耐食性は
言うに及ばず、強度、靭性、溶接面でも優れた性質を有
している。しかし、2相組織であるがだめの加工性の悪
さに加え、容易に析出するσ相により依然として難加工
材料であることに変りはない。一方、通常の変形条件で
は加工が困難な材料でも、適当な条件下にあっては異常
な高延性を示す現象があり、超塑性と呼ばれている。As is well known, duplex stainless steel has a mixed structure of α (ferrite) phase and γ (austenite) phase, and has excellent properties in terms of strength, toughness, and weldability as well as corrosion resistance. . However, in addition to the poor workability due to its two-phase structure, it is still a difficult-to-process material due to the easily precipitated σ phase. On the other hand, even materials that are difficult to process under normal deformation conditions exhibit unusually high ductility under appropriate conditions, a phenomenon known as superplasticity.
本発明者らの最近の研究によれば、固溶N量をある程度
風り確保した2相ステンレス鋼は、特定の変形条件で極
めて容易に超塑性を示すことが判明した。その固溶N量
は0.05〜0.25%、変形条件は750〜1100
℃の加工温度範囲であり、この条件下で1000チの超
塑性伸びか1.5 X 10−”S’−’の歪み速度で
得られる(%願昭60−50542号)。According to recent research by the present inventors, it has been found that duplex stainless steel in which a certain amount of solute N is maintained easily exhibits superplasticity under specific deformation conditions. The amount of solid solute N is 0.05-0.25%, and the deformation conditions are 750-1100.
C., and under these conditions a superplastic elongation of 1000 inches or a strain rate of 1.5.times.10-"S'-" is obtained (% Application No. 60-50542).
本発明は、この2相ステンレス鋼の超塑性変形をクラッ
ド鋼管の製造に利用したもので、外管に内嵌挿入された
内管に超塑性伸びを発現させることにより、内情と外管
とかその界面において冶金結合し、接合強度を著しく上
昇させるのみならず、この冶金結合は被接合面の粗さに
それほど影響されず、逆に粗さが接合面積を増大させ、
接合強度が向上する可能性をも生じさせる。したがって
、本発明によれば、接合面の鏡面仕上げが不用となり、
加工に要する手数を著しく節減すると同時に、接合強度
の大巾向トが図られ、JISおよびHPISにおいてス
テンレスクラッド鋼の合否判定基準とされている界面の
せん断強さ20 K9/m+d(JISG0601に規
定されるせん断試験による)を安定的に確保するものと
なる。The present invention utilizes the superplastic deformation of this duplex stainless steel in the manufacture of clad steel pipes, and by causing the inner pipe inserted into the outer pipe to develop superplastic elongation, the inner and outer pipes can be Not only does metallurgical bonding occur at the interface, significantly increasing the bonding strength, but this metallurgical bonding is not significantly affected by the roughness of the surfaces to be bonded; on the contrary, roughness increases the bonding area.
It also gives rise to the possibility of improving the bonding strength. Therefore, according to the present invention, there is no need for mirror finishing of the joint surfaces,
At the same time, the labor required for processing is significantly reduced, and at the same time, the joint strength is increased across a wide range of areas. This will ensure stable performance (based on shear tests).
本発明において、界面が冶金結合されるメカニズムは大
筋次のとおりである。In the present invention, the mechanism by which the interface is metallurgically bonded is roughly as follows.
ミクロ的に観察すると、接合しようとする金44面同士
の界面は凹凸が存在し、原子面が近づくことは困難であ
る。ところが、本発明にあっては一方の金属に超塑性を
示す2相ステンレス鋼を用いるから、この超塑性現象に
よって凹凸面に沿った自流れが容易に生起し、その結果
極めて短い拡散距離での拡散接合が可能となる。When observed microscopically, there are irregularities at the interface between the gold 44 planes to be joined, making it difficult for the atomic planes to approach each other. However, in the present invention, since duplex stainless steel exhibiting superplasticity is used as one of the metals, self-flow occurs easily along the uneven surface due to this superplasticity phenomenon, and as a result, the diffusion distance is extremely short. Diffusion bonding becomes possible.
a、外管
炭素鋼または低合金鋼を用いるが、これは主にコストと
機械的性質との観点からであり、得ようとする機械的性
質とこれに要するコストとのかね合いから適当な組成を
、炭素鋼または低合金鋼の範中から選択すればよい。a. Carbon steel or low-alloy steel is used for the outer tube, but this is mainly from the viewpoint of cost and mechanical properties, and an appropriate composition is selected from the balance between the desired mechanical properties and the cost required. may be selected from carbon steel or low alloy steel.
内面の表面粗さは、30μm (JISB−0601で
定d)られる10点平均粗さ)まで許容される。30μ
mを超えると、内管に多大の超塑性変形を与えねばなら
ず、そのためには歪速度の小さな加工が必要となり、製
造能率と好ましくない。The surface roughness of the inner surface is allowed to be up to 30 μm (10-point average roughness defined by JISB-0601 d). 30μ
If it exceeds m, a large amount of superplastic deformation must be applied to the inner tube, which requires processing at a low strain rate, which is unfavorable in terms of manufacturing efficiency.
逆に、この表面粗さが小さいことは、鏡面仕上げに近い
ことを意味し、接合状況に直接影響を与えるというもの
ではない。したがって、特に下限を設けることはしない
が、表面粗さが小さいほど、加りに手間がかかるので、
通常は5μm以北とするのが望ましい。On the contrary, this small surface roughness means that it is close to a mirror finish, and does not directly affect the bonding condition. Therefore, there is no particular lower limit set, but the smaller the surface roughness, the more time and effort it takes.
Normally, it is desirable to set the distance north of 5 μm.
b1内管
2相ステンL/ス鋼を用いるか、その主成分をFe、C
rおよびNiと限定したのは、他の元素を用いた組合せ
でもα相とγ相の2相混合組織を得ることができるけれ
ども、それによって得られる材料の性質とコストを考慮
した場合1こ、Fe、Cr、Niの3元素を主成分とす
る方が有利となるからであり、好ましくは、本発明で対
象となる2相ステンVス鋼にはNi:4−18%、Cr
:15〜35%であって、これらの成分の他に必要に応
じて、Mo≦6.0係、Cu 1 %以下、Ti≦0.
5係、Zr≦05係、め≦0.5%、■≦0.5チ、W
≦1.0係、およびC10,1係の少なくとも1種を含
有し、あるいは、さらにSi≦5係、胤≦5チのうちの
1種以上を含んだものや、更には少量のRe、Ceおよ
びCaや不可避不純物を含むものも包含される。b1 The inner tube is made of two-phase stainless steel, or its main components are Fe and C.
Although it is possible to obtain a two-phase mixed structure of α phase and γ phase by combining r and Ni, considering the properties and cost of the material obtained, 1. This is because it is more advantageous to have the three elements Fe, Cr, and Ni as the main components, and preferably, the dual-phase stainless steel targeted by the present invention contains Ni: 4-18% and Cr.
:15 to 35%, and in addition to these components, if necessary, Mo≦6.0, Cu≦1%, Ti≦0.
5th section, Zr≦05 section, Me≦0.5%, ■≦0.5chi, W
≦1.0, and C10. Also included are those containing Ca and unavoidable impurities.
さらに好ましくは、Ni : 6〜9%、Cr:22−
27%、Mo:1〜4%、N : 0.1〜0.20%
および脱酸剤としての少it (0,b 〜1.5 %
程度)のSlやMnを含むものである。More preferably, Ni: 6 to 9%, Cr: 22-
27%, Mo: 1-4%, N: 0.1-0.20%
and as a deoxidizer (0,b~1.5%
It contains Sl and Mn of a certain degree.
まt:、固溶N量を0.05〜025ヂ、、L j恨定
しt−の(は(1,05製置丁では超塑性が得に<<、
0.25%を超えてNを添加するのはr業的に困難とな
るからであり、またこの範囲で優れた超塑性が得られる
からである。なお、固溶N量は0.1〜0.2%の範囲
の量で含有するのが好ましい。Zr 、 Ti 、 N
b、 Vなど最小量添加してNのうちの一部を窒化物と
して固定しても実効的に固溶N量が上記範囲を確保でき
ればもちろん本発明において制限するものではないO
さらに好ましいのは、熱間加工中である1000℃近辺
のα相とγ相の相比がほぼ等しくなるように、で示され
るCr e qがN1eqの約3倍となるものである。The amount of solid solute N is set at 0.05 to 025 degrees, and the amount of solid solution N is set at 0.05 to 0.025 degrees.
This is because adding more than 0.25% of N is technically difficult, and excellent superplasticity can be obtained within this range. Note that the amount of solid solution N is preferably contained in an amount in the range of 0.1 to 0.2%. Zr, Ti, N
b. Even if a minimum amount of V is added to fix a part of N as nitride, as long as the amount of solid solute N can be effectively secured within the above range, it is of course not limited in the present invention.O More preferable is , so that the phase ratio of α phase and γ phase near 1000° C. during hot working is approximately equal, and Cr eq expressed by is approximately three times N1eq.
この理由は、熱間変形による超塑性接合を好ましくする
ことと、製品の所要性質の確保を図ることの2点である
。The reasons for this are two points: to make superplastic joining by hot deformation preferable, and to ensure the required properties of the product.
すなわち、α相とγ相との量比がほぼ同じであるならば
γ相生成元素であるNi 、 Mn 、 C,Nなどの
うち軽い元素であるCやNの量が高い方がγ相の変形中
の分散球状化を促進して超塑性変形に有利となるのであ
る。しかし、CについてはCは炭化物を容易に生成して
製品の性質を害するので極力低減するのがよい。一般に
はC10,05%とする。In other words, if the amount ratio of the α phase and the γ phase is almost the same, the higher the amount of light elements C and N among the γ phase forming elements such as Ni, Mn, C, and N, the higher the amount of the γ phase. This promotes dispersion and spheroidization during deformation, which is advantageous for superplastic deformation. However, since C easily forms carbides and impairs the properties of the product, it is best to reduce it as much as possible. Generally, C is 10.05%.
このように2相ステンレス鋼の超塑性変形は、その大部
分がα相とγ相の2相状態で起こり、相対的に硬いγ相
の分断、球状化と相対的に軟いα相の変形中の動的再結
晶か起こる過程を通(〜て実現されるものであり、高N
であることが重要4.H条件となる。In this way, most of the superplastic deformation of duplex stainless steel occurs in the two-phase state of α phase and γ phase, and the relatively hard γ phase is divided and spheroidized, and the relatively soft α phase is deformed. This is achieved through the process of dynamic recrystallization of
It is important that 4. This is the H condition.
内管を製造するには、E記の如き組成を有する2相ステ
ンレス鋼の、インゴット法又はCC法で得た鋼塊、場合
によっては鍛造によってビレットとしたものを、ユジー
ンセジュルネ法やマンネスマン法でシームレス管となす
か、あるいは圧延によって得た鋼板を溶接にて製管すれ
ばよい。外管についても同様である。ただし、内管1こ
ついては、後で超塑性変形させて外管に密着させる関係
から、組織が均一で均等な変形能が得られるシームレス
管のほうがよい。To manufacture the inner tube, a steel ingot of duplex stainless steel having a composition as shown in E, obtained by the ingot method or the CC method, or in some cases a billet by forging, is processed by the Eugene-Séjournet method or the Mannesmann method. It is possible to make a seamless pipe by rolling, or by welding a steel plate obtained by rolling. The same applies to the outer tube. However, if the inner tube is in trouble, it is better to use a seamless tube because it has a uniform structure and can be deformed evenly since it will be superplastically deformed later and will be brought into close contact with the outer tube.
得られた管に格別の前処理は必要でないが、超塑性変形
させる内管については、冷間加工を加えたほうがより大
きな変形効果の得られることかある。Although no special pretreatment is required for the obtained tube, for the inner tube to be superplastically deformed, a greater deformation effect may be obtained by adding cold working.
内管の外面は、外管の内面より更に大まかな状態でよい
。すなわち、仕上工程は特に必要とせず、スケール除去
のための粗削り又は酸洗のままでもよい。The outer surface of the inner tube may be more rough than the inner surface of the outer tube. That is, no finishing process is particularly required, and the surface may be rough-cut or pickled to remove scale.
その理由は内管に用いる2相ステンレス鋼に超塑性変形
を生じせしめるため、良好な向流れが生じるためである
。The reason for this is that the duplex stainless steel used for the inner tube undergoes superplastic deformation, resulting in good counterflow.
管寸法のうちで重要なのは、内管の外径と外管の内径と
の差、すなわち外管に内管を挿入したときのクリアラン
スであり、それは挿入作業に支障のないかぎりできるだ
け小さい方が望ましい。なぜなら、そのクリアランスが
大きいと内管に与える変形量が大きくなって作業能率を
低下させるからである。An important aspect of tube dimensions is the difference between the outer diameter of the inner tube and the inner diameter of the outer tube, that is, the clearance when inserting the inner tube into the outer tube, and it is desirable that this be as small as possible as long as it does not interfere with the insertion process. . This is because if the clearance is large, the amount of deformation imparted to the inner pipe becomes large, reducing work efficiency.
他の管寸法については、得ようとするクラッド鋼管の寸
法に基づいて決定すればよい。Other pipe dimensions may be determined based on the dimensions of the clad steel pipe to be obtained.
c1クラッド工程
外管に内管を挿入し、かつ内管を750〜1100℃に
加熱した状態で、内管を内側から押し拡げる。c1 Clad process: Insert the inner tube into the outer tube, and while heating the inner tube to 750 to 1100° C., expand the inner tube from the inside.
すなわち、内管を加熱後、外管に挿入してもよいし、内
管を外管に挿入後、内外管ともに加熱してもよく、また
内管を外管に挿入後、誘導加熱等で内管を集中的に加熱
してもよい。要は内管を押し拡げる際に内管の温度が7
50〜1100℃の範囲に維持されていればよいという
ことである。That is, the inner tube may be heated and then inserted into the outer tube, the inner tube may be inserted into the outer tube and both the inner and outer tubes may be heated, or the inner tube may be inserted into the outer tube and then heated by induction heating, etc. The inner tube may be heated intensively. The point is that when the inner tube is expanded, the temperature of the inner tube is 7.
This means that it is sufficient if the temperature is maintained within the range of 50 to 1100°C.
加熱温度を750〜1100°Cにしたのは、750°
C未満ではγ相の分断、球状化やα相の再結晶などの、
熱活性化過程の働らきが不充分さなって、超塑性が得に
くくなり、1100℃超ではγ相の量が極端に減って第
2相としてのγ相が分散球状化し、α相の再結晶を促す
効果が得られないので、同様る。The heating temperature was 750-1100°C.
Below C, γ-phase fragmentation, spheroidization, α-phase recrystallization, etc.
The action of the thermal activation process becomes insufficient, making it difficult to obtain superplasticity, and at temperatures above 1100°C, the amount of γ phase is extremely reduced, the γ phase as a second phase becomes dispersed and spheroidized, and the α phase is regenerated. The same applies because the effect of promoting crystallization cannot be obtained.
内管を押(〜拡げるには、内管の内部にガスを注入して
もよいし、メカニカルな拡管手段を使用してもよい。To push (expand) the inner tube, gas may be injected into the inner tube, or mechanical tube expansion means may be used.
加熱工程から拡管工程にかけて重要なことは、内外管の
被接合面を酸化させないことである。すなわち、酸化に
より被接合面にスケールか生じると、金属面同士の接触
をさまたげ、金属原子拡散が生じない。What is important from the heating process to the tube expansion process is not to oxidize the surfaces to be joined of the inner and outer tubes. That is, if scale is generated on the surfaces to be joined due to oxidation, it prevents contact between the metal surfaces and metal atoms do not diffuse.
したがって、加熱は不活性ガス雰囲気下で行い、これに
続く拡管も不活性ガス雰囲気乃至は少なくとも内管と外
管の間に不活性ガスを保持もしくは流通させた状態で行
うことが推奨され、更に、ガス注入によって拡管を行う
場合は注入ガスに不活性ガスを使用するのが良い。Therefore, it is recommended that heating be performed under an inert gas atmosphere and that the subsequent tube expansion be performed in an inert gas atmosphere or at least with an inert gas maintained or flowing between the inner tube and the outer tube. When expanding the pipe by injecting gas, it is best to use an inert gas as the injected gas.
不活性ガスは如何なる種類のものでもよいが、出来るな
ら2相ステンレス鋼中に多量に含有されるN2ガスが好
ましい。Any type of inert gas may be used, but N2 gas, which is contained in a large amount in duplex stainless steel, is preferably used.
拡管に必要な圧力は、内管と外管の間の界面に冶金結合
を生じさせるのに必要な密着圧力が確保できる大きさが
あればよく、通常は内管の肉厚1鴫当り1.5気圧(I
。5秒−)以上であり、作業能率を考慮した場合は1m
当り5気圧(5,2に9/art )前後が好ましい。The pressure required for pipe expansion is sufficient as long as it can secure the contact pressure necessary to create a metallurgical bond at the interface between the inner pipe and the outer pipe, and is usually 1.5 mm per wall thickness of the inner pipe. 5 atm (I
. 5 seconds -) or more, and if work efficiency is taken into account, the distance is 1 m.
It is preferably around 5 atm/art (5.2 to 9/art).
ただし、20気圧(20KVam’ )を超えると、作
業性をそこなうからこれ以下が望ましい。However, if it exceeds 20 atm (20 KVam'), workability will be impaired, so it is desirable that the pressure be less than this.
内管の拡管を終えたクラッド鋼管に後処理は特に必要で
ないが、内管の加熱に伴って外管が加熱された場合は、
炭素鋼又は低合金鋼からなる外管の強度および靭性を確
保するため、要求されるこれら性能に応じて、少なくと
も450℃まで5〜50’C/secの冷却速度で冷却
することが望ましい。No particular post-treatment is required for clad steel pipes after the inner pipe has been expanded, but if the outer pipe is heated along with the heating of the inner pipe,
In order to ensure the strength and toughness of the outer tube made of carbon steel or low alloy steel, it is desirable to cool the outer tube to at least 450°C at a cooling rate of 5 to 50'C/sec, depending on the required performance.
第1表に成分組成を示し、寸法が16’ODX19mt
の低合金鋼からなる外管と、$2表に成分組成を示し、
寸法が14’ ODX 4mm tで、内面粗さを種々
に調整した内管とを、嵌合後、N2ガスを充填したバッ
チ炉にて種々の温度に加熱し、ガスパージングにより内
外管の被接合面を不活性ガス雰囲気に維持しながら、N
2ガス注入とメカニカルエキスパンダーとで内管を拡径
I−た。N2ガス注入を行うものについては予め内管の
両端を注入孔を残して閉塞しておいた。得られたクラッ
ド鋼管にJISGO601に規定されるせん断試験を実
施し、内管と外管の接合強度を調査した。調査結果と、
調査した鋼管の仕様とを第3表に示す。なお、内管の外
表面はいずれも酸洗ままである。Table 1 shows the component composition, and the dimensions are 16'ODX19mt
The outer tube is made of low-alloy steel, and the component composition is shown in the $2 table.
After fitting the inner tube with dimensions of 14' ODX 4 mm t and variously adjusted inner surface roughness, it was heated to various temperatures in a batch furnace filled with N2 gas, and the inner and outer tubes were welded by gas purging. While maintaining the surface in an inert gas atmosphere,
The diameter of the inner tube was expanded by injecting two gases and using a mechanical expander. For those in which N2 gas was to be injected, both ends of the inner tube were closed in advance, leaving an injection hole. The obtained clad steel pipe was subjected to a shear test specified in JISGO601, and the joint strength between the inner pipe and the outer pipe was investigated. Survey results and
Table 3 shows the specifications of the steel pipes investigated. Note that the outer surfaces of the inner tubes were all left pickled.
第 1 表 (wt係)
第 2 表 (wtチ)
第3表
例1では外管内面の表面粗さ、内管の組成(特に固溶窒
素含有量)および内管の加熱温度がいずれも本発明範囲
内であり、内管と外管のせん断強さは、本発明が目的と
する20輸を大きく上まわっている。Table 1 (wt section) Table 2 (wt section) Table 3 In Example 1, the surface roughness of the inner surface of the outer tube, the composition of the inner tube (particularly the solid solution nitrogen content), and the heating temperature of the inner tube are all the same. This is within the scope of the invention, and the shear strength of the inner tube and outer tube far exceeds 20 mm, which is the objective of the present invention.
例2では外管内面の表面粗さが本発明範囲を超えて極度
に大きい。この表面粗さの場合、従来のアモルファスイ
ンサート拡散接合法では全く接合しないか、接合しても
51程度の強さしか得られない。しかるに、本発明では
表面粗さが範囲外であるため、目標のせん断強さを得る
までには至っていないが、それでも16−4の強さを確
保している。In Example 2, the surface roughness of the inner surface of the outer tube was extremely large, exceeding the range of the present invention. In the case of this surface roughness, the conventional amorphous insert diffusion bonding method either does not bond at all, or even if it does bond, only a strength of about 51 can be obtained. However, in the present invention, since the surface roughness was outside the range, the target shear strength was not achieved, but the strength of 16-4 was still secured.
例3では内管の組成がBで、固溶窒素含有量が本発明範
囲を下回っている。このため、他の条件が全て本発明範
囲内であるにもかかわらず、全く接合されていない。こ
のことは、内管に超塑性が生じなかったことに他ならな
い。In Example 3, the composition of the inner tube is B, and the solid solution nitrogen content is below the range of the present invention. Therefore, even though all other conditions were within the scope of the present invention, no bonding was performed at all. This means that superplasticity did not occur in the inner tube.
例4では内管の拡管加工時の温度が本発明範囲を下回っ
ており、せん断強さは0である。他の条件は全て本発明
範囲内であるので、内管の加熱温度が不足した場合は、
超塑性を生じないことが明らかである。In Example 4, the temperature during expansion of the inner tube was below the range of the present invention, and the shear strength was zero. All other conditions are within the scope of the present invention, so if the heating temperature of the inner tube is insufficient,
It is clear that superplasticity does not occur.
例5では例4の場合と反対に内管の温度が本発明範囲を
超えており、この場合も超塑性を生じないことが分かる
。In Example 5, contrary to Example 4, the temperature of the inner tube exceeds the range of the present invention, and it can be seen that superplasticity does not occur in this case as well.
例6では内管の内側からの加圧力を意識的に低下させて
いるため、超塑性による冶金接合を引出すことができな
かった。いかに超塑性と言えども、冶金接合を行わしめ
るためには、ある程度の力で内管を外管に押圧しなけれ
ばならない。ちなみに、この例における加圧力は内管の
厚み1−当り0.5気圧である。In Example 6, since the pressure applied from the inside of the inner tube was intentionally lowered, it was not possible to achieve metallurgical bonding due to superplasticity. No matter how superplastic, the inner tube must be pressed against the outer tube with a certain amount of force in order to achieve a metallurgical bond. Incidentally, the pressurizing force in this example is 0.5 atm per thickness of the inner tube.
例1〜6がN2ガス注入による内管拡径であるのに対し
、例7はメカニカルエキスパンダーにヨル拡管である。In Examples 1 to 6, the diameter of the inner tube was expanded by injecting N2 gas, whereas in Example 7, the diameter of the inner tube was expanded using a mechanical expander.
機械的拡管の場合も諸条件が本発明範囲に収まるならば
、目標とするせん断強さを得ることが可能である。Even in the case of mechanical pipe expansion, it is possible to obtain the target shear strength if the various conditions fall within the scope of the present invention.
以上の説明から明らかなように、本発明はクラッド鋼管
の製造において、内管に超塑性を発現させ、これにより
従来の溶接を使わないクラッド製管法では困難とされて
いた界面の冶金接合を可能ならしめ、溶接部がなくしか
も接合強度の高い高品質なりラッド鋼管を製造するのみ
ならず、超塑性による界面の冶金接合は、管であれ板で
あれ従来のクラッド法全般において加工上大きな障害と
なっていた被接合面の鏡面仕上げを不要ならしめ、品質
面ばかりでなく加工工数面でも太きな効果をもたらすも
のである。As is clear from the above description, the present invention enables the inner tube to develop superplasticity in the production of clad steel pipes, thereby achieving metallurgical bonding at the interface, which was difficult with conventional clad pipe manufacturing methods that do not use welding. Not only is it possible to manufacture high-quality rad steel pipes with no welds and high bonding strength, but metallurgical bonding at interfaces using superplasticity is a major processing hurdle for conventional cladding methods in general, whether for pipes or plates. This eliminates the need for mirror-finishing of the surfaces to be joined, which had previously been required, and has a significant effect not only in terms of quality but also in terms of processing man-hours.
Claims (2)
金鋼からなる外管内に、固溶窒素含有量が0.05〜0
.25%のFe、Cr、Niを主成分とする2相ステン
レス鋼からなる内管を加熱後内嵌挿入するか、又は内嵌
挿入後加熱し、その内管温度が750〜1100℃であ
る間に内管を内側からの加圧により拡管してその外面を
外管内面に密着接合することを特徴とするクラッド鋼管
の製造方法。(1) Inside the outer tube made of carbon steel or low alloy steel with an inner surface roughness of 30 μm or less, the solid solution nitrogen content is 0.05 to 0.
.. An inner tube made of duplex stainless steel whose main components are 25% Fe, Cr, and Ni is heated and then inserted into the inner tube, or heated after the inner tube is inserted while the inner tube temperature is 750 to 1100°C. A method for producing a clad steel pipe, which comprises: expanding an inner pipe by applying pressure from the inside, and closely joining the outer surface of the inner pipe to the inner surface of the outer pipe.
合面を不活性ガス雰囲気に保持した状態で行うことを特
徴とする特許請求の範囲第1項に記載のクラッド鋼管の
製造方法。(2) Manufacturing the clad steel pipe according to claim 1, wherein the heating expansion of the inner pipe is performed while at least the surfaces to be joined of the inner pipe and the outer pipe are maintained in an inert gas atmosphere. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18548585A JPS6245486A (en) | 1985-08-22 | 1985-08-22 | Production of clad steel pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18548585A JPS6245486A (en) | 1985-08-22 | 1985-08-22 | Production of clad steel pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6245486A true JPS6245486A (en) | 1987-02-27 |
Family
ID=16171589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18548585A Pending JPS6245486A (en) | 1985-08-22 | 1985-08-22 | Production of clad steel pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6245486A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5431506A (en) * | 1990-03-14 | 1995-07-11 | Masunaga Menlo Park Co., Ltd. | Property of bonded metal, including forming material of nickel-titatium alloy, and the method of manufacturing the same |
JP2012076129A (en) * | 2010-10-04 | 2012-04-19 | Sumitomo Metal Ind Ltd | Method for manufacturing metallic double wall pipe |
CN108704952A (en) * | 2018-05-18 | 2018-10-26 | 东阿县华通轴承配件有限公司 | A kind of bearing seamless steel tube production technique |
-
1985
- 1985-08-22 JP JP18548585A patent/JPS6245486A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5431506A (en) * | 1990-03-14 | 1995-07-11 | Masunaga Menlo Park Co., Ltd. | Property of bonded metal, including forming material of nickel-titatium alloy, and the method of manufacturing the same |
JP2012076129A (en) * | 2010-10-04 | 2012-04-19 | Sumitomo Metal Ind Ltd | Method for manufacturing metallic double wall pipe |
CN108704952A (en) * | 2018-05-18 | 2018-10-26 | 东阿县华通轴承配件有限公司 | A kind of bearing seamless steel tube production technique |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4917969A (en) | Process for the production of clad hot rolled strip and the resulting product | |
US6024276A (en) | Method for bonding dual-phase stainless steel | |
US20030047587A1 (en) | Welding processes for iron-base ultra fine grained materials and structural components manufactured by the processes | |
JP5033423B2 (en) | Heat treatment method in press fitting | |
JPS61210158A (en) | Superplastic two-phase stainless steel and hot working method thereof | |
JP2007516351A (en) | Manufacturing method of stainless steel pipe used for piping system | |
JP2002103048A (en) | Method for spot welding of high strength steel plate | |
JPS6245486A (en) | Production of clad steel pipe | |
US6419768B1 (en) | Method for producing welded tubing having a uniform microstructure | |
CN116221509A (en) | High-strength corrosion-resistant alloy composite oil pipe and manufacturing method thereof | |
JPH03204106A (en) | Plug for manufacturing hot seamless tube | |
JP2001512786A (en) | Ferrite alloys for structural use | |
JPH05185250A (en) | Joining material for different kinds of metal | |
JPH01197081A (en) | Manufacture of high corrosion resistant double metal pipe | |
JPS5935826A (en) | Manufacture of small aperture and long-sized double pipe | |
JPS61144284A (en) | Production of clad material | |
JPH0790375A (en) | Production of thick bend steel pipe having high strength and high toughness | |
JP3252651B2 (en) | Manufacturing method for steel pipes with excellent selective corrosion resistance of welds | |
Barnett et al. | State-of-the-art literature survey on fabrication techniques of advanced ducting components | |
JP2733866B2 (en) | Gas shielded arc welding method | |
JPH11108257A (en) | Piping material for natural gas field and welding method | |
JP2024126142A (en) | Non-tempered circular welded steel pipe and its manufacturing method | |
JPS6316814A (en) | Manufacture of bent welding steel pipe having excellent stiffness on weld zone | |
JPH0515982A (en) | Production of double metallic pipe | |
Gilman | Tubular Transition Joints—Stainless Steel to Aluminum; A Diffusion-Bonding Technique Compared with Alternate Methods |