JPS58112612A - Manufacture of double pipe - Google Patents

Manufacture of double pipe

Info

Publication number
JPS58112612A
JPS58112612A JP56209046A JP20904681A JPS58112612A JP S58112612 A JPS58112612 A JP S58112612A JP 56209046 A JP56209046 A JP 56209046A JP 20904681 A JP20904681 A JP 20904681A JP S58112612 A JPS58112612 A JP S58112612A
Authority
JP
Japan
Prior art keywords
pipe
tube
double
heating
inner tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56209046A
Other languages
Japanese (ja)
Other versions
JPH0144408B2 (en
Inventor
Tatsuo Kawasaki
川崎 龍夫
Isao Takada
高田 庸
Hiroshi Otsubo
宏 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP56209046A priority Critical patent/JPS58112612A/en
Priority to GB08215344A priority patent/GB2100641B/en
Priority to US06/383,733 priority patent/US4533806A/en
Priority to CA000404441A priority patent/CA1198267A/en
Priority to DE3221887A priority patent/DE3221887C2/en
Priority to FR828210138A priority patent/FR2507508B1/en
Publication of JPS58112612A publication Critical patent/JPS58112612A/en
Publication of JPH0144408B2 publication Critical patent/JPH0144408B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • B21D26/045Closing or sealing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • B21D26/051Deforming double-walled bodies

Abstract

PURPOSE:To easily manufacture a double pipe having excellent adhesiveness without receiving any restriction in pipe dimensions, etc., by overlapping an outer pipe and an inner pipe having different coefficients of thermal expansion respectively, and expanding the inner pipe by a gas pressure while heating said inner pipe and then cooling it after expanding. CONSTITUTION:An inner pipe 2 consisting of a material having a thermal expansion coefficient smaller than that of a material of an outer pipe 1 is inserted to the inside of the pipe 1, and the whole length of overlapped pipes is housed in an electric furnace 5 to be heated. At the same time, both ends of the pipe 2 are hermetically sealed with seal caps 3 and 3, and compressed air is supplied to the pipe 2 from a air bomb 4 to pressurize and expand the pipe 2 in order to join it to the pipe 1. Next, the pipe 2 is squeezed strongly by the pipe 1 and bound with the pipe 1 tightly by means of the difference of thermal expansion coefficients of them by cooling the overlapped pipes. The binding between the overlapped pipes is made more firm by moving the heating zone through the whole length, or moreover, by loading a compressive force on the pipe 2 along the axial direction, etc.

Description

【発明の詳細な説明】 本発明は、二重管の製造方法に関するものであり、特に
本発明は、安価な外管と、例えば耐食性あるいは耐熱性
を有する高価な材料製の内管とよりなる二重管のamに
当り、両管夫々の材料の熱膨張係数を適当に通訳するこ
とを特徴とする二重管の峡遣方法である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a double pipe, and in particular, the present invention relates to a method for manufacturing a double pipe, and in particular, the present invention relates to a method for manufacturing a double pipe, which comprises an inexpensive outer pipe and an inner pipe made of an expensive material that is resistant to corrosion or heat, for example. This is a method for connecting a double pipe, which is characterized by appropriately interpreting the coefficient of thermal expansion of each material of both pipes.

管は、その用途により椙々の特性が要求されるので、こ
れら特性を満足する素材をもって製造されている。近年
産業の発達、特に化学工業およびその周辺あるいは関連
技術の発達により管に要求される特性は多様かつ苛酷に
なり、1fllflllの管材料をもって、要求される
特性をすべて満足させるためには、非常に紬価な材料を
使用せざるを得ないのが現状である。
Since pipes are required to have various characteristics depending on their use, they are manufactured using materials that satisfy these characteristics. In recent years, due to the development of industry, especially the development of the chemical industry and related technologies, the characteristics required of pipes have become more diverse and severe. The current situation is that we have no choice but to use expensive materials.

一力、上記島価な材料を使用することによる管のコスト
の上昇を抑制するため、それぞれ異なった特性を有する
!JI数の材料を接合させた多層管の製造方法が櫨々提
案されており、これらの方法は以下の如くに大別するこ
とができる。
In order to suppress the increase in pipe costs due to the use of the above-mentioned expensive materials, each has different characteristics! Methods for manufacturing multilayer pipes in which JI number of materials are bonded have been proposed one after another, and these methods can be broadly classified as follows.

1) 口径のわずかに異なるコ権類の管を機械的にはめ
合わせるに際し、熱膨張と収縮を利用するいわゆる焼ば
め法、あるいはpbやZnの如き固体鉤滑剤を利用して
はめ合わせる方法。
1) When mechanically fitting pipes with slightly different diameters, the so-called shrink fitting method uses thermal expansion and contraction, or the fitting method uses a solid lubricant such as PB or Zn.

l) 管の外部に帝幽を巻き付けて端部を溶接する方法
l) A method of wrapping the tube around the outside of the tube and welding the ends.

−) 口径の小さい管を口径の大きな管内に挿入して嵐
ねあわせ管となした後、爆着、熱間圧延、冷間圧延の何
れか少くとも一つの手段によって接合させるか、あるい
は内管と外管との界面に光塙した接合剤としてのロウ材
を利用して接合させる方法。
-) After inserting a small-diameter pipe into a large-diameter pipe to form a storm-bonded pipe, the pipes are joined by at least one of explosion bonding, hot rolling, and cold rolling, or the inner pipe is A method of joining using a brazing material as a bonding agent applied to the interface between the outer tube and the outer tube.

−) 管の内面およびまたは外向に!s41!材料から
なる浴接俸をもって肉盛浴接するか、もしく(コ前記i
4柚材料を肉盛した管を熱間あるいは冷間圧延して径を
小さくシ、長尺管とする方法。
−) On the inside and or outside of the tube! s41! Either apply the overlay bath with a bath coat made of the material, or (see i above)
4. A method of hot or cold rolling a pipe overlaid with yuzu material to reduce its diameter and make it into a long pipe.

■)数枚の帯鋼を、重ね合せて成形するか、あるいはう
ず巻状にして溶接する方法。
■) A method in which several steel strips are formed by stacking them on top of each other, or by welding them into a spiral shape.

しかし上記諸方法には何れも以下に示す如き欠点があり
、多層管またはその工業的製造方法としては−必ずしも
満足すべき特性を有していない。
However, all of the above-mentioned methods have the following drawbacks, and do not necessarily have satisfactory characteristics as a multilayer pipe or an industrial method for producing the same.

すなわち、 I)の方法によれば、はめ合わせの時の寸法精度が重要
であるので長尺ものには実施困難であり、焼ばめ温度以
上での使用、あるいは高温下、低温下の繰返し使用によ
り、接合部のゆるみが生じ、またPb、 Zn等の潤滑
によるはめ込みにあっては内厚の薄い管の組合せは困難
であり、また大径管の場合の実施も困難であるので、こ
の方法によれば製造される管の寸法上の制約がある。
In other words, according to method I), dimensional accuracy during fitting is important, so it is difficult to implement for long items, and it is difficult to implement it for long items, and it is difficult to use at temperatures above the shrink fit temperature or repeatedly used at high and low temperatures. This method causes loosening of joints, and it is difficult to combine tubes with thin inner thickness when fitting with lubrication such as Pb or Zn, and it is also difficult to implement with large diameter tubes. According to the above, there are dimensional constraints on the tubes to be manufactured.

―)の方法によれば、l@接部においては内、外管の接
合は良いが、その他の部分は接合しておらず、したがっ
てIli&温下の加熱、あるいは高温下、低温下のw!
返し加熱によって接合部のゆるみを生じたり、帛一部に
割れが発生する恐れがある。また浴接を受けるため浴接
性の点から割れを生じない材料を選択する必要がある1
!8組合せ材料の選択+67で制約かある。
-) method, the inner and outer tubes are well bonded at the l@ contact area, but the other parts are not bonded. Therefore, heating under Ili & temperature, or w! under high temperature or low temperature.
Reheating may cause the joints to loosen or cracks may occur in some parts of the fabric. In addition, since it is subjected to bath welding, it is necessary to select materials that do not cause cracks from the viewpoint of bath weldability1.
! There is a restriction of 8 combination material selection + 67.

−)の方法によれば、爆着では貨径や長さの点、あるい
は能率などの点に間縮があり一、熱間圧勉、冷間圧延ま
たはロウ材による接合は優れた方法ではあるが、工程が
煩雑な点に罎点かある。
According to the method (-), there is some shrinkage in terms of diameter, length, or efficiency in explosive bonding, but joining by hot rolling, cold rolling, or brazing is an excellent method. However, the drawback is that the process is complicated.

−)の方法によれは、大径管にしか内盛することがてき
ないため、寸法上の制約があり、また肉盛#縁によって
浴着酩あるいは母材に割れなどが発生することもあり、
また肉盛都の加工性も恕いため、肉盛材と母材管の材料
組合せに制限がある。
-) method can only be applied to large-diameter pipes, so there are dimensional restrictions, and the edges of the overlay may cause cracks or cracks in the base material. ,
In addition, because the workability of the overlay material is also poor, there are restrictions on the material combinations of the overlay material and the base material pipe.

マtの方法によれば、小径管の装すは困−であり、また
溶接部以外の接合はMJ湿温下使用やくり返えし加熱′
によりゆるみを生じる。また大径管の場合にあっても肉
厚の極端に黒なるものや、材質の極端に員なるものの組
合わせでは浴接か困暖であり、組合せる素材や寸法上の
制約をまぬがれないO 本発明は、従来の二重管の製造方法の有する前記諸欠点
を除去、改善した二重管の製造方法を提供することを目
的とするものであり、特許請求の範囲記載の方法によっ
て前記目的を達成することができる。すなわち本発明は
、外管の内側に内管を挿入して外管と内管とを重ねあわ
せて接合する二重管の製造方法において、内管の材料の
熱膨張係数が外管の材料の熱膨張係数よりも小さいよう
に迩定し製作した外管内に内管を挿入して重ねあわせ管
とし、該重ねあわせ管を二重菅使用温度より高温度で加
熱し同時に内管を気体により加圧して拡管し、外管に密
着させ、次いで冷却することにより内外両管を締結させ
ることを特徴とする二重管のIII!造方法に関するも
のである。
According to Matt's method, it is difficult to install small diameter pipes, and joints other than welded parts require MJ use at humid temperatures or repeated heating.
This causes loosening. Furthermore, even in the case of large-diameter pipes, if the wall thickness is extremely black or the material is extremely thick, it will be difficult to contact the bath, and there will be restrictions on the materials and dimensions of the combination. An object of the present invention is to provide a method for manufacturing a double pipe that eliminates and improves the above-mentioned drawbacks of the conventional method for manufacturing a double pipe. can be achieved. That is, the present invention provides a method for manufacturing a double pipe in which an inner pipe is inserted inside an outer pipe and the outer pipe and the inner pipe are overlapped and joined. An inner tube is inserted into an outer tube manufactured to have a coefficient smaller than the coefficient of thermal expansion to form a stacked tube, and the stacked tube is heated at a temperature higher than the temperature at which the double tube is used, and at the same time the inner tube is heated with gas. III of the double tube characterized by compressing and expanding the tube, bringing it into close contact with the outer tube, and then cooling it to connect both the inner and outer tubes! It is related to the manufacturing method.

本発明の製造方法において、加熱は、東ねあわせ管全長
にわたって同時でも、部分的な加熱帯域を管全長に移動
させてもよい。前記の帯域加熱による時は加熱と気体に
よる加圧!拡管とに加え、内管の軸方向に圧縮力を負荷
して府紀拡管を容易にすることができる。以上のように
して11造された二重管を通常の方法によって拡管また
は縮管して所望の寸法にwI4II!tすることもでき
る。
In the manufacturing method of the present invention, the heating may be performed simultaneously over the entire length of the east-aligned tube, or a partial heating zone may be moved along the entire length of the tube. When using zone heating as mentioned above, heat and pressurize with gas! In addition to pipe expansion, compressive force can be applied in the axial direction of the inner pipe to facilitate pipe expansion. The 11 double pipes made as described above are expanded or contracted by the usual method to obtain the desired dimensions wI4II! You can also t.

次に本発明を図面について説明する。Next, the present invention will be explained with reference to the drawings.

第7図では、内管コは外管lの内側に挿入されて重ねあ
わせ管が構成され、内管コの両端はシールキャップ3に
より密封され、空気もしくは不活性ガスボンベ参に連結
され、重ねあわせ管全長が管状電気炉S内に収容された
状況を示す。この装置により嵐ねあわせ管全長を一緒に
加熱しながら内管コをガスボンベ参からの気体により加
圧・拡管すると、内qItλは外vlと接合するに至る
。次に重ねあわせ管を冷却すると、内@−と外・11に
III(jp+迩定の時に配慮された熱膨張係数の相違
によって外管lの収縮は内管コの収縮よりも大きいので
、外宮lは内1!r2を細めつけ、内外両管は更に1く
柳給され、結合される。
In Fig. 7, the inner tube is inserted inside the outer tube L to form a stacked tube, and both ends of the inner tube are sealed with seal caps 3 and connected to an air or inert gas cylinder. A situation is shown in which the entire length of the tube is accommodated in the tubular electric furnace S. When the inner tube is pressurized and expanded with gas from a gas cylinder while heating the entire length of the storm-aligned tube together with this device, the inner tube qItλ is joined to the outer tube Vl. Next, when the superimposed tubes are cooled, the outer tube L shrinks more than the inner tube C due to the difference in thermal expansion coefficients taken into consideration when determining the inner@- and outer tubes III (jp+). l narrows the inner 1!r2, and both the inner and outer pipes are further connected to each other.

第一図にあっては、第1図と同様な重ねあわせ宮が雰囲
気dl[チャンバー6内に収容され、Il!l−長の一
部分が、高周波電源装wttに接続され移動装置!によ
り管全長にわたってu 1iEIJ口■能な加熱コイル
7に囲繞された状況を示す。必要にめじて雰囲気調部チ
ャンバー6および内管コ内を真空排気装置lOによって
減圧した後、不活性あるいは還元性ガスを雰囲気調整ボ
ンベl/より雰囲気調整チャンバー6内に導入し、シー
ルキャップ3で密封された内管コ内に空気もしくは不活
性ガスを内管加圧用ガスボンベ参から圧入して内管コ内
を加圧し、高周波加熱フイルクに11!周波電源装置l
より通電して、加熱コイル移動装置デにより加熱コイル
7を移動させつつ、内管コと外管lとを帯域加熱し、加
熱コイル7の移動中のそれぞれの位置における加熱部に
おいて内管−を加熱と加圧により#張せしめて外tlに
接合させる。かかる加熱を官全長にわたって実施の後全
体が冷却すると内外管は一体に強く結合した二重管とな
る。なお1紀加圧と加熱中に圧縮加工装置/Jと葡東測
定@/、?と圧縮加工用ピストン/ダによって内管コの
両端部に長手方向に沿って向い合った圧縮力を加え得る
ようにすることにより、前記加熱・加圧・拡管中に、内
!−の軸方向に圧縮力も加えて前記拡管を助け、更に内
外管の接合を助長させることもできるO 次に本発明を実施例について説明する。
In Figure 1, a superimposition similar to that in Figure 1 is housed in the atmosphere dl [chamber 6, and Il! A part of the l-length is connected to the high frequency power supply wtt and the mobile device! This shows the situation in which the pipe is surrounded by a heating coil 7 capable of operating over the entire length of the pipe. If necessary, after reducing the pressure inside the atmosphere adjustment chamber 6 and the inner tube using the vacuum evacuation device 1O, an inert or reducing gas is introduced into the atmosphere adjustment chamber 6 from the atmosphere adjustment cylinder 1, and then the seal cap 3 Air or inert gas is pressurized into the sealed inner tube from a gas cylinder for pressurizing the inner tube, and the inside of the inner tube is pressurized. Frequency power supply equipment
While the heating coil 7 is moved by the heating coil moving device D, the inner tube 1 and the outer tube 1 are band-heated, and the inner tube 7 is heated at the heating section at each position during the movement of the heating coil 7. It is stretched and bonded to the outer tl by heating and pressurizing. After such heating is carried out over the entire length of the tube and the entire tube is cooled, the inner and outer tubes become a double tube strongly connected to one another. In addition, compression processing equipment /J and Tadashi measurement @ /,? during the first period pressurization and heating? By making it possible to apply opposing compressive forces along the longitudinal direction to both ends of the inner tube by means of a piston/da for compression processing, the inner! A compressive force can also be applied in the axial direction of - to help expand the tube and further promote the joining of the inner and outer tubes.Next, the present invention will be described with reference to embodiments.

実施例1゜ 外管として炭嵩−管(STBAIコ)の外径go、g關
、肉厚j、0III11、内管として純Ti (JIS
コ梱)の外径J1.θ鴎、肉厚OJuのTIG浴接管を
用いた。
Example 1 The outer diameter of a coal bulk tube (STBAI) as the outer tube is go, g, wall thickness j, 0III11, and the inner tube is pure Ti (JIS
outer diameter J1. A TIG bath pipe with a thickness of OJu and θ was used.

二重管の製造方法は以下の手順によった。すなわち、第
1図に下すごとく内管λの両端にシールキャップJをT
IG浴接し、外管lに挿入し、外管/と内管コとよりな
る真ねあわせ管全長が収容できる管状電気炉Sで+Jl
熱した。加熱温度はttoo’cである。内管コの加圧
気体は圧力15%圧でアルゴンガスボンベ亭より供給さ
れた。goo’cでS分間保持した後、炉から取出し、
冷却後減圧した。以上の方法で作成した二]1[管は、
軸方向直角−1面の検査により、完全に種結しているこ
とが確認された。
The method for manufacturing the double tube was as follows. That is, as shown in Fig. 1, seal caps J are attached to both ends of the inner tube λ.
+Jl in a tubular electric furnace S that can accommodate the entire length of the straightened tube consisting of the outer tube / and the inner tube, which is in contact with the IG bath and inserted into the outer tube l.
It was hot. The heating temperature is ttoo'c. The pressurized gas in the inner tube was supplied from an argon gas cylinder at a pressure of 15%. After holding it in goo'c for S minutes, take it out from the furnace,
After cooling, the pressure was reduced. The tube created using the above method is
Inspection of the -1 plane perpendicular to the axial direction confirmed that the seeds were completely seeded.

実施例2 外管として炭嵩幽管(5TBA 2−)の外径go、g
嶋肉v#Q、r m 、内管として^純良フェライト系
ステンレスW4 (Fe −Jo%Or−一%MO>の
外径3t、。
Example 2 Outer diameter go, g of charcoal bulk tube (5TBA 2-) as outer tube
Shimaniku v#Q, r m, outer diameter of ^ pure ferritic stainless steel W4 (Fe -Jo%Or-1%MO>) as inner tube, 3t.

關、肉厚o、tis静のTIG浴接管を用pzだ。二重
管の製造方法は以下の手順によった。
I am using a TIG bath contact pipe with a thick wall and a thin wall. The method for manufacturing the double tube was as follows.

すなわち、第1図に示すごとく内管コの両端にシールキ
ャップ3を溶接し、外管lに挿入し、外管lと内tコと
よりなる重ねあわせ管を雰吐気調鉦チャンバー6内にセ
ットし、該チャンノ(−6内を真空排気装置10により
排気の後、雰囲気調整ガスボンベ/lよりアルゴンガス
を導入した。内管コの加圧用ガスボンベ参よりのアルゴ
ンガスで内管コ内をlθ気圧に加圧後、帯域加熱コイル
クをコ00■/ mi nの1M度で管全長にわたって
移動させながら管の被加熱部がlθso’cとなるよう
に加熱した。以上の方法で作成した二重管は、軸方向直
角断面の検査により、完全に締結していることが確認さ
れた。
That is, as shown in FIG. 1, seal caps 3 are welded to both ends of the inner tube, and the seal caps 3 are inserted into the outer tube L, and the overlapping tube consisting of the outer tube L and the inner tube is placed in the atmosphere adjustment chamber 6. After evacuating the inside of the channel (-6) using the vacuum evacuation device 10, argon gas was introduced from the atmosphere adjusting gas cylinder/l. After pressurizing to atmospheric pressure, the tube was heated by moving a zone heating coil over the entire length of the tube at 1M degrees at 00cm/min so that the heated part of the tube became lθso'c. The tube was confirmed to be completely fastened by inspection of a cross section at right angles to the axial direction.

実施例8゜ 外管としてステンレス鋼管(8US 3t4)の外径j
;Q0gWm、肉厚j、0s1111内管としてN1基
合金(インコ*ルA1!r)(D外径3g、Qflll
ll、、肉厚o、s−のTIGi1接管を用いた。実施
例2と同様の方法に加え、内管8の軸方向に、圧縮加工
装瀘/コにより荷車測定器18、圧縮加工用ピストン/
4’を経て約100−の圧縮力を加えた0加熱温度はt
ooo℃、内管コ内の圧力は30気圧であった。以上の
方法で作成した二重管は、軸方向直角断面の検査により
、完全に締結していることが確認された。
Example 8: Outer diameter j of stainless steel pipe (8US 3t4) as outer pipe
;Q0gWm, wall thickness j, 0s1111 N1-based alloy (Inco*ru A1!r) as inner tube (D outer diameter 3g, Qflll
TIGi1 joint pipes with wall thicknesses of 11, 1, and s- were used. In addition to the same method as in Example 2, in the axial direction of the inner tube 8, the cart measuring device 18 and the compression processing piston
The heating temperature at 0 when a compressive force of about 100- is applied through 4' is t
The temperature inside the inner tube was 30 atm. It was confirmed by inspection of the cross section at right angles to the axial direction that the double pipe made by the above method was completely fastened.

実施例4 実施例3により作成した二重管を水圧拡管法により外径
を62.0−まで拡管した。また実施例1で作成した二
重管を冷間引抜法により49.0−に縮管した。これら
の拡管、縮管した二重管は、軸方向直角断面の検査によ
り、共に完全に締結していることがS關された。
Example 4 The double pipe produced in Example 3 was expanded to an outer diameter of 62.0 mm by a hydraulic expansion method. Further, the double-walled pipe produced in Example 1 was shrunk to 49.0 - by cold drawing. These expanded and contracted double tubes were inspected in cross section at right angles to the axial direction, and it was determined that they were completely connected together.

Jt11例1 外管として炭素−W (STBム22)の外径go、g
■、肉厚g、Qfl1m、内管としてステンレス−11
(SUS304I)の外径3g、Qws、肉厚0.!f
IIIIのTIG浴接管を用い、加熱4&ttoo’c
、内管の加圧力を/j気圧とする以外は実施例コと全く
同一方法で二重管を作成した。以上による二重管は、軸
方向直角断面の検査により、内管、外管は*@&:締結
はしす。
Jt11 Example 1 Outer diameter go, g of carbon-W (STB 22) as the outer tube
■, wall thickness g, Qfl1m, stainless steel-11 as inner tube
(SUS304I) outer diameter 3g, Qws, wall thickness 0. ! f
Using the TIG bath tube of III, heat 4&ttoo'c.
A double tube was prepared in exactly the same manner as in Example 1, except that the pressure applied to the inner tube was set to /j atm. For the double pipes as described above, the inner and outer pipes were confirmed to be fastened by inspection of the cross section at right angles to the axial direction.

表 この表より、本発明の方法における内管、外管の材料の
組合わせは、熱膨張係数に−してのみ外管の前記係数を
内管のそれよりも大きくしておけば、材料の選定は任意
であることが分る。加熱温度、加圧力、圧縮力などは、
内管を静熱下で拡旨し、外管内面に密着させるための変
形に要するものであるから、内管の強度、直径、肉厚な
どを考慮して容品に決定することができる。
From this table, it can be seen that the combination of materials for the inner tube and outer tube in the method of the present invention can be determined by making the coefficient of thermal expansion larger than that of the inner tube. It turns out that the selection is arbitrary. Heating temperature, pressing force, compression force, etc.
Since this is necessary for expanding the inner tube under static heat and deforming it so as to bring it into close contact with the inner surface of the outer tube, it can be determined by considering the strength, diameter, wall thickness, etc. of the inner tube.

本発明は、内管と外管夫々の材料の熱膨張係数の差異を
利用して、外管により内管を締付けるのであるから、両
材料は加熱の高温度に耐え得ることは当然必要なことで
あるが、実施に当っては従来の焼ばめ法などより許容温
度範囲が広く、工程の管理は楽である。また、内管に内
圧を加え拡管して外管に@着させるのであるから、外管
の内極と内管の外径の寸法積度は、焼ばめ法における程
には111密さは要求されず、実施に当って有利である
。このことは更に長尺の二重’ma造に当り甚だ有効で
ある。前記実施例は直径!gQwumI!!度の管に閑
するが、特別の大径・小径の管を除き各楠直径の管に本
発明を適用することができる。更には、内管の加圧・拡
t#温度を高くすることにより、二重管としての使用温
度上限を高めることもできる。
Since the present invention utilizes the difference in thermal expansion coefficient between the materials of the inner and outer tubes to tighten the inner tube with the outer tube, it is naturally necessary that both materials be able to withstand the high temperatures of heating. However, in practice, the allowable temperature range is wider than conventional shrink fitting methods, and process management is easier. In addition, since internal pressure is applied to the inner tube to expand it and attach it to the outer tube, the dimensional density of the inner pole of the outer tube and the outer diameter of the inner tube is not as dense as in the shrink fit method. Not required and advantageous in implementation. This is even more effective for long double-wall construction. The above example is the diameter! gQwumI! ! However, the present invention can be applied to pipes of various diameters, except for special large-diameter and small-diameter pipes. Furthermore, by increasing the pressure/expansion t# temperature of the inner tube, the upper limit of the temperature at which the double tube can be used can be raised.

以上の如く本発明の二重管の製造方法は、安価な外管に
、高耐食性または耐熱性の高価な材料よりなる内管の内
貼をするには最適で、全体的に見て割安の高耐食性また
は耐熱性管の提供を可能ならしめるので、従来高価な材
料の管を使用せざるを得なかった装置や管などへの適用
により、産業・技術に大きく貢献することができる。
As described above, the double pipe manufacturing method of the present invention is optimal for lining an inexpensive outer pipe with an inner pipe made of an expensive material with high corrosion resistance or heat resistance, and is inexpensive overall. Since it is possible to provide highly corrosion-resistant or heat-resistant pipes, the present invention can greatly contribute to industry and technology by applying it to devices and pipes that conventionally required the use of pipes made of expensive materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は管全長を加熱して気体による加圧で拡管する二
重管製造装置の縦断面説明図、第2図は帯域加熱と気体
による拡管に加え軸方向の圧縮力負荷により拡管を援助
する二重管製造装置の縦断面説明図である。 l・・・外管、コ・・・内管、3・・・シールキャップ
、ゲ・・・内管加圧用ガスボンベ、S・・・管状電気炉
、6・・・雰囲気調整チャンバー、?・・・加熱コイル
、t・・・高周波電源装置、t・・・加熱コイル移動装
置、IO・・・真空排気装置、l/・・・雰囲気調整ガ
スボンベ、lコ・・・圧婦加工装置、/3・・・荷重測
定器、/4t・・・圧縮加工用ピストン。
Figure 1 is a longitudinal cross-sectional view of a double-pipe manufacturing device that heats the entire length of the tube and expands it by pressurizing it with gas. Figure 2 shows the expansion of the tube by zone heating and expansion with gas, as well as by applying compressive force in the axial direction. FIG. L... Outer tube, C... Inner tube, 3... Seal cap, Ge... Gas cylinder for pressurizing the inner tube, S... Tubular electric furnace, 6... Atmosphere adjustment chamber, ? ... Heating coil, t... High frequency power supply device, t... Heating coil moving device, IO... Vacuum exhaust device, l/... Atmosphere adjustment gas cylinder, lko... Compressor processing device, /3...Load measuring device, /4t...Piston for compression processing.

Claims (1)

【特許請求の範囲】 1、 外管の内側に内管を挿入して外管と内管とを重ね
あわせて接合する二重管の製造方法において、内管の材
料の熱膨張係数が外管の材料の熱l11m係数よりも小
さいようなそれぞれの材料を選定し製作した外管内に内
管を挿入して富ねあわせ管とし、該重ねあわせ管を加熱
し、同時に内管を気体により加圧して拡管し、次いで冷
却することにより内管と外管とを締結させることを特徴
とする二重管のIM造方法。 息、真ねあわせ管の加熱をWI城加熱とし、該帯域加熱
を慮ねあわせ管の全長にわたって移動させながら実施す
る特許請求の範囲第1項記載の二重管のl1ifk方法
。 8、重ねあわせ管の内管を気体により加圧しながら帯域
加熱中に、内管の軸方向に圧縮力を貝荷する特許Ii#
求の範囲第1あるいは一項記載の二重管の製造方法〇 表 二重管とした後、拡管もしくは縮管して、二重管を
所定の寸法とする特許請求の範囲第1〜3項のいずれか
に記載の二重管の製造方法。
[Claims] 1. In a method for manufacturing a double pipe in which an inner pipe is inserted inside an outer pipe and the outer pipe and inner pipe are overlapped and joined, the coefficient of thermal expansion of the material of the inner pipe is lower than that of the outer pipe. The inner tube is inserted into the outer tube manufactured by selecting each material whose thermal coefficient is smaller than the heat l11m coefficient of the material, thereby forming a stacked tube.The stacked tube is heated, and at the same time, the inner tube is pressurized with gas. IM manufacturing method for a double-walled pipe, characterized in that the inner pipe and the outer pipe are joined together by expanding the pipe and then cooling it. 2. The l1ifk method for a double-pipe pipe according to claim 1, wherein the heating of the double-pipe pipe is performed by WI-cast heating, and the zone heating is carried out while moving over the entire length of the double-pipe pipe. 8. Patent Ii# in which compressive force is applied in the axial direction of the inner tube during band heating while pressurizing the inner tube of the stacked tubes with gas.
Claims 1 to 3 A method for producing a double pipe as described in claim 1 or 1. After forming a double pipe, the double pipe is expanded or contracted to have a predetermined size.Claims 1 to 3 The method for manufacturing a double pipe according to any one of the above.
JP56209046A 1981-06-11 1981-12-25 Manufacture of double pipe Granted JPS58112612A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP56209046A JPS58112612A (en) 1981-12-25 1981-12-25 Manufacture of double pipe
GB08215344A GB2100641B (en) 1981-06-11 1982-05-26 A method of manufacturing bimetallic tubes.
US06/383,733 US4533806A (en) 1981-06-11 1982-06-01 Method of manufacturing bimetallic tubes
CA000404441A CA1198267A (en) 1981-06-11 1982-06-02 Method of manufacturing bimetallic tubes
DE3221887A DE3221887C2 (en) 1981-06-11 1982-06-09 Process for the manufacture of bimetal pipes
FR828210138A FR2507508B1 (en) 1981-06-11 1982-06-10 PROCESS FOR PRODUCING BIMETALLIC TUBES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56209046A JPS58112612A (en) 1981-12-25 1981-12-25 Manufacture of double pipe

Publications (2)

Publication Number Publication Date
JPS58112612A true JPS58112612A (en) 1983-07-05
JPH0144408B2 JPH0144408B2 (en) 1989-09-27

Family

ID=16566353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56209046A Granted JPS58112612A (en) 1981-06-11 1981-12-25 Manufacture of double pipe

Country Status (1)

Country Link
JP (1) JPS58112612A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5363544A (en) * 1993-05-20 1994-11-15 Benteler Industries, Inc. Multi-stage dual wall hydroforming
JP2012050920A (en) * 2010-08-31 2012-03-15 Ricoh Co Ltd Waste liquid treatment apparatus
CN104259245A (en) * 2014-09-11 2015-01-07 河海大学常州校区 Production equipment and production technology for composite steel pipe
CN104492986A (en) * 2014-12-29 2015-04-08 浙江天管久立特材有限公司 Fully-automatic tube sleeving device for mechanical composite tube
CN114932172A (en) * 2022-06-17 2022-08-23 燕山大学 Production device and method for bimetal composite pipe

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5363544A (en) * 1993-05-20 1994-11-15 Benteler Industries, Inc. Multi-stage dual wall hydroforming
US5475911A (en) * 1993-05-20 1995-12-19 Wells; Gary L. Multi-stage dual wall hydroforming
JP2012050920A (en) * 2010-08-31 2012-03-15 Ricoh Co Ltd Waste liquid treatment apparatus
CN104259245A (en) * 2014-09-11 2015-01-07 河海大学常州校区 Production equipment and production technology for composite steel pipe
CN104492986A (en) * 2014-12-29 2015-04-08 浙江天管久立特材有限公司 Fully-automatic tube sleeving device for mechanical composite tube
CN114932172A (en) * 2022-06-17 2022-08-23 燕山大学 Production device and method for bimetal composite pipe
CN114932172B (en) * 2022-06-17 2024-03-29 燕山大学 Bimetal composite pipe production device and method thereof

Also Published As

Publication number Publication date
JPH0144408B2 (en) 1989-09-27

Similar Documents

Publication Publication Date Title
CA1198267A (en) Method of manufacturing bimetallic tubes
US3604102A (en) Process for effecting metallurgical joints between two different metals and the products obtained thereby
CN100364685C (en) Production of clad pipes
US4886203A (en) Method of producing by brazing bimetallic cylindrical articles
EP1382403B1 (en) Method for forming a tube-walled article
JPS6237203B2 (en)
US4515305A (en) Connection of the tubular ends of a heat exchanger matrix to the _associated bottom of the heat exchanger
JPS58112612A (en) Manufacture of double pipe
JPS6045991B2 (en) Manufacturing method of tubular joint parts
JP2014508645A (en) Weld sealing of pressure cylinder vessel
JPH0245955B2 (en)
JPH0138568B2 (en)
CA1320984C (en) Coupling
RU2106942C1 (en) Process of soldering of telescopic structures
JPS58167089A (en) Manufacture of clad pipe
JP2002280152A (en) Method of manufacturing metal structure body for heating and/or cooling
JPH0218195B2 (en)
JPH06328271A (en) Pipe joint for connecting aluminum pipe and copper pipe
JPS5950430B2 (en) Clad pipe manufacturing method
JPH07204759A (en) Double pipe containing expanded graphite sheet and its production
JPH0694198B2 (en) Composite material consisting of graphite and metal
WO2007017798A2 (en) A device for the construction of heat exchanger elements provided with protection materials
JPH029546B2 (en)
JPS6049818A (en) Apparatus for producing tight double-layered pipe
JPH06170466A (en) Caulking joint, joining method and joining die of metallic tube