JP5602890B2 - 蓄電装置および抵抗放電装置を有するモータ制御装置 - Google Patents

蓄電装置および抵抗放電装置を有するモータ制御装置 Download PDF

Info

Publication number
JP5602890B2
JP5602890B2 JP2013014552A JP2013014552A JP5602890B2 JP 5602890 B2 JP5602890 B2 JP 5602890B2 JP 2013014552 A JP2013014552 A JP 2013014552A JP 2013014552 A JP2013014552 A JP 2013014552A JP 5602890 B2 JP5602890 B2 JP 5602890B2
Authority
JP
Japan
Prior art keywords
power
link
motor
discharge
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013014552A
Other languages
English (en)
Other versions
JP2014147226A (ja
Inventor
正一 丹羽
健太 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FANUC Corp
Original Assignee
FANUC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FANUC Corp filed Critical FANUC Corp
Priority to JP2013014552A priority Critical patent/JP5602890B2/ja
Priority to DE102014000786.3A priority patent/DE102014000786B4/de
Priority to CN201410035484.3A priority patent/CN103973193B/zh
Priority to US14/165,849 priority patent/US9118270B2/en
Publication of JP2014147226A publication Critical patent/JP2014147226A/ja
Application granted granted Critical
Publication of JP5602890B2 publication Critical patent/JP5602890B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • H02P3/14Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor by regenerative braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • H02P3/12Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor by short-circuit or resistive braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/22Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by short-circuit or resistive braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/03AC-DC converter stage controlled to provide a defined DC link voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Ac Motors In General (AREA)

Description

本発明は、交流側から供給された交流電力を直流電力に変換して出力したのちさらにモータの駆動のための交流電力に変換してモータへ供給するモータ制御装置に関し、特に、停電時の保護動作のためのエネルギーを蓄積する蓄電装置および直流リンクの直流電力を抵抗放電により消費する抵抗放電装置を有するモータ制御装置に関する。
工作機械、鍛圧機械、射出成形機、産業機械、あるいは各種ロボット内のモータを駆動するモータ制御装置においては、交流電源側から入力された交流電力を直流電力に一旦変換したのちさらに交流電力に変換し、この交流電力を駆動軸ごとに設けられたモータの駆動電力として用いている。モータ制御装置は、三相交流入力電源のある交流電源側から供給された交流電力を整流して直流電力を出力する整流器と、整流器の直流側である直流リンクに接続され、直流リンクの直流電力とモータの駆動電力もしくは回生電力である交流電力とを相互電力変換する逆変換器と、を備え、当該逆変換器の交流側に接続されたモータの速度、トルク、もしくは回転子の位置を制御する。
近年、省エネルギー化の要求から、モータ制御装置には、モータ減速時に生じる回生エネルギーを交流電源側に戻すことができる電源回生方式の整流器が多く用いられている。
図16は、複数のモータを駆動する一般的なモータ制御装置の構成を示す図である。モータ制御装置101は、商用の三相交流入力電源3からの交流電力を整流して直流電力を出力する整流器11と、整流器11の直流側である直流リンク13に接続され、整流器11から出力された直流電力をモータ2の駆動電力として供給される所望の電圧および所望の周波数の交流電力に変換しまたはモータ2から回生される交流電力を直流電力に変換する逆変換器12と、を備え、当該逆変換器12の交流側に接続されたモータ2の速度、トルク、もしくは回転子の位置を制御する。逆変換器12は、複数の駆動軸に対応してそれぞれ設けられる各モータ2に個別に駆動電力を供給してモータ2を駆動制御するためにモータ2の個数と同数個設けられる。一方、整流器11は、モータ制御装置101のコストや占有スペースを低減する目的で、複数の逆変換器12に対して1個が設けられることが多い。
上位制御装置(図示せず)は、各逆変換器12に対してモータ駆動指令を送信して当該逆変換器12による直流電力から交流電力への変換動作(より具体的には、当該逆変換器12内のスイッチング素子のスイッチング動作)を制御することで、当該逆変換器12が直流リンク13における直流電力を変換して所望の交流電力を出力するように制御する。逆変換器12から出力された交流電力を駆動電力としてモータ2は動作するので、逆変換器12から出力される交流電力を制御すれば、当該逆変換器12の交流側に接続されたモータ2の速度、トルク、もしくは回転子の位置を制御することができる。モータ制御装置101でモータを減速制御する際には、モータ2から回生電力が発生する。この回生電力は逆変換器12を経て直流電力に変換されて直流リンク13に戻され、さらに整流器11により交流電力に変換されて三相交流入力電源3がある交流電源側に戻される。
このようなモータ制御装置101では、整流器11の交流電源側において停電が発生し入力電源電圧が低下すると、モータ2の正常な運転を継続することができなくなる。このため、モータ2、当該モータ2を駆動するモータ制御装置101、当該モータ制御装置101が駆動するモータ2に接続されたツール、当該ツールが加工する加工対象、当該モータ制御装置101を有する製造ラインなどが、破損したり変形するなどといった何らかの障害が生じることになる。したがって、整流器11の交流電源側に停電検出手段14を設けて整流器11の交流電源側の停電発生の有無を監視し、停電検出手段14が停電発生を検出した場合には、モータ制御装置101は上記障害を回避するかもしくは最小限に抑えるための保護動作を行うよう動作する。停電時の保護動作を行うのに必要なエネルギーを蓄積する装置として、整流器11と逆変換器12との間の直流リンク13に、充電手段15および放電手段16を介して蓄電装置17が接続される。充放電制御手段118は、蓄電装置17に直流電力を蓄積させる充電指令を充電手段15へ出力し、蓄電装置17に蓄積された直流電力を直流リンク13に放電させる放電開始指令を放電手段16へ出力する。
放電手段16の動作により蓄電装置17に蓄積された直流電力は直流リンク13へ供給され、整流器11の交流電源側において停電が発生した場合や交流電源側にある三相交流入力電源3が発電機である場合などは、回生エネルギーを三相交流入力電源3がある交流電源側に戻すことができず、直流リンク13における直流電圧が、整流器11および逆変換器12内のスイッチング素子等の耐圧を超える電圧にまで上昇する可能性がある。したがって、このような状況に対応するために、整流器11と逆変換器12との間の直流リンク13に抵抗放電装置19を設けることによって、蓄電装置17から供給された直流電力やモータ減速時に生じる回生電力を抵抗放電装置19内の抵抗(「回生抵抗」とも呼ばれる。)の熱エネルギーとして消費させる対策がとられる。
上述の構成を有するモータ制御装置101において、モータ2の駆動前に、充放電制御手段118は充電手段15に対して充電指令を出力し、直流リンク13における直流電力が蓄電装置17に充電される。蓄電装置17の充電電圧が所望の直流電圧に達した後、モータ制御装置101は、モータ2の駆動制御を開始する。蓄電装置17は自然放電等により充電電圧が低下するので、モータ2の駆動中においても充電手段15による蓄電装置17の充電は継続して行い、すなわち蓄電装置17の充電電圧が所定の電圧以下になった場合には充放電制御手段118は充電手段15に対して充電指令を出力し、蓄電装置17を充電する。
停電検出手段14が停電発生を検知したら、充放電制御手段118は、充電手段15への充電指令の出力を停止するとともに、放電手段16へ放電開始指令を出力する。これにより、充電手段15による蓄電装置17の充電は停止し、蓄電装置17に蓄積された直流電力を放電手段16を介して直流リンク13に放電させる。上位制御装置(図示せず)は、モータ2、当該モータ2を駆動するモータ制御装置101、当該モータ制御装置101が駆動するモータ2に接続されたツール、当該ツールが加工する加工対象、当該モータ制御装置101を有する製造ラインなどの破壊などの障害を回避もしくは最小限に抑えるための保護動作を行うためのモータ駆動指令を、各逆変換器12に対して出力する。逆変換器12は、保護動作のためのモータ駆動指令に基づき当該逆変換器12内のスイッチング素子のスイッチング動作を行い、直流リンク13における直流電力を、モータ2が保護動作を実行できるだけの交流電力に変換して出力する。放電手段16の動作により蓄電装置17に蓄積された直流電力は直流リンク13へ供給されるが、これにより、直流リンク13における直流電圧が、整流器11および逆変換器12内のスイッチング素子等の耐圧を超え、各素子を破壊し得る電圧にまで上昇する可能性がある。これを回避するため、保護動作時に直流リンク13における直流電圧が規定値以上に達した場合、抵抗放電装置19は直流リンク13における直流電力を熱エネルギーに変換して消費する。
ここで、充電手段15、放電手段16および抵抗放電装置19の一例を説明すると次の通りである。
例えば、特願2012−158483に係るモータ制御装置は、整流器と逆変換器の間の直流リンクに蓄電装置を備え、蓄電装置に直流リンクの電圧を昇圧して停電時保護動作用のエネルギーを充電することで、単位体積あたりの蓄積エネルギーを最大とし、蓄電装置の体積およびコストを低減させている。
図17は、特願2012−158483に係るモータ制御装置における充電手段の一具体例を示す回路図である。特願2012−158483に係るモータ制御装置において、直流リンク(図示せず)における直流電圧よりも高い電圧に蓄電装置(図示せず)を充電する昇圧機能を有する充電手段15は、スイッチS1およびS2、ダイオードD1およびD2、ならびにインダクタL1からなる昇降圧チョッパ回路により構成される。蓄電装置を充電する際は、蓄電装置の充電電圧と直流リンクにおける直流電圧との比較に基づき、スイッチS1およびS2をオンオフ制御する。蓄電装置の充電電圧が、直流リンクにおける直流電圧よりも小さい場合には、スイッチS2を常時オフし、スイッチS1を所定のデューディー比でオンオフ制御して蓄電装置を充電する。その後、蓄電装置の充電電圧が直流リンクにおける直流電圧よりも大きくなった場合には、スイッチS1を常時オンし、スイッチS2を所定のデューディー比でオンオフ制御して蓄電装置を充電する。このような充電手段15により、蓄電装置を、直流リンク13における直流電圧よりも高い電圧まで昇圧して充電することができる。例えば蓄電装置がコンデンサである場合、この蓄電装置に貯えられるエネルギーP〔J〕は、蓄電装置の充電電圧をV〔V〕、コンデンサ容量をC〔F〕とすると式1に示すように充電電圧Vの2乗に比例する。
Figure 0005602890
特願2012−158483に係る発明においては、蓄電装置の電圧を直流リンクに接続される整流器や逆変換器の各素子の耐圧ギリギリまで昇圧することにより、単位体積あたりの蓄積エネルギーを最大にすることができ、蓄電装置の小型化およびコスト低減を図っている。
図18は、特開平11−178245号公報(特許文献1)に記載された発明における放電手段を模式的に示した回路図である。特許文献1に記載された発明において、放電手段16は、サイリスタS3およびインダクタL2からなる。整流器(図示せず)の交流電源側の停電発生時にはサイリスタS3をオンして直流リンク(図示せず)と蓄電装置(図示せず)とを短絡し、蓄電装置に蓄積しておいた直流電力を直流リンクへ供給する。
図19は、特願2012−158483に係るモータ制御装置における抵抗放電装置の一具体例を示す回路図である。また、図20は、特願2012−158483に係るモータ制御装置における抵抗放電装置の一具体例における停電動作時の直流リンクの直流電圧の変動の一例を示す図である。図19に示すように、抵抗放電装置19は、抵抗R1と、この抵抗R1と直流リンク(図示せず)との間を閉路もしくは開放するスイッチS4とを有する。整流器(図示せず)の交流電源側の停電発生検知後、直流リンクにおける直流電圧が予め設定された抵抗放電動作開始レベル以上を超えた場合、スイッチS4を閉路させる。これにより、逆変換器(図示せず)から直流リンクへ回生されたエネルギーが抵抗R1において熱エネルギーとして消費され、直流リンクにおける直流電圧が降下する。その後、直流リンクにおける直流電圧が予め設定された抵抗放電動作停止レベルまで低下した場合、スイッチS4を開放する。これにより、逆変換器から直流リンクへ回生されたエネルギーにより直流リンクの直流電圧は上昇に転じる。このように、抵抗放電装置19の抵抗放電動作の開始および停止により、直流リンクの直流電圧は、抵抗放電動作停止レベルと抵抗放電動作開始レベルとの間で上昇と下降とを繰り返す。一般的には、図20に示すように、抵抗放電動作開始レベルと抵抗放電動作停止レベルとの間にはヒステリシスが設けられ、抵抗放電装置19の抵抗放電動作の開始と停止との切替えが頻繁に発生し過ぎないようにしている。
例えば、整流手段とインバータとの間に備えられた平滑コンデンサに、充放電装置を介して蓄電装置を接続し、回生運転時には平滑コンデンサの電圧を降圧して蓄電装置を充電し、力行運転時および停電時には蓄電装置の電圧を昇圧して平滑コンデンサへ放電することで、蓄電装置の容量を増大させることなく、回生電力を有効に利用できるエレベータ装置が提案されている(例えば、特許文献2参照。)。
また例えば、順変換部と逆変換部との間の平滑コンデンサに、DC−DC変換器を介して蓄電池を接続し、停電時のインバータ消費電力推定値と蓄電池の電圧によって求めた初期充電電流にて蓄電池を充電し、停電時のみ蓄電池から電力を供給することで、停電発生時には蓄電池が満充電状態で、長時間運転を確実に行うエレベータ装置が提案されている(例えば、特許文献3参照。)。
また例えば、コンバータ部とインバータ部との間にコンデンサを設け、整流器の交流側の交流電圧の低下により生じる整流器の直流側の電圧降下を検知したとき、コンデンサに蓄積されたエネルギーを用いてモータの運転を継続する方法がある(例えば、特許文献4参照。)。
特開平11−178245号公報 特開2002−338151号公報 特開2005−192298号公報 特開2009−261161号公報
しかしながら、直流リンクにおける直流電圧よりも高い電圧に蓄電装置を充電する昇圧機能を有する充電手段を用いて蓄電装置を昇圧充電していた場合において、整流器の交流電源側の停電発生直後に蓄電装置から直流リンクへ直流電力の供給を開始すると、抵抗放電装置によって停電時保護動作用のエネルギーが消費されてしまい、予定していた保護動作が行えない場合がある。
図21は、昇圧機能を有する充電手段を用いて蓄電装置を昇圧充電していた場合において、モータ停止中に停電が発生し蓄電装置から直流リンクへ直流電力を供給した場合における直流リンクおよび蓄電装置の電圧変動について説明する図である。モータ停止中に整流器の交流電源側で停電が発生し、蓄電装置から直流リンクへ直流電力の供給が開始されると、一般に蓄電装置のコンデンサ容量は整流器および逆変換器のコンデンサ容量の総和よりも大きいため直流リンクの直流電圧は蓄電装置の初期充電電圧付近まで上昇する。停電時には交流電源側からモータ駆動のための電力が供給できないため、蓄電装置および直流リンクに蓄えられたエネルギーで保護動作を行う。
しかしながら、モータ回転中に整流器の交流電源側で停電が発生した場合は、蓄電装置のエネルギーを有効活用できない。図22は、昇圧機能を有する充電手段を用いて蓄電装置を昇圧充電していた場合において、モータ回転中に停電が発生し蓄電装置から直流リンクへ直流電力を供給した場合における直流リンクおよび蓄電装置の電圧変動について説明する図であって、(a)はモータ速度を示し、(b)は直流リンクおよび蓄電装置の電圧を示す。抵抗放電装置の抵抗放電動作開始レベルは、直流リンクに接続される整流器および逆変換器の各素子を保護するレベルに設定される。一方、蓄電装置は、充電手段により直流リンクに接続される整流器および逆変換器の各素子の耐圧ギリギリまで昇圧充電される。したがって、抵抗放電装置の抵抗放電動作開始レベルは、図22に示すように蓄電装置の昇圧充電される電圧とほぼ同等もしくはそれ以上に設定される。モータ回転中に停電が発生すると、保護動作が開始されモータの減速が行われる。また、モータの減速と同時に蓄電装置から直流リンクへ直流電力の供給が開始され、さらにモータからの回生電力も直流リンクへ戻されるため、直流リンクの直流電圧は蓄電装置の初期充電電圧を超えてしまう。その後、直流リンクにおける直流電圧が予め設定された抵抗放電動作開始レベルに達すると、抵抗放電装置は抵抗放電動作を開始し、蓄電装置および直流リンクの直流電力が熱エネルギーとして消費され、直流リンクにおける直流電圧が降下に転じる。一旦抵抗放電動作を開始すると、直流リンクおよび蓄電装置の電圧が抵抗放電動作停止レベルまで低下するまで抵抗放電動作が行われる。以降、モータ減速期間中、直流リンクの直流電圧は、抵抗放電動作停止レベルと抵抗放電動作開始レベルとの間で上昇と下降とを繰り返す。モータ減速期間中に蓄電装置の電圧が上昇することはなく、抵抗放電動作停止レベルのままとなる。
このように、停電発生直後に蓄電装置から直流リンクへの直流電力の供給を開始すると、直流リンクの直流電圧は上昇し、抵抗放電動作開始レベルに達すると抵抗放電装置の抵抗放電動作が開始されて直流リンクの直流電圧は下降し、この直流リンクの直流電圧の下降は抵抗放電動作停止レベルに達するまで続く。この抵抗放電動作停止レベルは蓄電装置の初期充電電圧よりも低いことから、蓄電装置の初期充電電圧から抵抗放電動作停止レベルまでの電圧にほぼ相当するエネルギー分が、抵抗放電装置で無駄に消費されていることになる。つまり、保護動作のために蓄積した蓄電装置のエネルギーの一部が、抵抗放電装置で熱エネルギーとして無駄に消費されるので、エネルギーの利用効率が悪い。抵抗放電装置による蓄電装置から放電される直流電力の消費状況によっては保護動作に必要なエネルギーが不足する恐れもある。保護動作に必要なエネルギーが不足しないよう、蓄電装置のエネルギー蓄積容量を余裕を持って設計すると、蓄電装置の体積およびコストが増加してしまう。
従って本発明の目的は、上記問題に鑑み、停電時の保護動作のためのエネルギーとして蓄電装置に蓄積されたエネルギーを効率よく利用することができるモータ制御装置を提供することにある。
上記目的を実現するために、本発明の第1の態様においては、モータ制御装置は、交流電源側から供給された交流電力を整流して直流電力を出力する整流器と、整流器の直流側である直流リンクに接続され、直流リンクにおける直流電力とモータの駆動電力もしくは回生電力である交流電力とを相互電力変換する逆変換器と、整流器の交流電源側の停電を検出する停電検出手段と、直流リンクにおける直流電圧値を検出する電圧検出手段と、直流リンクに接続され、直流電力を蓄積し得る蓄電装置と、直流リンクにおける直流電圧よりも高い電圧に蓄電装置を充電する昇圧機能を有する充電手段と、蓄電装置と直流リンクとを短絡して蓄電装置に蓄積された直流電力を直流リンクに放電させる放電手段と、直流リンクに接続され、停電検出手段が停電を検出した後に電圧検出手段が検出した直流電圧値が、抵抗放電開始レベル以上のときに直流リンクの直流電力を抵抗放電により消費する抵抗放電動作を開始し、抵抗放電開始レベルより小さい抵抗放電停止レベル以下のときに抵抗放電動作を停止する抵抗放電装置と、停電検出手段が停電を検出した後から電圧検出手段が検出した直流電圧値が第1の閾値以下になるまでの間は放電手段を動作させるための放電開始指令を出力せず、電圧検出手段が検出した直流電圧値が第1の閾値以下になった場合に、放電手段を動作させるための放電開始指令を出力する放電動作判定手段と、を備える。
第1の態様において、第1の閾値は、整流器の交流電源側の入力電圧の波高値以下に設定されるようにしてもよい。
また、放電動作判定手段は、停電検出手段が停電を検出した後、電圧検出手段が検出した直流電圧値が第1の閾値よりも大きくかつ抵抗放電動作停止レベルより小さい値である第2の閾値以上の場合に、放電手段の動作を停止させるための放電停止指令を出力するようにしてもよい。
モータ制御装置は、モータの動作を指令するモータ駆動指令またはモータ駆動指令に基づき動作するモータの出力に関する情報であるモータ出力情報に応じて、第1の閾値を設定する閾値設定手段を備えてもよい。
モータ駆動指令もしくはモータ出力情報が、モータが電力を回生する回生状態にあることを示す場合には、第1の閾値を、整流器の交流電源側の入力電圧の波高値以下の値に設定し、モータ駆動指令もしくはモータ出力情報が、モータが電力を消費する力行状態にあることを示す場合には、第1の閾値を、モータ駆動指令が示す加速の大きさもしくはモータ出力情報が示すモータの出力の大きさに応じて、かつ抵抗放電停止レベルより小さい値に、設定するようにしてもよい。
また、本発明の第2の態様においては、モータ制御装置は、交流電源側から供給された交流電力を整流して直流電力を出力する整流器と、整流器の直流側である直流リンクに接続され、直流リンクにおける直流電力とモータの駆動電力もしくは回生電力である交流電力とを相互電力変換する逆変換器と、整流器の交流電源側の停電を検出する停電検出手段と、直流リンクにおける直流電圧値を検出する電圧検出手段と、直流リンクに接続され、直流電力を蓄積し得る蓄電装置と、直流リンクにおける直流電圧よりも高い電圧に蓄電装置を充電する昇圧機能を有する充電手段と、蓄電装置と直流リンクとを短絡して蓄電装置に蓄積された直流電力を直流リンクに放電させる放電手段と、直流リンクに接続され、停電検出手段が停電を検出した後に電圧検出手段が検出した直流電圧値が、抵抗放電開始レベル以上のときに直流リンクの直流電力を抵抗放電により消費する抵抗放電動作を開始し、抵抗放電開始レベルより小さい抵抗放電停止レベル以下のときに抵抗放電動作を停止する抵抗放電装置と、停電検出手段が停電を検出した後、モータの力行動作を指令するモータ駆動指令またはモータ駆動指令に基づき力行動作するモータの出力に関する情報であるモータ出力情報が、第3の閾値以上となるまでの間は放電動作判定手段から放電開始指令が出力されず、モータ駆動指令もしくはモータ出力情報が第3の閾値以上となった場合に、放電手段を動作させるための放電開始指令を出力する放電動作判定手段と、を備える。
第2の態様において、放電動作判定手段は、停電検出手段が停電を検出した後、モータの回生動作を指令するモータ駆動指令またはモータ駆動指令に基づき回生動作するモータの出力に関する情報であるモータ出力情報が、第3の閾値より小さい第4の閾値以下である場合に、放電手段の動作を停止させるための放電停止指令を出力するようにしてもよい。
本発明によれば、停電発生直後においては蓄電装置に蓄積された直流電力が抵抗放電装置の抵抗放電によって消費されないため、停電時の保護動作のためのエネルギーとして蓄電装置に蓄積されたエネルギーを効率よく利用することができ、保護動作に必要なエネルギーが不足するおそれはなくなり、所望の保護動作を確実に行うことができる。
本発明の第1の実施例によるモータ制御装置を示す回路図である。 充電手段の別の具体例を示す回路図である。 本発明の第1の実施例によるモータ制御装置において設定される第1の閾値を説明する図である。 本発明の第1の実施例によるモータ制御装置において、モータ回転中に停電が発生し蓄電装置から直流リンクへ直流電力を供給した場合における直流リンクおよび蓄電装置の電圧変動について説明する図であって、(a)はモータ速度を示し、(b)は直流リンクおよび蓄電装置の電圧を示す。 本発明の第1の実施例によるモータ制御装置における蓄電装置からの直流電力の放電開始直後の直流リンクの直流電圧を例示する図である。 本発明の第2の実施例によるモータ制御装置において設定される第1の閾値および第2の閾値を説明する図である。 本発明の第2の実施例によるモータ制御装置において、モータ回転中に停電が発生し蓄電装置から直流リンクへ直流電力を供給した場合における直流リンクおよび蓄電装置の電圧変動について説明する図であって、(a)はモータ速度を示し、(b)は直流リンクおよび蓄電装置の電圧を示す。 本発明の第3の実施例によるモータ制御装置を示す回路図である。 本発明の第3の実施例によるモータ制御装置内の閾値設定手段における第1の閾値の設定を説明する図である。 本発明の第3の実施例によるモータ制御装置における蓄電装置からの直流電力の放電開始直後の直流リンクの直流電圧を例示する図である。 本発明の第4の実施例によるモータ制御装置を示す回路図である。 本発明の第4の実施例によるモータ制御装置において設定される第3の閾値を説明する図である。 本発明の第4の実施例によるモータ制御装置において、モータ回転中に停電が発生し蓄電装置から直流リンクへ直流電力を供給した場合における直流リンクおよび蓄電装置の電圧変動について説明する図であって、(a)はモータ速度を示し、(b)はモータ駆動指令もしくはモータ出力情報を示し、(c)は直流リンクおよび蓄電装置の電圧を示す。 本発明の第5の実施例によるモータ制御装置において設定される第3の閾値および第4の閾値を説明する図である。 本発明の第5の実施例によるモータ制御装置において、モータ加速中に停電が発生し蓄電装置から直流リンクへ直流電力を供給した場合における直流リンクおよび蓄電装置の電圧変動について説明する図であって、(a)はモータ速度を示し、(b)はモータ駆動指令もしくはモータ出力情報を示し、(c)は直流リンクおよび蓄電装置の電圧を示す。 複数のモータを駆動する一般的なモータ制御装置の構成を示す図である。 特願2012−158483に係るモータ制御装置における充電手段の一具体例を示す回路図である。 特開平11−178245号公報(特許文献1)に記載された発明における放電手段を模式的に示した回路図である。 特願2012−158483に係るモータ制御装置における抵抗放電装置の一具体例を示す回路図である。 特願2012−158483に係るモータ制御装置における抵抗放電装置の一具体例における停電動作時の直流リンクの直流電圧の変動の一例を示す図である。 昇圧機能を有する充電手段を用いて蓄電装置を昇圧充電していた場合において、モータ停止中に停電が発生し蓄電装置から直流リンクへ直流電力を供給した場合における直流リンクおよび蓄電装置の電圧変動について説明する図である。 昇圧機能を有する充電手段を用いて蓄電装置を昇圧充電していた場合において、モータ回転中に停電が発生し蓄電装置から直流リンクへ直流電力を供給した場合における直流リンクおよび蓄電装置の電圧変動について説明する図であって、(a)はモータ速度を示し、(b)は直流リンクおよび蓄電装置の電圧を示す。
以下に説明する各実施例では、複数個のモータを駆動制御するモータ制御装置について説明するが、駆動制御するモータの個数は、本発明を特に限定するものではない。
図1は、本発明の第1の実施例によるモータ制御装置を示す回路図である。以降、異なる図面において同じ参照符号が付されたものは同じ機能を有する構成要素であることを意味するものとする。
本発明の第1の実施例によるモータ制御装置1は、整流器11と、逆変換器12と、停電検出手段14と、電圧検出手段20と、蓄電装置17と、充電手段15と、放電手段16と、放電動作判定手段18と、抵抗放電装置19と、を備える。
整流器11は、商用の三相交流入力電源3のある交流電源側から供給された交流電力を整流し、整流器11の直流側である直流リンク13側に直流電力を出力する。本発明では、用いられる整流器11の実施形態は特に限定されず、例えば120度通電回生機能付き3相全波整流回路、あるいはPWM制御方式の整流回路などがある。
整流器11と逆変換器12とは、直流リンク13を介して接続される。逆変換器12は、例えばPWMインバータなどのような、内部にスイッチング素子を有する変換回路として構成される。ここでは、モータ制御装置1で複数のモータ2を駆動制御することを例として取りあげているので、各モータ2ごとに逆変換器12が設けられる。逆変換器12は、直流リンク13側から供給される直流電力を、上位制御装置(図示せず)から受信したモータ駆動指令に基づき内部のスイッチング素子をスイッチング動作させ、モータ2を駆動するための所望の電圧および所望の周波数の三相交流電力に変換する。モータ2は、供給された電圧可変および周波数可変の三相交流電力に基づいて動作することになる。また、モータ2の制動時には回生電力が発生するが、上位制御装置から受信したモータ駆動指令に基づき、モータ2で発生した回生電力である交流電力を、直流電力へ変換して直流リンク13へ戻す。このように、逆変換器12は、受信したモータ駆動指令に基づき、直流リンク13における直流電力とモータ2の駆動電力もしくは回生電力である交流電力とを相互電力変換するものである。
停電検出手段14は、整流器11に交流電力を供給する三相交流入力電源3側に設けられ、三相交流入力電源3の交流電圧もしくは電圧検出手段20によって検出された直流リンク13の直流電圧を用いて整流器11の交流電源側の停電の有無を検出する。停電検出手段14の検出結果は放電動作判定手段18に送られる。
電圧検出手段20は、整流器11と逆変換器12との間の直流リンク13における直流電圧値を検出する。電圧検出手段20の検出結果は停電検出手段14、放電動作判定手段18および上位制御装置(図示せず)に送られる。
蓄電装置17は、後述する充電手段15および放電手段16を介して直流リンク13に接続され、直流リンク13における直流電力を蓄積し得るものであり、例えばコンデンサなどにより構成される。蓄電装置17には、充電電圧を検出するための蓄電装置電圧検出手段(図示せず)が設けられ、蓄電装置電圧検出手段が検出した蓄電装置17の充電電圧に関する情報は上位制御手段に送られる。
充電手段15は、上位制御装置から充電指令を受信したとき、直流リンク13における直流電力を蓄電装置17に取り込んで蓄電装置17を充電する。上位制御装置は、蓄電装置17を充電する際には、蓄電装置17の充電電圧と、電圧検出手段20により検出された直流リンク13における直流電圧とを比較し、充電手段15の充電動作を指令する充電指令を作成し、これを充電手段15へ送出する。充電手段15は、直流リンク13における直流電圧よりも高い電圧に蓄電装置17を充電する昇圧機能を有するものであり、例えば昇降圧チョッパ回路により構成される。昇降圧チョッパ回路の構成自体は本発明を特に限定するものではなく、例えば図17を参照して説明した昇降圧チョッパ回路を充電手段15として用いてもよい。また、あるいは図17に示した昇降圧チョッパ回路以外の昇降圧チョッパ回路で充電手段15を構成してもよい。図2は、充電手段の別の具体例を示す回路図である。充電手段15は、図に示すように、スイッチS5、ダイオードD4およびインダクタL3からなる昇降圧チョッパ回路で構成してもよい。
図1に説明を戻すと、放電手段16は、放電動作判定手段18から放電開始指令を受信したとき、蓄電装置17と直流リンク13とを短絡して蓄電装置17に蓄積された直流電力を直流リンク13に放電させるものである。放電手段16は、例えば、図18を参照して説明した回路などがある。
放電動作判定手段18は、停電検出手段14が停電を検出した後、電圧検出手段20が検出した直流電圧値が第1の閾値以下の場合に、放電手段16を動作させるための放電開始指令を出力する。第1の閾値の詳細については後述する。
抵抗放電装置19は、直流リンク13に接続され、停電検出手段14が停電を検出した後に電圧検出手段20が検出した直流電圧値が、抵抗放電開始レベル以上のときに直流リンク13の直流電力を抵抗放電により消費する抵抗放電動作を開始し、抵抗放電開始レベルより小さい抵抗放電停止レベル以下のときに抵抗放電動作を停止する。抵抗放電装置19の構成自体は本発明を特に限定するものではなく、例えば図19を参照して説明した回路を用いてもよい。
ここで、本発明の第1の実施例によるモータ制御装置1において設定される第1の閾値について説明する。
放電動作判定手段18は、停電検出手段14が停電を検出した後、電圧検出手段20が検出した直流電圧値が第1の閾値以下の場合に、放電手段16を動作させるための放電開始指令を出力する。すなわち、本発明の第1の実施例では、停電検出手段14が交流電源側の停電を検出した直後に蓄電装置17に蓄積された直流電力の直流リンク13への放電を開始するのではなく、停電検出手段14が停電を検出した後であってさらに電圧検出手段20が検出した直流電圧値が第1の閾値以下になった時点で、蓄電装置17に蓄積された直流電力の直流リンク13への放電を開始する。
交流電源側で停電が発生したときの保護動作においては、直流リンク13における直流電力が逆変換器12を介してモータ2で消費されるモータ力行動作時は蓄電装置17から直流リンク13へ直流電力を供給する必要があるが、直流リンク13に逆変換器12を介して直流電力が戻されるモータ回生動作時は蓄電装置17から電力を供給する必要はない。そこで、本発明の第1の実施例では、交流電源側で停電が発生したとき、直流リンク13の直流電圧に応じて蓄電装置17から直流リンク13への直流電力供給開始のタイミングを調整する。具体的には次の通りである。
図3は、本発明の第1の実施例によるモータ制御装置において設定される第1の閾値を説明する図である。図3に示すように、停電検出手段14による停電検出直後から蓄電装置17が直流リンク13へ直流電力を供給しないようにするため、第1の閾値は、整流器11の交流電源側の入力電圧の波高値以下に予め設定される。放電動作判定手段18は、停電検出手段14により交流電源側の停電が検出された後、電圧検出手段20が検出した直流リンク13の直流電圧値が第1の閾値以下になった場合に、放電手段16を動作させるための放電開始指令を放電手段16に対して指令する。放電手段16は、放電動作判定手段18から放電開始指令を受信したとき、蓄電装置17と直流リンク13とを短絡する。これにより蓄電装置17の放電動作が開始され、蓄電装置17に蓄積された直流電力は直流リンク13に供給される。
図4は、本発明の第1の実施例によるモータ制御装置において、モータ回転中に停電が発生し蓄電装置から直流リンクへ直流電力を供給した場合における直流リンクおよび蓄電装置の電圧変動について説明する図であって、(a)はモータ速度を示し、(b)は直流リンクおよび蓄電装置の電圧を示す。
モータ回転中に停電が発生すると、加工対象やツールの退避といった保護動作が開始され、モータ2の減速が行われる。停電検出手段14により交流電源側の停電が検出された後、保護動作開始直後のモータ減速期間中は、しばらく直流リンク13の直流電圧は第1の閾値以上であるため、蓄電装置17からの直流リンク13への直流電力の供給が開始されることはない。保護動作が開始されモータ2が減速されると、当該保護動作によってモータ2からの回生電力も直流リンク13へ戻されるため、直流リンク13の直流電圧は変動する。すなわち、直流リンク13の直流電圧が予め設定された抵抗放電動作開始レベルに達すると、抵抗放電装置19は抵抗放電動作を開始し、直流リンク13の直流電力が熱エネルギーとして消費され、直流リンク13における直流電圧は下降するが、直流リンク13の直流電圧が抵抗放電動作停止レベルまで低下すると抵抗放電装置19は抵抗放電動作を停止するので、モータ2からの回生電力により直流リンク13の電圧は上昇する。モータ2が完全に停止すると、モータ2からの回生電力は直流リンク13に戻されなくなるので、このまま当該保護動作によってモータが加速して直流リンク13の直流電力が消費され続けると、直流リンク13の直流電圧は低下し続ける。放電動作判定手段18は、電圧検出手段20が検出した直流リンク13の直流電圧値が第1の閾値以下になったと判定すると、放電手段16を動作させるための放電開始指令を放電手段16に対して指令する。放電手段16は、放電動作判定手段18からの放電開始指令を受けて、蓄電装置17と直流リンク13とを短絡する。これにより蓄電装置17の放電動作が開始され、蓄電装置17に蓄積された直流電力は直流リンク13に供給される。蓄電装置17から直流リンク13に供給された直流電力は逆変換器12により交流電力に変換され、これを駆動エネルギー源として加工対象やツールの退避といった保護動作が実行される。
このように、放電動作判定手段18は、停電検出手段14により交流電源側の停電が検出された後、電圧検出手段20が検出した直流リンク13の直流電圧値が第1の閾値以下になった場合に、放電手段16を動作させるための放電開始指令を放電手段16に対して指令するので、保護動作開始直後のモータ減速によって直流リンク13の電圧が上昇して抵抗放電動作開始レベルに達して抵抗放電装置19による抵抗放電動作が行われたとしても、蓄電装置17からの直流リンク13への直流電力の供給は開始されていないため、抵抗放電装置19によって蓄電装置17に蓄積された直流電力が消費されることはない。つまり、本発明の第1の実施例では、停電検出手段が停電を検出した後から電圧検出手段20が検出した直流電圧値が第1の閾値以下になるまでの間は放電動作判定手段18から放電開始指令が出力されず、放電手段16が動作しないことで、蓄電装置17に蓄積された直流電力を抵抗放電装置19により消費させない。すなわち、本発明の第1の実施例によれば、停電時の保護動作のためのエネルギーとして蓄電装置17に蓄積されたエネルギーを効率よく利用することができ、保護動作に必要なエネルギーが不足するおそれはなく、所望の保護動作を確実に行うことができる。
続いて、本発明の第2の実施例によるモータ制御装置について説明する。上述の第1の実施例では、交流電源側の停電発生後に行われる蓄電装置17からの直流リンク13への直流電力の供給の開始のタイミングを第1の閾値を設定することによって調整したが、本発明の第2の実施例は、蓄電装置17からの直流リンク13への直流電力の供給の開始のタイミングを調整するための第1の閾値に加え、蓄電装置17からの直流リンク13への直流電力の供給の停止のタイミングを調整するための第2の閾値を設定するものである。
図5は、本発明の第1の実施例によるモータ制御装置における蓄電装置からの直流電力の放電開始直後の直流リンクの直流電圧を例示する図である。図5において、モータ出力が大きい場合の直流リンク13の直流電圧を実線で示し、モータ出力が小さい場合の直流リンク13の直流電圧を破線で示す。上述の第1の実施例において、放電動作判定手段18が放電手段16に放電開始を指令してから、実際に蓄電装置17からの直流電力の放電が開始されるまでには、放電開始指令の通知遅れやハード的なスイッチオンまでの遅れに起因する遅れ時間が存在する。そのため、図5に示すように、放電動作判定手段18が放電手段16に対して放電開始指令を出力しても、実際に放電手段16が動作をして蓄電装置17からの直流電力の放電が開始されるまでの間は、直流リンク13の直流電圧はなおも下降を続ける。図5に示すように、モータ力行状態でモータ出力が大きいほど、直流リンク13の直流電力をより多く消費することから、直流リンク13の直流電圧の下降の傾きがより大きくなり、放電動作判定手段18が放電手段16に対して放電開始指令を出力してから実際に蓄電装置17からの直流電力の放電が開始されるまでの間に、直流リンク13の直流電圧の下降の度合いも大きくなる。直流リンク13の直流電圧の下降が大きいと、停電発生後において蓄電装置からの電力供給開始前にモータ2が正常に保護動作を実行可能な直流リンク13の直流電圧値を下回ってしまう可能性が高くなる。
上記のような問題を回避するために、第1の閾値を入力電圧の波高値以上に設定できるようにするために、本発明の第2の実施例では、放電動作判定手段18は、停電検出手段14が停電を検出した後に電圧検出手段20が検出した直流リンク13の直流電圧値が第2の閾値以上になった場合に、放電手段16を停止させるための放電停止指令を出力する。以下、動作原理について詳細に説明する。
図6は、本発明の第2の実施例によるモータ制御装置において設定される第1の閾値、および第2の閾値を説明する図である。図6に示すように、第2の閾値は第1の閾値よりも大きな値に設定し、第1の閾値と第2の閾値との間にヒステリシスを持たせる。また、抵抗放電装置19による抵抗放電動作が確実に停止している時に蓄電装置17から電力を供給するため、第2の閾値は抵抗放電動作停止レベル以下に設定する。
上述の第1の実施例では、第1の閾値を整流器11の交流電源側の入力電圧の波高値以下に設定したが、本発明の第2の実施例では、第1の閾値を交流電源側の入力電圧の波高値以下に設定する必要はなく、例えば第1の閾値を交流電源側の入力電圧の波高値以上に設定してもよい。以下、その理由について説明する。
図7は、本発明の第2の実施例によるモータ制御装置において、モータ回転中に停電が発生し蓄電装置から直流リンクへ直流電力を供給した場合における直流リンクおよび蓄電装置の電圧変動について説明する図であって、(a)はモータ速度を示し、(b)は直流リンクおよび蓄電装置の電圧を示す。
モータ回転中に停電が発生すると、加工対象やツールの退避といった保護動作が開始され、モータ2の減速が行われる。停電検出手段14により交流電源側の停電が検出された後しばらくは、直流リンク13の直流電圧は第1の閾値以下であるため、放電動作判定手段18は放電開始指令を出力し、したがって停電検出手段14による停電検出直後から蓄電装置17は直流リンク13へ直流電力を供給する。この蓄電装置17からの直流リンク13への直流電力の供給およびモータ2の回生電力の発生により、直流リンク13の直流電圧は上昇する。その後、直流リンク13の電圧が第2の閾値を超えた時点で、放電動作判定手段18は、放電手段16の動作を停止させるための放電停止指令を放電手段16に対して出力する。しかしながら、放電手段16のスイッチ(図18)がサイリスタのように即時にオフできないデバイスで構成されている場合は、放電手段16は放電停止指令を受信しても直ぐには蓄電装置17と直流リンク13との接続を切断できず、蓄電装置17が直流リンク13に接続されたままの状態となる。その後、蓄電装置17の充電電圧と直流リンク13の直流電圧が同じになり、さらに直流リンク13の直流電圧のみ上昇したところで、サイリスタに電流が流れなくなり、デバイスがオフされる。この時点でようやく蓄電装置17が直流リンク13から切り離される。さらにモータ2の減速が続くと、モータ2の回生電力が直流リンク13へ戻され、直流リンク13の直流電圧は上昇を続ける。直流リンク13の直流電圧が予め設定された抵抗放電動作開始レベルに達すると、抵抗放電装置19は抵抗放電動作を開始し、直流リンク13の直流電力が熱エネルギーとして消費される。しかしながら、この時点では蓄電装置17は直流リンク13から切り離されているため、直流リンク13における直流電力が消費されるだけで蓄電装置17に蓄積された直流電力までは消費されない。放電動作判定手段18は、電圧検出手段20が検出した直流リンク13の直流電圧値が第1の閾値以下になったと判定すると、放電手段16を動作させるための放電開始指令を放電手段16に対して指令する。放電手段16は、放電動作判定手段18からの放電開始指令を受けて、蓄電装置17と直流リンク13とを短絡する。これにより蓄電装置17の放電動作が開始され、蓄電装置17に蓄積された直流電力は直流リンク13に供給される。蓄電装置17から直流リンク13に供給された直流電力は逆変換器12により交流電力に変換され、これを駆動エネルギー源として加工対象やツールの退避といった保護動作が実行される。
以上説明したように、本発明の第2の実施例では、蓄電装置17に蓄積された直流電力が抵抗放電装置19の抵抗放電によって消費されないため、第1の閾値を交流電源側の入力電圧の波高値以下に設定する必要はなく、例えば第1の閾値を交流電源側の入力電圧の波高値以上に設定してもよい。このように、本発明の第2の実施例では、停電発生直後においては蓄電装置17に蓄積された直流電力が抵抗放電装置19の抵抗放電によって消費されないため、停電時の保護動作のためのエネルギーとして蓄電装置17に蓄積されたエネルギーを効率よく利用することができ、保護動作に必要なエネルギーが不足するおそれはなくなり、所望の保護動作を確実に行うことができる。また、蓄電装置からの電力供給開始前にモータ2が正常に保護動作を実行可能な直流リンク13の直流電圧値を下回ってしまう可能性が低くなる。
続いて、本発明の第3の実施例によるモータ制御装置について説明する。図8は、本発明の第3の実施例によるモータ制御装置を示す回路図である。また、図9は、本発明の第3の実施例によるモータ制御装置内の閾値設定手段における第1の閾値の設定を説明する図である。本発明の第3の実施例は、上述の第1の実施例に、閾値設定手段21を追加したものである。閾値設定手段21は、モータ2の動作を指令するモータ駆動指令またはモータ駆動指令に基づき動作するモータ2の出力に関する情報であるモータ出力情報に応じて、第1の閾値を設定する。モータ駆動指令は上位制御装置(図示せず)から閾値設定手段21に入力される。また、モータ出力情報は、当該モータ駆動指令に基づいてモータ2が動作した場合において算出されるものであり、モータ印加電圧やモータ電流、モータの回転速度などのパラメータなどにを用いて公知の方法で算出されるものである。なお、これ以外の回路構成要素については図1に示す回路構成要素と同様であるので、同一の回路構成要素には同一符号を付して当該回路構成要素についての詳細な説明は省略する。
図9において、モータ駆動指令およびモータ出力情報は、モータ2が電力を消費するモータ力行状態の場合に正、モータ2が電力を回生するモータ回生状態の場合に負であるとし、無負荷状態ではゼロとする。
図9に示すように、モータ駆動指令もしくはモータ出力情報が、モータ2が電力を回生する回生状態にあることを示す場合には、閾値設定手段21は、第1の閾値を、整流器11の交流電源側の入力電圧の波高値以下の値に設定する。このように、モータ2が電力を回生する回生状態にあることを示す場合において、第1の閾値を整流器11の交流電源側の入力電圧の波高値以下の値に設定するのは、図3を参照して説明したように停電発生直後から蓄電装置17が直流リンク13に直流電力を供給しないようにするためである。
また、図9に示すように、モータ駆動指令もしくはモータ出力情報が、モータが電力を消費する力行状態にあることを示す場合には、閾値設定手段21は、第1の閾値を、モータ駆動指令が示す加速の大きさもしくはモータ出力情報が示すモータの出力の大きさに応じて、かつ抵抗放電停止レベルより小さい値に、設定する。すなわち、閾値設定手段21は、モータ駆動指令が示す加速の大きさもしくはモータ出力情報が示すモータの出力の大きさければ大きいほど、モータ力行状態における第1の閾値を大きい値に設定し、その上限値は抵抗放電停止レベルより小さい値とする。
ここで、モータ力行状態における第1の閾値を増加させる傾き(すなわちモータ駆動指令もしくはモータ出力情報の増加に対する第1の閾値の増加の割合)は、蓄電装置17を除くシステムの直流リンク13に蓄えられるエネルギーに応じて予め定める。例えば、傾きを直流リンク13に蓄えられるエネルギーに反比例して定める。すなわち、直流リンク13に蓄えられるエネルギーが大きい場合には傾きは小さく、蓄えられるエネルギーが小さい場合には傾きは大きく定める。またあるいは、直流リンク13に蓄えられるエネルギーP〔J〕]は、直流リンク13の直流電圧をV〔V〕、直流リンク13の有するコンデンサ容量をC〔F〕とすると、P=CV2/2となるため、上記傾きを、直流リンク13の有するコンデンサ容量に応じて定めてもよい。また、モータ力行状態において抵抗放電装置19による抵抗放電動作が確実に停止している状態で蓄電装置17からの直流リンク13への直流電力の供給を開始するため、閾値設定手段21では、モータ力行状態における第1の閾値に、抵抗放電動作停止レベル以下の上限値を設定する。すなわち、モータ力行状態における第1の閾値が上限値に達する場合、閾値設定手段21は第1の閾値を当該上限値にてクランプする。
図10は、本発明の第3の実施例によるモータ制御装置における蓄電装置からの直流電力の放電開始直後の直流リンクの直流電圧を例示する図である。図5を参照して説明したように、第1の実施例では、放電動作判定手段18からの放電開始指令の通知遅れや放電手段16のハード的なスイッチオンまでの遅れに起因して、放電動作判定手段18が放電手段16に対して放電開始指令を出力してから実際に蓄電装置17からの直流電力の放電が開始されるまでの間は、直流リンク13の直流電圧はなおも下降を続ける。図5に示すように、モータ力行状態でモータ出力が大きいほど、直流リンク13の直流電力をより多く消費することから、直流リンク13の直流電圧の下降の度合いも大きくなる。直流リンク13の直流電圧の下降が大きいと、停電発生後において蓄電装置17からの電力供給開始前にモータ2が正常に保護動作を実行可能な直流リンク13の直流電圧値を下回ってしまう可能性が高くなる。これについて、本発明の第3の実施例によれば、図10に示すように、モータ力行状態において、モータ駆動指令またはモータ出力情報が大きくなるにつれて、第1の閾値がより一層引き上げられるので、実際に蓄電装置17から直流リンク13へ直流電力の供給が開始される時点の直流リンク13の直流電圧が上昇する。これにより、停電発生後、蓄電装置17からの直流電力供給開始前に保護動作に必要なエネルギーが不足するおそれはなくなり、所望の保護動作を確実に行うことができる。また、蓄電装置17からの電力供給開始前にモータ2が正常に保護動作を実行可能な直流リンク13の直流電圧値を下回ってしまう可能性が低くなる。
続いて、本発明の第4の実施例によるモータ制御装置について説明する。図11は、本発明の第4の実施例によるモータ制御装置を示す回路図である。
本発明の第4の実施例によるモータ制御装置1’は、整流器11と、逆変換器12と、停電検出手段14と、蓄電装置17と、充電手段15と、放電手段16と、放電動作判定手段28と、抵抗放電装置19と、を備える。
整流器11、逆変換器12、停電検出手段14、蓄電装置17、充電手段15、放電手段16、抵抗放電装置19については、図1を称して説明した通りであるので、詳細な説明は省略する。また、図11では、整流器11と逆変換器12との間の直流リンク13における直流電圧値を検出する電圧検出手段については図示を省略しているが、電圧検出手段の検出結果は停電検出手段および上位制御装置(図示せず)に送られる。
放電動作判定手段28は、停電検出手段14が停電を検出した後、モータ2の力行動作を指令するモータ駆動指令またはモータ駆動指令に基づき力行動作するモータ2の出力に関する情報であるモータ出力情報が、第3の閾値以上である場合に、放電手段16を動作させるための放電開始指令を出力する。
上述のように、停電発生後の保護動作においては、直流リンクのエネルギーを消費するモータ力行動作時は蓄電装置17から直流リンク13へ直流電力を供給する必要があるが、直流リンク13にエネルギーを戻すモータ回生動作時は蓄電装置17から直流リンク13へ直流電力を供給する必要はない。そこで、本発明の第4の実施例では、放電動作判定手段28は、停電検出手段14が停電を検出した後、モータ駆動指令もしくはモータ出力情報がモータ力行状態を示す場合には、当該モータ駆動指令もしくは当該モータ出力情報が第3の閾値以上である場合に、放電手段16を動作させるための放電開始指令を出力する。したがって、放電手段16は、停電発生後にモータ2がモータ力行状態にある場合において、モータ駆動指令もしくはモータ出力情報が第3の閾値以上である場合に、蓄電装置17と直流リンク13とを短絡して蓄電装置17に蓄積された直流電力を直流リンク13に放電させる。
ここで、本発明の第4の実施例によるモータ制御装置1’において設定される第3の閾値について説明する。図12は、本発明の第4の実施例によるモータ制御装置において設定される第3の閾値を説明する図である。図12において、モータ駆動指令およびモータ出力情報は、モータ2が電力を消費するモータ力行状態の場合に正、モータ2が電力を回生するモータ回生状態の場合に負であるとし、無負荷状態ではゼロとする。
本発明の第4の実施例では、図12に示すように、停電検出手段14による停電検出直後から蓄電装置17が直流リンク13へ直流電力を供給しないようにするため、モータ駆動指令もしくはモータ出力情報がモータ力行状態を示す場合に、第3の閾値を設定する。第3の閾値は、モータ駆動指令が示す加速の大きさもしくはモータ出力情報が示すモータの出力の大きさに応じて設定される。
図13は、本発明の第4の実施例によるモータ制御装置において、モータ回転中に停電が発生し蓄電装置から直流リンクへ直流電力を供給した場合における直流リンクおよび蓄電装置の電圧変動について説明する図であって、(a)はモータ速度を示し、(b)はモータ駆動指令もしくはモータ出力情報を示し、(c)は直流リンクおよび蓄電装置の電圧を示す。図13(b)において、モータ駆動指令およびモータ出力情報は、モータ2が電力を消費するモータ力行状態の場合に正、モータ2が電力を回生するモータ回生状態の場合に負であるとし、無負荷状態ではゼロとする。
モータ回転中に停電が発生すると、加工対象やツールの退避といった保護動作が開始され、モータ2の減速が行われるが、停電発生直後にモータが加速中でなければ、蓄電装置17から直流リンク13への直流電力の供給は開始されない。停電発生直後のモータ減速中は、モータ駆動指令もしくはモータ出力情報はモータ回生状態を示すため、当該モータ駆動指令もしくはモータ出力情報は第3の閾値以下であり、蓄電装置17から直流リンク13への直流電力の供給は開始されない。加工対象やツールの退避といった停電保護動作をモータ2が行い、このときのモータ駆動指令もしくはモータ出力情報が第3の閾値以上になると、蓄電装置17から直流リンク13への直流電力の供給が開始される。このように、保護動作開始直後のモータ減速停止によって直流リンクの電圧が上昇し、抵抗放電装置19による抵抗放電動作が行われたとしても、蓄電装置17から直流リンク13への直流電力供給は開始されていないので、蓄電装置17に蓄積された直流電力が抵抗放電装置19の抵抗放電によって消費されず、停電時の保護動作のためのエネルギーとして蓄電装置17に蓄積されたエネルギーを効率よく利用することができ、保護動作に必要なエネルギーが不足するおそれはなくなり、所望の保護動作を確実に行うことができる。
続いて、本発明の第5の実施例によるモータ制御装置について説明する。本発明の第5の実施例は、上述の第4の実施例において、さらに、モータ2が回生動作状態にあるとき、モータ駆動指令もしくはモータ出力情報が第4の閾値以下である場合には蓄電装置17から直流リンク13への直流電力の供給を停止するものである。
図14は、本発明の第5の実施例によるモータ制御装置において設定される第3の閾値および第4の閾値を説明する図である。図14において、モータ駆動指令およびモータ出力情報は、モータ2が電力を消費するモータ力行状態の場合に正、モータ2が電力を回生するモータ回生状態の場合に負であるとし、無負荷状態ではゼロとする。
本発明の第5の実施例では、図14に示すように、停電検出手段14による停電検出直後から蓄電装置17が直流リンク13へ直流電力を供給しないようにするため、モータ駆動指令もしくはモータ出力情報がモータ力行状態を示す場合には、上述の第4の実施例の場合と同様に第3の閾値を設定する。第3の閾値は、モータ駆動指令が示す加速の大きさもしくはモータ出力情報が示すモータの出力の大きさに応じて設定される。また、モータ駆動指令もしくはモータ出力情報がモータ回生状態を示す場合には、第4の閾値を設定する。第4の閾値は、モータ駆動指令が示す最大減速の大きさもしくはモータ出力情報が示すモータの最大回生出力の大きさに応じて設定される。なお、第4の閾値は、モータ回生状態を示すモータ駆動指令もしくはモータ出力情報に対するものであるので、当然のことながら第3の閾値より小さい値である。
図15は、本発明の第5の実施例によるモータ制御装置において、モータ加速中に停電が発生し蓄電装置から直流リンクへ直流電力を供給した場合における直流リンクおよび蓄電装置の電圧変動について説明する図であって、(a)はモータ速度を示し、(b)はモータ駆動指令もしくはモータ出力情報を示し、(c)は直流リンクおよび蓄電装置の電圧を示す。図15(b)において、モータ駆動指令およびモータ出力情報は、モータ2が電力を消費するモータ力行状態の場合に正、モータ2が電力を回生するモータ回生状態の場合に負であるとし、無負荷状態ではゼロとする。
モータ回転中に停電が発生した後、加工対象やツールの退避といった保護動作が開始され、モータ2の減速が行われるが、停電発生後、モータ2が加速中でこのときのモータ駆動指令もしくはモータ出力情報が第3の閾値以上の値を示すと、蓄電装置17から直流リンク13への直流電力の供給が開始される。加工対象やツールの退避といった停電保護動作をモータ2が行うことでモータ2が減速し、モータ駆動指令もしくはモータ出力情報が第4の閾値以下の値を示したとき、蓄電装置17からの直流リンク13への直流電力の供給を停止する。しかしながら、放電手段16のスイッチ(図18)がサイリスタのように即時にオフできないデバイスで構成されている場合は、放電手段16は放電停止指令を受信しても直ぐには蓄電装置17と直流リンク13との接続を切断できず、蓄電装置17が直流リンク13に接続されたままの状態となる。その後、蓄電装置17の充電電圧と直流リンク13の直流電圧が同じになり、さらに直流リンク13の直流電圧のみ上昇したところで、サイリスタに電流が流れなくなり、デバイスがオフされる。この時点でようやく蓄電装置17が直流リンク13から切り離される。さらにモータ2の減速が続くと、モータ2の回生電力が直流リンク13へ戻され、直流リンク13の直流電圧は上昇を続ける。直流リンク13の直流電圧が予め設定された抵抗放電動作開始レベルに達すると、抵抗放電装置19は抵抗放電動作を開始し、直流リンク13の直流電力が熱エネルギーとして消費される。しかしながら、この時点では蓄電装置17は直流リンク13から切り離されているため、直流リンク13における直流電力が消費されるだけで蓄電装置17に蓄積された直流電力までは消費されない。放電動作判定手段28は、モータ2による保護動作でモータ駆動指令もしくはモータ出力情報が第3の閾値以上になった時点で、再度、放電手段16を動作させるための放電開始指令を放電手段16に対して指令する。放電手段16は、放電動作判定手段28からの放電開始指令を受けて、蓄電装置17と直流リンク13とを短絡する。これにより、再度、蓄電装置17の放電動作が開始され、蓄電装置17に蓄積された直流電力は直流リンク13に供給される。このように、蓄電装置17から直流リンク13に供給された直流電力は逆変換器12により交流電力に変換され、これを駆動エネルギー源として加工対象やツールの退避といった保護動作が実行される。
本発明は、工作機械、鍛圧機械、射出成形機、産業機械、あるいは各種ロボット内のモータを駆動するモータ制御装置として、入力された交流電力を直流電力に変換する整流器と、直流変換部から出力された直流電力を各モータの駆動電力としてそれぞれ供給される交流電力に変換する逆変換器と、を有するものにおいて、整流器の交流電源側で停電の発生が発生した際に、このモータ制御装置が駆動するモータ、当該モータに接続されたツール、当該ツールが加工する加工対象、当該モータ制御装置を有する製造ラインなどを保護するための各種保護動作が実行される場合に適用することができる。
1、1’ モータ制御装置
2 モータ
3 三相交流入力電源
11 整流器
12 逆変換器
13 直流リンク
14 停電検出手段
15 充電手段
16 放電手段
17 蓄電装置
18、28 放電動作判定手段
19 抵抗放電装置
20 電圧検出手段
21 閾値設定手段

Claims (5)

  1. 交流側から供給された交流電力を整流して直流電力を出力する整流器と、
    前記整流器の直流側である直流リンクに接続され、前記直流リンクにおける直流電力とモータの駆動電力もしくは回生電力である交流電力とを相互電力変換する逆変換器と、
    前記整流器の交流側の停電を検出する停電検出手段と、
    前記直流リンクにおける直流電圧値を検出する電圧検出手段と、
    前記直流リンクに接続され、直流電力を蓄積し得る蓄電装置と、
    前記直流リンクにおける直流電圧よりも高い電圧に前記蓄電装置を充電する昇圧機能を有する充電手段と、
    前記蓄電装置と前記直流リンクとを短絡して前記蓄電装置に蓄積された直流電力を前記直流リンクに放電させる放電手段と、
    前記直流リンクに接続され、前記停電検出手段が停電を検出した後に前記電圧検出手段が検出した直流電圧値が、抵抗放電開始レベル以上のときに前記直流リンクの直流電力を抵抗放電により消費する抵抗放電動作を開始し、前記抵抗放電開始レベルより小さい抵抗放電停止レベル以下のときに前記抵抗放電動作を停止する抵抗放電装置と、
    前記停電検出手段が停電を検出した後から前記電圧検出手段が検出した直流電圧値が第1の閾値以下になるまでの間は前記放電手段を動作させるための放電開始指令を出力せず、前記電圧検出手段が検出した直流電圧値が第1の閾値以下になった場合に、前記放電手段を動作させるための放電開始指令を出力する放電動作判定手段と、
    を備え
    前記第1の閾値は、前記整流器の交流側の入力電圧の波高値以下に設定されることを特徴とするモータ制御装置。
  2. 交流側から供給された交流電力を整流して直流電力を出力する整流器と、
    前記整流器の直流側である直流リンクに接続され、前記直流リンクにおける直流電力とモータの駆動電力もしくは回生電力である交流電力とを相互電力変換する逆変換器と、
    前記整流器の交流側の停電を検出する停電検出手段と、
    前記直流リンクにおける直流電圧値を検出する電圧検出手段と、
    前記直流リンクに接続され、直流電力を蓄積し得る蓄電装置と、
    前記直流リンクにおける直流電圧よりも高い電圧に前記蓄電装置を充電する昇圧機能を有する充電手段と、
    前記蓄電装置と前記直流リンクとを短絡して前記蓄電装置に蓄積された直流電力を前記直流リンクに放電させる放電手段と、
    前記直流リンクに接続され、前記停電検出手段が停電を検出した後に前記電圧検出手段が検出した直流電圧値が、抵抗放電開始レベル以上のときに前記直流リンクの直流電力を抵抗放電により消費する抵抗放電動作を開始し、前記抵抗放電開始レベルより小さい抵抗放電停止レベル以下のときに前記抵抗放電動作を停止する抵抗放電装置と、
    前記停電検出手段が停電を検出した後から前記電圧検出手段が検出した直流電圧値が第1の閾値以下になるまでの間は前記放電手段を動作させるための放電開始指令を出力せず、前記電圧検出手段が検出した直流電圧値が第1の閾値以下になった場合に、前記放電手段を動作させるための放電開始指令を出力する放電動作判定手段と、
    を備え、
    前記放電動作判定手段は、前記停電検出手段が停電を検出した後、前記電圧検出手段が検出した直流電圧値が前記第1の閾値よりも大きくかつ前記抵抗放電動作停止レベルより小さい値である第2の閾値以上の場合に、前記放電手段の動作を停止させるための放電停止指令を出力することを特徴とするモータ制御装置。
  3. 交流側から供給された交流電力を整流して直流電力を出力する整流器と、
    前記整流器の直流側である直流リンクに接続され、前記直流リンクにおける直流電力とモータの駆動電力もしくは回生電力である交流電力とを相互電力変換する逆変換器と、
    前記整流器の交流側の停電を検出する停電検出手段と、
    前記直流リンクにおける直流電圧値を検出する電圧検出手段と、
    前記直流リンクに接続され、直流電力を蓄積し得る蓄電装置と、
    前記直流リンクにおける直流電圧よりも高い電圧に前記蓄電装置を充電する昇圧機能を有する充電手段と、
    前記蓄電装置と前記直流リンクとを短絡して前記蓄電装置に蓄積された直流電力を前記直流リンクに放電させる放電手段と、
    前記直流リンクに接続され、前記停電検出手段が停電を検出した後に前記電圧検出手段が検出した直流電圧値が、抵抗放電開始レベル以上のときに前記直流リンクの直流電力を抵抗放電により消費する抵抗放電動作を開始し、前記抵抗放電開始レベルより小さい抵抗放電停止レベル以下のときに前記抵抗放電動作を停止する抵抗放電装置と、
    前記停電検出手段が停電を検出した後から前記電圧検出手段が検出した直流電圧値が第1の閾値以下になるまでの間は前記放電手段を動作させるための放電開始指令を出力せず、前記電圧検出手段が検出した直流電圧値が第1の閾値以下になった場合に、前記放電手段を動作させるための放電開始指令を出力する放電動作判定手段と、
    モータの動作を指令するモータ駆動指令または前記モータ駆動指令に基づき動作するモータの出力に関する情報であるモータ出力情報に応じて、前記第1の閾値を設定する閾値設定手段と、
    を備え、
    前記閾値設定手段は、
    前記モータ駆動指令もしくは前記モータ出力情報が、モータが電力を回生する回生状態にあることを示す場合には、前記第1の閾値を、前記整流器の交流側の入力電圧の波高値以下の値に設定し、
    前記モータ駆動指令もしくは前記モータ出力情報が、モータが電力を消費する力行状態にあることを示す場合には、前記第1の閾値を、前記モータ駆動指令が示す加速の大きさもしくは前記モータ出力情報が示すモータの出力の大きさに応じて、かつ前記抵抗放電停止レベルより小さい値に、設定することを特徴とするモータ制御装置。
  4. 交流側から供給された交流電力を整流して直流電力を出力する整流器と、
    前記整流器の直流側である直流リンクに接続され、前記直流リンクにおける直流電力とモータの駆動電力もしくは回生電力である交流電力とを相互電力変換する逆変換器と、
    前記整流器の交流側の停電を検出する停電検出手段と、
    前記直流リンクにおける直流電圧値を検出する電圧検出手段と、
    前記直流リンクに接続され、直流電力を蓄積し得る蓄電装置と、
    前記直流リンクにおける直流電圧よりも高い電圧に前記蓄電装置を充電する昇圧機能を有する充電手段と、
    前記蓄電装置と前記直流リンクとを短絡して前記蓄電装置に蓄積された直流電力を前記直流リンクに放電させる放電手段と、
    前記直流リンクに接続され、前記停電検出手段が停電を検出した後に前記電圧検出手段が検出した直流電圧値が、抵抗放電開始レベル以上のときに前記直流リンクの直流電力を抵抗放電により消費する抵抗放電動作を開始し、前記抵抗放電開始レベルより小さい抵抗放電停止レベル以下のときに前記抵抗放電動作を停止する抵抗放電装置と、
    前記停電検出手段が停電を検出した後、モータの力行動作を指令するモータ駆動指令または前記モータ駆動指令に基づき力行動作するモータの出力に関する情報であるモータ出力情報が、第3の閾値以上となるまでの間は前記放電動作判定手段から放電開始指令が出力されず、前記モータ駆動指令もしくは前記モータ出力情報が第3の閾値以上となった場合に、前記放電手段を動作させるための放電開始指令を出力する放電動作判定手段と、
    を備えることを特徴とするモータ制御装置。
  5. 前記放電動作判定手段は、前記停電検出手段が停電を検出した後、モータの回生動作を指令するモータ駆動指令または前記モータ駆動指令に基づき回生動作するモータの出力に関する情報であるモータ出力情報が、前記第3の閾値より小さい前記第4の閾値以下である場合に、前記放電手段の動作を停止させるための放電停止指令を出力する請求項に記載のモータ制御装置。
JP2013014552A 2013-01-29 2013-01-29 蓄電装置および抵抗放電装置を有するモータ制御装置 Active JP5602890B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013014552A JP5602890B2 (ja) 2013-01-29 2013-01-29 蓄電装置および抵抗放電装置を有するモータ制御装置
DE102014000786.3A DE102014000786B4 (de) 2013-01-29 2014-01-22 Motorsteuervorrichtung, die eine elektrische Speichervorrichtung und eine Widerstandsentladevorrichtung umfasst
CN201410035484.3A CN103973193B (zh) 2013-01-29 2014-01-24 具有蓄电装置以及电阻放电装置的电动机控制装置
US14/165,849 US9118270B2 (en) 2013-01-29 2014-01-28 Motor control device including electric storage device and resistance discharge device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013014552A JP5602890B2 (ja) 2013-01-29 2013-01-29 蓄電装置および抵抗放電装置を有するモータ制御装置

Publications (2)

Publication Number Publication Date
JP2014147226A JP2014147226A (ja) 2014-08-14
JP5602890B2 true JP5602890B2 (ja) 2014-10-08

Family

ID=51163622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013014552A Active JP5602890B2 (ja) 2013-01-29 2013-01-29 蓄電装置および抵抗放電装置を有するモータ制御装置

Country Status (4)

Country Link
US (1) US9118270B2 (ja)
JP (1) JP5602890B2 (ja)
CN (1) CN103973193B (ja)
DE (1) DE102014000786B4 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172818A1 (en) * 2012-05-15 2013-11-21 Otis Elevator Company Elevator backup power supply
WO2015049746A1 (ja) * 2013-10-02 2015-04-09 三菱電機株式会社 交流モータ駆動システム
US10063181B2 (en) * 2014-07-14 2018-08-28 Nidec Motor Corporation System and method for detecting loss of input phase by sensing after power rectifier
JP6460670B2 (ja) 2014-07-17 2019-01-30 株式会社ミツトヨ 球形状測定方法及び装置
JP6274069B2 (ja) * 2014-10-17 2018-02-07 株式会社デンソー モータ制御装置
JP6010163B2 (ja) * 2015-03-10 2016-10-19 ファナック株式会社 順変換器の直流側に接続される直流コンデンサの寿命判定装置
JP5964488B1 (ja) * 2015-07-31 2016-08-03 ファナック株式会社 保護動作制御部を有するモータ制御装置、ならびに機械学習装置およびその方法
DE102016201735A1 (de) * 2016-02-04 2017-08-10 Baumüller Nürnberg GmbH Verfahren zum sicheren Abschalten eines Antriebssystems
JP6725647B2 (ja) * 2016-04-14 2020-07-22 東芝三菱電機産業システム株式会社 無停電電源装置
DE102016107419A1 (de) * 2016-04-21 2017-10-26 Beckhoff Automation Gmbh Konzept zum Speichern von Energie
IT201600112547A1 (it) 2016-11-08 2018-05-08 Magneti Marelli Spa "Apparato di gestione dell’energia fornita a un sistema di bassa tensione di un autoveicolo comprendente uno stadio di recupero dell’energia e relativo procedimento"
JP6599942B2 (ja) 2017-08-10 2019-10-30 ファナック株式会社 電源電圧の電圧低下量に応じてモータを制御するモータ制御装置及び工作機械システム
IT201700101020A1 (it) * 2017-09-08 2019-03-08 Magneti Marelli Spa Apparato di conversione dell'energia di tipo dc-dc operante fra un sistema di bassa tensione e un sistema di alta tensione di un veicolo comprendente uno stadio di recupero dell'energia e relativo procedimento
IT201700101028A1 (it) * 2017-09-08 2019-03-08 Magneti Marelli Spa Apparato di conversione bidirezionale dell'energia di tipo dc-dc operante fra un sistema di bassa tensione e un sistema di alta tensione di un veicolo comprendente uno stadio di recupero dell'energia e relativo procedimento
JP6599960B2 (ja) 2017-11-10 2019-10-30 ファナック株式会社 蓄電装置を有するモータ駆動システム
WO2019201426A1 (en) * 2018-04-17 2019-10-24 Abb Schweiz Ag Drive unit, robot and method
JP7104613B2 (ja) * 2018-12-05 2022-07-21 オークマ株式会社 工作機械の制御装置
DE102020002352A1 (de) * 2019-04-25 2020-10-29 Fanuc Corporation Motorantriebsvorrichtung mit Energiespeicher
DE102019217957A1 (de) * 2019-11-21 2021-05-27 Kuka Deutschland Gmbh Verfahren zum abbremsenden Steuern wenigstens eines Servomotors, Roboter und Computerprogrammprodukt
DE102020103334A1 (de) * 2020-02-10 2021-08-12 Intrasys Gmbh Innovative Transportsysteme Stromversorgungsvorrichtung für eine Volksbelustigungsvorrichtung mit elektrisch angetriebenen Fahrgastträgern
JP2022096154A (ja) * 2020-12-17 2022-06-29 日本電産サンキョー株式会社 モータ駆動用電源回路の放電回路及び放電方法、並びにロボットコントローラ
US20230420979A1 (en) * 2022-06-28 2023-12-28 Saudi Arabian Oil Company Increasing immunity of variable frequency drives against power quality issues

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2625611B1 (fr) 1987-12-30 1990-05-04 Radiotechnique Compelec Circuit integre presentant un transistor lateral
JPH0214A (ja) 1988-11-17 1990-01-05 Seiko Epson Corp 液晶表示装置
JP2656353B2 (ja) 1989-07-25 1997-09-24 株式会社東芝 無停電電源装置
JP3001377B2 (ja) 1994-08-08 2000-01-24 ファナック株式会社 停電時制御方法及び装置
JP3541121B2 (ja) 1997-12-11 2004-07-07 ファナック株式会社 停電処理用非常電源装置
JP4284478B2 (ja) * 1998-12-28 2009-06-24 株式会社安川電機 インバータ装置
CN100407545C (zh) * 1999-11-17 2008-07-30 富士达株式会社 交流电梯的电源装置
JP4283963B2 (ja) * 2000-02-28 2009-06-24 三菱電機株式会社 エレベータの制御装置
JP4249364B2 (ja) * 2000-02-28 2009-04-02 三菱電機株式会社 エレベータの制御装置
JP4347982B2 (ja) * 2000-02-28 2009-10-21 三菱電機株式会社 エレベーターの制御装置
JP2002338151A (ja) 2001-05-17 2002-11-27 Mitsubishi Electric Corp エレベータ装置
JP3722810B2 (ja) * 2003-06-06 2005-11-30 ファナック株式会社 モータ駆動装置
JP4515078B2 (ja) 2003-11-18 2010-07-28 三菱電機株式会社 エレベータ制御装置
JP4428049B2 (ja) * 2003-12-25 2010-03-10 株式会社明電舎 エレベータにおけるインバータ用直流電源のバックアップ方法とその装置
JP4721647B2 (ja) * 2004-03-18 2011-07-13 東芝エレベータ株式会社 エレベータ制御装置
JP4232785B2 (ja) * 2006-02-23 2009-03-04 トヨタ自動車株式会社 ハイブリッド車両
DE102006033562B3 (de) 2006-07-20 2008-02-28 Schuler Pressen Gmbh & Co. Kg Servopresse mit Energiemanagement
JP2009261161A (ja) 2008-04-18 2009-11-05 Kyoto Denkiki Kk 瞬時電圧低下保護装置
US8590672B2 (en) * 2008-08-15 2013-11-26 Otis Elevator Company Management of power from multiple sources in an elevator power system
WO2010056226A1 (en) * 2008-11-17 2010-05-20 Otis Elevator Company Battery state-of-charge calibration
JP5317188B2 (ja) * 2009-02-20 2013-10-16 株式会社安川電機 電動車両のインバータ装置及びその保護方法
CN102001557A (zh) * 2010-12-01 2011-04-06 大连山亿电子有限公司 一种hybrid电梯控制柜及其控制方法
JP5640775B2 (ja) 2011-01-31 2014-12-17 住友化学株式会社 顆粒状酸化ガリウムの製造方法
JP5559261B2 (ja) * 2012-07-17 2014-07-23 ファナック株式会社 蓄電装置を有するモータ駆動装置

Also Published As

Publication number Publication date
JP2014147226A (ja) 2014-08-14
US20140210389A1 (en) 2014-07-31
DE102014000786B4 (de) 2021-11-25
CN103973193A (zh) 2014-08-06
CN103973193B (zh) 2015-12-30
US9118270B2 (en) 2015-08-25
DE102014000786A1 (de) 2014-07-31

Similar Documents

Publication Publication Date Title
JP5602890B2 (ja) 蓄電装置および抵抗放電装置を有するモータ制御装置
JP5559261B2 (ja) 蓄電装置を有するモータ駆動装置
US9954426B2 (en) Motor driving device having PWM converter
EP1641110B1 (en) Motor driving apparatus
JP4021431B2 (ja) コンバータ装置、インバータ装置及びdcリンク電圧の制御方法
JP5291763B2 (ja) エネルギー蓄積部を有するモータ駆動装置
JP5997302B2 (ja) 蓄電器を用いたモータ駆動装置
US20050151503A1 (en) Converter and inverter including converter circuit
JP6496371B2 (ja) Pwmコンバータの昇圧率が制御されるモータ駆動装置
US20090230898A1 (en) Servo amplifier with regenerative function
JP6426775B2 (ja) モータ駆動装置
US20180309402A1 (en) Motor drive device including residual charge consumption control unit
JP6015690B2 (ja) エレベータの制御装置
CN110086379B (zh) 具有蓄电装置的电动机驱动系统
JP4402409B2 (ja) エレベータの制御装置
JP7111557B2 (ja) 蓄電装置を有するモータ駆動システム
JP2005102410A (ja) エレベータの制御装置
CN110829471A (zh) 电动机驱动系统
JP5546438B2 (ja) 交流モータ駆動装置
JP2008220135A (ja) サーボモータ制御システム
WO2019201426A1 (en) Drive unit, robot and method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140820

R150 Certificate of patent or registration of utility model

Ref document number: 5602890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150