JP5582383B2 - Embedded magnet rotor - Google Patents

Embedded magnet rotor Download PDF

Info

Publication number
JP5582383B2
JP5582383B2 JP2009294481A JP2009294481A JP5582383B2 JP 5582383 B2 JP5582383 B2 JP 5582383B2 JP 2009294481 A JP2009294481 A JP 2009294481A JP 2009294481 A JP2009294481 A JP 2009294481A JP 5582383 B2 JP5582383 B2 JP 5582383B2
Authority
JP
Japan
Prior art keywords
magnet
rotor
permanent magnet
rotor core
fitting portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009294481A
Other languages
Japanese (ja)
Other versions
JP2011135728A (en
Inventor
正裕 三田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2009294481A priority Critical patent/JP5582383B2/en
Publication of JP2011135728A publication Critical patent/JP2011135728A/en
Application granted granted Critical
Publication of JP5582383B2 publication Critical patent/JP5582383B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、ハイブリット自動車、エレベータ、加工機等の駆動用モータ、風水力発電等の発電機の他、多くの回転機に用いられる磁石埋め込み型回転子に関する。   The present invention relates to a motor for driving a hybrid vehicle, an elevator, a processing machine, etc., and a generator such as a wind-hydraulic power generator, as well as a magnet embedded rotor used for many rotating machines.

従来の磁石埋め込み型回転子の最も一般的な構成として、図8に示す様に回転子を構成する電磁鋼板の積層体からなる回転子コア101に周方向90°毎に形成された磁石穴102に厚み方向に磁化された永久磁石103を挿入配置した磁石埋め込み型回転子100が知られている。この磁石埋め込み型回転子100では、図示のように、回転子コア101の外周面に周方向に交互に異なる4極の磁極が形成される。   As shown in FIG. 8, the most common configuration of a conventional magnet-embedded rotor is a magnet hole 102 formed in a rotor core 101 made of a laminate of electromagnetic steel plates constituting the rotor every 90 ° in the circumferential direction. There is known a magnet embedded rotor 100 in which a permanent magnet 103 magnetized in the thickness direction is inserted and arranged. In this magnet-embedded rotor 100, four poles that are alternately different in the circumferential direction are formed on the outer peripheral surface of the rotor core 101 as shown in the figure.

磁石埋め込み型回転子は、回転子コアの外周面に形成される磁極の数や磁石穴の形成位置等に応じて図8以外に種々の構成が提案されており、例えば、特許文献1には、回転子コアの外周面に6極及び8極の磁極を形成する構成が示されている。
図9に示すように周方向60°毎に形成された磁石穴112を形成した回転子コア111、及び、図10に示すように周方向45°毎に形成された一対の磁石穴122a及び122bからなるV字型磁石穴122を形成した回転子コア121の、各々磁石穴112及び122に厚み方向に磁化した永久磁石(図示せず)を挿入配置し、前者は回転子コア111の外周面に6極、後者は回転子コア121の外周面に8極の磁極を形成する磁石埋め込み型回転子である。
Various configurations other than those shown in FIG. 8 have been proposed for the magnet-embedded rotor in accordance with the number of magnetic poles formed on the outer peripheral surface of the rotor core, the formation position of the magnet hole, and the like. A configuration in which 6-pole and 8-pole magnetic poles are formed on the outer peripheral surface of the rotor core is shown.
As shown in FIG. 9, the rotor core 11 11 having the magnet holes 112 formed every 60 ° in the circumferential direction and the pair of magnet holes 122a and 122b formed every 45 ° in the circumferential direction as shown in FIG. Of the rotor core 121 formed with the V-shaped magnet hole 122 is inserted and arranged in the magnet holes 112 and 122 respectively in the thickness direction, and the former is the outer peripheral surface of the rotor core 111. The latter is an embedded magnet rotor that forms an 8-pole magnetic pole on the outer peripheral surface of the rotor core 121.

上記いずれの構成からなる磁石埋め込み型回転子においても、磁石穴に挿入配置される永久磁石は、磁石穴に挿入配置する前に着磁しその後挿入する方法(所謂着磁組立方法)か、無着磁の永久磁石を磁石穴に挿入配置した後に回転子コアとともに着磁する方法(所謂組立着磁方法)のいずれかによって着磁(磁化)される。   In the magnet-embedded rotor having any of the above-described configurations, the permanent magnet inserted and arranged in the magnet hole is magnetized before being inserted and arranged in the magnet hole, and then inserted (so-called magnetized assembly method), or nothing. A magnetized permanent magnet is magnetized (magnetized) by one of the methods (so-called assembling magnetizing method) in which magnetized permanent magnets are inserted into the magnet holes and then magnetized together with the rotor core.

比較的小型の回転機を構成する磁石埋め込み型回転子は、必然的に回転子コアの外径も小さくなり使用する永久磁石の寸法も制限されるため、回転子コアに形成された磁石穴に永久磁石を挿入配置した後に着磁する方法(前記後者の方法)を選択しても、永久磁石は回転子コアの表面に形成される磁極から所望の磁束を発生可能に十分に着磁される。
また、着磁した後の永久磁石の取り扱いや製造工程の自動化等を考慮し、永久磁石を回転子コアに形成された磁石穴に挿入配置した後で着磁する方法が一般的に採用されている。
A magnet embedded rotor constituting a relatively small rotating machine inevitably reduces the outer diameter of the rotor core and restricts the size of the permanent magnet to be used. Even if the method of magnetizing after the permanent magnet is inserted and arranged (the latter method) is selected, the permanent magnet is sufficiently magnetized to generate a desired magnetic flux from the magnetic pole formed on the surface of the rotor core. .
In consideration of handling of permanent magnets after magnetization and automation of the manufacturing process, a method of magnetizing after permanent magnets are inserted into magnet holes formed in the rotor core is generally adopted. Yes.

一方、比較的大型の回転機を構成する磁石埋め込み型回転子は、必然的に回転子コアの外径も大きくなり使用する永久磁石の寸法も大きくなることから、前記の組立着磁方法では、十分な着磁が達成されないことが懸念される。
近年、地球温暖化ガスの削減の観点から注目されている発電出力1MWを超える風力発電機では、回転子コアの直径、軸方向の長さともに1m以上となる。
また、磁石穴に挿入配置される永久磁石も磁気特性に優れたNd−Fe−B系焼結磁石が多用されるため、着磁用のコイルは大型化するばかりでなく着磁磁場を形成するために着磁用コイルに流す電流は極めて大きなものとなり着磁磁場発生用の電源が大型化し、工業的規模における生産には前記組立着磁方法の採用は不向きであるとされている。
On the other hand, the magnet embedded rotor constituting a relatively large rotating machine inevitably increases the outer diameter of the rotor core and the size of the permanent magnet to be used. There is a concern that sufficient magnetization cannot be achieved.
In recent years, in a wind power generator exceeding a power generation output of 1 MW, which has been attracting attention from the viewpoint of reducing global warming gas, both the diameter and the axial length of the rotor core are 1 m or more.
In addition, since permanent magnets inserted into the magnet holes are often Nd-Fe-B sintered magnets having excellent magnetic properties, the magnetizing coil not only increases in size but also forms a magnetizing magnetic field. For this reason, the current flowing through the magnetizing coil is extremely large, the power source for generating the magnetizing magnetic field is enlarged, and the assembly magnetizing method is not suitable for production on an industrial scale.

風力発電用等の大型発電機に用いられる回転機の磁石埋め込み型回転子においては、永久磁石自体の寸法が非常に大きく、製造性や機械的強度等の観点から、予め着磁された複数のブロック状永久磁石を平板状の磁性体ヨークに順次積層しながら接着固定して一体化した磁石構造体を回転子コアに形成された磁石穴に挿入配置する方法が採用されている。   In a magnet embedded rotor of a rotating machine used for a large generator for wind power generation or the like, the dimensions of the permanent magnet itself are very large, and from the viewpoints of manufacturability, mechanical strength, etc., a plurality of pre-magnetized magnets are used. A method is adopted in which a magnet structure in which block-shaped permanent magnets are bonded and fixed in order while being laminated on a flat magnetic yoke is inserted into a magnet hole formed in the rotor core.

なお、回転子コアは渦電流対策として、電磁鋼板の積層体が用いられる。
前記電磁鋼板は打ち抜き加工によって所定形状に形成されるが、一般的な機械加工に比べて高い寸法精度を得ることは困難であり、各電磁鋼板に形成された磁石穴の寸法および位置に変動が発生する。又、積層過程における各電磁鋼板の積層方向のずれにより、必ずしも十分な磁石穴内部の寸法精度が得られるわけではない。結果として最終的に得られる磁石穴の壁面に凹凸が発生する。
永久磁石を無着磁の状態で挿入配置する場合には、このように磁石穴の壁面に凹凸が存在しても、永久磁石と磁石穴の壁面との間で磁力による吸引力(磁気的吸引力)が発生しないため、永久磁石と磁石穴の壁面とが接触しても永久磁石が受ける衝撃は軽微となり前記凹凸の存在による永久磁石への影響は少ない。
The rotor core uses a laminated body of electromagnetic steel sheets as a countermeasure against eddy currents.
The electromagnetic steel sheet is formed into a predetermined shape by punching, but it is difficult to obtain a high dimensional accuracy compared with general machining, and the size and position of the magnet hole formed in each electromagnetic steel sheet vary. Occur. Also, sufficient dimensional accuracy inside the magnet hole is not always obtained due to the deviation in the laminating direction of each electromagnetic steel sheet in the laminating process. As a result, irregularities occur on the wall surface of the finally obtained magnet hole.
When a permanent magnet is inserted and arranged in a non-magnetized state, even if there are irregularities on the wall surface of the magnet hole, an attractive force (magnetic attraction) is generated between the permanent magnet and the wall surface of the magnet hole. Therefore, even if the permanent magnet and the wall surface of the magnet hole come into contact with each other, the impact received by the permanent magnet is small, and the presence of the unevenness has little influence on the permanent magnet.

しかし、予め着磁された永久磁石を磁石穴に挿入配置する場合、磁石穴の壁面に存在する凹凸の存在による永久磁石への影響は大きなものとなる。すなわち、永久磁石と磁石穴の壁面との間で磁気的吸引力が発生し、その吸引力は永久磁石を磁石穴に挿入するにつれて大きくなり、特に、前記凹凸部との接触によって永久磁石に大きな衝撃が加わることになる。この衝撃によって永久磁石へ傷がつくことも多く、場合によっては破損することもある。回転子コアの直径が1m以上となる風力発電機用磁石埋め込み型回転子では、上記磁気的吸引力も非常に強力となり、この永久磁石の磁石穴への挿入配置作業は非常に煩雑なものとなる。
また、着磁されている永久磁石が回転子コアの磁石穴内部で破損した場合、磁石穴内部から破損した永久磁石を除去し回転子コアを再利用するのも困難を極める。
However, when a pre-magnetized permanent magnet is inserted and arranged in the magnet hole, the influence on the permanent magnet due to the presence of irregularities present on the wall surface of the magnet hole becomes large. That is, a magnetic attraction force is generated between the permanent magnet and the wall surface of the magnet hole, and the attraction force increases as the permanent magnet is inserted into the magnet hole. A shock will be applied. This impact often damages the permanent magnet and may cause damage. In the rotor embedded in a wind power generator with a rotor core having a diameter of 1 m or more, the magnetic attraction force is very strong, and the work of inserting and arranging the permanent magnet into the magnet hole becomes very complicated. .
Further, when the magnetized permanent magnet is broken inside the magnet hole of the rotor core, it is extremely difficult to remove the broken permanent magnet from the magnet hole and reuse the rotor core.

直径が大きな回転子コアを用いる磁石埋め込み型回転子では、上記に説明したような永久磁石の大型化にともなう着磁方法や磁気的吸引力を要因とする問題以外に、その寸法自体を要因とする次のような問題がある。
すなわち、風力発電機用磁石埋め込み型回転子等の直径が大きい回転子に作用する遠心力は、従来から多用される直径が小さい回転子に作用する遠心力に比べて極めて大きくなる。したがって、回転中の回転子コアからの永久磁石の飛び出し防止のためには、磁気的な効率よりも機械的強度を優先し、永久磁石を回転子コアのより内部に配置する構造を採用せざるを得ないのが現状である。
In an embedded magnet rotor using a rotor core with a large diameter, in addition to the problems caused by the magnetizing method and magnetic attraction force accompanying the increase in the size of the permanent magnet as described above, the size itself is a factor. There are the following problems.
That is, the centrifugal force that acts on a rotor having a large diameter, such as a magnet-embedded rotor for wind power generators, is extremely larger than the centrifugal force that acts on a rotor that has been frequently used in the past and has a small diameter. Therefore, in order to prevent the permanent magnet from jumping out of the rotating rotor core, the mechanical strength is prioritized over the magnetic efficiency, and the structure in which the permanent magnet is arranged inside the rotor core must be adopted. It is the present condition that we do not get.

特許文献2には、上記遠心力による問題を解決し、構造が簡単であり、製造が容易である磁石埋め込み型回転子を用いた回転機(モータ)が提案されている。特許文献2に記載される磁石埋め込み型回転子130は、従来の、予め磁石穴を形成した電磁鋼板の積層体からなる回転子コアを用いない構成をその主たる特徴としている。図11に示すように、回転軸131に、取付部材132を介して永久磁石133を直接取り付ける構成を採用している。この取り付けの際、回転軸131に設けられた凹部134の低部両側に形成された張出凹部135と取付部材132の両側に形成された張出凸部136を嵌合させ、永久磁石133とともに取付部材132を回転軸凹部134内に挿入配置する。
磁石埋め込み型回転子が回転した時、上記張出凹部135と張出凸部136の係合によって遠心力による取付部材132の外れ防止をすることができると記載されている。
なお、永久磁石133の着磁(磁化)方法について具体的な説明はないが、最終的な磁化方向は図示のように永久磁石133の厚み方向と推測される。
Patent Document 2 proposes a rotating machine (motor) using a magnet-embedded rotor that solves the problems caused by the centrifugal force, has a simple structure, and is easy to manufacture. The main feature of the magnet-embedded rotor 130 described in Patent Document 2 is that it does not use a conventional rotor core made of a laminated body of electromagnetic steel sheets in which magnet holes are previously formed. As shown in FIG. 11, a configuration in which the permanent magnet 133 is directly attached to the rotating shaft 131 via the attachment member 132 is employed. At the time of attachment, the protruding concave portions 135 formed on both sides of the lower portion of the concave portion 134 provided on the rotating shaft 131 and the protruding convex portions 136 formed on both sides of the mounting member 132 are fitted together with the permanent magnet 133. The mounting member 132 is inserted and disposed in the rotation shaft recess 134.
It is described that when the magnet-embedded rotor rotates, the attachment member 132 can be prevented from coming off due to centrifugal force by the engagement of the protruding concave portion 135 and the protruding convex portion 136.
Although there is no specific description about the magnetization (magnetization) method of the permanent magnet 133, the final magnetization direction is assumed to be the thickness direction of the permanent magnet 133 as shown in the figure.

特開2008−236890号公報JP 2008-236890 A 特開2008−154329号公報JP 2008-154329 A

しかし、特許文献2の構成では、取付部材132自体が回転子の外周面の一部を形成することから、取付部材132と永久磁石133との両部材の遠心力による外れ防止を上記張出凹部135と張出凸部136の係合によって実現するためには、機械的強度確保の観点から、張出凹部135と張出凸部136の厚さを十分に厚くする必要がある。結果として、永久磁石133と回転子コア130の外周面との間隔(永久磁石133と回転子コア130の外周面とが最も接近する回転子コア薄肉部)が大きくなり、図中太い実線イで示すような閉磁路の形成による磁気的な損失が大きくなる。
したがって、特許文献2の構成を、直径の大きな回転子コアを有する磁石埋め込み型回転子に採用しても、磁気的な効率よりも機械的強度を優先した従来から公知の構造と大差なく、昨今の要望を満足する構成とは言い難い。
However, in the configuration of Patent Document 2, the mounting member 132 itself forms a part of the outer peripheral surface of the rotor, so that the protruding recesses prevent the mounting member 132 and the permanent magnet 133 from coming off due to the centrifugal force. In order to achieve this by engaging 135 and the protruding convex portion 136, it is necessary to sufficiently increase the thickness of the protruding concave portion 135 and the protruding convex portion 136 from the viewpoint of securing mechanical strength. As a result, the distance between the permanent magnet 133 and the outer peripheral surface of the rotor core 130 (the rotor core thin wall portion where the permanent magnet 133 and the outer peripheral surface of the rotor core 130 are closest to each other) is increased. Magnetic loss due to the formation of a closed magnetic path as shown in the figure increases.
Therefore, even if the configuration of Patent Document 2 is adopted in a magnet embedded rotor having a rotor core with a large diameter, it is not much different from a conventionally known structure that prioritizes mechanical strength over magnetic efficiency. It is hard to say that the configuration satisfies the above requirements.

また、特許文献2の構成において、予め厚み方向に着磁(磁化)した永久磁石133を取り付けた取付部材132を回転軸131の凹部134内に挿入配置する場合、永久磁石133と回転軸131との間に発生する磁気的吸引力の影響は避け難く、永久磁石133と凹部134表面との直接的な接触による、永久磁石133の傷や破損を防止できない。   Further, in the configuration of Patent Document 2, when the mounting member 132 to which the permanent magnet 133 previously magnetized (magnetized) in the thickness direction is inserted and disposed in the recess 134 of the rotating shaft 131, the permanent magnet 133 and the rotating shaft 131 are arranged. It is difficult to avoid the influence of the magnetic attractive force generated between the permanent magnet 133 and the permanent magnet 133 cannot be prevented from being damaged or damaged due to direct contact between the permanent magnet 133 and the surface of the concave portion 134.

本発明の目的は、上記従来技術の問題点を解決し、特に、風力発電用磁石埋め込み型回転子等の比較的大きな直径からなる回転子コアに形成された磁石穴に永久磁石を挿入配置する構成において有効である磁石埋め込み型回転子の提供を目的とする。
すなわち、予め着磁(磁化)された永久磁石の磁石穴での保持構成を工夫することにより、永久磁石と回転子コアの外周面との間隔を狭く(肉厚を薄く)しても、遠心力による永久磁石の回転子コアからの飛び出しが防止でき、もって上記間隔の増大を要因とする閉磁路
形成(永久磁石から発生する磁束の短絡)による磁気的な損失増大を抑制し、永久磁石の持つポテンシャルを有効に使う事のできる磁石埋め込み型回転子の提供を目的とする。
また、予め着磁された永久磁石の磁石穴への挿入配置を容易にし、永久磁石の傷の発生や、破損を防止することが容易な磁石埋め込み型回転子の提供を目的する。
The object of the present invention is to solve the above-mentioned problems of the prior art, and in particular, to insert a permanent magnet into a magnet hole formed in a rotor core having a relatively large diameter, such as a magnet-embedded rotor for wind power generation. An object of the present invention is to provide a magnet-embedded rotor that is effective in configuration.
In other words, by devising a holding structure in the magnet hole of a previously magnetized (magnetized) permanent magnet, even if the distance between the permanent magnet and the outer peripheral surface of the rotor core is narrow (thinner wall thickness is reduced) The permanent magnet can be prevented from jumping out of the rotor core due to the force, and the increase in the magnetic loss due to the closed magnetic circuit formation (short-circuiting of the magnetic flux generated from the permanent magnet) caused by the increase in the distance can be suppressed. The purpose is to provide a magnet-embedded rotor that can effectively use the potential possessed.
It is another object of the present invention to provide a magnet-embedded rotor that facilitates the insertion and arrangement of pre-magnetized permanent magnets into the magnet holes and can prevent the permanent magnets from being damaged or broken.

上記問題を解決するために発明者は鋭意検討を行った結果、磁石埋め込み型回転子において、予め着磁された永久磁石の磁石穴での保持構成を、永久磁石に一体的に接合配置した磁性体ヨークに形成された所定形状の嵌合部と、磁石穴に形成された所定形状の嵌合部との嵌合によることで、目的達成可能であることを知見し、本発明を完成したのである。   In order to solve the above problems, the inventor has conducted intensive studies, and as a result, in a magnet-embedded rotor, a magnetic structure in which a holding structure of a magnet hole of a previously magnetized permanent magnet is integrally joined to the permanent magnet. As the present invention was completed, it was found that the object could be achieved by fitting the fitting part of the predetermined shape formed on the body yoke with the fitting part of the predetermined shape formed on the magnet hole. is there.

すなわち、本発明の磁石埋め込み型回転子は、請求項1に記載するように、回転子コアに形成された磁石穴に永久磁石を挿入配置し、前記回転子コアの外周面に磁極を形成した磁石埋め込み型回転子であって、前記永久磁石の前記回転子コアの外周面に対向する主面とは反対側の主面に磁性体ヨークを一体的に接合配置するとともに、前記磁性体ヨークの永久磁石接合面とは反対側の面に凹状または凸状からなる磁性体ヨーク嵌合部を形成し、かつ、前記磁石穴の前記磁性体ヨーク嵌合部に対応する位置に凸状または凹状からなる磁石穴嵌合部を形成し、前記磁性体ヨーク嵌合部と磁石穴嵌合部を嵌合して前記永久磁石を前記磁石穴に固定したことを特徴とする磁石埋め込み型回転子である。
上記構成とすることにより、遠心力による永久磁石の回転子コアからの飛び出し防止手段を、従来の構成に比べて実質的に回転子コアの内側(中心側)に移動することで機械的強度が比較的容易に確保でき、従来の構成に比べて永久磁石を回転子コア外周面に近付けて配置することが可能となり、磁気的効率に優れた磁石埋め込み型回転子の提供を可能にする。
また、前記磁性体ヨーク嵌合部と磁石穴嵌合部を嵌合することで、予め着磁された永久磁石を磁石穴へ挿入配置する場合でも、安全かつ比較的容易に実現でき、永久磁石と磁石穴壁面との間に発生する磁気的吸引力を要因とする衝突を低減し、永久磁石の傷発生や破損防止を可能とする。
That is, in the magnet-embedded rotor according to the present invention, as described in claim 1, permanent magnets are inserted and arranged in magnet holes formed in the rotor core, and magnetic poles are formed on the outer peripheral surface of the rotor core. A magnet-embedded rotor, wherein a magnetic yoke is integrally joined to a main surface opposite to the main surface of the permanent magnet opposite to the outer peripheral surface of the rotor core, and the magnetic yoke A magnetic yoke fitting portion having a concave shape or a convex shape is formed on the surface opposite to the permanent magnet bonding surface, and the convex shape or the concave shape is formed at a position corresponding to the magnetic yoke fitting portion of the magnet hole. A magnet-embedded rotor, in which a magnet hole fitting portion is formed, the magnetic yoke fitting portion and the magnet hole fitting portion are fitted, and the permanent magnet is fixed to the magnet hole. .
By adopting the above configuration, the mechanical strength can be increased by moving the means for preventing the permanent magnet from jumping out of the rotor core due to centrifugal force substantially inside (center side) of the rotor core compared to the conventional configuration. It can be secured relatively easily, and the permanent magnet can be disposed closer to the outer peripheral surface of the rotor core than in the conventional configuration, and it is possible to provide a magnet-embedded rotor with excellent magnetic efficiency.
Further, by fitting the magnetic yoke fitting portion and the magnet hole fitting portion, it is possible to realize a safe and relatively easy permanent magnet even when a pre-magnetized permanent magnet is inserted into the magnet hole. The collision caused by the magnetic attractive force generated between the magnet and the wall surface of the magnet hole is reduced, and the permanent magnet can be prevented from being scratched or broken.

また、請求項2に記載する本発明の磁石埋め込み型回転子は、前記磁性体ヨーク嵌合部が蟻ほぞ状であり、前記磁石穴嵌合部が蟻ほぞ穴状であることを特徴とする請求項1に記載の磁石埋め込み型回転子である。
この構成によれば、最も簡単な構造で目的とする嵌合を達成することができる。
Further, in the magnet-embedded rotor according to the second aspect of the present invention, the magnetic yoke fitting portion has a dovetail shape, and the magnet hole fitting portion has a dovetail shape. The magnet-embedded rotor according to claim 1.
According to this configuration, a desired fitting can be achieved with the simplest structure.

また、請求項3に記載する本発明の磁石埋め込み型回転子は、前記磁性体ヨーク嵌合部及び前記磁石穴嵌合部が前記回転子コアの軸方向に複数列形成されていることを特徴とする請求項1または2に記載の磁石埋め込み型回転子である。
この構成によれば、嵌合部の形状とともにその列数を選定することで、嵌合部に作用する遠心力を効果的に分散することができる。
In the magnet-embedded rotor according to the third aspect of the present invention, the magnetic yoke fitting portion and the magnet hole fitting portion are formed in a plurality of rows in the axial direction of the rotor core. The magnet-embedded rotor according to claim 1 or 2.
According to this structure, the centrifugal force which acts on a fitting part can be disperse | distributed effectively by selecting the number of rows with the shape of a fitting part.

また、請求項4に記載する前記永久磁石が複数のブロック状永久磁石を接合一体化した接合磁石であることを特徴とする請求項1乃至3のいずれかに記載の磁石埋め込み型回転子である。
この構成によれば、特に永久磁石が大型化した場合に効果的であり、予め着磁されたブロック状永久磁石を磁性体ヨーク上面に順次接合配置することで、機械的強度を確保した上で、大型化が可能となり、取扱いが容易となる。
4. The embedded magnet rotor according to claim 1, wherein the permanent magnet according to claim 4 is a bonded magnet obtained by bonding and integrating a plurality of block-shaped permanent magnets. .
According to this configuration, it is particularly effective when the permanent magnet is increased in size, and the mechanical strength is ensured by sequentially joining and arranging block-shaped permanent magnets preliminarily magnetized on the upper surface of the magnetic yoke. The size can be increased, and handling becomes easy.

また、請求項5に記載する前記回転子コアの外径が1000mm以上であることを特徴とする請求項1乃至4のいずれかに記載の磁石埋め込み型回転子である。
このような外径が大きな磁石埋め込み型回転子に本発明を適用した場合に、最もその効果を有効に活用可能となる。
5. The magnet-embedded rotor according to claim 1, wherein an outer diameter of the rotor core according to claim 5 is 1000 mm or more.
When the present invention is applied to such a magnet-embedded rotor having a large outer diameter, the effect can be most effectively utilized.

本発明によれば、大型(大径)回転子の大きな遠心力を回転子コアの外周面でなく、回転子コアの内側(中心側)に位置する磁性体ヨークの内側で保持する事ができるので、回転子コアにおける永久磁石の外周面側の肉厚を薄くすることができ、結果として、永久磁石が発生する磁束を有効に活用でき磁気的効率向上を達成できる。
また、予め着磁された永久磁石を磁石穴へ挿入配置する場合でも、永久磁石と磁石穴壁面との磁気的吸引力による衝突が低減され、永久磁石の傷発生や破損を防止することが可能となる。
According to the present invention, a large centrifugal force of a large (large diameter) rotor can be held not on the outer peripheral surface of the rotor core but on the inside of the magnetic yoke located inside (center side) of the rotor core. Therefore, the thickness on the outer peripheral surface side of the permanent magnet in the rotor core can be reduced, and as a result, the magnetic flux generated by the permanent magnet can be effectively utilized and the magnetic efficiency can be improved.
In addition, even when a pre-magnetized permanent magnet is inserted and placed in the magnet hole, collision due to the magnetic attractive force between the permanent magnet and the wall surface of the magnet hole is reduced, and the permanent magnet can be prevented from being scratched or damaged. It becomes.

本発明の磁石埋め込み型回転子の部分縦断面図である。It is a fragmentary longitudinal cross-sectional view of the magnet embedded rotor of the present invention. 図1の磁石埋め込み型回転子における、永久磁石と磁性体ヨークとの配置関係を示す側面図である。FIG. 2 is a side view showing an arrangement relationship between a permanent magnet and a magnetic yoke in the magnet-embedded rotor of FIG. 1. 図1の磁石埋め込み型回転子における、他の実施形態からなる永久磁石と磁性体ヨークとの配置関係を示す側面図である。FIG. 7 is a side view showing the positional relationship between permanent magnets and magnetic yokes according to another embodiment in the magnet-embedded rotor of FIG. 1. 本発明の他の実施形態からなる磁石埋め込み型回転子の部分縦断面図である。It is a fragmentary longitudinal cross-sectional view of the magnet embedded type rotor which consists of other embodiment of this invention. 本発明の他の実施形態からなる磁石埋め込み型回転子の縦断面図である。It is a longitudinal cross-sectional view of the magnet embedded rotor which consists of other embodiment of this invention. 図5の部分拡大図である。It is the elements on larger scale of FIG. 本発明の他の実施形態からなる磁石埋め込み型回転子の縦断面図である。It is a longitudinal cross-sectional view of the magnet embedded rotor which consists of other embodiment of this invention. 従来の磁石埋め込み型回転子の縦断面図である。It is a longitudinal cross-sectional view of the conventional magnet-embedded rotor. 従来の他の形態からなる磁石埋め込み型回転子に用いられる回転子コアの概略図である。It is the schematic of the rotor core used for the magnet embedding type | mold rotor which consists of another conventional form. 従来の他の形態からなる磁石埋め込み型回転子に用いられる回転子コアの概略図である。It is the schematic of the rotor core used for the magnet embedding type | mold rotor which consists of another conventional form. 従来の他の形態からなる磁石埋め込み型回転子の縦断面図である。It is a longitudinal cross-sectional view of the magnet embedded type rotor which consists of another conventional form.

以下本発明の実施形態について図面を参照しながら説明する。
図1は、本発明の磁石埋め込み型回転子10の部分縦断面図である。また、図2は、図1の磁石埋め込み型回転子における、永久磁石と磁性体ヨークとの配置関係を示す側面図である。
図において1は回転子コアであり、電磁鋼板の積層体からなり、所定位置に磁石穴2を形成している。3は厚さ方向に着磁された複数のブロック状永久磁石を接合一体化した永久磁石であり、回転子コア1の外周面に対向する主面とは反対側の主面に磁性体ヨーク4を一体的に接合配置している。磁性体ヨーク4は、永久磁石3と接合する平板状部5と、永久磁石3の接合面とは反対側の面に形成される蟻ほぞ状の凸状部からなる磁性体ヨーク嵌合部6とからなる。なお、図の構成では平板状部5と磁性体ヨーク嵌合部6との軸方向の長さは同一であり、磁性体ヨーク嵌合部6は遠心力への作用だけでなく機械的剛性向上、磁石穴2への挿入時のガイドとしての機能を備える。
7は前記磁石穴2のほぼ底面中央部にて軸方向に伸延する蟻ほぞ穴状の凹状部からなる磁石穴嵌合部であり、前記磁性体ヨーク嵌合部6と嵌合する。
なお、磁石穴2の大きさは、永久磁石3と磁性体ヨーク4が一体化された所謂磁石構造体が挿入配置可能な寸法とし、磁石構造体と磁石穴壁面との間に接着剤や緩衝材を配置することが可能なクリアランスを形成できる大きさとなっているのが好ましい。図においては、クリアランスを誇張して示すが、永久磁石3の回転子コア1外周面に対向する主面側のクリアランスは磁気的な空隙にもなることから、必要以上に大きくすることは磁気的効率の観点からは好ましくなく、各構成部材の加工精度に応じて最適なクリアランスを選定することが好ましい。
前記永久磁石3と磁性体ヨーク4が一体化された磁石構造体は、前記磁性体ヨーク嵌合部6と磁石穴嵌合部7を嵌合して磁石穴2内に挿入配置され、本発明の磁石埋め込み型回転子を構成する。
このような構成において、本発明の磁石埋め込み型回転子10の外周面には前記永久磁石3から発生する磁束によって、所定位置に磁極が形成(図においてはN極が形成)される。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a partial longitudinal sectional view of a magnet-embedded rotor 10 of the present invention. FIG. 2 is a side view showing the positional relationship between the permanent magnet and the magnetic yoke in the magnet-embedded rotor of FIG.
In the figure, reference numeral 1 denotes a rotor core, which is composed of a laminated body of electromagnetic steel plates, and has a magnet hole 2 formed at a predetermined position. Reference numeral 3 denotes a permanent magnet obtained by joining and integrating a plurality of block-shaped permanent magnets magnetized in the thickness direction. The magnetic yoke 4 is provided on the main surface opposite to the main surface facing the outer peripheral surface of the rotor core 1. Are integrally joined. The magnetic yoke 4 has a flat plate-like portion 5 to be joined to the permanent magnet 3 and a magnetic yoke fitting portion 6 having a dovetail-like convex portion formed on the surface opposite to the joining surface of the permanent magnet 3. It consists of. In the configuration shown in the drawing, the axial lengths of the flat plate portion 5 and the magnetic yoke fitting portion 6 are the same, and the magnetic yoke fitting portion 6 not only acts on centrifugal force but also improves mechanical rigidity. A function as a guide at the time of insertion into the magnet hole 2 is provided.
Reference numeral 7 denotes a magnet hole fitting portion comprising a dovetail-like concave portion extending in the axial direction substantially at the center of the bottom surface of the magnet hole 2, and is fitted with the magnetic yoke fitting portion 6.
The size of the magnet hole 2 is such that a so-called magnet structure in which the permanent magnet 3 and the magnetic yoke 4 are integrated can be inserted and arranged, and an adhesive or a buffer is provided between the magnet structure and the wall surface of the magnet hole. It is preferable that the size is such that a clearance capable of arranging the material can be formed. In the drawing, the clearance is exaggerated, but the clearance on the main surface side of the permanent magnet 3 facing the outer peripheral surface of the rotor core 1 also becomes a magnetic gap. It is not preferable from the viewpoint of efficiency, and it is preferable to select an optimum clearance according to the processing accuracy of each component member.
The magnet structure in which the permanent magnet 3 and the magnetic yoke 4 are integrated is inserted and arranged in the magnet hole 2 by fitting the magnetic yoke fitting portion 6 and the magnet hole fitting portion 7. The magnet-embedded rotor is configured.
In such a configuration, a magnetic pole is formed at a predetermined position (in the figure, an N pole is formed) on the outer peripheral surface of the magnet-embedded rotor 10 of the present invention by the magnetic flux generated from the permanent magnet 3.

従来から多用される一般的な磁石埋め込み型回転子においては、遠心力を受け止めるのは回転子コアに形成された磁石穴の壁面(磁石構造体側から見て回転子コアの外周面側の壁面)だけであるが、本発明の磁石埋め込み型回転子10の場合は、前記磁石穴2の及び前記磁性体ヨーク嵌合部6と磁石穴嵌合部7からなる嵌合部の2ケ所で受け止められている。
よって磁石構造体にかかる遠心力は分散して受け止められており、磁石穴2の壁面で受け止める遠心力が最終的に伝達される部分(永久磁石3と回転子コアの外周面との間)にかかる応力が低減され、この部分の強度を大きくする必要が無く、磁石構造体の位置をより回転子コアの外周面近くに配置する事ができる。
したがって、本発明の磁石埋め込み型回転子10によれば、永久磁石3と回転子コア1の外周面とが最も接近する回転子コア薄肉部8を従来構成よりも狭く(薄く)することができ、この回転子コア薄肉部8を介して形成される閉磁路による磁気的損失を低減し、前記磁極部に効率的に磁束を発生することが可能となる。
In a general embedded magnet rotor that has been frequently used, the wall surface of the magnet hole formed in the rotor core receives the centrifugal force (the wall surface on the outer peripheral surface side of the rotor core as viewed from the magnet structure side). However, in the case of the magnet-embedded rotor 10 according to the present invention, the rotor 10 is received at two places of the magnet hole 2 and the fitting portion including the magnetic yoke fitting portion 6 and the magnet hole fitting portion 7. ing.
Therefore, the centrifugal force applied to the magnet structure is distributed and received, and the centrifugal force received by the wall surface of the magnet hole 2 is finally transmitted (between the permanent magnet 3 and the outer peripheral surface of the rotor core). Such stress is reduced, there is no need to increase the strength of this portion, and the position of the magnet structure can be arranged closer to the outer peripheral surface of the rotor core.
Therefore, according to the magnet-embedded rotor 10 of the present invention, the rotor core thin portion 8 where the permanent magnet 3 and the outer peripheral surface of the rotor core 1 are closest can be made narrower (thinner) than in the conventional configuration. The magnetic loss due to the closed magnetic path formed through the rotor core thin portion 8 can be reduced, and the magnetic flux can be efficiently generated in the magnetic pole portion.

また、図2に示す予め着磁されている永久磁石3と磁性体ヨーク4で形成された磁石構造体を回転子コア1の磁石穴2に挿入配置する際、磁石構造体は磁石穴2の壁面(特に、回転子コアの外周面側壁面)に吸引されるが、磁石構造体を構成する磁性体ヨーク嵌合部6は磁石穴嵌合部7と嵌合されているため、磁石構造体に対して実質的に前記吸引される向きとは反対向きに力が働き、結果として永久磁石3と磁石穴2の壁面とが接触しないで、磁石構造体が磁石穴2の所定位置に挿入配置されるか、仮に接触しても挿入に伴う摩擦力は軽減され永久磁石3表面の傷や破損といった問題は大幅に低減される。仮に、磁石穴2壁面に電磁鋼板積層体特有の凹凸が存在していたとしても、その影響は非常に少ない。   When the magnet structure formed by the pre-magnetized permanent magnet 3 and the magnetic yoke 4 shown in FIG. 2 is inserted into the magnet hole 2 of the rotor core 1, the magnet structure is the magnet hole 2. Although attracted to the wall surface (in particular, the outer peripheral side wall surface of the rotor core), the magnetic yoke fitting portion 6 constituting the magnet structure is fitted with the magnet hole fitting portion 7, so that the magnet structure As a result, a force acts in a direction opposite to the attracting direction, and as a result, the permanent magnet 3 and the wall surface of the magnet hole 2 do not come into contact with each other, and the magnet structure is inserted and disposed at a predetermined position of the magnet hole 2. Even if contact is made, the frictional force accompanying the insertion is reduced, and the problem of scratches and breakage on the surface of the permanent magnet 3 is greatly reduced. Even if irregularities peculiar to the electromagnetic steel sheet laminate exist on the wall surface of the magnet hole 2, the influence is very small.

なお、図1及び図2においては、磁性体ヨーク嵌合部6として、磁性体平板状部5と軸方向の長さが同一である蟻ほぞ状の凸状部からなる構成にて説明したが、磁石構造体に作用する遠心力等に応じて、図3に示すように、前記蟻ほぞ状の凸状部を磁性体平板状部5の軸方向両端部にのみ設ける構成でも本発明の目的は達成できる。   In FIG. 1 and FIG. 2, the magnetic yoke fitting portion 6 has been described as having a dovetail-like convex portion having the same axial length as the magnetic flat plate portion 5. According to the centrifugal force acting on the magnet structure, as shown in FIG. 3, the dovetail-like convex portions are provided only at both axial end portions of the magnetic plate-like portion 5. Can be achieved.

また、磁性体ヨーク嵌合部6の形状は、前記蟻ほぞ状の凸状部に限定されることなく、例えば、図4に示すような逆T字型形状等を選択することも可能である。すなわち、磁石構造体に作用する遠心力に抗する力を発揮できる形状であれば任意の形状が選択でき、その凸状部形状に対応して形成される磁石穴嵌合部の凹状部の加工手段等を考慮して適宜選定することができる。
さらに、磁性体ヨーク嵌合部6は、平板状部5と一体物にて形成する必要はなく、別々に加工作成した後、ボルトや接着剤等を用いて一体化する構成でも良い。
Further, the shape of the magnetic yoke fitting portion 6 is not limited to the dovetail-like convex portion, and for example, an inverted T-shaped shape as shown in FIG. 4 can be selected. . In other words, any shape can be selected as long as it can exert a force against the centrifugal force acting on the magnet structure, and the concave portion of the magnet hole fitting portion formed corresponding to the convex portion shape is processed. It can be appropriately selected in consideration of means and the like.
Furthermore, the magnetic yoke fitting portion 6 does not need to be formed integrally with the flat plate-like portion 5, and may be configured to be integrated using a bolt, an adhesive, or the like after being separately processed and created.

さらにまた、図1及び図4においては、磁性体ヨーク嵌合部6が軸方向に一列だけ設けられている構成が示されているが、上記嵌合部6の形状とともにその列数を選定することで、嵌合部6に作用する遠心力を効果的に分散することができる。   1 and 4 show a configuration in which the magnetic yoke fitting portions 6 are provided in only one row in the axial direction, the number of rows is selected along with the shape of the fitting portion 6. Thereby, the centrifugal force which acts on the fitting part 6 can be disperse | distributed effectively.

なお、以上では、磁性体ヨーク4に凸状の嵌合部、磁石穴2に凹状の嵌合部を形成した構成を示したが、各々嵌合部の加工性等を考慮し、磁性体ヨーク4に凹状の嵌合部、磁石穴2に凸状の嵌合部を形成しても同様な効果を得ることができる。   In the above description, the magnetic yoke 4 is formed with a convex fitting portion and the magnet hole 2 is formed with a concave fitting portion. Even if a concave fitting portion is formed in 4 and a convex fitting portion is formed in the magnet hole 2, the same effect can be obtained.

図1及び図2に示す構成では、磁石構造体の長さは回転子コア1の軸方向の長さと同じ寸法の場合を想定して説明したが、磁石構造体の取扱い等を考慮し軸方向に複数に分割作製し、分割された複数の磁石構造体を順次回転子コア1に形成された磁石穴2に挿入し最終的に回転子コア1の軸方向の長さと同じ長さとしても良い。   In the configuration shown in FIG. 1 and FIG. 2, the length of the magnet structure has been described on the assumption that it has the same dimension as the axial length of the rotor core 1. The plurality of divided magnet structures may be sequentially inserted into the magnet holes 2 formed in the rotor core 1 to finally have the same length as the axial length of the rotor core 1. .

なお、先に図1に示す永久磁石3は厚さ方向に着磁(磁化)された複数のブロック状永久磁石を接合一体化した構成であると説明した。通常、磁性体ヨーク4への接着作業の効率の観点から、予め磁性体ヨーク4への接着後に一括して着磁することが好ましいとされる。しかし、磁気特性に優れたNd−Fe−B系焼結磁石を磁性体ヨーク4とともに着磁することは容易ではない。また、各ブロック状永久磁石は同磁極が隣接して並置するため互いに反発状態となる。
本発明者は、複数のブロック状磁石を着磁可能な大きさに接着固定した小接合体磁石を形成し、この状態で一度に着磁した後、この小接合体磁石を特定治具にて磁性体ヨーク4の平板状部5に移動し、一旦これら小接合体磁石と磁性体ヨーク4とを強固に接着固定し、さらに、着磁済みの別の小接合体磁石を順次前記と同様な方法にて磁性体ヨーク4の平板状部5に接着固定し、最終的に本発明の磁石埋め込み型回転子を構成する磁石構造体を作成した。
また、着磁前の複数のブロック状磁石を予め磁性体ヨーク4の平板状部5に接着固定した後に、これら一体品を所定面積の磁極面を形成する一対の着磁ヨーク(図示せず)間に挟持し、前記ブロック状磁石を部分的に着磁しながら、この着磁方法を複数回繰り返すことで、最終的に本発明の磁石埋め込み型回転子を構成する磁石構造体を作成することも可能であることを確認した。
It has been described above that the permanent magnet 3 shown in FIG. 1 has a structure in which a plurality of block permanent magnets magnetized (magnetized) in the thickness direction are joined and integrated. Usually, from the viewpoint of the efficiency of the bonding work to the magnetic yoke 4, it is preferable to magnetize in advance after bonding to the magnetic yoke 4. However, it is not easy to magnetize the Nd—Fe—B sintered magnet having excellent magnetic properties together with the magnetic yoke 4. Further, the block-shaped permanent magnets are repelled from each other because the magnetic poles are adjacent to each other.
The inventor forms a small bonded magnet in which a plurality of block magnets are bonded and fixed to a size that can be magnetized, and after magnetizing at once in this state, the small bonded magnet is fixed with a specific jig. Move to the flat plate-like portion 5 of the magnetic yoke 4, and firmly bond and fix these small joined magnets and the magnetic yoke 4, and then sequentially add the other magnetized small joined magnets in the same manner as described above. By the method, it was bonded and fixed to the flat plate-like portion 5 of the magnetic yoke 4 to finally produce a magnet structure constituting the magnet-embedded rotor of the present invention.
A plurality of block-shaped magnets before magnetization are bonded and fixed in advance to the flat plate-like portion 5 of the magnetic yoke 4, and then a pair of magnetized yokes (not shown) that form a magnetic pole surface having a predetermined area with these integrated products. This magnetizing method is repeated a plurality of times while being partially magnetized with the block-shaped magnet interposed therebetween, thereby finally creating a magnet structure constituting the magnet-embedded rotor of the present invention. Also confirmed that it is possible.

本発明の磁石埋め込み型回転子を構成する各部材の材質は、従来から公知の材質のものを使用することが可能である。
例えば、永久磁石は、公知の種々材質のものが適用可能であるが、磁気特性の観点からNd−Fe−B系焼結磁石を用いるのが最も好ましい。
回転子コアの材質は、電磁鋼板等の軟磁性材料からなる積層体が加工性や渦電流対策の観点から好ましいが、その他パーマロイ(FeNiを主体とした合金)等の積層体の使用も可能であり、また電磁鋼や圧粉磁心等の軟磁性材料のブロック体から切り出し加工して形成しても良い。
磁性体ヨークも、 電磁鋼板、パーマロイ、圧粉磁心、軟鉄 等の軟磁性材料を使用することが可能である。
As a material of each member constituting the magnet-embedded rotor of the present invention, a conventionally known material can be used.
For example, various known materials can be used as the permanent magnet, but it is most preferable to use a Nd—Fe—B based sintered magnet from the viewpoint of magnetic properties.
As the material of the rotor core, a laminate made of a soft magnetic material such as an electromagnetic steel sheet is preferable from the viewpoint of workability and eddy current countermeasures, but other laminates such as permalloy (an alloy mainly composed of FeNi) can also be used. In addition, it may be formed by cutting out from a block of soft magnetic material such as electromagnetic steel or dust core.
The magnetic yoke can also be made of a soft magnetic material such as a magnetic steel sheet, permalloy, a dust core, or soft iron.

図5は本発明の磁石埋め込み型回転子の他の実施形態を示す縦断面図である。
周方向45°毎に形成された一対の磁石穴2a及び2bからなるV字型磁石穴2を形成した回転子コア1の、各々磁石穴2a及び2bに厚み方向に磁化した永久磁石3を挿入配置し、回転子コア1の外周面に周方向に極性が交互に異なる8極の磁極を形成する磁石埋め込み型回転子30である。
なお、前記永久磁石3は、図1と同様に、永久磁石3と接合する平板状部5と永久磁石3の接合面とは反対側の面に形成される蟻ほぞ状の凸状部からなる磁性体ヨーク嵌合部6とからなる磁性体ヨーク4に一体的に固定されている。
また、磁石穴2の前記磁性体ヨーク嵌合部6との対応部には磁石穴嵌合部7(図示せず)が形成され、互いが嵌合している。
なお、図中9は、回転軸配置用の貫通孔である。
FIG. 5 is a longitudinal sectional view showing another embodiment of the magnet-embedded rotor of the present invention.
The permanent magnet 3 magnetized in the thickness direction is inserted into each of the magnet holes 2a and 2b of the rotor core 1 in which the V-shaped magnet hole 2 composed of a pair of magnet holes 2a and 2b formed every 45 ° in the circumferential direction is inserted. This is a magnet-embedded rotor 30 that is arranged and forms 8-pole magnetic poles having different polarities alternately in the circumferential direction on the outer peripheral surface of the rotor core 1.
In addition, the said permanent magnet 3 consists of a dovetail-like convex part formed in the surface on the opposite side to the flat surface part 5 joined to the permanent magnet 3, and the joining surface of the permanent magnet 3 similarly to FIG. The magnetic yoke 4 comprising the magnetic yoke fitting portion 6 is fixed integrally.
Further, a magnet hole fitting portion 7 (not shown) is formed at a portion corresponding to the magnet yoke fitting portion 6 of the magnet hole 2 and is fitted to each other.
In addition, 9 is a through-hole for rotating shaft arrangement | positioning in the figure.

図6は、図5の部分拡大図である。
回転子30の回転により永久磁石3と磁性体ヨーク4とからなる各磁石構造体には黒塗の太矢印で示す遠心力が回転子コア1の軸心から外側に向かって働く。しかし、その遠心力による磁石構造体を回転子コアの外側に飛び出さそうとする力は、磁石穴2壁面だけでなく前記磁性体ヨーク嵌合部6前記磁石穴嵌合部7との嵌合部によって抑制(分散)される。
上記作用により、永久磁石3と回転子コア1の外周面とが最も接近する回転子コア薄肉部8を非常に狭く(薄く)することができ、この薄肉部8を介して形成される閉磁路(図中太実線ロで示す)
による磁気的な損失を低減することが可能となる。
すなわち、回転子コア1の表面に形成される磁極に永久磁石3から発生する磁束を有効に作用させ、結果として磁気的効率を向上することが可能となる。
FIG. 6 is a partially enlarged view of FIG.
Centrifugal force indicated by a thick black arrow acts outward from the axis of the rotor core 1 to each magnet structure composed of the permanent magnet 3 and the magnetic yoke 4 by the rotation of the rotor 30. However, the force that causes the magnet structure due to the centrifugal force to jump out of the rotor core is not only the wall surface of the magnet hole 2 but also the fitting portion with the magnet yoke fitting portion 6 and the magnet hole fitting portion 7. Is suppressed (dispersed).
By the above action, the rotor core thin portion 8 where the permanent magnet 3 and the outer peripheral surface of the rotor core 1 are closest can be made very narrow (thin), and the closed magnetic circuit formed via the thin portion 8 (Indicated by bold solid lines in the figure)
It is possible to reduce the magnetic loss due to.
That is, the magnetic flux generated from the permanent magnet 3 is effectively applied to the magnetic poles formed on the surface of the rotor core 1, and as a result, the magnetic efficiency can be improved.

図7は本発明の磁石埋め込み型回転子の他の実施形態を示す縦断面図である。
回転子コア1の周方向に45°毎に形成された磁石穴2に厚み方向に磁化した永久磁石3を挿入配置し、回転子コア1の外周面に周方向に極性が交互に異なる8極の磁極を形成する磁石埋め込み型回転子40である。
なお、前記永久磁石3は、永久磁石3と接合する平板状部5と永久磁石3の接合面とは反対側の面に形成される2列の蟻ほぞ状の凸状部6a、6bからなる磁性体ヨーク嵌合部6とからなる磁性体ヨーク4に一体的に固定されている。
また、磁石穴2の前記磁性体ヨーク嵌合部6との対応部には、前記蟻ほぞ状の凸状部6a、6bに対応する位置に2列の蟻ほぞ穴状の凹部からなる磁石穴嵌合部7(図示せず)が形成され、互いが嵌合している。
なお、図中9は、回転軸配置用の貫通孔である。
この構成においては、嵌合部が複数になることから遠心力がより分散され、各々嵌合部の形状・寸法の設計の自由度が向上する。
なお、この構成においても、永久磁石3と回転子コア1の外周面とが最も接近する回転子コア薄肉部8を非常に狭く(薄く)することができ、先に説明した本発明の磁石埋め込み型回転子と同様に磁気的効率を向上することが可能となる。
FIG. 7 is a longitudinal sectional view showing another embodiment of the magnet-embedded rotor of the present invention.
Permanent magnets 3 magnetized in the thickness direction are inserted and arranged in magnet holes 2 formed at intervals of 45 ° in the circumferential direction of the rotor core 1, and the polarity is alternately changed in the circumferential direction on the outer circumferential surface of the rotor core 1. This is a magnet-embedded rotor 40 that forms a magnetic pole.
The permanent magnet 3 is composed of a flat plate-like portion 5 to be joined to the permanent magnet 3 and two rows of dovetail-like convex portions 6 a and 6 b formed on the surface opposite to the joining surface of the permanent magnet 3. The magnetic yoke 4 comprising the magnetic yoke fitting portion 6 is fixed integrally.
Further, the magnet hole 2 corresponding to the magnetic yoke fitting portion 6 has a magnet hole formed of two rows of mortise-like recesses at positions corresponding to the dovetail-like convex portions 6a and 6b. The fitting part 7 (not shown) is formed and is mutually fitted.
In addition, 9 is a through-hole for rotating shaft arrangement | positioning in the figure.
In this configuration, since there are a plurality of fitting portions, centrifugal force is further dispersed, and the degree of freedom in designing the shape and dimensions of each fitting portion is improved.
Even in this configuration, the rotor core thin portion 8 where the permanent magnet 3 and the outer peripheral surface of the rotor core 1 are closest to each other can be made very narrow (thin), and the magnet embedding of the present invention described above can be performed. The magnetic efficiency can be improved in the same manner as the mold rotor.

本発明の磁石埋め込み型回転子は、以上に示す磁石穴の形状や個数及び配置形態の回転子コアに限定されることなく、回転子コアに形成される磁石穴に永久磁石を配置する所謂磁石埋め込み型回転子であれば、任意の構成に採用可能である。   The magnet-embedded rotor of the present invention is not limited to the rotor core having the shape, number and arrangement of the magnet holes described above, but a so-called magnet in which permanent magnets are arranged in the magnet holes formed in the rotor core. Any embedded rotor can be used in any configuration.

本発明の磁石埋め込み型回転子として、電磁鋼板の積層体からなる外径(直径)1000mm×軸方向長さ1000mmの回転子コア1の周方向90°毎に4箇所に形成された磁石穴2に、複数のブロック状永久磁石の接合磁石からなるNd−Fe−B系焼結磁石3(厚さ(磁化方向)20mm×幅400mm×長さ1000mm、最大エネルギー積:300kJ/m)を挿入配置した図1の構成の磁石埋め込み型回転子10を製作した。
同一寸法の回転子コア及び永久磁石を用い、図1に示す嵌合部以外は全く同一形状の構成からなる磁石埋め込み型回転子を比較例として製作した。
各々磁石埋め込み型回転子において、遠心力による永久磁石3の飛び出し防止可能な設計とし、永久磁石3が回転子コア1外周面に最も接近した場合の薄肉部8寸法(厚さ)及び回転子コア1外周面に形成される磁極から発生する磁束量を比較したところ、本発明の磁石埋め込み型回転子10は比較例の磁石埋め込み型回転子に比べ、薄肉部8寸法は約23mmが12mm程度となり、磁束量は10%程度向上していることが確認できた。
As the magnet-embedded rotor of the present invention, magnet holes 2 formed at four locations every 90 ° in the circumferential direction of a rotor core 1 having an outer diameter (diameter) of 1000 mm × an axial length of 1000 mm made of a laminate of electromagnetic steel plates. Nd—Fe—B sintered magnet 3 (thickness (magnetization direction) 20 mm × width 400 mm × length 1000 mm, maximum energy product: 300 kJ / m 3 ) composed of a plurality of block permanent magnet bonded magnets The magnet-embedded rotor 10 having the arrangement shown in FIG. 1 was manufactured.
Using a rotor core and a permanent magnet having the same dimensions, a magnet-embedded rotor having the same configuration except for the fitting portion shown in FIG. 1 was manufactured as a comparative example.
Each of the embedded magnet rotors is designed to prevent the permanent magnet 3 from jumping out due to centrifugal force. When the permanent magnet 3 comes closest to the outer peripheral surface of the rotor core 1, the dimension (thickness) of the thin portion 8 and the rotor core When the amount of magnetic flux generated from the magnetic pole formed on the outer peripheral surface is compared, the embedded magnet type rotor 10 of the present invention has a thin portion 8 dimension of about 23 mm, which is about 12 mm, compared with the magnet embedded type rotor of the comparative example. It was confirmed that the amount of magnetic flux was improved by about 10%.

本発明によれば、
磁石埋め込み型回転子の回転により永久磁石に発生する遠心力を、磁石穴壁面だけでなく、永久磁石を一体的に接合配置する磁性体ヨークに形成した磁性体ヨーク嵌合部と磁石穴に形成した磁石穴嵌合部からなるこれら嵌合部により分散して受け止めるため、永久磁石と回転子コア外周面との間隔を狭く設定する事が可能となり、結果として磁気的効率を向上するため、従来から多用される比較的小型(小径)の磁石埋め込み型回転子だけでなく、特に風力発電機用等の大型(大径)の磁石埋め込み型回転子に採用した場合に有効である。
According to the present invention,
The centrifugal force generated in the permanent magnet by the rotation of the magnet-embedded rotor is formed not only on the wall surface of the magnet hole, but also on the magnetic yoke fitting part and magnet hole formed on the magnetic yoke that integrally bonds the permanent magnet. In order to disperse and receive by these fitting parts composed of the magnet hole fitting parts, it is possible to set a narrow interval between the permanent magnet and the outer peripheral surface of the rotor core, and as a result, to improve magnetic efficiency, This is effective not only for relatively small (small-diameter) embedded magnet rotors that are frequently used, but also for large-sized (large-diameter) embedded magnet rotors for wind power generators.

1、101、111、121 回転子コア
2、2a、2b、102、112、122、122a、122b 磁石穴
3、103、133 永久磁石
4 磁性体ヨーク
5 磁性体ヨークの平板状部
6、6a、6b 磁性体ヨークの磁性体ヨーク嵌合部
7 磁石穴嵌合部
8 回転子コア薄肉部(永久磁石と回転子コア外周面の間隔)
9 回転軸の配置用貫通孔
10、20、30、40、100、130 磁石埋め込み型回転子
135 張出凹部
136 張出凸部
イ、ロ 閉磁路
134 回転軸の凹部
1, 101, 111, 121 Rotor core 2, 2a, 2b, 102, 112, 122, 122a, 122b Magnet holes 3, 103, 133 Permanent magnet 4 Magnetic yoke 5 Flat plate portions 6, 6a of magnetic yoke 6b Magnetic yoke fitting part 7 Magnet hole fitting part 8 Rotor core thin part (space between permanent magnet and rotor core outer peripheral surface)
9 Rotating shaft arrangement through-hole 10, 20, 30, 40, 100, 130 Embedded magnet rotor 135 Overhang recessed portion 136 Overhang convex portion A, B Closed magnetic path 134 Recessed shaft recess

Claims (5)

回転子コアに形成された磁石穴に永久磁石を挿入配置し、前記回転子コアの外周面に磁極を形成した磁石埋め込み型回転子であって、
前記永久磁石の前記回転子コアの外周面に対向する主面とは反対側の主面に磁性体ヨークを一体的に接合配置するとともに、前記磁性体ヨークの永久磁石接合面とは反対側の面に凹状または凸状からなる磁性体ヨーク嵌合部を形成し、かつ、前記磁石穴に前記磁性体ヨーク嵌合部に対応する位置に凸状または凹状からなる磁石穴嵌合部を形成し、前記磁性体ヨーク嵌合部と前記磁石穴嵌合部を嵌合して前記永久磁石を前記磁石穴に固定するとともに、前記永久磁石の前記回転子コアの外周面に対向する主面と前記磁石穴壁面との間にクリアランスを有することを特徴とする磁石埋め込み型回転子。




A magnet embedded rotor in which a permanent magnet is inserted and arranged in a magnet hole formed in the rotor core, and a magnetic pole is formed on the outer peripheral surface of the rotor core,
A magnetic yoke is integrally joined to the main surface of the permanent magnet opposite to the main surface facing the outer peripheral surface of the rotor core, and the magnetic yoke is opposite to the permanent magnet bonding surface. A magnetic yoke fitting portion having a concave or convex shape is formed on the surface, and a magnet hole fitting portion having a convex or concave shape is formed at a position corresponding to the magnetic yoke fitting portion in the magnet hole. The magnetic yoke fitting portion and the magnet hole fitting portion are fitted to fix the permanent magnet to the magnet hole, and the main surface of the permanent magnet facing the outer peripheral surface of the rotor core and the permanent magnet A magnet-embedded rotor having a clearance between magnet wall surfaces .




前記磁性体ヨーク嵌合部が蟻ほぞ状であり、前記磁石穴嵌合部が蟻ほぞ穴状であることを特徴とする請求項1に記載の磁石埋め込み型回転子。 2. The magnet-embedded rotor according to claim 1, wherein the magnetic yoke fitting portion has a dovetail shape, and the magnet hole fitting portion has a dovetail shape. 3. 前記磁性体ヨーク嵌合部及び前記磁石穴嵌合部が前記回転子コアの軸方向に複数列形成されていることを特徴とする請求項1または2に記載の磁石埋め込み型回転子。 3. The magnet-embedded rotor according to claim 1, wherein the magnetic yoke fitting portion and the magnet hole fitting portion are formed in a plurality of rows in the axial direction of the rotor core. 前記永久磁石が複数のブロック状永久磁石を接合一体化した接合磁石であることを特徴とする請求項1乃至3のいずれかに記載の磁石埋め込み型回転子。   The embedded magnet type rotor according to any one of claims 1 to 3, wherein the permanent magnet is a bonded magnet obtained by bonding and integrating a plurality of block-shaped permanent magnets. 前記回転子コアの外径が1000mm以上であることを特徴とする請求項1乃至4のいずれかに記載の磁石埋め込み型回転子。


















5. The magnet-embedded rotor according to claim 1, wherein an outer diameter of the rotor core is 1000 mm or more.


















JP2009294481A 2009-12-25 2009-12-25 Embedded magnet rotor Active JP5582383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009294481A JP5582383B2 (en) 2009-12-25 2009-12-25 Embedded magnet rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009294481A JP5582383B2 (en) 2009-12-25 2009-12-25 Embedded magnet rotor

Publications (2)

Publication Number Publication Date
JP2011135728A JP2011135728A (en) 2011-07-07
JP5582383B2 true JP5582383B2 (en) 2014-09-03

Family

ID=44347865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009294481A Active JP5582383B2 (en) 2009-12-25 2009-12-25 Embedded magnet rotor

Country Status (1)

Country Link
JP (1) JP5582383B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015181967A1 (en) * 2014-05-30 2015-12-03 日産自動車株式会社 Method for manufacturing permanent magnet electric motor
WO2015181968A1 (en) * 2014-05-30 2015-12-03 日産自動車株式会社 Method for manufacturing permanent-magnet-type electric motor
DE102016114362A1 (en) * 2016-08-03 2018-02-08 Feaam Gmbh Rotor for an electric machine as well as electrical machine
CN110544997B (en) * 2018-05-29 2022-05-31 华为技术有限公司 Motor rotor device and motor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0880015A (en) * 1994-09-01 1996-03-22 Meidensha Corp Electric rotary machine
JP3509508B2 (en) * 1997-02-21 2004-03-22 アイシン・エィ・ダブリュ株式会社 Permanent magnet synchronous motor
JP4397466B2 (en) * 1999-07-06 2010-01-13 東芝三菱電機産業システム株式会社 Permanent magnet rotating electric machine
JP4363746B2 (en) * 2000-05-25 2009-11-11 株式会社東芝 Permanent magnet type reluctance type rotating electrical machine
JP4566336B2 (en) * 2000-05-31 2010-10-20 株式会社ソディック Synchronous machine rotor
JP3585814B2 (en) * 2000-07-13 2004-11-04 三菱電機株式会社 Recessed magnet rotor
JP4311643B2 (en) * 2001-12-20 2009-08-12 三菱電機株式会社 Method for manufacturing permanent magnet type rotating electric machine and method for manufacturing permanent magnet type synchronous generator for wind power generation
JP2004360499A (en) * 2003-06-02 2004-12-24 Toyota Industries Corp Electric compressor

Also Published As

Publication number Publication date
JP2011135728A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
JP5108236B2 (en) Rotor for motor
JP4755117B2 (en) Rotor, blower and compressor of embedded permanent magnet motor
JP5533879B2 (en) Permanent magnet type rotating electrical machine rotor
US20140084731A1 (en) Permanent magnet type electric rotating machine and manufacturing method thereof
EP2485368A1 (en) Lundell type rotating machine
JP5891089B2 (en) Permanent magnet synchronous machine
JP2010130818A (en) Method for manufacturing field element
JP2007312449A (en) Periodic magnetic field generator and motor employing the same
JP6527196B2 (en) Linear motor
JP6065568B2 (en) Magnetizer
JP5582383B2 (en) Embedded magnet rotor
JP5300325B2 (en) Linear motor
JP2018137924A (en) Rotary electric machine rotor
JP2006034024A (en) Permanent magnet rotor of dynamo-electric machine
JP2009219312A (en) Rotating electric machine and spindle unit using same
JP2007282325A (en) Permanent-magnet motor
JP2011067030A (en) Field of linear motor, and linear motor with the same
US20220149683A1 (en) Rotary motor and manufacturing method for rotor
JP2010115042A (en) Linear motor armature, linear motor, and table feed device using the linear motor
JP5995057B2 (en) Rotor of embedded magnet permanent magnet rotating electric machine and method of assembling the same
JP2018530303A (en) Permanent magnet type rotor and manufacturing method thereof
JP6116108B2 (en) Permanent magnet synchronous machine
JP2013013295A (en) Rotating electrical machine
JP5901436B2 (en) Permanent magnet synchronous machine
JP2010017010A (en) Axial gap motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140703

R150 Certificate of patent or registration of utility model

Ref document number: 5582383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350