JP2010115042A - Linear motor armature, linear motor, and table feed device using the linear motor - Google Patents

Linear motor armature, linear motor, and table feed device using the linear motor Download PDF

Info

Publication number
JP2010115042A
JP2010115042A JP2008286444A JP2008286444A JP2010115042A JP 2010115042 A JP2010115042 A JP 2010115042A JP 2008286444 A JP2008286444 A JP 2008286444A JP 2008286444 A JP2008286444 A JP 2008286444A JP 2010115042 A JP2010115042 A JP 2010115042A
Authority
JP
Japan
Prior art keywords
armature
linear motor
armature core
core
mold resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008286444A
Other languages
Japanese (ja)
Other versions
JP2010115042A5 (en
JP5224050B2 (en
Inventor
Kenpei Yu
建平 兪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2008286444A priority Critical patent/JP5224050B2/en
Publication of JP2010115042A publication Critical patent/JP2010115042A/en
Publication of JP2010115042A5 publication Critical patent/JP2010115042A5/ja
Application granted granted Critical
Publication of JP5224050B2 publication Critical patent/JP5224050B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Linear Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a linear motor armature that suppresses warpage occurring along the longitudinal direction of an armature core due to a difference in temperature shrinkage rate between a mold resin and the armature core when fixing the whole armature by the mold resin, and also, secures an optimum magnetic air gap between the armature and a magnetic field without an armature mounting plate so as to suppress the occurrence of thrust ripples, and also to provide a linear motor, and a table feed device. <P>SOLUTION: When fixing the whole armature 2 of a linear motor 1 by a mold resin 6, in order to suppress warpage occurring along the longitudinal direction of an armature core 3 due to a difference in temperature shrinkage rate between the mold resin 6 and the armature core 3, a cut 4 for dividing the armature core is previously formed toward a direction orthogonal to the longitudinal direction of the armature core 3 at least in one part of the bottom part of a winding storage groove 3c. The armature core 3 is bent at a prescribed angle in the direction opposite to the warpage direction of the armature core 3 during mold fixing centering around the cut 4 so as to join and fix the cut 4 by welding. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば工作機械等のテーブル送りに利用されると共に、界磁と電機子の各々のギャップ面が対向するように配置されたギャップ対向形のリニアモータ電機子およびリニアモータ並びにそれを用いたテーブル送り装置。
に関する。
INDUSTRIAL APPLICABILITY The present invention is used, for example, for table feed of a machine tool or the like, and is a gap-opposing linear motor armature and linear motor arranged so that the gap surfaces of the field and armature face each other, and uses the same. Table feeder.
About.

従来、工作機械等のテーブル送りに利用されると共に、界磁と電機子の各々のギャップ面が対向するように配置されたギャップ対向形のリニアモータは、図3、図4に示すように構成されている(例えば、特許文献1、特許文献2を参照)。
図3は第1従来技術を示すギャップ対向形のリニアモータの側断面図である。
図3において、30はリニアモータ、31は界磁、32は電機子、33は電機子コア、33aはティース部、33bは巻線収納部、34は電機子巻線、35はモールド樹脂、36は界磁ヨーク、37は永久磁石、38は電機子取付板、39はボルトネジ、40はポケット孔、41は結合部材である。
リニアモータ30は基本的に界磁31と電機子32で構成されており、このうち、界磁31は平板状の界磁ヨーク36上の長手方向(リニアモータ30のストローク方向)に沿って、交互に極性が異なる複数の永久磁石37を隣り合わせに等ピッチで配置したものとなっている。
一方、電機子32は、櫛歯状に打ち抜いた電磁鋼板を積層した電機子コア33を備えると共に、該電磁鋼板の一側面に長手方向に向かって等ピッチで、複数のティース部33aおよびティース部間における開口部となる巻線収納部33bを形成し、巻線収納部33bに整列巻きした電機子巻線34を収納したものとなっている。このとき、電機子コア33の電機子取付板38との対向面の内部にはポケット孔40が形成され、該ポケット孔40に雌ねじ孔を有する結合部材41が設けられると共に、電機子コア33のポケット孔40に設けた結合部材41と電機子取付板38とを、ボルトネジ39を用いてねじ結合している。さらに、電機子コア33および電機子巻線34の全体を覆うように、モールド樹脂35により電機子32を強固に固着している。
そして、複数の電機子巻線34を収納した電機子コア33の下面には、リニアモータ30のストローク方向に沿って配置された永久磁石37の磁石列が該コア33と磁気的空隙を介して配置されると共に、該コア33のティース部33aの長手方向と該磁石列の長手方向が直角となるように配置されている。
上記構成において、リニアモータ30の電機子巻線34に図示しない電源により交流を通電すると。電機子巻線34と永久磁石37との電磁作用により、積層された電機子コア33のティース33aを貫通するように界磁磁束が発生し、リニアモータ31の電機子32と界磁31が相対的に走行する。
次に第2従来技術について説明する。
図4は第2従来技術を示すギャップ対向形のリニアモータの側断面図であって、(a)は電機子取付板の溶接固定部の平面図、(b)はリニアモータの側断面図であり、(a)は(b)を上面から見たものとなっている。なお、第2従来技術の構成要素が第1従来技術と同じものについてはその説明を省略し、異なる点のみ説明する。
図4において、42は長穴、43は溶接部である。
上記構成のリニアモータ30において、電機子コア33はストローク方向に沿って、モータ特性を向上させ、かつ、電機子コア33に対する電機子取付板38の強度が低下しないように、電機子取付板38に貫通した複数の長穴42を設け、電機子コアの長穴42との対向面に図示しない突起を設けると共に、当該突起(不図示)を長穴42内に挿入して、電機子取付板38を電機子コア33の溶接部43(図示しない突起の位置に相当する)にて溶接固定を行う。
特開平9−70166号公報(明細書3頁、第3図) 実開平5−11786号公報(明細書3頁、第6図〜第8図)
2. Description of the Related Art Conventionally, a gap-facing linear motor that is used for table feed of a machine tool or the like and is arranged so that the gap surfaces of a field and an armature face each other is configured as shown in FIGS. (For example, see Patent Document 1 and Patent Document 2).
FIG. 3 is a side sectional view of a gap-opposing linear motor showing the first prior art.
In FIG. 3, 30 is a linear motor, 31 is a field, 32 is an armature, 33 is an armature core, 33a is a teeth portion, 33b is a winding housing portion, 34 is an armature winding, 35 is a mold resin, 36 Is a field yoke, 37 is a permanent magnet, 38 is an armature mounting plate, 39 is a bolt screw, 40 is a pocket hole, and 41 is a coupling member.
The linear motor 30 is basically composed of a field 31 and an armature 32. Among these, the field 31 is along the longitudinal direction on the flat field yoke 36 (the stroke direction of the linear motor 30). A plurality of permanent magnets 37 having different polarities are arranged adjacent to each other at an equal pitch.
On the other hand, the armature 32 includes an armature core 33 in which electromagnetic steel plates punched in a comb shape are stacked, and a plurality of teeth portions 33a and teeth portions are formed on one side surface of the electromagnetic steel plates at an equal pitch in the longitudinal direction. A winding accommodating portion 33b serving as an opening between the armature windings 34 is formed, and the armature winding 34 aligned and wound around the winding accommodating portion 33b is accommodated. At this time, a pocket hole 40 is formed inside the surface of the armature core 33 facing the armature mounting plate 38, and a coupling member 41 having a female screw hole is provided in the pocket hole 40. The coupling member 41 provided in the pocket hole 40 and the armature mounting plate 38 are screw-coupled using a bolt screw 39. Further, the armature 32 is firmly fixed by the mold resin 35 so as to cover the entire armature core 33 and the armature winding 34.
On the lower surface of the armature core 33 that houses the plurality of armature windings 34, a magnet row of permanent magnets 37 arranged along the stroke direction of the linear motor 30 is interposed between the core 33 and a magnetic gap. In addition to being arranged, the longitudinal direction of the teeth 33a of the core 33 and the longitudinal direction of the magnet row are arranged at right angles.
In the above configuration, when alternating current is supplied to the armature winding 34 of the linear motor 30 from a power source (not shown). Due to the electromagnetic action of the armature winding 34 and the permanent magnet 37, a field magnetic flux is generated so as to penetrate the teeth 33 a of the laminated armature core 33, and the armature 32 and the field 31 of the linear motor 31 are relative to each other. Drive.
Next, the second prior art will be described.
4A and 4B are side sectional views of a gap-opposing linear motor showing the second prior art, in which FIG. 4A is a plan view of a welding fixing portion of an armature mounting plate, and FIG. Yes, (a) is a view of (b) from above. In addition, the description is abbreviate | omitted about the same component as the 1st prior art, and only a different point is demonstrated.
In FIG. 4, 42 is a long hole and 43 is a welding part.
In the linear motor 30 configured as described above, the armature core 33 improves the motor characteristics along the stroke direction, and prevents the armature mounting plate 38 from being reduced in strength against the armature core 33. A plurality of elongated holes 42 penetrating through the armature core are provided, and projections (not shown) are provided on the surface facing the elongated holes 42 of the armature core, and the projections (not shown) are inserted into the elongated holes 42, 38 is welded and fixed at a welded portion 43 (corresponding to a position of a projection not shown) of the armature core 33.
Japanese Patent Laid-Open No. 9-70166 (page 3 of specification, FIG. 3) Japanese Utility Model Laid-Open No. 5-11786 (page 3 of the specification, FIGS. 6 to 8)

ところが、第1従来技術および第2従来技術の何れも共通して、以下の問題があった。なお、図5は従来の電機子コアに生じる反りの状態を示した側面図である。
(1)電機子コアおよび電機子巻線からなる電機子全体を覆うようにモールド樹脂により固着する時に、ティース開口部(巻線収納溝部)に充填されるモールド樹脂と電機子コア等の温度の収縮率の違いがあるため、ティース開口部が狭くなり、すなわち、図5に示すごとく電機子コアの長手方向(リニアモータのストローク方向)に沿って、当該収縮率の違いにより反りが生じる。その結果、電機子コアティース部の変形による機械歪みや、磁気歪みの影響で、電機子と界磁ヨークとの磁気的空隙が狭くなり、モータの取付けが困難となるという問題や、推力リプルが増大して、モータ特性が悪くなるという問題があった。
(2)また、電機子取付板が必要となるため、モータ体格が大きくなり、モータ効率が悪化なるという問題があった。その結果、部品点数が増え、材料コスト、製造工数も増加するという問題もあった。
本発明はこのような問題点に鑑みてなされたものであり、電機子全体をモールド樹脂によって固着する時に、モールド樹脂と電機子コア等の温度の収縮率の違いにより電機子コアの長手方向に沿って生じる反りを抑制することができると共に、電機子取付板レスで、かつ、電機子と界磁との最適な磁気的空隙を確保でき、推力リプルの発生を抑えることができるリニアモータ電機子およびリニアモータ並びにそれを用いたテーブル送り装置を提供することを目的とする。
However, both the first prior art and the second prior art have the following problems in common. FIG. 5 is a side view showing a state of warpage occurring in a conventional armature core.
(1) When fixing with the mold resin so as to cover the entire armature composed of the armature core and the armature winding, the temperature of the mold resin and the armature core etc. filled in the tooth opening (winding storage groove) Since there is a difference in contraction rate, the tooth opening becomes narrow, that is, warpage occurs due to the difference in contraction rate along the longitudinal direction of the armature core (the stroke direction of the linear motor) as shown in FIG. As a result, there is a problem that the magnetic gap between the armature and the field yoke becomes narrow due to the mechanical strain and magnetostriction due to the deformation of the armature core teeth, making it difficult to mount the motor and the thrust ripple. There is a problem that the motor characteristics deteriorate due to increase.
(2) Further, since an armature mounting plate is required, there is a problem that the motor size increases and the motor efficiency deteriorates. As a result, there is a problem that the number of parts is increased, and material costs and manufacturing man-hours are also increased.
The present invention has been made in view of such a problem, and when the entire armature is fixed with a mold resin, the longitudinal direction of the armature core is caused by the difference in the shrinkage rate of temperature between the mold resin and the armature core. A linear motor armature that can suppress the warp that occurs along the armature, can prevent an armature mounting plate, can secure an optimal magnetic gap between the armature and the field, and can suppress the generation of thrust ripple. It is another object of the present invention to provide a linear motor and a table feeder using the linear motor.

上記問題を解決するため、請求項1に記載の発明は、櫛歯状に打ち抜いた電磁鋼板の一側面に長手方向に向かって等ピッチで配置するように形成してなる複数のティース部を有し、且つ、この電磁鋼板を積層してなる電機子コアと、前記ティース間に形成された巻線収納溝に整列巻きして収納した電機子巻線と、より構成してなる電機子と、を備えたリニアモータの電機子において、前記電機子全体をモールド樹脂によって固着するときに、前記モールド樹脂と前記電機子コアの温度の収縮率の違いにより当該電機子コアの長手方向に沿って生じる反りを抑制するように、前記巻線収納溝の底部の少なくとも一箇所に、前記電機子コアの長手方向と直交する方向に向かって予め該電機子コアを分割するための切れ目を形成してあり、前記電機子コアは前記切れ目を中心に、当該モールド固着時の電機子コアの長手方向に沿って生じる反りの方向と反対方向に向かって所定の角度に折り曲げると共に、前記切れ目を溶接により接合して固着したものであることを特徴としている。
請求項2記載の発明は、請求項1記載のリニアモータ電機子において、前記電機子コアと前記電機子巻線はモールド樹脂により一体に固着したものであることを特徴としている。
請求項3記載の発明は、請求項1または2に記載のリニアモータ電機子と、前記電機子と磁気的空隙を介して対向配置されると共に平板状の界磁ヨークに交互に極性が異なる複数の永久磁石を隣り合わせて並べて配置した界磁と、を備え、前記電機子と前記界磁の何れか一方を固定子に、他方を可動子として、前記電機子と前記界磁を相対的に走行するようにしたことリニアモータを特徴としている。
請求項4記載の発明は、請求項3に記載のリニアモータを直動機構の駆動源として用いたテーブル送り装置を特徴としている。
In order to solve the above problem, the invention according to claim 1 has a plurality of teeth portions formed so as to be arranged at equal pitches in the longitudinal direction on one side surface of the electromagnetic steel sheet punched into a comb shape. And an armature core formed by laminating the electromagnetic steel sheets, an armature winding housed in an aligned winding in a winding housing groove formed between the teeth, and an armature constituted by: When the entire armature is fixed with a mold resin, a linear motor armature having the above-mentioned is generated along the longitudinal direction of the armature core due to a difference in temperature shrinkage between the mold resin and the armature core. A cut for dividing the armature core in advance in a direction perpendicular to the longitudinal direction of the armature core is formed in at least one position of the bottom of the winding housing groove so as to suppress warpage. , The electric The core is bent at a predetermined angle toward the direction opposite to the direction of warpage generated along the longitudinal direction of the armature core when the mold is fixed, and the cut is joined and fixed by welding. It is characterized by being.
According to a second aspect of the present invention, in the linear motor armature according to the first aspect, the armature core and the armature winding are integrally fixed by a mold resin.
According to a third aspect of the present invention, the linear motor armature according to the first or second aspect and the armature and the armature are arranged opposite to each other via a magnetic gap, and a plurality of plates having different polarities alternately are provided. Of the permanent magnets arranged side by side, and the armature and the field are relatively driven by using either the armature or the field as a stator and the other as a mover. It features a linear motor.
According to a fourth aspect of the invention, there is provided a table feeding device using the linear motor according to the third aspect as a drive source for the linear motion mechanism.

請求項1、2記載の本発明によると、電磁鋼板より打ち抜かれた電機子コアに切れ目を少なくとも1箇所設けて複数に分割し、当該分割された電機子コアを所定の角度を付けて溶接してなるリニアモータ電機子は、電機子コアおよび電機子巻線を全体に覆うようにモールド樹脂の固着時に、モールド樹脂収縮があるため、角度を付けられた複数の電機子取付面が平面に戻ることができるので、モールド樹脂の固着時に発生した反りを抑え、従来の電機子コアの反り抑制のために設けられた電機子取付板を無くした電機子取付板レス構造を得ることができる。
また、請求項3の本発明によると、請求項1、2記載の電機子を請求項3記載の界磁と組み合わせてリニアモータを構成することで、機械歪みや、磁気歪みの影響よる電機子と界磁との磁気的空隙の減少や、推力リプルの増大を抑えることができ、モータ特性への悪影響を低減することができる。さらに、電機子取付板が不要であることから、材料コスト、製造工数を低減することができ、モータ体格の小型化もできる。
また、請求項4に記載の発明によると、請求項3に記載のリニアモータの効果を有するテーブル送り装置を提供することができる。
According to the first and second aspects of the present invention, the armature core punched out from the electromagnetic steel sheet is divided into a plurality of cuts, and the divided armature cores are welded at a predetermined angle. Since the linear motor armature has a mold resin shrinkage when the mold resin is fixed so as to cover the entire armature core and armature winding, a plurality of angled armature mounting surfaces return to a flat surface. Therefore, it is possible to obtain an armature mounting plate-less structure that suppresses the warp generated when the mold resin is fixed and eliminates the armature mounting plate provided for suppressing the warp of the conventional armature core.
According to the third aspect of the present invention, a linear motor is configured by combining the armature according to the first and second aspects with the field according to the third aspect, so that the armature is influenced by mechanical distortion or magnetic distortion. It is possible to suppress a decrease in magnetic gap between the magnetic field and the field and an increase in thrust ripple, and it is possible to reduce adverse effects on motor characteristics. Furthermore, since the armature mounting plate is unnecessary, the material cost and the number of manufacturing steps can be reduced, and the motor size can be reduced.
Moreover, according to the invention of Claim 4, the table feeder which has the effect of the linear motor of Claim 3 can be provided.

以下、本発明の実施例について、図に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の実施例を示すギャップ対向型のリニアモータの側断面図である。
図1において、1はリニアモータ、2は電機子、3は電機子コア、3aはコア底面、3bはティース、3cは巻線収納部、4は切れ目、4aは溶接部、5は電機子巻線、6はモールド樹脂、7は界磁ヨーク、8は永久磁石、9は界磁である。
本発明のリニアモータ1において、基本的に界磁9と電機子2で構成されている点、また、界磁9が界磁ヨーク7上の長手方向に沿って、交互に極性が異なる複数の永久磁石8を隣り合わせに等ピッチで配置している点、また、電機子2が櫛歯状に打ち抜いた電磁鋼板を積層した電機子コア3を備えると共に、電機子コア3のティース部3b間における開口部となる巻線収納部3cに整列巻きした電機子巻線5を収納した点、については従来技術と同じ構成である。
本発明が従来と異なる点は以下のとおりである。
すなわち、リニアモータ1の電機子2は、従来の電機子取付板を不要とした電機子取付板レス構造である、その具体策としては、図2に示す電機子2全体をモールド樹脂6によって固着するときに、モールド樹脂6と電機子コア3の温度の収縮率の違いにより電機子コア3の長手方向に沿って生じる反りを抑制するように、まず、図1において、巻線収納溝の3c底部の少なくとも一箇所に、電機子コア3の長手方向と直交する方向に向かって予め該電機子コアを分割するための切4れ目4を形成してあり、電機子コア3は切れ目4を中心に、当該モールド固着時の電機子コア3の長手方向に沿って生じる反りの方向と反対方向となるコア底面3aに向かって所定の角度に折り曲げると共に、前記切れ目4を溶接により接合して固着したものとなっている(図1および図2とも、電機子コア3に切れ目4を1箇所設け、該コア3を2分割した例であり、溶接箇所は溶接部4aである)。
このようにして、切れ目4を溶接により一体化された電機子コア3は、図1に示すように電機子巻線5と共に、モールド樹脂6により一体に固着され、電機子2が完成する。
なお、電機子コア3はその長手方向に切れ目4を複数個所設けて、該コア3を複数分割することで、モールド樹脂収縮により発生する反りとの反対方向に角度を付け、溶接により接合しても構わない。切れ目4の溶接部4aを溶接固定後、電機子コア3および電機子巻線5の全体を覆うように、モールド樹脂6により電機子2を強固に固着している。
FIG. 1 is a side sectional view of a gap-facing linear motor showing an embodiment of the present invention.
In FIG. 1, 1 is a linear motor, 2 is an armature, 3 is an armature core, 3a is a core bottom surface, 3b is a tooth, 3c is a winding housing portion, 4 is a cut, 4a is a welded portion, and 5 is an armature winding. Line 6, mold resin, 7 field yoke, 8 permanent magnet, 9 field.
In the linear motor 1 according to the present invention, the field motor 9 and the armature 2 are basically configured, and the field 9 has a plurality of different polarities alternately along the longitudinal direction on the field yoke 7. The permanent magnets 8 are arranged adjacent to each other at an equal pitch, and the armature 2 includes an armature core 3 in which electromagnetic steel plates punched in a comb-teeth shape are laminated, and between the tooth portions 3 b of the armature core 3. The armature winding 5 aligned and wound in the winding storage portion 3c serving as the opening is the same as the conventional technology.
The present invention is different from the conventional one as follows.
That is, the armature 2 of the linear motor 1 has an armature mounting plate-less structure that does not require a conventional armature mounting plate. As a specific measure, the entire armature 2 shown in FIG. 1, first, in order to suppress the warp that occurs along the longitudinal direction of the armature core 3 due to the difference in temperature shrinkage between the mold resin 6 and the armature core 3, first, in FIG. A cut line 4 for dividing the armature core in advance in a direction perpendicular to the longitudinal direction of the armature core 3 is formed in at least one place on the bottom. At the center, the core 4 is bent at a predetermined angle toward the core bottom surface 3a, which is opposite to the direction of warpage generated along the longitudinal direction of the armature core 3 when the mold is fixed, and the cut 4 is bonded and fixed by welding. What Going on (both 1 and 2, provided slit 4 the one place in the armature core 3, an example in which the core 3 is divided into two, welds are welds 4a).
In this way, the armature core 3 in which the cuts 4 are integrated by welding is integrally fixed together with the armature winding 5 by the mold resin 6 as shown in FIG. 1, and the armature 2 is completed.
The armature core 3 is provided with a plurality of cuts 4 in the longitudinal direction, and by dividing the core 3 into a plurality of angles, the armature core 3 is angled in the direction opposite to the warp caused by mold resin shrinkage, and is joined by welding. It doesn't matter. After the weld 4a of the cut 4 is welded and fixed, the armature 2 is firmly fixed by the mold resin 6 so as to cover the entire armature core 3 and the armature winding 5.

本発明の実施例に係るリニアモータ1は、電機子コア3の長手方向に沿って予め切れ目4を設けて分割し、当該切れ目4によって分割された電機子コア3におけるコア底面3aを、電機子のモールド樹脂固着時の反りの方向と反対方向に向かって所定の角度に折り曲げると共に溶接部4aにて溶接するようにしたので、実際に電機子コア3および電機子巻線5全体を覆うようにモールド樹脂6により固着する時に、ティース開口部である巻線収納部3cに充填されるモールド樹脂と電機子コア等の温度の収縮率の違いがあるため、予め角度を付けられた複数のコア底面3aが平面に戻ることができるので、従来の反り抑制のために設けられている電機子取付板が不要となる。   The linear motor 1 according to the embodiment of the present invention is divided by providing a cut 4 in advance along the longitudinal direction of the armature core 3, and the core bottom surface 3 a in the armature core 3 divided by the cut 4 is used as the armature. Since it is bent at a predetermined angle in the direction opposite to the warping direction when the mold resin is fixed and welded at the welded portion 4a, the armature core 3 and the entire armature winding 5 are actually covered. When fixing with the mold resin 6, there is a difference in the shrinkage rate of the temperature between the mold resin and the armature core filled in the winding housing portion 3 c that is the tooth opening, so that the bottom surfaces of the cores that are angled in advance Since 3a can return to a plane, the armature mounting plate provided for the conventional curvature suppression becomes unnecessary.

本発明によると、リニアモータ電機子は、電機子コアに設けた切れ目を所定の角度を付けて溶接し、電機子全体を覆うようにモールド樹脂により一体固定する構成にしたので、モールド樹脂固着時の収縮により生じる反りを抑制することができることから、電機子取付板レス構造を採ることができ、モータの機械歪、磁気歪などの影響により生じる界磁と電機子間の磁気的空隙の変動を安定化させてモータの取付を容易にし、推力リップルなどのモータ特性の問題を解消することができるので、高精度・高剛性化が要求される大型の工作機械のテーブル装置のほか、半導体製造装置等の用途にも適用できる。
により、に有用である。
According to the present invention, the linear motor armature is welded at a predetermined angle on the armature core, and is fixed integrally with the mold resin so as to cover the entire armature. Since the warpage caused by the contraction of the armature can be suppressed, an armature mounting plate-less structure can be adopted, and the fluctuation of the magnetic gap between the field and the armature caused by the influence of the mechanical strain, magnetostriction, etc. of the motor can be reduced. Stabilizes and facilitates motor mounting and eliminates motor ripple problems such as thrust ripple, so in addition to table devices for large machine tools that require high precision and high rigidity, semiconductor manufacturing equipment It can also be applied to other uses.
It is useful for.

本発明の実施例を示すギャップ対向形のリニアモータの側断面図、The side sectional view of the gap opposed type linear motor which shows the example of the present invention, 本発明のリニアモータの電機子コアの側面図、The side view of the armature core of the linear motor of the present invention, 第1従来技術を示すギャップ対向形のリニアモータの側断面図、Side sectional view of gap-opposing linear motor showing the first prior art, 第2従来技術を示すギャップ対向形のリニアモータであって、(a)は電機子取付板の溶接固定部の平面図、(b)はリニアモータの側断面図、It is a gap-opposing linear motor showing the second prior art, wherein (a) is a plan view of a welding fixing portion of an armature mounting plate, (b) is a side sectional view of the linear motor, 従来の電機子コアに生じる反りの状態を示した側面図Side view showing the state of warping occurring in a conventional armature core

符号の説明Explanation of symbols

1 リニアモータ
2 電機子
3 電機子コア
3a コア底面(電機子取付面)
3b ティース部
3c 巻線収納部
4 溶接部
5 電機子巻線
6 モールド樹脂
7 界磁ヨーク
8 永久磁石
DESCRIPTION OF SYMBOLS 1 Linear motor 2 Armature 3 Armature core 3a Core bottom face (armature mounting surface)
3b Teeth part 3c Winding storage part 4 Welding part 5 Armature winding 6 Mold resin 7 Field yoke 8 Permanent magnet

Claims (4)

櫛歯状に打ち抜いた電磁鋼板の一側面に長手方向に向かって等ピッチで配置するように形成してなる複数のティース部を有し、且つ、この電磁鋼板を積層してなる電機子コアと、前記ティース間に形成された巻線収納溝に整列巻きして収納した電機子巻線と、より構成してなる電機子と、を備えたリニアモータの電機子において、
前記電機子全体をモールド樹脂によって固着するときに、前記モールド樹脂と前記電機子コアの温度の収縮率の違いにより当該電機子コアの長手方向に沿って生じる反りを抑制するように、前記巻線収納溝の底部の少なくとも一箇所に、前記電機子コアの長手方向と直交する方向に向かって予め該電機子コアを分割するための切れ目を形成してあり、
前記電機子コアは前記切れ目を中心に、当該モールド固着時の電機子コアの長手方向に沿って生じる反りの方向と反対方向に向かって所定の角度に折り曲げると共に、前記切れ目を溶接により接合して固着したものであることを特徴とするリニアモータ電機子。
An armature core having a plurality of teeth portions formed so as to be arranged at equal pitches in the longitudinal direction on one side surface of an electromagnetic steel sheet punched in a comb-like shape; In an armature of a linear motor comprising: an armature winding that is arranged and stored in a winding storage groove formed between the teeth; and an armature that is configured by:
When the whole armature is fixed by a mold resin, the winding is controlled so as to suppress warping that occurs along the longitudinal direction of the armature core due to the difference in shrinkage rate between the temperature of the mold resin and the armature core. A cut for dividing the armature core in advance in a direction perpendicular to the longitudinal direction of the armature core is formed in at least one place of the bottom of the storage groove,
The armature core is bent at a predetermined angle toward the direction opposite to the direction of warpage generated along the longitudinal direction of the armature core when the mold is fixed, and the cut is joined by welding. A linear motor armature characterized by being fixed.
前記電機子コアと前記電機子巻線はモールド樹脂により一体に固着したものであることを特徴とする請求項1記載のリニアモータ電機子。   2. The linear motor armature according to claim 1, wherein the armature core and the armature winding are fixed integrally with a mold resin. 請求項1または2に記載のリニアモータ電機子と、
前記電機子と磁気的空隙を介して対向配置されると共に平板状の界磁ヨークに交互に極性が異なる複数の永久磁石を隣り合わせて並べて配置した界磁と、
を備え、前記電機子と前記界磁の何れか一方を固定子に、他方を可動子として、前記電機子と前記界磁を相対的に走行するようにしたことを特徴とするリニアモータ。
The linear motor armature according to claim 1 or 2,
A magnetic field that is disposed opposite to the armature via a magnetic air gap and is arranged side by side with a plurality of permanent magnets alternately having different polarities on a flat field yoke,
A linear motor characterized in that the armature and the field travel relatively with one of the armature and the field as a stator and the other as a mover.
請求項3に記載のリニアモータを直動機構の駆動源として用いたことを特徴とするテーブル送り装置。   A table feeding device using the linear motor according to claim 3 as a drive source of a linear motion mechanism.
JP2008286444A 2008-11-07 2008-11-07 Linear motor armature, linear motor, and table feed device using the same. Expired - Fee Related JP5224050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008286444A JP5224050B2 (en) 2008-11-07 2008-11-07 Linear motor armature, linear motor, and table feed device using the same.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008286444A JP5224050B2 (en) 2008-11-07 2008-11-07 Linear motor armature, linear motor, and table feed device using the same.

Publications (3)

Publication Number Publication Date
JP2010115042A true JP2010115042A (en) 2010-05-20
JP2010115042A5 JP2010115042A5 (en) 2012-02-16
JP5224050B2 JP5224050B2 (en) 2013-07-03

Family

ID=42303143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008286444A Expired - Fee Related JP5224050B2 (en) 2008-11-07 2008-11-07 Linear motor armature, linear motor, and table feed device using the same.

Country Status (1)

Country Link
JP (1) JP5224050B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013038825A (en) * 2011-08-03 2013-02-21 Yaskawa Electric Corp Armature of linear motor and linear motor
JP2013038824A (en) * 2011-08-03 2013-02-21 Yaskawa Electric Corp Armature of linear motor and linear motor
JP2018098997A (en) * 2016-12-16 2018-06-21 ファナック株式会社 Armature for linear motor and linear motor
JP2018102081A (en) * 2016-12-21 2018-06-28 ファナック株式会社 Armature for linear motor, linear motor, and method for manufacturing armature for linear motor
KR20180125641A (en) * 2017-04-26 2018-11-26 한국리니어기술 주식회사 Mover for linear motor and manufacturing method thereof
CN113556019A (en) * 2021-06-23 2021-10-26 北京机械设备研究所 Automatic folding mechanism of linear motor and folding linear motor
CN114244061A (en) * 2021-12-15 2022-03-25 东莞市泰莱自动化科技有限公司 Linear motor capable of reducing thrust fluctuation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655057A (en) * 1979-10-12 1981-05-15 Fujitsu Ltd Manufacture of semiconductor device
JPH0511786U (en) * 1991-07-19 1993-02-12 松下電器産業株式会社 Linear motor
JPH0970166A (en) * 1995-08-31 1997-03-11 Fanuc Ltd Linear motor
JP2000217334A (en) * 1999-01-25 2000-08-04 Yaskawa Electric Corp Linear motor
JP2004007946A (en) * 2002-04-23 2004-01-08 Mitsubishi Electric Corp Linear motor
JP2005130620A (en) * 2003-10-23 2005-05-19 Nidec Shibaura Corp Stator core

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655057A (en) * 1979-10-12 1981-05-15 Fujitsu Ltd Manufacture of semiconductor device
JPH0511786U (en) * 1991-07-19 1993-02-12 松下電器産業株式会社 Linear motor
JPH0970166A (en) * 1995-08-31 1997-03-11 Fanuc Ltd Linear motor
JP2000217334A (en) * 1999-01-25 2000-08-04 Yaskawa Electric Corp Linear motor
JP2004007946A (en) * 2002-04-23 2004-01-08 Mitsubishi Electric Corp Linear motor
JP2005130620A (en) * 2003-10-23 2005-05-19 Nidec Shibaura Corp Stator core

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013038825A (en) * 2011-08-03 2013-02-21 Yaskawa Electric Corp Armature of linear motor and linear motor
JP2013038824A (en) * 2011-08-03 2013-02-21 Yaskawa Electric Corp Armature of linear motor and linear motor
JP2018098997A (en) * 2016-12-16 2018-06-21 ファナック株式会社 Armature for linear motor and linear motor
US10135324B2 (en) 2016-12-16 2018-11-20 Fanuc Corporation Armature for linear motor and linear motor
JP2018102081A (en) * 2016-12-21 2018-06-28 ファナック株式会社 Armature for linear motor, linear motor, and method for manufacturing armature for linear motor
US10158279B2 (en) 2016-12-21 2018-12-18 Fanuc Corporation Armature for linear motor, linear motor, and method of manufacturing armature for linear motor
KR20180125641A (en) * 2017-04-26 2018-11-26 한국리니어기술 주식회사 Mover for linear motor and manufacturing method thereof
KR101933689B1 (en) 2017-04-26 2019-04-05 한국리니어기술 주식회사 Mover for linear motor and manufacturing method thereof
CN113556019A (en) * 2021-06-23 2021-10-26 北京机械设备研究所 Automatic folding mechanism of linear motor and folding linear motor
CN113556019B (en) * 2021-06-23 2022-04-29 北京机械设备研究所 Automatic folding mechanism of linear motor and folding linear motor
CN114244061A (en) * 2021-12-15 2022-03-25 东莞市泰莱自动化科技有限公司 Linear motor capable of reducing thrust fluctuation

Also Published As

Publication number Publication date
JP5224050B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5224050B2 (en) Linear motor armature, linear motor, and table feed device using the same.
JP5253114B2 (en) Linear motor
JP5370313B2 (en) Linear motor
CN109149899B (en) Linear motor
US8179001B2 (en) Linear motor armature and linear motor
JP4492118B2 (en) Linear motor and suction force cancellation type linear motor
WO2011155022A1 (en) Linear motor
WO2016159034A1 (en) Linear motor armature and linear motor
JP4458238B2 (en) Permanent magnet synchronous linear motor
JP5300325B2 (en) Linear motor
JP4277337B2 (en) Linear motor and table feeder using the same
KR102339956B1 (en) linear motor
JP5911658B1 (en) Armature core, armature and linear motor
US20150001969A1 (en) Linear Motor
JP2000217334A5 (en) Linear motor and table feed device using it
JP2007185033A (en) Linear motor
JP2006174583A (en) Linear motor
CN109149902B (en) Mounting structure of magnet plate
JP5261080B2 (en) Linear motor
JP4110335B2 (en) Linear motor
JP2006527576A (en) Linear brushless DC motor with an iron core with reduced detent power
JP4662302B2 (en) Linear motor
KR20190065454A (en) Linear motor
JP4230426B2 (en) Linear motor permanent magnet unit and linear motor
JP5991286B2 (en) Linear motor armature and linear motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees