WO2015181967A1 - Method for manufacturing permanent magnet electric motor - Google Patents

Method for manufacturing permanent magnet electric motor Download PDF

Info

Publication number
WO2015181967A1
WO2015181967A1 PCT/JP2014/064462 JP2014064462W WO2015181967A1 WO 2015181967 A1 WO2015181967 A1 WO 2015181967A1 JP 2014064462 W JP2014064462 W JP 2014064462W WO 2015181967 A1 WO2015181967 A1 WO 2015181967A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
electric motor
demagnetization
permanent magnet
phase angle
Prior art date
Application number
PCT/JP2014/064462
Other languages
French (fr)
Japanese (ja)
Inventor
新井 健嗣
章博 田中
健太 犬塚
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2014/064462 priority Critical patent/WO2015181967A1/en
Priority to JP2016523071A priority patent/JP6233509B2/en
Publication of WO2015181967A1 publication Critical patent/WO2015181967A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets

Definitions

  • the present invention relates to a method for manufacturing a permanent magnet electric motor.
  • the problem to be solved by the present invention is to provide a method of manufacturing a permanent magnet type electric motor that can suppress a decrease in output due to demagnetization.
  • an electric motor including a permanent magnet in one of a rotor and a stator
  • a demagnetization process is performed in which a part of the permanent magnet is incompletely magnetized.
  • the above problem is solved by controlling the phase angle ⁇ of the demagnetization processing current that generates a reverse magnetic field around the permanent magnet to a predetermined value.
  • the present invention when a demagnetization process is performed in which a part of the permanent magnet is in an incompletely magnetized state, no demagnetization is performed unless a further magnetic field acts, and the phase angle ⁇ of the demagnetization process current Therefore, it is possible to efficiently suppress a decrease in output due to demagnetization when the electric motor is used.
  • FIG. 1 is an overall perspective view showing a permanent magnet type electric motor according to an embodiment of the present invention. It is a disassembled perspective view of FIG. 1A. It is a disassembled perspective view of FIG. 1B. It is a fragmentary sectional view which follows the 1D-1D line
  • FIG. 6 is a partial cross-sectional view (corresponding to a part of a cross section taken along line 1D-1D) showing a permanent magnet type electric motor according to still another embodiment of the present invention.
  • Three-phase alternating current demagnetization current when demagnetization processing current is an alternating current that is asynchronous with the rotation of the rotor and demagnetization processing is performed at a specific frequency obtained by substituting other specific values into Equation 1. It is a graph which shows the rotation angle and electric current phase angle of a rotor.
  • FIGS. 1A to 1D are diagrams showing a permanent magnet type electric motor 1 according to an embodiment of the present invention.
  • a permanent magnet type electric motor an embedded magnet type synchronous motor (8 poles 24 slots three-phase AC) is shown.
  • the example of a structure of a synchronous motor) is shown.
  • the electric motor 1 of this example includes a housing 2 made of a nonmagnetic material, a front cover subassembly 3 made of the same nonmagnetic material, a rear cover subassembly 4 made of the same nonmagnetic material, and a permanent member.
  • a rotor subassembly 5 and a coil subassembly 6 that employ a ferrite magnet as a magnet are provided.
  • the front cover subassembly 3, the rear cover subassembly 4, the rotor subassembly 5 and the coil subassembly 6 are subassemblies in which various parts are assembled to the respective main bodies.
  • the front cover 3, the rear cover 4, and the rotor will be described.
  • 5 and coil 6 may be abbreviated.
  • the rotor 5 is configured by inserting a shaft 52 into the rotor core 51.
  • the rotor core 51 is provided with a hole 511 for inserting and fixing the shaft 52 at the center and a hole 512 for embedding the permanent magnet 53.
  • the plurality of magnetic steel plates are laminated and fixed.
  • 1D is a cross-sectional view showing a part of a cross section of the rotor 5 of FIG. 1C cut along a plane perpendicular to the axis of the shaft 52, and mainly shows one pole portion of the eight poles and 24 slots.
  • Eight holes 512 for inserting the permanent magnets 53 are provided at equal intervals along the outer periphery of the magnetic steel plate, and the holes 512 are formed by laminating and fixing a plurality of magnetic steel plates in the circumferential direction.
  • the permanent magnet 53 extends in the axial direction, and the permanent magnet 53 is inserted therein and fixed to both ends of the rotor 5 with a nonmagnetic end plate 54 or the like, thereby preventing the permanent magnet 53 from coming off.
  • the coil subassembly 6 includes a stator core 61 and a coil 62.
  • the stator core 61 is formed by laminating and fixing a plurality of annular magnetic steel plates having teeth 63 formed on the inner peripheral side. It consists of Then, after laminating and fixing a plurality of magnetic steel plates with their circumferential positions aligned, a plurality of teeth 63 formed at equal intervals along the circumferential direction are coiled with three-phase AC windings via an insulator or the like 62 is wound.
  • the coil assembly 6 is fixed to the inside of the housing 2 by a method such as shrink fitting, and the front cover 3 is assembled to the housing 2 so that the stator subassembly 7 shown in FIG.
  • stator 7 (hereinafter also simply referred to as the stator 7). Is configured. One end of the shaft 52 of the rotor 5 is inserted into the hole 31 of the front cover subassembly 3, the other end of the shaft 52 is supported by a hole or a bearing (not shown) of the rear cover 4, and the rear cover 4 is supported by the stator subassembly 7. As a result, the electric motor 1 of this example shown in FIG. 1A is assembled.
  • the electric motor 1 of this example shown in FIGS. 1A to 1D is of a type in which a permanent magnet 53 is embedded in a rotor 5 and a coil 62 is provided in a stator 7, but the electric motor 1 of the present invention is a stator. 7 may be a type in which a permanent magnet is provided and a coil 62 is provided in the rotor 5.
  • the electric motor 1 of this example shown in the figure is an embedded magnet type motor in which a permanent magnet 53 is embedded in a rotor core 51.
  • the electric motor 1 of the present invention has a surface in which a permanent magnet is arranged on the surface of the rotor core 51.
  • a magnet type motor may be used.
  • the main surface of the rectangular parallelepiped magnet 53 is embedded substantially parallel to the side surface of the rotor 5 as shown in FIG. 1D.
  • Another permanent magnet 53a, 53b may be provided, or two permanent magnets 53c, 53d may be provided at a predetermined angle with respect to the side surface of the rotor 5, as shown in FIG. 2B.
  • 2A and 2B are partial cross-sectional views (corresponding to a part of a cross section taken along line 1D-1D) showing a rotor 5 of a permanent magnet type electric motor 1 according to another embodiment of the present invention.
  • the output suppression effect by the demagnetization process of the present example described later appears remarkably particularly when a ferrite magnet is adopted for the permanent magnet 53, but for the purpose of eliminating heavy rare earth magnets such as neodymium Nd and dysprosium Dy. Absent.
  • This kind of heavy rare earth magnet may be used because the effect of the demagnetization treatment of this example is the same regardless of the magnitude of the effect.
  • the technology according to this example may be applied on the high temperature side.
  • FIG. 3A is a process diagram showing an example of a manufacturing method of the electric motor 1 of this example.
  • the manufacturing method of this example is the same as that shown in FIG. 1C in the same manner as the rotor assembly step P1 for assembling the rotor subassembly 5 shown in FIG. 1C.
  • the next motor assembly step P3 as shown in FIG.
  • stator subassembly 7, the rotor subassembly 5, and the rear cover subassembly 4 are assembled to complete the electric motor 1 shown in FIG. 1A.
  • subsequent basic characteristic test step P6 various characteristics of the electric motor including the initial induced voltage are measured, and the magnetized state and the coil quality are inspected.
  • output inspection process P7 a final operation test including output measurement of the manufactured electric motor is performed.
  • the permanent magnet 53 is not magnetized. Therefore, when the rotor subassembly 5 is assembled to the stator subassembly 7 in the motor assembly process P3, the magnetic force of the permanent magnet 53 causes the rotor subassembly 5 to be assembled. The assembly 5 is not attracted to the coil subassembly 6 and the assembly workability is improved.
  • the assembly of the electric motor 1 shown in FIG. 1A is completed, and the terminal of the coil 62 is connected to a magnetizing power source to energize the magnetizing current, and the permanent magnet 53 is fully magnetized (saturated magnetizing). Magnetize).
  • this magnetization process step is repeated a plurality of times.
  • the form of the electric motor 1 when performing the magnetizing process is a state where the rear cover 4 is removed from the state shown in FIG. 1A, that is, the rotor subassembly 5 is assembled to the stator subassembly 7. It may be in the state. Further, instead of the stator subassembly 7, a dedicated magnetizing device having a structure including the same coil assembly may be used.
  • a positive magnetic field is applied to the rotor subassembly 5 including the permanent magnet 53, so that the first quadrant of the magnetization curve is shown.
  • the external magnetic field from the stator 7 is permanently applied to the rotor 5.
  • the magnetization J and the magnetic flux density B of the permanent magnet 53 whose initial magnetization J and initial magnetic flux density B were zero (point a) changed from point a ⁇ point b ⁇ point c, At this point c, a saturated state (fully magnetized state) is reached.
  • An energization current value for bringing the permanent magnet 53 into a saturated state is obtained in advance by theoretical calculation or verification experiment.
  • the permanent magnet 53 When the permanent magnet 53 reaches a saturated state, the energization to the stator 7 is stopped and the external magnetic field is made zero. As a result, the magnetization J and the magnetic flux density B of the permanent magnet 53 change from the point c to the point d.
  • the electric motor 1 in which the permanent magnet 53 is completely magnetized is obtained by the above magnetizing process P4.
  • FIG. 5 is a graph showing a relationship example between a motor current command value when an electric vehicle equipped with the electric motor 1 is traveling, an actual motor current corresponding to the motor current command value, and a motor rotation speed (rotation speed).
  • the motor current value and the motor rotation speed are normal values with respect to the motor current command value set according to the accelerator opening. If it occurs, control for restoring the grip force of the tire is performed, and a motor current (overcurrent) larger than the motor current command value may flow between times t2 and t3.
  • a motor current (overcurrent) larger than the motor current command value may flow between times t2 and t3.
  • a rated output and a rated current are determined for the electric motor 1 and are used within the rated output and the rated current during normal use. However, a current exceeding the rated current may flow under the above-described unique circumstances. Due to this overcurrent, a magnetic field from the stator 7 causes a reverse magnetic field to act on the permanent magnet 53 of the rotor 5, which may demagnetize the permanent magnet 53 during use.
  • FIG. 6 is a diagram showing a magnetization curve (also referred to as a magnetic history curve or a hysteresis loop) of a ferrite magnet at a predetermined low temperature (for example, an extremely low temperature of ⁇ 20 ° C. or lower), and is shown in the second quadrant. It shows the demagnetization curve to be performed.
  • Hex corresponding to the reverse magnetic field caused by the overcurrent described in FIG. 5
  • a straight line pc ′ passing through the origin O and the point b is applied to the applied external magnetic field.
  • the operating point of the magnet moves to the intersection c with the JH curve when translated to the left by Hex.
  • the operating point on the BH curve is the intersection d of the perpendicular passing through the point c and the BH curve.
  • the operating point moves to the right on a straight line having the recoil permeability ⁇ r passing through the point d.
  • the intersection point a 'with the straight line pc becomes the operating point, and the permanent magnet is demagnetized by the decrease ⁇ B of the magnetic flux density with respect to the initial point a described above.
  • the operating point b 'of the magnet on the JH curve is the intersection of a straight line parallel to the perpendicular passing through the point a' and the straight line pc '.
  • FIG. 7 is a magnet characteristic diagram showing demagnetization ⁇ B when an external magnetic field Hex smaller than the external magnetic field Hex shown in FIG. 6 is applied.
  • the degree of demagnetization ⁇ B is large, and it can be seen that almost no demagnetization ⁇ B occurs when the external magnetic field Hex is relatively small as shown in FIG.
  • FIG. 8 shows an example of the magnetization curve of the ferrite magnet at room temperature (room temperature, the same applies hereinafter).
  • room temperature room temperature
  • a no-load induced voltage is generally used in an electric motor.
  • the no-load induced voltage is a terminal voltage generated when the rotor is rotated by an external force at a predetermined speed in a non-energized state where the motor terminal is opened, and the generated voltage is proportional to the magnetic flux of the magnet.
  • FIG. 9 is a graph showing an example of no-load induced voltage measured after driving the electric motor 1 by applying various driving currents in a low temperature atmosphere and a normal temperature atmosphere, and the horizontal axis represents driving of the electric motor.
  • the current indicates the no-load induced voltage.
  • the drive current on the horizontal axis is a relative value when the rated drive current value of the electric motor is 1, and the vertical axis is a relative value when the no-load induced voltage in the initial state is 1. As shown in FIG.
  • performance degradation such as a decrease in torque and output of the electric motor 1 due to demagnetization of the permanent magnet 53 can occur during use of the electric motor 1 as a product. That is, compared to immediately after purchasing the product, for example, when used for a compressor motor of an air conditioner, there is a concern about a decrease in heating capacity, and when used for a driving motor of an electric vehicle, acceleration performance There is concern about the decline.
  • the change in the state of the magnetic flux increases the electromagnetic excitation force, which worsens the noise of the electric motor, increases the electricity bill when using the air conditioner due to the deterioration of efficiency, and the range of the electric vehicle. There is also a risk of spilling over.
  • the demagnetization process is performed in advance on the electric motor production line (demagnetization process step in FIG. 3A). P5).
  • the operating point of the magnet when the initial ferrite magnet type motor is not operating is the point b, but the external magnetic field Hex exceeding the demagnetization resistance of the magnet is When acting, the magnet is demagnetized, and the operating point of the magnet when the motor is not operating after removing the external magnetic field Hex is b ′.
  • the operating point of the magnet becomes the same point c as when the external magnetic field Hex was applied from the initial state, and the external magnetic field Hex was removed.
  • the later operating point is b ′.
  • the demagnetization of the magnet does not proceed as long as a magnetic field not exceeding the external magnetic field Hex is applied thereafter.
  • the characteristic is a minor loop characteristic having some hysteresis as shown in FIG. 10, but it can be regarded as a minute range in view of the entire demagnetization characteristic.
  • the no-load induced voltage is reduced by about 3% with respect to the initial state (FIG. 9). reference).
  • the demagnetization of the magnet does not proceed, so that the reduction is only about 3% with respect to the initial state.
  • the driving is performed again with a current smaller than this, since the demagnetization is already performed with the driving current of 1.4 times, the induced voltage is reduced by about 3% with respect to the initial state. Therefore, when the electric motor 1 having the characteristics at the low temperature of FIG.
  • the induced voltage characteristics are as shown by the solid line in FIG. Become. That is, although the induced voltage is reduced by about 3% with respect to the initial state, the magnetization J of the magnet does not change up to 1.4 times the current. The characteristics remain unchanged up to 1.4 times the current.
  • the demagnetization resistance can be increased to 1.4 times the rated current.
  • An improved electric motor 1 can be provided.
  • the torque T of the permanent magnet type synchronous motor is expressed by the following formula 1 as the number of pole pairs Pn, the interlinkage magnetic flux ⁇ a of the magnet, the current Ia, the current phase angle ⁇ , the d-axis inductance Ld, and the q-axis inductance Lq.
  • T Pn ⁇ ⁇ a ⁇ Ia ⁇ cos ⁇ + 1/2 ⁇ (Lq ⁇ Ld) ⁇ Ia 2 ⁇ sin2 ⁇ Equation 1
  • the second term on the right side of Equation 1 is called reluctance torque, and is an effective term for an embedded magnet type synchronous motor, and is zero for a surface magnet type motor.
  • the interlinkage magnetic flux ⁇ a and the current Ia of the magnet are both values in the dq axis coordinate system of the electric motor, but the interlinkage magnetic flux ⁇ a is proportional to the magnet magnetic flux, and the current Ia is proportional to the alternating current that drives the electric motor.
  • the output of the electric motor 1 is a product of torque and the number of revolutions. From the above, if the allowable value of the driving current can be increased by about 40% of the rated current value, a large output can be obtained even if the magnetic flux decreases by 3% due to the effect of the demagnetization process. I understand.
  • the permanent magnet 53 is a single magnet, and is made slightly demagnetized from the fully magnetized state, and can be inserted into the rotor core 51.
  • the external magnetic field Hex acting on the permanent magnet 53 must be matched with the conditions for driving the actual electric motor 1 as a product. This may cause performance degradation by demagnetizing unnecessary parts, or a demagnetization process may be inadequate because the reverse magnetic field does not act on the necessary parts, and demagnetization proceeds while the product is driving. This is in order to prevent clogging.
  • the permanent magnet 53 is formed on the same soft magnetic body as the electric motor 1 of the product. It is necessary to apply a reverse magnetic field Hex to the permanent magnet 53 using a yoke having the same stator shape as the electric motor 1 of the product. Therefore, it is preferable to demagnetize the rotor 5 by assembling the rotor 5 and the stator 7 and then applying a predetermined current in the product state of the electric motor 1 to simplify the manufacturing process.
  • the electric motor 1 is assembled with a non-magnetized permanent magnet 53 to the rotor 5 and magnetized in the state of the rotor 5 or the electric motor 1 as in this example.
  • the magnetizing process includes a method of magnetizing the electric motor 1 by energizing the electric motor 1 after being incorporated into the stator 7 as a product, and a method of magnetizing with a magnetizing yoke which is a production facility in the state of the rotor 5. . For this reason, there is a merit when the demagnetization process is performed in the assembled state as the rotor 5 or the electric motor 1 even when the demagnetization process is performed as in this example.
  • the permanent magnet 53 is once completely magnetized before demagnetizing the permanent magnet 53.
  • the purpose of the demagnetization process of the present invention is to energize the maximum current that can be used when the product is used, demagnetize the portion of the permanent magnet 53 that is likely to be demagnetized during the manufacturing process, and further demagnetize it. This is because the magnetized magnetic field is larger in the part where the demagnetization is likely to occur than in other parts. If this part is magnetized from a non-magnetized state to an incomplete state (a state in which complete magnetization is not reached), a sufficient magnetizing magnetic field will not be generated in other parts, and the desired performance will be obtained. The necessary magnetized state of the permanent magnet 53 cannot be created. Therefore, it is preferable to demagnetize a portion where a reverse magnetic field is likely to be generated by demagnetization processing after the permanent magnet 53 is completely magnetized with a sufficiently strong magnetic field.
  • FIG. 3A is a process diagram showing a method of manufacturing a permanent magnet electric motor according to another embodiment of the present invention.
  • a rotor assembly process P1 for assembling the rotor subassembly 5 shown in FIG. 1C is shown.
  • a magnetizing process P4 for magnetizing the permanent magnet 53 of the rotor 5 is provided, and immediately thereafter, a demagnetizing process P5 of this example is provided.
  • the magnetization processing current when performing the demagnetization processing P5 will be described.
  • the phase angle ⁇ of the demagnetization process current supplied from the AC power supply or the DC power supply is controlled to a predetermined value.
  • the AC power supply device is controlled in a state where the rotational direction positions of the rotor 5 and the stator 7 are relatively fixed (both non-rotating or both rotating speed and rotating direction are the same).
  • the demagnetization process is performed after setting the phase angle ⁇ of the demagnetization process current flowing through the coil 62 of the stator 7 to 90 °. Thereby, since the maximum reverse magnetic field acts on the permanent magnet 53, the demagnetization process can be performed efficiently.
  • the purpose of the demagnetization process in this example is to suppress the occurrence of a demagnetization phenomenon for some reason when the electric motor 1 is used as a product. Therefore, it can be said that it is preferable to carry out the demagnetization process according to the usage state of the electric motor 1 in advance on the production line of the electric motor.
  • the demagnetization processing in the demagnetization processing step P5 of this example is the position of the rotor 5 and the stator 7 in the rotational direction.
  • phase angle ⁇ of the demagnetizing process current flowing through the coil 62 of the stator 7 by controlling the AC power supply is maximized.
  • the phase angle ⁇ is set equal to or larger than the phase angle ⁇ max ( ⁇ ⁇ max).
  • the demagnetization processing step P5 of this example In a state where the positions of the rotor 5 and the stator 7 in the rotational direction are relatively fixed (both are non-rotating or both the rotational speed and rotational direction are the same), the AC power supply is controlled to flow through the coil 62 of the stator 7. Demagnetization processing is performed while discretely or continuously changing the phase angle ⁇ of the demagnetization processing current within the range of the phase angle ( ⁇ s ⁇ ⁇ ⁇ ⁇ e).
  • the optimal operating phase angle ⁇ corresponding to the operating point may be stored in the control device of the electric motor 1, the minimum value of the optimal phase angle is set to ⁇ s and the maximum value is set to ⁇ e. Then, a demagnetization process is performed. Thereby, the demagnetization process more than necessary is not performed, and the decrease in output torque can be suppressed.
  • the process can be completed at a time, which is efficient.
  • an alternating current is used as the demagnetization processing current in the demagnetization processing step P5 of this example, and the rotational positions of the rotor 5 and the stator 7 are relatively fixed (both non-rotating or both).
  • the demagnetization process may be performed using a direct current.
  • the demagnetization process is performed while changing the phase angle ⁇ of the demagnetization process current in a predetermined range ( ⁇ s ⁇ ⁇ ⁇ ⁇ e)
  • the demagnetization process is performed while rotating the rotor 5 at a predetermined rotation speed.
  • the phase angle ⁇ of the DC demagnetization processing current is within the phase angle range of the drive current of the electric motor 1 ( ⁇ s ⁇ ⁇ ⁇ ⁇ e), and the rotation speed is changed discretely or continuously.
  • a direct current is applied while rotating the rotor 5.
  • the stator or the demagnetizing device may be rotated, or both may be rotated. Thereby, like the demagnetization process using an alternating current, the demagnetization process more than necessary is not performed, and the decrease in output torque can be suppressed.
  • the demagnetizing process is performed in a state where the rotational positions of the rotor 5 and the stator 7 are relatively fixed.
  • the demagnetization process can also be performed while relatively rotating the rotational position of the stator 5 and the stator 7.
  • the demagnetization processing current may be an alternating current synchronized with the rotation of the rotor 5 or may be an asynchronous alternating current.
  • the phase angle ⁇ of the demagnetization processing current can be set to a fixed value such as 90 ° or a predetermined range ( ⁇ s ⁇ ⁇ ⁇ ⁇ e) can also be changed. In this case, in order to suppress demagnetization unevenness, it is desirable that the rotor 5 is physically rotated at least once.
  • the demagnetization processing current is an alternating current that is asynchronous with the rotation of the rotor 5
  • fs (Nr / 60) ⁇ [ ⁇ ( ⁇ e ⁇ s) / 360n ⁇ + P]...
  • Nr is the mechanical angular rotation speed (rpm) of the electric motor
  • ⁇ s is the current phase angle (deg) at the start of the demagnetization process
  • ⁇ e is the current phase angle (deg) at the end of the demagnetization process.
  • N is an integer of 1 or more
  • P is the number of pole pairs of the electric motor.
  • action at the time of setting to the frequency fs ( 20.027Hz) of alternating current when it is set as angle
  • the magnetic processing current shows the rotation angle of the rotor
  • the lower figure shows the current phase angle with respect to the same time.
  • the current phase is changed as shown in the lower diagram while the rotor 5 rotates 30 times as shown in the middle diagram.
  • the angle ⁇ continuously varies from ⁇ s to ⁇ e, and the demagnetization process is performed in this state.
  • a reverse magnetic field can be applied uniformly.
  • the time required for the demagnetization process can be shortened by increasing the mechanical angular rotation speed of the rotor 5, and in addition to the reduction of the manufacturing cost, the temperature generated by supplying a large current called the demagnetization process current to the stator coil. The rise can also be suppressed.
  • the indices representing the characteristics of the permanent magnet 53 mainly include the maximum residual magnetic flux density Brmax related to the magnetic flux of the magnet and the holding force Hcj representing the strength against demagnetization. There are some variations in the maximum residual magnetic flux density Brmax and the holding force Hcj depending on the 53 production lots.
  • FIG. 12 shows how the no-load induced voltage changes with respect to the demagnetization processing current of the electric motor 1 in the four combinations in which the maximum residual magnetic flux density Brmax and the holding force Hcj are maximum and minimum due to manufacturing variations. It is the graph which showed whether to do. According to this, it can be seen that the initial induced voltage is higher as the maximum residual magnetic flux density Brmax is larger, and the induced voltage is less likely to decrease with respect to the demagnetization processing current as the coercive force Hcj is larger.
  • the initial induced voltage has a product individual variation of about ⁇ 3% and a total width of about 6% mainly due to variations in the maximum residual magnetic flux density Brmax of the permanent magnet 53.
  • FIG. 14 is a flowchart showing a procedure for setting an optimum demagnetization drive current for the electric motor 1 having individual product differences when performing the demagnetization process.
  • step S1 the minimum current Imin for guaranteeing demagnetization resistance is set as the demagnetization drive current Ide, and in step S2, the electric motor 1 is energized to perform demagnetization processing. In step S3, the induced voltage ⁇ e of the electric motor 1 subjected to the demagnetization process in step S2 is measured.
  • step S4 the measured induced voltage ⁇ e is compared with the target lower limit value ⁇ low, and if the measured induced voltage ⁇ e is equal to or lower than the target lower limit value ⁇ low, the process proceeds to step S8, where the components of the electric motor 1 or the magnetization process, After determining that there is some abnormality in the demagnetization process and making an NG determination, this process is terminated.
  • step S4 If the measured induced voltage ⁇ e exceeds the target lower limit value ⁇ low in step S4, the process proceeds to step S5, and it is determined whether or not the error (absolute value of the difference) between the induced voltage ⁇ e and the target value ⁇ t is less than ⁇ . To do. If the absolute value of the difference between the induced voltage ⁇ e and the target value ⁇ t is ⁇ or more, the process proceeds to step S6, the demagnetization drive current Ide increased by ⁇ I is set as the demagnetization drive current, and the process returns to step S2. Perform demagnetization again.
  • step S5 when the absolute value of the difference between the induced voltage ⁇ e and the target value ⁇ t becomes less than ⁇ , the process proceeds to step S7, and this process is terminated assuming that the demagnetization process is appropriately performed.
  • ⁇ I which is the amount of increase in the demagnetization drive current, is a value determined in advance by a verification experiment or the like, but ⁇ I is adjusted according to the magnitude of the error between the induced voltage ⁇ e and the target value ⁇ t. Also good.
  • FIG. 15 is a flowchart according to another embodiment of the demagnetization processing step P5 of this example.
  • the difference ⁇ high ⁇ low between the upper limit value and the lower limit value of the no-load induced voltage target value is set to 6%, which corresponds to the variation width of a conventional electric motor that does not perform demagnetization processing.
  • step S11 the minimum current Imin for guaranteeing demagnetization resistance is set as the demagnetization drive current Ide, and in step S12, the electric motor 1 is energized to perform demagnetization processing.
  • step S13 the induced voltage ⁇ e of the electric motor 1 subjected to the demagnetization process in step S12 is measured.
  • step S14 the measured induced voltage ⁇ e is compared with the target lower limit value ⁇ low.
  • step S15 the components of the electric motor 1 or the magnetization process or the like After determining that there is some abnormality in the demagnetization process and making an NG determination, this process is terminated.
  • step S14 when the measured induced voltage ⁇ e exceeds the target lower limit value ⁇ low, the process proceeds to step S16, the measured induced voltage ⁇ e is compared with the target upper limit value ⁇ high, and the measured induced voltage ⁇ e is less than the target upper limit value ⁇ high. If there is, the process proceeds to step S17, and this process is terminated assuming that the demagnetization process is appropriately performed.
  • step S16 If the measured induced voltage ⁇ e exceeds the target upper limit value ⁇ high in step S16, the demagnetization processing current is insufficient, so the process proceeds to step S18, and the predetermined maximum current Imax is driven to demagnetize.
  • the current Ide is set, and in step S19, the demagnetization process is performed again by energizing the electric motor 1.
  • step S20 the induced voltage ⁇ e of the electric motor 1 subjected to the demagnetization process is measured.
  • step S21 the measured induced voltage ⁇ e is compared with the target lower limit value ⁇ low, and if the measured induced voltage ⁇ e is equal to or lower than the target lower limit value ⁇ low, the process proceeds to step S23, where the components of the electric motor 1 or the magnetization process, After determining that there is some abnormality in the demagnetization process and making an NG determination, this process is terminated.
  • step S22 the measured induced voltage ⁇ e is compared with the target upper limit value ⁇ high, and the measured induced voltage ⁇ e is determined to be the target upper limit value. If it is less than the value ⁇ high, the process proceeds to step S17, and this process is terminated assuming that the demagnetization process has been appropriately performed. If the measured induced voltage ⁇ e exceeds the target upper limit value ⁇ high in step S22, the process proceeds to step S23, where it is determined that there is some abnormality in the parts of the electric motor 1, the magnetization process, or the demagnetization process. After the determination, this process is terminated.
  • FIG. 16 is a graph showing the relationship between the demagnetization processing current and the no-load induced voltage, and the operation of the demagnetization processing example of FIG. 15 will be described using this graph.
  • FIG. 16 shows four characteristic lines when the residual magnetic flux density Brmax and the holding force Hjc are at the upper and lower limits according to the characteristics of the permanent magnet 53, and the demagnetization is performed even when the magnet characteristics vary. The relationship between the processing current and the no-load induced voltage is between these characteristic lines.
  • the induced voltage characteristics in the range indicated by the vertical bold line are between the target lower limit value ⁇ low and the target upper limit value ⁇ high.
  • an appropriate demagnetization process can be performed.
  • the demagnetization process may not be sufficient, and the no-load induced voltage may exceed the target upper limit value ⁇ high.
  • the demagnetization process is performed again with the maximum current Imax.
  • This maximum current Imax is a value selected so that the no-load induced voltage is equal to or less than the target condition value ⁇ high when the permanent magnet 53 is most difficult to demagnetize and the initial magnetic flux amount is the highest.
  • the no-load induced voltage falls below the target upper limit value ⁇ high, and it is finally possible to keep the no-load induced voltage within the target range by one re-demagnetization process.
  • FIG. 18 is a flowchart according to still another embodiment of the demagnetization processing step P5 of this example, and is a flowchart of the demagnetization processing step P5 when the demagnetization current is set to three levels.
  • step S31 the minimum current Imin for guaranteeing demagnetization resistance is set as a demagnetization drive current Ide, and in step S32, the electric motor 1 is energized to perform demagnetization processing.
  • step S33 the induced voltage ⁇ e of the electric motor 1 subjected to the demagnetization process in step S32 is measured.
  • step S34 the measured induced voltage ⁇ e is compared with the target lower limit value ⁇ low.
  • step S35 the components of the electric motor 1 or the magnetization process or the like After determining that there is some abnormality in the demagnetization process and making an NG determination, this process is terminated.
  • step S34 If the measured induced voltage ⁇ e exceeds the target lower limit value ⁇ low in step S34, the process proceeds to step S36, where the measured induced voltage ⁇ e is compared with the target upper limit value ⁇ high, and the measured induced voltage ⁇ e is less than the target upper limit value ⁇ high. If there is, the process proceeds to step S37, and the process is terminated assuming that the demagnetization process is appropriately performed.
  • step S36 determines whether the measured induced voltage ⁇ e exceeds the target upper limit value ⁇ high in step S36. If the measured induced voltage ⁇ e exceeds the target upper limit value ⁇ high in step S36, the demagnetization processing current is insufficient, so the process proceeds to step S38, and the predetermined intermediate current Imid is set. Is demagnetized drive current Ide, and this is energized to the electric motor 1 in step S39 to perform demagnetization again. In step S40, the induced voltage ⁇ e of the electric motor 1 subjected to the demagnetization process is measured.
  • step S41 the measured induced voltage ⁇ e is compared with the target lower limit value ⁇ low, and if the measured induced voltage ⁇ e is equal to or lower than the target lower limit value ⁇ low, the process proceeds to step S35, where the components of the electric motor 1 or the magnetization process, After determining that there is some abnormality in the demagnetization process and making an NG determination, this process is terminated.
  • step S41 when the measured induced voltage ⁇ e exceeds the target lower limit value ⁇ low, the process proceeds to step S42, the measured induced voltage ⁇ e is compared with the target upper limit value ⁇ high, and the measured induced voltage ⁇ e is less than the target upper limit value ⁇ high. If there is, the process proceeds to step S37, and the process is terminated assuming that the demagnetization process is appropriately performed. On the other hand, if the measured induced voltage ⁇ e exceeds the target upper limit value ⁇ high in step S42, the demagnetization processing current is insufficient, so the process proceeds to step S43 and the maximum current set in advance is determined.
  • step S45 the induced voltage ⁇ e of the electric motor 1 subjected to the demagnetization process is measured.
  • the measured induced voltage ⁇ e is compared with the target lower limit value ⁇ low. If the measured induced voltage ⁇ e is equal to or lower than the target lower limit value ⁇ low, the process proceeds to step S48, where the components of the electric motor 1 or the magnetization process or the like After determining that there is some abnormality in the demagnetization process and making an NG determination, this process is terminated.
  • step S47 the measured induced voltage ⁇ e is compared with the target upper limit value ⁇ high, and the measured induced voltage ⁇ e is less than the target upper limit value ⁇ high. If there is, the process proceeds to step S37, and the process is terminated assuming that the demagnetization process is appropriately performed. On the other hand, if the measured induced voltage ⁇ e exceeds the target upper limit value ⁇ high in step S47, the process proceeds to step S48, and if there is any abnormality in the components of the electric motor 1, the magnetization process, or the demagnetization process. After the determination and the NG determination, this process is terminated. With the above demagnetization process, the no-load induced voltage can finally fall within the target range by a maximum of two re-demagnetization processes.
  • the no-load induced voltage may coincide with the target upper limit value ⁇ high.
  • the initial no-load induced voltage of an individual (permanent magnet 53) having such characteristics is ⁇ th
  • the minimum is obtained when the initial no-load induced voltage ⁇ e of various permanent magnets 53 to be demagnetized is lower than ⁇ th.
  • the demagnetization process is performed with the demagnetization current Imin.
  • the demagnetization process is performed with the maximum demagnetization current Imax.
  • FIG. 20 is a flowchart according to still another embodiment of the demagnetization processing step P5 of this example.
  • step S51 the initial induced voltage ⁇ e of the electric motor 1 including the permanent magnet 53 that has been completely magnetized is measured.
  • step S52 the measured initial induced voltage ⁇ e is compared with the reference induced voltage ⁇ th obtained in advance by a verification experiment or the like. If the measured induced voltage ⁇ e is less than the reference induced voltage ⁇ th, the process proceeds to step S53.
  • the minimum current Imin that guarantees demagnetization resistance is defined as a demagnetization drive current Ide.
  • step S54 the maximum current Imax is set as the demagnetization drive current Ide.
  • step S55 the electric motor 1 is energized to perform demagnetization processing.
  • step S56 the induced voltage ⁇ e of the electric motor 1 subjected to the demagnetization process in step S55 is measured.
  • step S57 it is determined whether or not the measured induced voltage ⁇ e is between the target lower limit value ⁇ low and the target upper limit value ⁇ high, and the measured induced voltage ⁇ e is equal to or less than the target lower limit value ⁇ low or greater than or equal to the target upper limit value ⁇ high. In this case, the process proceeds to step S59, where it is determined that there is some abnormality in the parts of the electric motor 1 or in the magnetization process or the demagnetization process, and NG determination is made, and then this process is terminated.
  • step S57 when the measured induced voltage ⁇ e exceeds the target lower limit value ⁇ low and is lower than the target upper limit value ⁇ high in step S57, the process proceeds to step S58, and this process is assumed to be appropriately performed. Exit. With the above demagnetization process, it is possible to finally bring the no-load induced voltage within the target range by one demagnetization process.
  • FIG. 21A is a graph showing an example of a no-load induced voltage measured after applying various currents in a low temperature atmosphere and a normal temperature atmosphere to demagnetize the electric motor 1.
  • the desired demagnetization effect can be obtained by setting the ambient temperature in the demagnetization treatment step to a low temperature atmosphere.
  • a low temperature atmosphere in which a decrease in output due to demagnetization is a problem may be an extremely low temperature of ⁇ 20 ° C. or less, and it is not easy to provide such a cryogenic atmosphere zone in a production line.
  • it takes a considerable amount of time to lower the temperature of the electric motor 1 to a very low temperature and it also takes a considerable amount of time to return to the normal temperature after the demagnetization process, resulting in a long manufacturing time.
  • FIG. 21B is a graph showing an example of the no-load induced voltage with respect to the same demagnetization processing current as FIG. 21A.
  • the object is to obtain a no-load induced voltage reduced by 3% in a low temperature atmosphere.
  • the demagnetizing current is not Imin but the demagnetizing current Ipmin when intersecting the curve in the room temperature atmosphere.
  • the demagnetization resistance of the electric motor 1 is improved. Therefore, even in the case of an electric motor using a ferrite magnet, the drive current is limited at a low temperature. Therefore, it is possible to suppress a decrease in output at low temperatures. In addition, since the drive current can be increased, the output of the electric motor 1 can be improved.
  • the electric motor of this example when the electric motor of this example is applied to a driving motor for an electric vehicle, there are cases where the driving current instantaneously increases beyond the normal operating state.
  • the motor current may increase instantaneously with respect to the control target value.
  • a specific driving scene corresponds to a case where a tire that has slipped due to slipping recovers grip, and the current increase rate reaches about 1.2 to 1.5 times. Slip is likely to occur in winter when the road surface freezes. In this case, it is considered that the permanent magnet 53 of the electric motor 1 is also in a low temperature state and has a high risk of demagnetization.
  • the conventional electric motor has been designed to withstand demagnetization assuming an instantaneous current increase, but the electric motor is at a low temperature and is driven by a large current, such as in winter, and The scene where the tire slips is extremely rare, and the output characteristics of the electric motor must be constrained as a countermeasure against this rare phenomenon.
  • the invention of this example it is possible to suppress demagnetization when the current increases without sacrificing the output characteristics of the electric motor 1.
  • SYMBOLS 1 Permanent magnet type electric motor 2 ... Housing 3 ... Front cover subassembly 31 ... Hole 4 ... Rear cover subassembly 5 ... Rotor subassembly 51 ... Rotor core 511, 512 ... Hole 52 ... Shaft 53, 53a, 53b, 53c, 53d ... Permanent magnet 53e ... Edge portion 54 ... End plate 6 ... Coil subassembly 61 ... Stator core 62 ... Coil 63 ... Teeth 7 ... Stator subassembly G ... Gap

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

 A method for manufacturing an electric motor (1) in which a permanent magnet (53) is included on a rotor (5) or a stator (7), wherein the method for manufacturing an electric motor (1) has: a magnetization step (P4) for magnetizing the permanent magnet; and a demagnetization step (P5) that is carried out after the magnetization step, and incompletely demagnetizes a portion of the permanent magnet magnetized from the magnetization step. In the demagnetization step a phase angle (β) of a demagnetizing electric current that generates a reverse magnetic field around the permanent magnet is controlled to 90º or another predetermined value.

Description

永久磁石式電動モータの製造方法Manufacturing method of permanent magnet type electric motor
 本発明は、永久磁石式電動モータの製造方法に関するものである。 The present invention relates to a method for manufacturing a permanent magnet electric motor.
 フェライト磁石などの永久磁石を用いた空気調和機の圧縮機用ブラシレスモータにおいて、低温時に生じ易い減磁を防止するために、空気調和機の圧縮機の外郭温度が低温の際には、常温以上の場合に比べて、モータに流れる電流の電流制限閾値を低く設定するものが知られている(特許文献1)。冬季などにおいて空気調和機を暖房に使用する場合に、始動時の圧縮機用モータは低温の外気と同程度の温度であり、減磁しやすいため、高出力での運転を避けて磁石に作用する逆磁界を低減し、これにより永久磁石の減磁を防止するものである。 In brushless motors for air conditioner compressors that use permanent magnets such as ferrite magnets, when the external temperature of the air conditioner compressor is low, the room temperature is higher than room temperature to prevent demagnetization that tends to occur at low temperatures. Compared with the case of this, what sets the current limiting threshold value of the electric current which flows into a motor low is known (patent document 1). When using an air conditioner for heating in the winter, the compressor motor at the start is at the same temperature as the low-temperature outside air and easily demagnetizes. The reverse magnetic field is reduced, thereby preventing the demagnetization of the permanent magnet.
特許第5098599号公報Japanese Patent No. 5098599
 しかしながら、電動モータに流れる電流の電流制限閾値を低く設定すると、最も暖房性能が必要とされる空気調和機の始動時に十分な出力が得られず、暖房機としての所期の目的を達成することができないという問題がある。 However, if the current limit threshold value of the current flowing to the electric motor is set low, sufficient output cannot be obtained at the start of the air conditioner that requires the most heating performance, and the intended purpose of the heater is achieved. There is a problem that can not be.
 本発明が解決しようとする課題は、減磁による出力低下を抑制することができる永久磁石式電動モータの製造方法を提供することである。 The problem to be solved by the present invention is to provide a method of manufacturing a permanent magnet type electric motor that can suppress a decrease in output due to demagnetization.
 本発明は、ロータ及びステータの一方に永久磁石を含む電動モータにおいて、永久磁石を着磁処理したのち、当該永久磁石の一部が不完全着磁状態となる減磁処理を行うが、この際に、永久磁石廻りに逆磁界を発生させる減磁処理電流の位相角βを所定の値に制御することによって上記課題を解決する。 According to the present invention, in an electric motor including a permanent magnet in one of a rotor and a stator, after the permanent magnet is magnetized, a demagnetization process is performed in which a part of the permanent magnet is incompletely magnetized. In addition, the above problem is solved by controlling the phase angle β of the demagnetization processing current that generates a reverse magnetic field around the permanent magnet to a predetermined value.
 本発明によれば、永久磁石の一部が不完全着磁状態となる減磁処理を行うと、それ以上の磁界が作用しない限り減磁することはなく、また減磁処理電流の位相角βを制御するので、電動モータの使用時に減磁による出力低下が生じるのを効率的に抑制することができる。 According to the present invention, when a demagnetization process is performed in which a part of the permanent magnet is in an incompletely magnetized state, no demagnetization is performed unless a further magnetic field acts, and the phase angle β of the demagnetization process current Therefore, it is possible to efficiently suppress a decrease in output due to demagnetization when the electric motor is used.
本発明の一実施の形態に係る永久磁石式電動モータを示す全体斜視図である。1 is an overall perspective view showing a permanent magnet type electric motor according to an embodiment of the present invention. 図1Aの分解斜視図である。It is a disassembled perspective view of FIG. 1A. 図1Bの分解斜視図である。It is a disassembled perspective view of FIG. 1B. 図1Cに示すロータの1D-1D線に沿う部分断面図である。It is a fragmentary sectional view which follows the 1D-1D line | wire of the rotor shown to FIG. 1C. 本発明の他の実施の形態に係る永久磁石式電動モータを示す部分断面図(1D-1D線に沿う断面の一部に相当)である。It is a fragmentary sectional view (equivalent to a part of section which meets a 1D-1D line) showing a permanent magnet type electric motor concerning other embodiments of the present invention. 本発明のさらに他の実施の形態に係る永久磁石式電動モータを示す部分断面図(1D-1D線に沿う断面の一部に相当)である。FIG. 6 is a partial cross-sectional view (corresponding to a part of a cross section taken along line 1D-1D) showing a permanent magnet type electric motor according to still another embodiment of the present invention. 本発明の一実施の形態に係る永久磁石式電動モータの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the permanent magnet type electric motor which concerns on one embodiment of this invention. 本発明の他の実施の形態に係る永久磁石式電動モータの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the permanent magnet type electric motor which concerns on other embodiment of this invention. 図3A及び図3Bの着磁工程における永久磁石の磁化曲線を示す図である。It is a figure which shows the magnetization curve of the permanent magnet in the magnetization process of FIG. 3A and 3B. 本発明を電気自動車の走行駆動用モータとして適用した場合にモータに過電流が流れる場面例を説明するためのグラフである。It is a graph for demonstrating the example of a scene where overcurrent flows into a motor, when this invention is applied as a motor for driving | running | working driving | running | working of an electric vehicle. 極低温における外部磁界Hexが大きい場合のフェライト磁石の磁化曲線を示す図である。It is a figure which shows the magnetization curve of a ferrite magnet in case the external magnetic field Hex in cryogenic temperature is large. 極低温における外部磁界Hexが小さい場合のフェライト磁石の磁化曲線を示す図である。It is a figure which shows the magnetization curve of a ferrite magnet in case the external magnetic field Hex in cryogenic temperature is small. 常温におけるフェライト磁石の磁化曲線を示す図である。It is a figure which shows the magnetization curve of the ferrite magnet in normal temperature. 低温雰囲気及び常温雰囲気において種々の駆動電流を印加して電動モータを駆動した後の無負荷誘起電圧を示すグラフである。It is a graph which shows the no-load induced voltage after applying various drive currents in a low temperature atmosphere and a normal temperature atmosphere, and driving an electric motor. 極低温におけるフェライト磁石の磁化曲線を用いて本発明の作用を説明するための図である。It is a figure for demonstrating the effect | action of this invention using the magnetization curve of the ferrite magnet in cryogenic temperature. 種々の減磁処理電流を印加して電動モータを減磁処理した後の無負荷誘起電圧を示すグラフである。It is a graph which shows the no-load induced voltage after applying a various demagnetization process current and carrying out a demagnetization process of the electric motor. 最大残留磁束密度と保持力がそれぞれ最大・最小となる4つの組合せにおいて、電動モータの減磁処理電流に対して無負荷誘起電圧の変化の様子を示すグラフである。It is a graph which shows the mode of a change of a no-load induced voltage with respect to the demagnetization process electric current of an electric motor in four combinations from which the maximum residual magnetic flux density and a holding force become the maximum and the minimum, respectively. 本発明の減磁処理の一例を説明するための減磁処理電流に対する無負荷誘起電圧を示すグラフである。It is a graph which shows the no-load induced voltage with respect to the demagnetization process current for demonstrating an example of the demagnetization process of this invention. 本発明の減磁処理の一例を示すフローチャートである。It is a flowchart which shows an example of the demagnetization process of this invention. 本発明の減磁処理の他例を示すフローチャートである。It is a flowchart which shows the other example of the demagnetization process of this invention. 図15に示す減磁処理例の作用を説明するための減磁処理電流と無負荷誘起電圧との関係を示すグラフである。It is a graph which shows the relationship between the demagnetization process current for demonstrating the effect | action of the demagnetization process example shown in FIG. 15, and a no-load induced voltage. 図15に示す減磁処理例の作用を説明するための減磁処理電流と無負荷誘起電圧との関係を示すグラフである。It is a graph which shows the relationship between the demagnetization process current for demonstrating the effect | action of the demagnetization process example shown in FIG. 15, and a no-load induced voltage. 本発明の減磁処理のさらに他例を示すフローチャートである。It is a flowchart which shows the further another example of the demagnetization process of this invention. 図20の減磁処理例の作用を説明するための減磁処理電流と無負荷誘起電圧との関係を示すグラフである。It is a graph which shows the relationship between the demagnetization process current for demonstrating the effect | action of the demagnetization process example of FIG. 20, and a no-load induced voltage. 本発明の減磁処理のさらに他例を示すフローチャートである。It is a flowchart which shows the further another example of the demagnetization process of this invention. 本発明の減磁処理のさらに他例を説明するための減磁処理電流と無負荷誘起電圧との関係を示すグラフである。It is a graph which shows the relationship between the demagnetization process current and no-load induced voltage for demonstrating the further another example of the demagnetization process of this invention. 本発明の減磁処理のさらに他例を説明するための減磁処理電流と無負荷誘起電圧との関係を示すグラフである。It is a graph which shows the relationship between the demagnetization process current and no-load induced voltage for demonstrating the further another example of the demagnetization process of this invention. 減磁処理電流をロータの回転に非同期の交流電流とし、式1に具体的値を代入して求められた特定の周波数で減磁処理を行った場合の三相交流の減磁処理電流、ロータの回転角及び電流位相角を示すグラフである。Three-phase AC demagnetizing current when the demagnetizing current is an alternating current that is asynchronous to the rotation of the rotor and demagnetizing processing is performed at a specific frequency obtained by substituting a specific value into Equation 1. It is a graph which shows the rotation angle and current phase angle. 減磁処理電流をロータの回転に非同期の交流電流とし、式1に他の具体的値を代入して求められた特定の周波数で減磁処理を行った場合の三相交流の減磁処理電流、ロータの回転角及び電流位相角を示すグラフである。Three-phase alternating current demagnetization current when demagnetization processing current is an alternating current that is asynchronous with the rotation of the rotor and demagnetization processing is performed at a specific frequency obtained by substituting other specific values into Equation 1. It is a graph which shows the rotation angle and electric current phase angle of a rotor.
《永久磁石式電動モータ》
 以下、本発明の一実施の形態を図面に基づいて説明する。図1A~図1Dは、本発明の一実施の形態に係る永久磁石式電動モータ1を示す図であり、永久磁石式電動モータの一例として埋め込み磁石型同期モータ(8極24スロットの三相交流同期モータ)の構成例を示す。本例の電動モータ1は、図1Cに示すように、非磁性体からなるハウジング2と、同じく非磁性体からなるフロントカバーサブアッセンブリ3と、同じく非磁性体からなるリヤカバーサブアッセンブリ4と、永久磁石としてフェライト磁石を採用したロータサブアッセンブリ5と、コイルサブアッセンブリ6と、を備える。なお、フロントカバーサブアッセンブリ3、リヤカバーサブアッセンブリ4、ロータサブアッセンブリ5及びコイルサブアッセンブリ6は、それぞれの本体に種々の部品が組み付けられたサブアッセンブリであり、以下においてフロントカバー3、リヤカバー4、ロータ5及びコイル6と略称することもある。
《Permanent magnet type electric motor》
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. 1A to 1D are diagrams showing a permanent magnet type electric motor 1 according to an embodiment of the present invention. As an example of a permanent magnet type electric motor, an embedded magnet type synchronous motor (8 poles 24 slots three-phase AC) is shown. The example of a structure of a synchronous motor) is shown. As shown in FIG. 1C, the electric motor 1 of this example includes a housing 2 made of a nonmagnetic material, a front cover subassembly 3 made of the same nonmagnetic material, a rear cover subassembly 4 made of the same nonmagnetic material, and a permanent member. A rotor subassembly 5 and a coil subassembly 6 that employ a ferrite magnet as a magnet are provided. The front cover subassembly 3, the rear cover subassembly 4, the rotor subassembly 5 and the coil subassembly 6 are subassemblies in which various parts are assembled to the respective main bodies. Hereinafter, the front cover 3, the rear cover 4, and the rotor will be described. 5 and coil 6 may be abbreviated.
 ロータ5は、ロータコア51にシャフト52を挿入することで構成され、ロータコア51は、図1Dに示すように、中心にシャフト52を挿入固定する孔511と永久磁石53を埋め込むための孔512が設けられた複数の磁性鋼板を積層固着することで構成されている。なお、図1Dは、図1Cのロータ5をシャフト52の軸に垂直な面で破断した断面の一部を示す断面図であり、8極24スロットのうちの主として1極の部分を示す。永久磁石53を挿入するための孔512は、磁性鋼板の外周部に沿って等間隔に8つ設けられ、複数の磁性鋼板を円周方向の位置を合わせて積層固着することで、孔512は軸方向に連なって延在し、ここに永久磁石53を挿入し、ロータ5の両端に非磁性の端板54などで固定することで、永久磁石53の抜け出しが防止されている。 The rotor 5 is configured by inserting a shaft 52 into the rotor core 51. As shown in FIG. 1D, the rotor core 51 is provided with a hole 511 for inserting and fixing the shaft 52 at the center and a hole 512 for embedding the permanent magnet 53. The plurality of magnetic steel plates are laminated and fixed. 1D is a cross-sectional view showing a part of a cross section of the rotor 5 of FIG. 1C cut along a plane perpendicular to the axis of the shaft 52, and mainly shows one pole portion of the eight poles and 24 slots. Eight holes 512 for inserting the permanent magnets 53 are provided at equal intervals along the outer periphery of the magnetic steel plate, and the holes 512 are formed by laminating and fixing a plurality of magnetic steel plates in the circumferential direction. The permanent magnet 53 extends in the axial direction, and the permanent magnet 53 is inserted therein and fixed to both ends of the rotor 5 with a nonmagnetic end plate 54 or the like, thereby preventing the permanent magnet 53 from coming off.
 コイルサブアッセンブリ6は、ステータコア61とコイル62とを備え、ステータコア61は、図1Dに示すように、内周側にティース63が形成された円環形状の磁性鋼板を複数積層して固着することで構成されている。そして、複数の磁性鋼板を円周方向の位置を合わせて積層固着したのち、円周方向に沿って等間隔で形成された複数のティース63に、インシュレータなどを介して三相交流巻線のコイル62が巻き付けられる。このコイルアッセンブリ6は、焼嵌めなどの工法でハウジング2の内側に固定され、さらにハウジング2にフロントカバー3を組み付けることで、図1Bに示すステータサブアッセンブリ7(以下、単にステータ7ともいう。)が構成される。そして、ロータ5のシャフト52の一端をフロントカバーサブアッセンブリ3の孔31に挿通させるとともに、シャフト52の他端をリヤカバー4の孔又は軸受(不図示)で支持し、リヤカバー4をステータサブアッセンブリ7に組み付けることで、図1Aに示す本例の電動モータ1が組み立てられる。 The coil subassembly 6 includes a stator core 61 and a coil 62. As shown in FIG. 1D, the stator core 61 is formed by laminating and fixing a plurality of annular magnetic steel plates having teeth 63 formed on the inner peripheral side. It consists of Then, after laminating and fixing a plurality of magnetic steel plates with their circumferential positions aligned, a plurality of teeth 63 formed at equal intervals along the circumferential direction are coiled with three-phase AC windings via an insulator or the like 62 is wound. The coil assembly 6 is fixed to the inside of the housing 2 by a method such as shrink fitting, and the front cover 3 is assembled to the housing 2 so that the stator subassembly 7 shown in FIG. 1B (hereinafter also simply referred to as the stator 7). Is configured. One end of the shaft 52 of the rotor 5 is inserted into the hole 31 of the front cover subassembly 3, the other end of the shaft 52 is supported by a hole or a bearing (not shown) of the rear cover 4, and the rear cover 4 is supported by the stator subassembly 7. As a result, the electric motor 1 of this example shown in FIG. 1A is assembled.
 なお、図1A~図1Dに示す本例の電動モータ1は、ロータ5に永久磁石53を埋め込み、ステータ7にコイル62を設けたタイプのものであるが、本発明の電動モータ1は、ステータ7に永久磁石を設け、ロータ5にコイル62を設けたタイプのものでもよい。また、同図に示す本例の電動モータ1は、永久磁石53をロータコア51に埋め込んだ埋め込み磁石型モータであるが、本発明の電動モータ1は、ロータコア51の表面に永久磁石を配置した表面磁石型モータであってもよい。さらに、埋め込み磁石型モータの場合に、図1Dに示すように直方体状磁石53の主面をロータ5の側面に対してほぼ平行に埋め込むほか、図2Aに示すように、この永久磁石53とは別の永久磁石53a,53bを設けてもよいし、図2Bに示すように、2つの永久磁石53c,53dをロータ5の側面に対して所定の角度をもって設けてもよい。図2A及び図2Bは、本発明の他の実施の形態に係る永久磁石式電動モータ1のロータ5を示す部分断面図(1D-1D線に沿う断面の一部に相当)である。 The electric motor 1 of this example shown in FIGS. 1A to 1D is of a type in which a permanent magnet 53 is embedded in a rotor 5 and a coil 62 is provided in a stator 7, but the electric motor 1 of the present invention is a stator. 7 may be a type in which a permanent magnet is provided and a coil 62 is provided in the rotor 5. The electric motor 1 of this example shown in the figure is an embedded magnet type motor in which a permanent magnet 53 is embedded in a rotor core 51. However, the electric motor 1 of the present invention has a surface in which a permanent magnet is arranged on the surface of the rotor core 51. A magnet type motor may be used. Further, in the case of an embedded magnet type motor, the main surface of the rectangular parallelepiped magnet 53 is embedded substantially parallel to the side surface of the rotor 5 as shown in FIG. 1D. In addition, as shown in FIG. Another permanent magnet 53a, 53b may be provided, or two permanent magnets 53c, 53d may be provided at a predetermined angle with respect to the side surface of the rotor 5, as shown in FIG. 2B. 2A and 2B are partial cross-sectional views (corresponding to a part of a cross section taken along line 1D-1D) showing a rotor 5 of a permanent magnet type electric motor 1 according to another embodiment of the present invention.
 さらに、後述する本例の減磁処理による出力抑制効果は、特に永久磁石53にフェライト磁石を採用した場合に顕著に現れるが、ネオジムNdやディスプロシウムDyなどの重希土類磁石を排斥する趣旨ではない。効果の大小はともかく本例の減磁処理による効果を奏することは同じであるから、この種の重希土類磁石を用いてもよい。また、フェライト磁石と異なり、高温雰囲気で減磁耐力が低下する磁石を用いた電動モータである場合は、高温側において、本例に係る技術を適用すればよい。 Further, the output suppression effect by the demagnetization process of the present example described later appears remarkably particularly when a ferrite magnet is adopted for the permanent magnet 53, but for the purpose of eliminating heavy rare earth magnets such as neodymium Nd and dysprosium Dy. Absent. This kind of heavy rare earth magnet may be used because the effect of the demagnetization treatment of this example is the same regardless of the magnitude of the effect. In addition, unlike a ferrite magnet, in the case of an electric motor using a magnet whose demagnetization resistance decreases in a high temperature atmosphere, the technology according to this example may be applied on the high temperature side.
《電動モータの製造方法》
 次に、本例の電動モータ1の製造方法について説明する。図3Aは、本例の電動モータ1の製造方法の一例を示す工程図であり、本例の製造方法は、図1Cに示すロータサブアッセンブリ5を組み立てるロータ組立工程P1と、同じく図1Cに示すハウジング2,フロントカバーアッセンブリ3及びコイルサブアッセンブリ6を図1Bに示すようにステータサブアッセンブリ7に組み立てるステータ組立工程P2と、を備える。そして、次のモータ組立工程P3では、図1Bに示すように、ステータサブアッセンブリ7,ロータサブアッセンブリ5及びリヤカバーサブアッセンブリ4を組み付けて、図1Aに示す電動モータ1が完成する。なお、続く基本特性試験工程P6では、初期誘起電圧を含む電動モータの諸特性が測定され、着磁状態やコイル品質の検査などが行われる。また、出力検査工程P7では、製造された電動モータの出力測定を含む最終動作試験などが行われる。
<Method for manufacturing electric motor>
Next, the manufacturing method of the electric motor 1 of this example is demonstrated. FIG. 3A is a process diagram showing an example of a manufacturing method of the electric motor 1 of this example. The manufacturing method of this example is the same as that shown in FIG. 1C in the same manner as the rotor assembly step P1 for assembling the rotor subassembly 5 shown in FIG. 1C. A stator assembly step P2 for assembling the housing 2, the front cover assembly 3 and the coil subassembly 6 to the stator subassembly 7 as shown in FIG. 1B. In the next motor assembly step P3, as shown in FIG. 1B, the stator subassembly 7, the rotor subassembly 5, and the rear cover subassembly 4 are assembled to complete the electric motor 1 shown in FIG. 1A. In the subsequent basic characteristic test step P6, various characteristics of the electric motor including the initial induced voltage are measured, and the magnetized state and the coil quality are inspected. In the output inspection process P7, a final operation test including output measurement of the manufactured electric motor is performed.
 なお、上述したロータ組立工程P1において、永久磁石53は未着磁の状態であり、したがって、モータ組立工程P3においてロータサブアッセンブリ5をステータサブアッセンブリ7に組み付けるに際し、永久磁石53の磁力によってロータサブアッセンブリ5がコイルサブアッセンブリ6に吸着することはなく、組立作業性が良好となる。 In the rotor assembly process P1, the permanent magnet 53 is not magnetized. Therefore, when the rotor subassembly 5 is assembled to the stator subassembly 7 in the motor assembly process P3, the magnetic force of the permanent magnet 53 causes the rotor subassembly 5 to be assembled. The assembly 5 is not attracted to the coil subassembly 6 and the assembly workability is improved.
 次の着磁処理工程P4では、図1Aに示す電動モータ1の組み付け完成状態でコイル62の端子を着磁電源に接続して着磁電流を通電し、永久磁石53を完全着磁(飽和着磁)する。電動モータ1の仕様に応じて複数回の着磁処理が必要な場合は、この着磁処理工程を複数回繰り返す。なお、着磁処理を行う際の電動モータ1の形態は、図1Aに示す組み付け完成状態のほか、図1Aの状態からリヤカバー4を取り外した状態、すなわちステータサブアッセンブリ7にロータサブアッセンブリ5を組み付けた状態であってもよい。また、ステータサブアッセンブリ7に代えて、これと同じコイルアッセンブリを含む構造の専用着磁装置を用いてもよい。 In the next magnetizing process P4, the assembly of the electric motor 1 shown in FIG. 1A is completed, and the terminal of the coil 62 is connected to a magnetizing power source to energize the magnetizing current, and the permanent magnet 53 is fully magnetized (saturated magnetizing). Magnetize). When a plurality of magnetization processes are required according to the specifications of the electric motor 1, this magnetization process step is repeated a plurality of times. In addition to the assembled state shown in FIG. 1A, the form of the electric motor 1 when performing the magnetizing process is a state where the rear cover 4 is removed from the state shown in FIG. 1A, that is, the rotor subassembly 5 is assembled to the stator subassembly 7. It may be in the state. Further, instead of the stator subassembly 7, a dedicated magnetizing device having a structure including the same coil assembly may be used.
 図4は、着磁処理工程P4において、着磁電流により永久磁石53に作用する磁界の強さH(A/m,横軸)と、永久磁石53の内部の磁束密度B(T=Wb/m)又は永久磁石53の磁化J(T=Wb/m)との関係を示す磁化曲線である。着磁処理工程P4では、永久磁石53を含むロータサブアッセンブリ5に正の磁界を作用させるので、磁化曲線の第1象限を示すものとなる。この着磁処理工程P4において所定の着磁電流(たとえば、正の磁界が最も強くなる電流位相角β=-90°の着磁電流)を通電すると、ステータ7からの外部磁界がロータ5の永久磁石53に作用し、これにより、初期磁化J及び初期磁束密度Bはゼロ(点a)であった永久磁石53の磁化J及び磁束密度Bが、点a→点b→点cと変化し、この点cにおいて飽和状態(完全着磁状態)に達する。永久磁石53を飽和状態にするための通電電流値は予め理論計算や検証実験などにより求められている。永久磁石53が飽和状態に達したらステータ7への通電を停止し、外部磁界をゼロにする。これにより、永久磁石53の磁化J及び磁束密度Bは、点cから点dへ変化する。この点dにおける磁化は残留磁化Jr(=4πIr)、磁束密度は残留磁束密度Brと称され、後述する図6などの磁界の強さH=0のときの磁化J及び磁束密度Bに相当する。以上の着磁処理工程P4により、永久磁石53が完全着磁された電動モータ1が得られる。 FIG. 4 shows the intensity H (A / m, horizontal axis) of the magnetic field acting on the permanent magnet 53 by the magnetizing current and the magnetic flux density B (T = Wb / inside) of the permanent magnet 53 in the magnetizing process P4. m 2 ) or a magnetization curve showing a relationship with the magnetization J (T = Wb / m 2 ) of the permanent magnet 53. In the magnetizing process P4, a positive magnetic field is applied to the rotor subassembly 5 including the permanent magnet 53, so that the first quadrant of the magnetization curve is shown. When a predetermined magnetizing current (for example, a magnetizing current having a current phase angle β = −90 ° at which the positive magnetic field is the strongest) is energized in the magnetizing process P 4, the external magnetic field from the stator 7 is permanently applied to the rotor 5. Acting on the magnet 53, the magnetization J and the magnetic flux density B of the permanent magnet 53 whose initial magnetization J and initial magnetic flux density B were zero (point a) changed from point a → point b → point c, At this point c, a saturated state (fully magnetized state) is reached. An energization current value for bringing the permanent magnet 53 into a saturated state is obtained in advance by theoretical calculation or verification experiment. When the permanent magnet 53 reaches a saturated state, the energization to the stator 7 is stopped and the external magnetic field is made zero. As a result, the magnetization J and the magnetic flux density B of the permanent magnet 53 change from the point c to the point d. The magnetization at this point d is called residual magnetization Jr (= 4πIr), and the magnetic flux density is called residual magnetic flux density Br, which corresponds to the magnetization J and magnetic flux density B when the magnetic field strength H = 0 in FIG. . The electric motor 1 in which the permanent magnet 53 is completely magnetized is obtained by the above magnetizing process P4.
 永久磁石53の着磁処理を終えると電動モータ1は駆動可能な状態になる。しかしながら、この電動モータ1をたとえば電気自動車の走行駆動用モータとして実車に搭載した場合に、走行中に減磁現象が生じることがある。図5は、電動モータ1を搭載した電気自動車が走行している場合のモータ電流指令値と、それに対する実際のモータ電流と、モータ回転数(回転速度)との関係例を示すグラフである。 When the permanent magnet 53 is magnetized, the electric motor 1 is ready for driving. However, when this electric motor 1 is mounted on a real vehicle as a driving motor for an electric vehicle, for example, a demagnetization phenomenon may occur during traveling. FIG. 5 is a graph showing a relationship example between a motor current command value when an electric vehicle equipped with the electric motor 1 is traveling, an actual motor current corresponding to the motor current command value, and a motor rotation speed (rotation speed).
 たとえば、時間t1までの間は、アクセル開度に応じて設定されたモータ電流指令値に対して、モータ電流値及びモータ回転数が正常値であったものが、時間t1においてたとえばタイヤのスリップが発生したとすると、タイヤのグリップ力を回復するための制御が行われ、時間t2~t3の間でモータ電流指令値より大きいモータ電流(過電流)が流れることがある。一般に電動モータ1には定格出力と定格電流が定められ、通常使用時にはこれら定格出力内及び定格電流内で使用されるが、上述した特異な状況下では定格電流を超える電流が流れることがある。この過電流により、ステータ7からの磁界がロータ5の永久磁石53に逆磁界が作用し、これにより永久磁石53が使用中に減磁することがある。 For example, until the time t1, the motor current value and the motor rotation speed are normal values with respect to the motor current command value set according to the accelerator opening. If it occurs, control for restoring the grip force of the tire is performed, and a motor current (overcurrent) larger than the motor current command value may flow between times t2 and t3. In general, a rated output and a rated current are determined for the electric motor 1 and are used within the rated output and the rated current during normal use. However, a current exceeding the rated current may flow under the above-described unique circumstances. Due to this overcurrent, a magnetic field from the stator 7 causes a reverse magnetic field to act on the permanent magnet 53 of the rotor 5, which may demagnetize the permanent magnet 53 during use.
 この減磁現象についてさらに詳細に説明する。ネオジムNdやディスプロシウムDyなどの重希土類元素を使わないフェライト磁石AFe(A=Mn,Co,Ni,Cu,Zn)は、低コストであり、資源調達リスクが回避できるといった観点から、多くの永久磁石式電動モータで使用されている。しかし、フェライト磁石は低温で減磁し易いという問題点があり、減磁をすると電動モータ1の出力が低下し、所期の性能を発揮することができない。まずこの減磁現象を図6~図9を参照して説明する。 This demagnetization phenomenon will be described in more detail. Ferrite magnets AFe 2 O 4 (A = Mn, Co, Ni, Cu, Zn) that do not use heavy rare earth elements such as neodymium Nd and dysprosium Dy are low in cost and can avoid resource procurement risks. It is used in many permanent magnet electric motors. However, the ferrite magnet has a problem that it is easy to demagnetize at a low temperature. When demagnetization is performed, the output of the electric motor 1 is reduced and the desired performance cannot be exhibited. First, this demagnetization phenomenon will be described with reference to FIGS.
 図6は、所定の低温(たとえば-20℃以下の極低温)におけるフェライト磁石の磁化曲線(磁気履歴曲線,ヒステリシスループとも称される。)を示す図であり、このうちの第2象限に表される減磁曲線を示したものである。図6の横軸は磁石に作用する磁界の強さH(A/m)、縦軸は磁石内部の磁束密度B(T=Wb/m)又は磁石の磁化J(T=Wb/m)を表し、J-H曲線とB-H曲線の両方を示したものである。電動モータ1として使用する際の減磁特性を表現する場合には、磁石には逆磁界が作用して横軸の磁界の強さHは負の値となるため、第2象限を描画する。これらJ-H曲線とB-H曲線は、磁石内部の磁束密度B,磁界の強さH,磁化J,真空中の透磁率μ(=4π×10-7H/m)を用いて、B=μ・H+Jの関係が成立する。したがって、磁界の強さH=0の場合にはB=Jとなる。 FIG. 6 is a diagram showing a magnetization curve (also referred to as a magnetic history curve or a hysteresis loop) of a ferrite magnet at a predetermined low temperature (for example, an extremely low temperature of −20 ° C. or lower), and is shown in the second quadrant. It shows the demagnetization curve to be performed. The horizontal axis in FIG. 6 is the magnetic field strength H (A / m) acting on the magnet, and the vertical axis is the magnetic flux density B (T = Wb / m 2 ) inside the magnet or the magnetization J (T = Wb / m 2 ) of the magnet. ) And shows both the JH curve and the BH curve. When expressing the demagnetization characteristics when used as the electric motor 1, a reverse magnetic field acts on the magnet, and the strength H of the magnetic field on the horizontal axis becomes a negative value, so the second quadrant is drawn. These JH curve and BH curve are obtained by using magnetic flux density B inside the magnet, magnetic field strength H, magnetization J, and permeability μ 0 (= 4π × 10 −7 H / m) in vacuum, The relationship B = μ 0 · H + J is established. Therefore, when the magnetic field strength H = 0, B = J.
 図6において、B-H曲線と、磁石や磁路の形状で決まるパーミアンス係数pc(=B/H)の傾きの直線との交点を点aとし、点aを通る垂線とJ-H曲線との交点を点bとすると、点a,bは不動作状態(=外部磁界Hがゼロ)における磁石の状態を表し、一般に「磁石の動作点」と称される。さらに、モータを駆動するために外部磁界Hex(図5にて説明した過電流による逆磁界などに相当)が印加されると、原点Oと点bを通る直線pc’を、印加された外部磁界Hexだけ左に平行移動させたときのJ-H曲線との交点cに、磁石の動作点が移動する。B-H曲線上の動作点は点cを通る垂線とB-H曲線との交点dとなる。 In FIG. 6, the intersection of the BH curve and the straight line of the inclination of the permeance coefficient pc (= B / H) determined by the shape of the magnet or magnetic path is defined as a point a, and a perpendicular passing through the point a and a JH curve The point a, b represents the state of the magnet in the non-operating state (= the external magnetic field H is zero), and is generally referred to as the “magnet operating point”. Further, when an external magnetic field Hex (corresponding to the reverse magnetic field caused by the overcurrent described in FIG. 5) is applied to drive the motor, a straight line pc ′ passing through the origin O and the point b is applied to the applied external magnetic field. The operating point of the magnet moves to the intersection c with the JH curve when translated to the left by Hex. The operating point on the BH curve is the intersection d of the perpendicular passing through the point c and the BH curve.
 この状態から外部磁界Hexが弱められると、動作点は、点dを通るリコイル透磁率μrの傾きを有する直線上を右に移動する。外部磁界Hexのない状態では直線pcとの交点a’が動作点となり、上述した初期点aに対して磁束密度の低下分ΔBだけ永久磁石が減磁することになる。また、J-H曲線上における磁石の動作点b’は、点a’を通る垂線に平行な直線と直線pc’の交点になる。 When the external magnetic field Hex is weakened from this state, the operating point moves to the right on a straight line having the recoil permeability μr passing through the point d. In the absence of the external magnetic field Hex, the intersection point a 'with the straight line pc becomes the operating point, and the permanent magnet is demagnetized by the decrease ΔB of the magnetic flux density with respect to the initial point a described above. The operating point b 'of the magnet on the JH curve is the intersection of a straight line parallel to the perpendicular passing through the point a' and the straight line pc '.
 これに対して図7は、図6に示す外部磁界Hexに比べて小さい外部磁界Hexが印加された場合の減磁ΔBを示す磁石特性図であり、図6のように外部磁界Hexが大きいほど減磁の度合ΔBは大きく、図7のように外部磁界Hexが比較的小さい場合には減磁ΔBはほとんど発生していないことが分かる。 On the other hand, FIG. 7 is a magnet characteristic diagram showing demagnetization ΔB when an external magnetic field Hex smaller than the external magnetic field Hex shown in FIG. 6 is applied. As the external magnetic field Hex increases as shown in FIG. The degree of demagnetization ΔB is large, and it can be seen that almost no demagnetization ΔB occurs when the external magnetic field Hex is relatively small as shown in FIG.
 また、磁石特性は温度により変化し、フェライト磁石では低温ほど減磁しやすい傾向にある。図8は常温(室温、以下同じ)におけるフェライト磁石の磁化曲線例であり、この場合は、図6の低温時と比較して磁束密度の低下量ΔBが小さいことが分かる。これは、残留磁束密度Brが温度に対して負の係数を有することから、低温時に比べて常温では磁束密度Bの絶対値が小さくなるからである。 Also, the magnet characteristics change with temperature, and ferrite magnets tend to demagnetize at lower temperatures. FIG. 8 shows an example of the magnetization curve of the ferrite magnet at room temperature (room temperature, the same applies hereinafter). In this case, it can be seen that the amount of decrease ΔB in the magnetic flux density is smaller than that at the low temperature in FIG. This is because since the residual magnetic flux density Br has a negative coefficient with respect to temperature, the absolute value of the magnetic flux density B becomes smaller at room temperature than at low temperature.
 次に、このような特性を有するフェライト磁石を電動モータ1のロータ5又はステータ7に適用した場合に、磁石の減磁が電動モータの特性にどのような影響を与えるかについて説明する。一般的に、電動モータを駆動する電流が大きい程、大きなトルク・出力が得られるが、駆動電流の増大につれて磁石に作用する外部磁界Hexも増大し、一定値以上の電流から磁石が減磁する。この磁石の減磁の度合を表す指標としては、電動モータでは無負荷誘起電圧を用いるのが一般的である。この無負荷誘起電圧とは、モータ端子を開放した無通電の状態で、ロータを所定の速度で外力により回転させたときに発生する端子電圧であり、発生電圧は磁石の磁束に比例する。 Next, how the demagnetization of the magnet affects the characteristics of the electric motor when a ferrite magnet having such characteristics is applied to the rotor 5 or the stator 7 of the electric motor 1 will be described. In general, the greater the current that drives the electric motor, the greater the torque and output that can be obtained. However, as the drive current increases, the external magnetic field Hex that acts on the magnet also increases, and the magnet demagnetizes from a current above a certain value. . As an index representing the degree of demagnetization of the magnet, a no-load induced voltage is generally used in an electric motor. The no-load induced voltage is a terminal voltage generated when the rotor is rotated by an external force at a predetermined speed in a non-energized state where the motor terminal is opened, and the generated voltage is proportional to the magnetic flux of the magnet.
 図9は、低温雰囲気及び常温雰囲気のそれぞれにおいて、種々の駆動電流を印加して電動モータ1を駆動した後に測定した、無負荷誘起電圧の例を示すグラフであり、横軸は電動モータの駆動電流を示し、縦軸は無負荷誘起電圧を示す。なお横軸の駆動電流は、その電動モータの定格駆動電流値を1とした場合の相対値であり、縦軸は初期状態の無負荷誘起電圧を1とした場合の相対値である。図9に示すように、定格電流より小さな駆動電流を印加して電動モータを駆動した場合には、無負荷誘起電圧は初期状態から変化はないが、定格電流を超えたある値を境に、駆動電流が増大するほど磁石が減磁し、無負荷誘起電圧が低下することが分かる。また、磁石の温度が低い方が、より小さな電流で減磁する傾向があり、同じ電流では磁石の温度が低い方が減磁の度合が大きい傾向がある。例えば、駆動電流を1以下で使用している場合は、減磁が生じ易い低温においてでも誘起電圧はほぼ初期状態に等しいが、定格電流の1.4倍の駆動電流を通電すると、低温条件では約3%の誘起電圧の低下に相当する減磁が生じることになる。 FIG. 9 is a graph showing an example of no-load induced voltage measured after driving the electric motor 1 by applying various driving currents in a low temperature atmosphere and a normal temperature atmosphere, and the horizontal axis represents driving of the electric motor. The current indicates the no-load induced voltage. The drive current on the horizontal axis is a relative value when the rated drive current value of the electric motor is 1, and the vertical axis is a relative value when the no-load induced voltage in the initial state is 1. As shown in FIG. 9, when an electric motor is driven by applying a drive current smaller than the rated current, the no-load induced voltage does not change from the initial state, but at a certain value exceeding the rated current, It can be seen that as the drive current increases, the magnet is demagnetized and the no-load induced voltage decreases. Further, the lower the temperature of the magnet, there is a tendency to demagnetize with a smaller current. At the same current, the lower the temperature of the magnet, the greater the degree of demagnetization. For example, when the drive current is 1 or less, the induced voltage is almost equal to the initial state even at a low temperature at which demagnetization is likely to occur. However, if a drive current of 1.4 times the rated current is applied, Demagnetization corresponding to a decrease in induced voltage of about 3% occurs.
 こうした磁石の磁束の低下は、電動モータ1のトルク・出力の低下に直結する。すなわち、表面磁石型モータでは、発生するトルクは全て磁石磁束と電流との相互作用によるマグネットトルクなので、磁石の磁束の低下率が直接モータのトルク・出力の低下率となる。また、埋め込み磁石型の場合には、磁石の磁束以外にリラクタンストルクの占める割合があるため、磁石の磁束の低下の割合ほどはモータのトルク・出力は低下しないものの、減磁の度合によっては無視できない性能低下が起こるものと考えられる。 Such a decrease in the magnetic flux of the magnet directly leads to a decrease in the torque and output of the electric motor 1. That is, in the surface magnet type motor, the generated torque is all the magnet torque due to the interaction between the magnet magnetic flux and the current, so the rate of decrease of the magnetic flux of the magnet directly becomes the rate of decrease of the torque / output of the motor. In the case of the embedded magnet type, there is a ratio of reluctance torque in addition to the magnetic flux of the magnet, so although the motor torque / output does not decrease as much as the decrease of the magnetic flux of the magnet, it is ignored depending on the degree of demagnetization. It is thought that performance degradation that cannot be done will occur.
 注意すべきことは、このような永久磁石53の減磁による電動モータ1のトルク・出力の低下といった性能低下が、製品である電動モータ1の使用中に発生し得ることである。すなわち、製品を購入した直後と比較して、たとえば、空気調和機の圧縮機用モータに使用した場合は暖房能力の低下が懸念され、電気自動車の走行駆動用モータに使用した場合には加速性能の低下が懸念される。また、磁石磁束の状態が変化することで、電磁気的な加振力が増大し、電動モータの騒音が悪化したり、効率悪化により空気調和機使用時の電気料金の増加や電気自動車の航続距離の低下に波及したりするおそれもある。 It should be noted that performance degradation such as a decrease in torque and output of the electric motor 1 due to demagnetization of the permanent magnet 53 can occur during use of the electric motor 1 as a product. That is, compared to immediately after purchasing the product, for example, when used for a compressor motor of an air conditioner, there is a concern about a decrease in heating capacity, and when used for a driving motor of an electric vehicle, acceleration performance There is concern about the decline. In addition, the change in the state of the magnetic flux increases the electromagnetic excitation force, which worsens the noise of the electric motor, increases the electricity bill when using the air conditioner due to the deterioration of efficiency, and the range of the electric vehicle. There is also a risk of spilling over.
 以上のようなことから、本例では電動モータ1を製品として出荷する前、すなわち製品として初期駆動する前に、電動モータの製造ラインにおいて、予め減磁処理を施す(図3Aの減磁処理工程P5)。 As described above, in this example, before the electric motor 1 is shipped as a product, that is, before the initial drive as the product, the demagnetization process is performed in advance on the electric motor production line (demagnetization process step in FIG. 3A). P5).
 図6にて説明したとおり、図6のJ-H曲線において、初期のフェライト磁石型モータの不動作時の磁石の動作点は点bであるが、磁石の減磁耐力を超える外部磁界Hexが作用すると磁石は減磁し、外部磁界Hexを除去した後のモータの不動作時の磁石の動作点はb’となる。ところがこのとき、図10に示すように、その後再び外部磁界Hexを作用させても、磁石の動作点は初期状態から外部磁界Hexを作用させたのと同じ点cとなり、外部磁界Hexを除去した後の動作点はb’となる。すなわち、一度外部磁界Hexを印加して減磁させると、その後は外部磁界Hexを超えない磁界を作用させる限り、磁石の減磁は進行することがない。厳密には、図10に示すように多少のヒステリシスをもったマイナーループの特性となるが、全体の減磁特性から考えると微小な範囲ととらえることができる。 As explained in FIG. 6, in the JH curve of FIG. 6, the operating point of the magnet when the initial ferrite magnet type motor is not operating is the point b, but the external magnetic field Hex exceeding the demagnetization resistance of the magnet is When acting, the magnet is demagnetized, and the operating point of the magnet when the motor is not operating after removing the external magnetic field Hex is b ′. However, at this time, as shown in FIG. 10, even if the external magnetic field Hex is applied again thereafter, the operating point of the magnet becomes the same point c as when the external magnetic field Hex was applied from the initial state, and the external magnetic field Hex was removed. The later operating point is b ′. That is, once the external magnetic field Hex is applied and demagnetized, the demagnetization of the magnet does not proceed as long as a magnetic field not exceeding the external magnetic field Hex is applied thereafter. Strictly speaking, the characteristic is a minor loop characteristic having some hysteresis as shown in FIG. 10, but it can be regarded as a minute range in view of the entire demagnetization characteristic.
 たとえば、上述したとおり、本例の電動モータ1を所定の低温にて定格駆動電流の1.4倍の電流で駆動すると、無負荷誘起電圧が初期状態に対して約3%低下する(図9参照)。しかし、2度目以降に1.4倍の電流で駆動しても、磁石の減磁は進行しないため、初期状態に対して約3%の低下に留まる。また、これより小さな電流で再度駆動した場合でも、既に1.4倍の駆動電流で減磁させているため、初期状態に対して約3%低下した誘起電圧を示す。したがって、図9の低温時のような特性(図11に点線で示す)を有する電動モータ1については、一度1.4倍の電流で駆動すると、誘起電圧の特性は図11の実線のようになる。すなわち、初期状態に対して約3%の誘起電圧が低下しているものの、1.4倍の電流までは磁石の磁化Jが変化しないため、その後に減磁が進行することなく、誘起電圧の特性は1.4倍の電流まで不変となる。本例では、このような減磁処理を電動モータ1の製造工程(図3A,図3Bの減磁処理工程P5)で実施することにより、定格電流の1.4倍の電流まで減磁耐力を向上させた電動モータ1を提供することができるようになる。 For example, as described above, when the electric motor 1 of this example is driven at a predetermined low temperature with a current 1.4 times the rated drive current, the no-load induced voltage is reduced by about 3% with respect to the initial state (FIG. 9). reference). However, even if it is driven with a current of 1.4 times after the second time, the demagnetization of the magnet does not proceed, so that the reduction is only about 3% with respect to the initial state. Further, even when the driving is performed again with a current smaller than this, since the demagnetization is already performed with the driving current of 1.4 times, the induced voltage is reduced by about 3% with respect to the initial state. Therefore, when the electric motor 1 having the characteristics at the low temperature of FIG. 9 (shown by the dotted line in FIG. 11) is driven once with 1.4 times the current, the induced voltage characteristics are as shown by the solid line in FIG. Become. That is, although the induced voltage is reduced by about 3% with respect to the initial state, the magnetization J of the magnet does not change up to 1.4 times the current. The characteristics remain unchanged up to 1.4 times the current. In this example, by carrying out such a demagnetization process in the manufacturing process of the electric motor 1 (demagnetization process P5 in FIGS. 3A and 3B), the demagnetization resistance can be increased to 1.4 times the rated current. An improved electric motor 1 can be provided.
 ただし、本例の減磁処理P5において電動モータ1の駆動電流を際限なく大きくして、永久磁石53に作用する逆磁界を極めて大きくすると、部位により程度の差はあれ、永久磁石53のほぼ全体が完全着磁の状態から減磁するとともに、減磁が急速に進行して磁束が著しく低下する。図9及び図11において電流値が大きい領域では無負荷誘起電圧が急速に低下していることが、その状態を示している。ところが、電動モータ1の設計にもよるが、通常は定格電流の2~4割増しの電流であれば、減磁するのは図1D、図2A及び図2Bに破線円で示すように、永久磁石53のエッジ部53eなどの局所的な部位に留まることが、本発明者らによって確認されている。換言すれば、外部磁界Hexが印加されるステータ7とのギャップGに対向する側の永久磁石53のエッジ部53eに留まる。このため、減磁処理をしたといっても永久磁石53の磁束の低下率は小さく、本例の電動モータ1では誘起電圧が約3%低下するだけである。 However, when the drive current of the electric motor 1 is increased without limit in the demagnetization process P5 of this example and the reverse magnetic field acting on the permanent magnet 53 is extremely increased, the entire permanent magnet 53 is almost entirely changed depending on the portion. Is demagnetized from the fully magnetized state, and demagnetization proceeds rapidly to significantly reduce the magnetic flux. In FIG. 9 and FIG. 11, the state where the no-load induced voltage rapidly decreases in the region where the current value is large indicates that state. However, depending on the design of the electric motor 1, the permanent magnet is usually demagnetized if the current is 20 to 40% higher than the rated current, as indicated by the broken-line circles in FIGS. 1D, 2A and 2B. It has been confirmed by the present inventors that it remains in a local part such as the edge part 53e of 53. In other words, it remains at the edge 53e of the permanent magnet 53 on the side facing the gap G with the stator 7 to which the external magnetic field Hex is applied. For this reason, even if the demagnetization process is performed, the rate of decrease in the magnetic flux of the permanent magnet 53 is small, and the induced voltage is only reduced by about 3% in the electric motor 1 of this example.
 永久磁石式同期モータのトルクTは、極対数Pn,磁石の鎖交磁束Φa,電流Ia,電流位相角β,d軸インダクタンスLd,q軸インダクタンスLqとして、下記式1で表される。
[数1]
T=Pn・{Φa・Ia・cosβ+1/2・(Lq-Ld)・Ia・sin2β}  …式1
 上記式1の右辺の第2項はリラクタンストルクと称され、埋め込み磁石型同期モータにおいて有効な項であり、表面磁石型モータではゼロになる。磁石の鎖交磁束Φa,電流Iaは、共に電動モータのdq軸座標系における値であるが、鎖交磁束Φaは磁石磁束、電流Iaは電動モータを駆動する交流電流に比例する。また、電動モータ1の出力はトルクと回転数の積である。以上より、駆動する電流の許容値を定格電流値に対して4割程度大きくすることが可能であれば、減磁処理の影響で磁石磁束が3%低下したとしても、大きな出力が得られることが分かる。
The torque T of the permanent magnet type synchronous motor is expressed by the following formula 1 as the number of pole pairs Pn, the interlinkage magnetic flux Φa of the magnet, the current Ia, the current phase angle β, the d-axis inductance Ld, and the q-axis inductance Lq.
[Equation 1]
T = Pn · {Φa · Ia · cosβ + 1/2 · (Lq−Ld) · Ia 2 · sin2β} Equation 1
The second term on the right side of Equation 1 is called reluctance torque, and is an effective term for an embedded magnet type synchronous motor, and is zero for a surface magnet type motor. The interlinkage magnetic flux Φa and the current Ia of the magnet are both values in the dq axis coordinate system of the electric motor, but the interlinkage magnetic flux Φa is proportional to the magnet magnetic flux, and the current Ia is proportional to the alternating current that drives the electric motor. The output of the electric motor 1 is a product of torque and the number of revolutions. From the above, if the allowable value of the driving current can be increased by about 40% of the rated current value, a large output can be obtained even if the magnetic flux decreases by 3% due to the effect of the demagnetization process. I understand.
 本発明において、永久磁石53は磁石単品で完全着磁の状態から少し減磁させた状態とし、これをロータコア51に挿入することも可能である。しかしその場合でも、永久磁石53に作用する外部磁界Hexが実際の電動モータ1を製品として駆動する際の条件に合致させなければならない。これは、不要な部位を減磁させて性能低下を引き起こしたり、また必要な部位に逆磁界が作用せずに、減磁処理が不十分で、製品の駆動中に減磁が進行してしまったりするのを防止するためである。 In the present invention, the permanent magnet 53 is a single magnet, and is made slightly demagnetized from the fully magnetized state, and can be inserted into the rotor core 51. However, even in that case, the external magnetic field Hex acting on the permanent magnet 53 must be matched with the conditions for driving the actual electric motor 1 as a product. This may cause performance degradation by demagnetizing unnecessary parts, or a demagnetization process may be inadequate because the reverse magnetic field does not act on the necessary parts, and demagnetization proceeds while the product is driving. This is in order to prevent clogging.
 永久磁石53を単品で着磁処理及び減磁処理する場合に、実際の電動モータ1と同様の磁界分布を得るためには、製品の電動モータ1と同じロータコア形状の軟磁性体に永久磁石53を挿入し、製品の電動モータ1と同じステータ形状のヨークを用いて永久磁石53に逆磁界Hexを印加する必要がある。したがって、ロータ5を組立て、これをステータ7に組付けた上で、電動モータ1の製品状態で所定の電流を通電することで減磁処理をした方が、製造工程上簡素になり好ましい。 In order to obtain a magnetic field distribution similar to that of the actual electric motor 1 when the permanent magnet 53 is magnetized and demagnetized by a single product, the permanent magnet 53 is formed on the same soft magnetic body as the electric motor 1 of the product. It is necessary to apply a reverse magnetic field Hex to the permanent magnet 53 using a yoke having the same stator shape as the electric motor 1 of the product. Therefore, it is preferable to demagnetize the rotor 5 by assembling the rotor 5 and the stator 7 and then applying a predetermined current in the product state of the electric motor 1 to simplify the manufacturing process.
 また、永久磁石53が多少なりとも着磁していると、磁力によりロータ5の組立作業性が悪化する。このため、本例のように電動モータ1は無着磁の永久磁石53をロータ5に組付け、ロータ5の状態又は電動モータ1の状態で着磁処理することが好ましい。着磁処理には、製品としてステータ7に組込んだ後に、電動モータ1に電流を通電して着磁する方法や、ロータ5の状態で生産設備である着磁ヨークで着磁する方法がある。このため、本例のように減磁処理をする際にもロータ5や電動モータ1として組み立てた状態で減磁処理をするとメリットがある。 Further, if the permanent magnet 53 is somewhat magnetized, the assembly workability of the rotor 5 is deteriorated by the magnetic force. For this reason, it is preferable that the electric motor 1 is assembled with a non-magnetized permanent magnet 53 to the rotor 5 and magnetized in the state of the rotor 5 or the electric motor 1 as in this example. The magnetizing process includes a method of magnetizing the electric motor 1 by energizing the electric motor 1 after being incorporated into the stator 7 as a product, and a method of magnetizing with a magnetizing yoke which is a production facility in the state of the rotor 5. . For this reason, there is a merit when the demagnetization process is performed in the assembled state as the rotor 5 or the electric motor 1 even when the demagnetization process is performed as in this example.
 なお、永久磁石53の減磁処理をする前に、永久磁石53は一旦完全着磁をすることが好ましい。これは、本発明の減磁処理の目的は、製品使用時に使われ得る最大電流を通電し、永久磁石53の減磁し易い部位を製品の製造過程で減磁させておき、それ以上減磁を進行させないことであるが、減磁しやすい部位は着磁磁界も他の部位に比べて磁界が大きいからである。無着磁の状態からこの部位を不完全な状態に着磁(完全着磁に達しない状態に)すると、他の部位には十分な着磁磁界が発生せず、所望の性能を得るために必要な永久磁石53の着磁状態を作り出すことができない。したがって、十分強い磁界で永久磁石53の全体を完全着磁しておいてから、減磁処理により、逆磁界が発生し易い部位を減磁させるのが好ましい。 In addition, it is preferable that the permanent magnet 53 is once completely magnetized before demagnetizing the permanent magnet 53. The purpose of the demagnetization process of the present invention is to energize the maximum current that can be used when the product is used, demagnetize the portion of the permanent magnet 53 that is likely to be demagnetized during the manufacturing process, and further demagnetize it. This is because the magnetized magnetic field is larger in the part where the demagnetization is likely to occur than in other parts. If this part is magnetized from a non-magnetized state to an incomplete state (a state in which complete magnetization is not reached), a sufficient magnetizing magnetic field will not be generated in other parts, and the desired performance will be obtained. The necessary magnetized state of the permanent magnet 53 cannot be created. Therefore, it is preferable to demagnetize a portion where a reverse magnetic field is likely to be generated by demagnetization processing after the permanent magnet 53 is completely magnetized with a sufficiently strong magnetic field.
 なお、図3Aに示す製造工程例では、モータ組立工程P3にて図1Aのように電動モータ1を組み立てたのち、着磁処理P4と減磁処理P5を行うが、本発明の減磁処理工程P5は着磁処理工程P4の後工程であれば特に限定されない。図3Bは、本発明の他の実施の形態に係る永久磁石式電動モータの製造方法を示す工程図であり、この製造工程例では、図1Cに示すロータサブアッセンブリ5を組み立てるロータ組立工程P1の直後に、ロータ5の永久磁石53を着磁する着磁処理工程P4が設けられ、さらにその直後に、本例の減磁処理工程P5が設けられている。そして、減磁処理までを終えたロータサブアッセンブリ5と、ステータ組立工程P2により併行して組み立てられたステータサブアッセンブリ7とを、次のモータ組立工程P3にて組み付ける。これにより、図1Aに示す電動モータ1が完成する。 In the manufacturing process example shown in FIG. 3A, the magnetizing process P4 and the demagnetizing process P5 are performed after the electric motor 1 is assembled as shown in FIG. 1A in the motor assembling process P3. P5 will not be specifically limited if it is a post process of the magnetization process P4. FIG. 3B is a process diagram showing a method of manufacturing a permanent magnet electric motor according to another embodiment of the present invention. In this example of the manufacturing process, a rotor assembly process P1 for assembling the rotor subassembly 5 shown in FIG. 1C is shown. Immediately after that, a magnetizing process P4 for magnetizing the permanent magnet 53 of the rotor 5 is provided, and immediately thereafter, a demagnetizing process P5 of this example is provided. Then, the rotor subassembly 5 that has been subjected to the demagnetization process and the stator subassembly 7 assembled together in the stator assembly process P2 are assembled in the next motor assembly process P3. Thereby, the electric motor 1 shown in FIG. 1A is completed.
 次に、減磁処理P5を行う際の着磁処理電流について説明する。本例では、最も効果的・効率的に減磁処理を実行するために、交流電源又は直流電源から供給される減磁処理電流の位相角βを所定の値に制御する。たとえば、電動モータ1のd軸磁極軸の磁束Ψdは、d軸インダクタンスをLd,d軸電流をId,電流位相角をβ(-90°≦β≦90°)とすると、Ψd=-Ld・Id・sinβで表されるから、β=90°のときに逆磁界が最大(磁界が最小)となる。したがって、減磁処理工程P5において、ロータ5とステータ7との回転方向の位置を相対的に固定した状態(両方ともに非回転又は両方の回転数及び回転方向が同じ)で、交流電源装置を制御してステータ7のコイル62に流す減磁処理電流の位相角βを90°に設定した上で減磁処理を行う。これにより、永久磁石53に最大の逆磁界が作用することになるので、効率的に減磁処理を行うことができる。 Next, the magnetization processing current when performing the demagnetization processing P5 will be described. In this example, in order to execute the demagnetization process most effectively and efficiently, the phase angle β of the demagnetization process current supplied from the AC power supply or the DC power supply is controlled to a predetermined value. For example, if the d-axis inductance is Ld, the d-axis current is Id, and the current phase angle is β (−90 ° ≦ β ≦ 90 °), the magnetic flux Ψd of the d-axis magnetic pole axis of the electric motor 1 is Ψd = −Ld · Since it is expressed by Id · sin β, the reverse magnetic field becomes maximum (the magnetic field is minimum) when β = 90 °. Therefore, in the demagnetization process P5, the AC power supply device is controlled in a state where the rotational direction positions of the rotor 5 and the stator 7 are relatively fixed (both non-rotating or both rotating speed and rotating direction are the same). Then, the demagnetization process is performed after setting the phase angle β of the demagnetization process current flowing through the coil 62 of the stator 7 to 90 °. Thereby, since the maximum reverse magnetic field acts on the permanent magnet 53, the demagnetization process can be performed efficiently.
 減磁処理電流の位相角βを所定の値に制御する他の例として、上述した位相角β=90°に設定する以外に以下の例を挙げることができる。 As another example of controlling the phase angle β of the demagnetization processing current to a predetermined value, the following example can be given in addition to setting the phase angle β = 90 °.
 本例の減磁処理の目的は、電動モータ1を製品として使用している際に何らかの原因で減磁現象が生じるのを抑制することにある。したがって、その電動モータ1の使用状態に応じた減磁処理を予め電動モータの製造ラインで実施することが好ましいといえる。たとえば、製品としての電動モータ1について駆動電流の最大位相角βmaxが設定されている場合には、本例の減磁処理工程P5における減磁処理は、ロータ5とステータ7との回転方向の位置を相対的に固定した状態(両方ともに非回転又は両方の回転数及び回転方向が同じ)で、交流電源装置を制御してステータ7のコイル62に流す減磁処理電流の位相角βをその最大位相角βmax以上の位相角β(≧βmax)に設定する。これにより、減磁処理電流の位相角β=90°に設定する例に比べ、使用時の最大位相角βmaxが90°より小さい場合に、必要以上の減磁処理を行うことがなくなり、出力トルクの減少を抑制することができる。 The purpose of the demagnetization process in this example is to suppress the occurrence of a demagnetization phenomenon for some reason when the electric motor 1 is used as a product. Therefore, it can be said that it is preferable to carry out the demagnetization process according to the usage state of the electric motor 1 in advance on the production line of the electric motor. For example, when the maximum phase angle βmax of the drive current is set for the electric motor 1 as a product, the demagnetization processing in the demagnetization processing step P5 of this example is the position of the rotor 5 and the stator 7 in the rotational direction. In a relatively fixed state (both non-rotating or both rotating speed and rotating direction are the same), the phase angle β of the demagnetizing process current flowing through the coil 62 of the stator 7 by controlling the AC power supply is maximized. The phase angle β is set equal to or larger than the phase angle βmax (≧ βmax). As a result, compared to the example in which the phase angle β of the demagnetization processing current is set to 90 °, when the maximum phase angle βmax in use is smaller than 90 °, the demagnetization processing is not performed more than necessary, and the output torque Can be suppressed.
 また、製品としての電動モータ1についての駆動電流が、最大位相角βmaxではなく、所定の範囲(βs≦β≦βe)が設定されている場合には、本例の減磁処理工程P5において、ロータ5とステータ7との回転方向の位置を相対的に固定した状態(両方ともに非回転又は両方の回転数及び回転方向が同じ)で、交流電源装置を制御してステータ7のコイル62に流す減磁処理電流の位相角βをその位相角の範囲内(βs≦β≦βe)で、離散的又は連続的に変化させながら減磁処理を行う。たとえば、電動モータ1の制御装置に動作点(トルク及び回転数)に応じた最適動作位相角βが記憶されることがあるため、この最適位相角の最小値をβs、最大値をβeに設定して、減磁処理を行う。これにより、必要以上の減磁処理を行うことがなくなり、出力トルクの減少を抑制することができる。特に、減磁処理電流の位相角βをβs~βeまで連続的に変化させながら減磁処理を行うことで、一度に処理を完了することができ効率的である。 When the drive current for the electric motor 1 as a product is not the maximum phase angle βmax but a predetermined range (βs ≦ β ≦ βe) is set, in the demagnetization processing step P5 of this example, In a state where the positions of the rotor 5 and the stator 7 in the rotational direction are relatively fixed (both are non-rotating or both the rotational speed and rotational direction are the same), the AC power supply is controlled to flow through the coil 62 of the stator 7. Demagnetization processing is performed while discretely or continuously changing the phase angle β of the demagnetization processing current within the range of the phase angle (βs ≦ β ≦ βe). For example, since the optimal operating phase angle β corresponding to the operating point (torque and rotation speed) may be stored in the control device of the electric motor 1, the minimum value of the optimal phase angle is set to βs and the maximum value is set to βe. Then, a demagnetization process is performed. Thereby, the demagnetization process more than necessary is not performed, and the decrease in output torque can be suppressed. In particular, by performing the demagnetization process while continuously changing the phase angle β of the demagnetization process current from βs to βe, the process can be completed at a time, which is efficient.
 上述した例では、本例の減磁処理工程P5の減磁処理電流として交流電流を用い、ロータ5とステータ7との回転方向の位置を相対的に固定した状態(両方ともに非回転又は両方の回転数及び回転方向が同じ)で減磁処理を行ったが、直流電流を用いて減磁処理を行ってもよい。ただし、ロータ5とステータ7との回転方向の位置を考慮する必要がある。たとえば、減磁処理電流の位相角βを90°といった固定値に設定する場合には、ロータ5及びステータ7の相対位置を目的とする減磁処理位置に設定した上で減磁処理を行う。また、減磁処理電流の位相角βを所定の範囲(βs≦β≦βe)で変化させながら減磁処理を行う場合には、ロータ5を所定の回転数で回転させながら減磁処理を行う。この場合には、直流の減磁処理電流の位相角βが、電動モータ1の駆動電流の位相角範囲内(βs≦β≦βe)で、離散的又は連続的に変化するような回転数でロータ5を回転させながら直流電流を通電する。なお、ロータ5を回転させるのが最も容易であるが、ステータ又は減磁装置を回転させてもよいし、両方を回転させてもよい。これにより、交流電流を用いた減磁処理と同様に、必要以上の減磁処理を行うことがなくなり、出力トルクの減少を抑制することができる。 In the above-described example, an alternating current is used as the demagnetization processing current in the demagnetization processing step P5 of this example, and the rotational positions of the rotor 5 and the stator 7 are relatively fixed (both non-rotating or both Although the demagnetization process is performed at the same rotational speed and rotation direction, the demagnetization process may be performed using a direct current. However, it is necessary to consider the rotational position of the rotor 5 and the stator 7. For example, when the phase angle β of the demagnetization processing current is set to a fixed value such as 90 °, the demagnetization processing is performed after setting the relative position of the rotor 5 and the stator 7 to the target demagnetization processing position. Further, when the demagnetization process is performed while changing the phase angle β of the demagnetization process current in a predetermined range (βs ≦ β ≦ βe), the demagnetization process is performed while rotating the rotor 5 at a predetermined rotation speed. . In this case, the phase angle β of the DC demagnetization processing current is within the phase angle range of the drive current of the electric motor 1 (βs ≦ β ≦ βe), and the rotation speed is changed discretely or continuously. A direct current is applied while rotating the rotor 5. Although it is easiest to rotate the rotor 5, the stator or the demagnetizing device may be rotated, or both may be rotated. Thereby, like the demagnetization process using an alternating current, the demagnetization process more than necessary is not performed, and the decrease in output torque can be suppressed.
 また、上述した交流電流を用いて減磁処理する例では、ロータ5とステータ7との回転方向の位置を相対的に固定した状態で減磁処理を行ったが、交流電流を用い、且つロータ5とステータ7との回転方向の位置を相対的に回転させながら減磁処理することもできる。そしてこの場合に、減磁処理電流をロータ5の回転に同期した交流電流としてもよいし、非同期の交流電流としてもよい。減磁処理電流をロータ5の回転に同期した交流電流とする場合には、減磁処理電流の位相角βを90°といった固定値に設定することもできるし、所定の範囲(βs≦β≦βe)で変化させることもできる。この場合には、減磁ムラを抑制するために、ロータ5は物理的に少なくとも1回転させることが望ましい。 Further, in the example of demagnetizing using the above-described alternating current, the demagnetizing process is performed in a state where the rotational positions of the rotor 5 and the stator 7 are relatively fixed. The demagnetization process can also be performed while relatively rotating the rotational position of the stator 5 and the stator 7. In this case, the demagnetization processing current may be an alternating current synchronized with the rotation of the rotor 5 or may be an asynchronous alternating current. When the demagnetization processing current is an alternating current synchronized with the rotation of the rotor 5, the phase angle β of the demagnetization processing current can be set to a fixed value such as 90 ° or a predetermined range (βs ≦ β ≦ βe) can also be changed. In this case, in order to suppress demagnetization unevenness, it is desirable that the rotor 5 is physically rotated at least once.
 減磁処理電流をロータ5の回転に非同期の交流電流とする場合には、その交流電流の周波数を下記式1で求められる値に設定することが望ましい。この場合には、減磁ムラを抑制するために、ロータ5は物理的に少なくともn回転させることが望ましい。
 fs=(Nr/60)・[{(βe-βs)/360n}+P]…式1
 ただし、fsは交流電流の周波数、Nrは電動モータの機械角回転数(rpm)、βsは減磁処理開始時の電流位相角(deg)、βeは減磁処理終了時の電流位相角(deg)、nは1以上の整数、Pは電動モータの極対数である。
When the demagnetization processing current is an alternating current that is asynchronous with the rotation of the rotor 5, it is desirable to set the frequency of the alternating current to a value obtained by the following equation 1. In this case, it is desirable to physically rotate the rotor 5 at least n times in order to suppress the demagnetization unevenness.
fs = (Nr / 60) · [{(βe−βs) / 360n} + P]...
Where fs is the frequency of the alternating current, Nr is the mechanical angular rotation speed (rpm) of the electric motor, βs is the current phase angle (deg) at the start of the demagnetization process, and βe is the current phase angle (deg) at the end of the demagnetization process. ), N is an integer of 1 or more, and P is the number of pole pairs of the electric motor.
 図22Aは、減磁処理電流をロータ5の回転に非同期の交流電流とし、機械角回転数Nr=60rpm,減磁処理開始時の電流位相角βs=30deg,減磁処理終了時の電流位相角βe=60deg,n=1,極対数P=2としたときの交流電流の周波数fs(=2.083Hz)に設定した場合の作用を説明するグラフであり、上図は三相交流の減磁処理電流、中図はロータの回転角、下図は電流位相角を、それぞれ同じ時間に対して示したものである。上図に示すように周波数fs=2.083Hzの三相交流電流を通電して減磁処理を行うと、中図に示すようにロータ5が1回転する間に、下図に示すように電流位相角βがβs~βeまで連続的に変動し、この状態で減磁処理がなされることが分かる。 FIG. 22A shows an AC current that is asynchronous with the rotation of the rotor 5 as the demagnetization processing current, the mechanical angle rotation speed Nr = 60 rpm, the current phase angle βs = 30 deg at the start of the demagnetization processing, and the current phase angle at the end of the demagnetization processing. It is a graph explaining the effect | action at the time of setting to the frequency fs (= 2.083Hz) of an alternating current when it is set as (beta) e = 60deg, n = 1, and pole pair number P = 2, The above figure is a demagnetization of a three-phase alternating current The processing current, the middle diagram shows the rotation angle of the rotor, and the lower diagram shows the current phase angle with respect to the same time. When the demagnetization process is performed by applying a three-phase alternating current of frequency fs = 2.083 Hz as shown in the upper diagram, the current phase is changed as shown in the lower diagram while the rotor 5 makes one revolution as shown in the middle diagram. It can be seen that the angle β continuously varies from βs to βe, and the demagnetization process is performed in this state.
 図22Bは、同じく減磁処理電流をロータ5の回転に非同期の交流電流とし、機械角回転数Nr=600rpm,減磁処理開始時の電流位相角βs=30deg,減磁処理終了時の電流位相角βe=60deg,n=30,極対数P=2としたときの交流電流の周波数fs(=20.027Hz)に設定した場合の作用を説明するグラフであり、上図は三相交流の減磁処理電流、中図はロータの回転角、下図は電流位相角を、それぞれ同じ時間に対して示したものである。上図に示すように周波数fs=20.027Hzの三相交流電流を通電して減磁処理を行うと、中図に示すようにロータ5が30回転する間に、下図に示すように電流位相角βがβs~βeまで連続的に変動し、この状態で減磁処理がなされることが分かる。特に本例では、1deg毎にβが変動する間にロータ5が1回転するので、万遍なく逆磁界を作用させることができる。また、ロータ5の機械角回転数を大きくすることで減磁処理に要する時間を短くすることができ、製造コストの低減に加え、減磁処理電流という大電流をステータコイルに通電することによる温度上昇を抑制することもできる。 In FIG. 22B, similarly, the demagnetization processing current is an AC current asynchronous with the rotation of the rotor 5, the mechanical angular rotation speed Nr = 600 rpm, the current phase angle βs = 30 deg at the start of the demagnetization processing, and the current phase at the end of the demagnetization processing. It is a graph explaining the effect | action at the time of setting to the frequency fs (= 20.027Hz) of alternating current when it is set as angle | corner (beta) e = 60deg, n = 30, and the number of pole pairs P = 2, The above figure is reduction of three-phase alternating current. The magnetic processing current, the middle figure shows the rotation angle of the rotor, and the lower figure shows the current phase angle with respect to the same time. When a demagnetization process is performed by applying a three-phase alternating current having a frequency fs = 20.027 Hz as shown in the upper diagram, the current phase is changed as shown in the lower diagram while the rotor 5 rotates 30 times as shown in the middle diagram. It can be seen that the angle β continuously varies from βs to βe, and the demagnetization process is performed in this state. In particular, in this example, since the rotor 5 makes one rotation while β changes every 1 deg, a reverse magnetic field can be applied uniformly. In addition, the time required for the demagnetization process can be shortened by increasing the mechanical angular rotation speed of the rotor 5, and in addition to the reduction of the manufacturing cost, the temperature generated by supplying a large current called the demagnetization process current to the stator coil. The rise can also be suppressed.
 ところで、本例の減磁処理P5を行う場合に、磁石特性のばらつき(永久磁石53の製造上の個体差)によって、電動モータ1の製品個体ごとの出力特性の誤差が拡大する傾向になる。永久磁石53の特性を表す指標としては、主に、磁石の磁束に関係する最大残留磁束密度Brmaxと、減磁に対する強さを表す保持力Hcjがあり、製造ばらつきによって、個体差、特に永久磁石53の製造ロットによって最大残留磁束密度Brmaxも保持力Hcjもある程度のばらつきがある。 By the way, when the demagnetization process P5 of this example is performed, the error in the output characteristics of each product of the electric motor 1 tends to increase due to variations in magnet characteristics (individual differences in manufacturing the permanent magnet 53). The indices representing the characteristics of the permanent magnet 53 mainly include the maximum residual magnetic flux density Brmax related to the magnetic flux of the magnet and the holding force Hcj representing the strength against demagnetization. There are some variations in the maximum residual magnetic flux density Brmax and the holding force Hcj depending on the 53 production lots.
 図12は、こうした最大残留磁束密度Brmaxと保持力Hcjが、製造バラつきによってそれぞれ最大・最小となる4つの組合せにおいて、電動モータ1の減磁処理電流に対して無負荷誘起電圧がどのように変化するかを示したグラフである。これによると、最大残留磁束密度Brmaxが大きいほど初期の誘起電圧が高く、保持力Hcjが大きいほど減磁処理電流に対して誘起電圧が低下し難いことが分かる。本例の電動モータ1では、初期の誘起電圧は、主に永久磁石53の最大残留磁束密度Brmaxのばらつきにより±3%、全幅で6%程度の製品個体ばらつきを有する。このような特性の電動モータ1において、本来の定格電流の1.4倍の電流で減磁処理をした場合に、図12に示すように、誘起電圧のばらつきが8%に拡大する。これは、最大残留磁束密度Brmaxの個体差による初期の誘起電圧ばらつきに加え、保持力Hcjの個体差に起因する減磁度合のばらつきが上乗せされるためである。 FIG. 12 shows how the no-load induced voltage changes with respect to the demagnetization processing current of the electric motor 1 in the four combinations in which the maximum residual magnetic flux density Brmax and the holding force Hcj are maximum and minimum due to manufacturing variations. It is the graph which showed whether to do. According to this, it can be seen that the initial induced voltage is higher as the maximum residual magnetic flux density Brmax is larger, and the induced voltage is less likely to decrease with respect to the demagnetization processing current as the coercive force Hcj is larger. In the electric motor 1 of this example, the initial induced voltage has a product individual variation of about ± 3% and a total width of about 6% mainly due to variations in the maximum residual magnetic flux density Brmax of the permanent magnet 53. In the electric motor 1 having such characteristics, when the demagnetization process is performed at a current 1.4 times the original rated current, as shown in FIG. 12, the variation of the induced voltage is expanded to 8%. This is because, in addition to initial induced voltage variations due to individual differences in the maximum residual magnetic flux density Brmax, variations in the degree of demagnetization due to individual differences in the holding force Hcj are added.
 その結果、従来の電動モータに対して出力性能の製品個体のばらつきが拡大する。これは、安定した性能の確保の観点からは好ましくない。そこで、本例の減磁処理を行う場合には、図13に示すように、誘起電圧目標値Φtに対して許容誤差±δの範囲に入るように、駆動電流を磁石特性のばらつきに応じて設定し、これにより、無負荷誘起電圧の製品個体ばらつきをほぼ一定にする。図14は、減磁処理を行う際に製品個体差を有する電動モータ1に対して最適な減磁駆動電流を設定する手順を示すフローチャートである。 As a result, the variation in individual product of output performance with respect to the conventional electric motor increases. This is not preferable from the viewpoint of securing stable performance. Therefore, when performing the demagnetization processing of this example, as shown in FIG. 13, the drive current is set according to the variation in the magnet characteristics so that it falls within the allowable error ± δ with respect to the induced voltage target value Φt. As a result, the product individual variation of the no-load induced voltage is made almost constant. FIG. 14 is a flowchart showing a procedure for setting an optimum demagnetization drive current for the electric motor 1 having individual product differences when performing the demagnetization process.
 図14において、最初のステップS1では、耐減磁保証をする最低電流Iminを減磁駆動電流Ideとし、ステップS2においてこれを電動モータ1に通電することで減磁処理を行う。ステップS3ではステップS2の減磁処理を行った電動モータ1の誘起電圧Φeを測定する。続くステップS4では、測定した誘起電圧Φeと目標下限値Φlowを比較し、測定した誘起電圧Φeが目標下限値Φlow以下である場合は、ステップS8へ進み、電動モータ1の部品または着磁工程や減磁工程に何らかの異常があると判断してNG判定をしたのち、この処理を終了する。 In FIG. 14, in the first step S1, the minimum current Imin for guaranteeing demagnetization resistance is set as the demagnetization drive current Ide, and in step S2, the electric motor 1 is energized to perform demagnetization processing. In step S3, the induced voltage Φe of the electric motor 1 subjected to the demagnetization process in step S2 is measured. In the subsequent step S4, the measured induced voltage Φe is compared with the target lower limit value Φlow, and if the measured induced voltage Φe is equal to or lower than the target lower limit value Φlow, the process proceeds to step S8, where the components of the electric motor 1 or the magnetization process, After determining that there is some abnormality in the demagnetization process and making an NG determination, this process is terminated.
 ステップS4において、測定した誘起電圧Φeが目標下限値Φlowを超える場合は、ステップS5へ進み、誘起電圧Φeと目標値Φtとの誤差(差の絶対値)がδ未満であるか否かを判断する。そして、誘起電圧Φeと目標値Φtとの差の絶対値がδ以上である場合はステップS6へ進み、減磁駆動電流IdeをΔIだけ増加したものを減磁駆動電流とし、ステップS2へ戻って再び減磁処理を行う。この処理を、誘起電圧Φeと目標値Φtとの差の絶対値がδ未満になるまで、減磁駆動電流IdeをΔIずつ増加させて、減磁処理を繰り返す。そして、ステップS5において、誘起電圧Φeと目標値Φtとの差の絶対値がδ未満になったらステップS7へ進み、減磁処理が適切になされたものとして本処理を終了する。なお、減磁駆動電流の増加量であるΔIの値は、予め検証実験などにより定められた値であるが、誘起電圧Φeと目標値Φtとの誤差の大きさに応じてΔIを調整してもよい。 If the measured induced voltage Φe exceeds the target lower limit value Φlow in step S4, the process proceeds to step S5, and it is determined whether or not the error (absolute value of the difference) between the induced voltage Φe and the target value Φt is less than δ. To do. If the absolute value of the difference between the induced voltage Φe and the target value Φt is δ or more, the process proceeds to step S6, the demagnetization drive current Ide increased by ΔI is set as the demagnetization drive current, and the process returns to step S2. Perform demagnetization again. This process is repeated by increasing the demagnetization drive current Ide by ΔI until the absolute value of the difference between the induced voltage Φe and the target value Φt is less than δ. In step S5, when the absolute value of the difference between the induced voltage Φe and the target value Φt becomes less than δ, the process proceeds to step S7, and this process is terminated assuming that the demagnetization process is appropriately performed. Note that the value of ΔI, which is the amount of increase in the demagnetization drive current, is a value determined in advance by a verification experiment or the like, but ΔI is adjusted according to the magnitude of the error between the induced voltage Φe and the target value Φt. Also good.
 このような減磁処理を行うことにより、減磁処理によって拡大するモータ性能の製品個体ばらつきを抑制することができる。また、減磁耐力が向上した電動モータ1を実現しつつ、駆動電流を増大することによるモータ出力の向上が可能になる。また、従来の電動モータでは避けられなかった、最大残留磁束密度Brmaxなどのばらつきに起因するモータ出力の製品個体ばらつきを、極めて小さくすることも可能になる。 By performing such demagnetization processing, it is possible to suppress individual product variation in motor performance that is expanded by demagnetization processing. Further, it is possible to improve the motor output by increasing the drive current while realizing the electric motor 1 with improved demagnetization resistance. In addition, it is possible to extremely reduce individual product variations in motor output caused by variations such as the maximum residual magnetic flux density Brmax, which is unavoidable with conventional electric motors.
 図15は、本例の減磁処理工程P5の他の実施形態に係るフローチャートである。図13に示す誘起電圧目標値Φtに対する許容誤差±δの範囲において、減磁処理後の無負荷誘起電圧目標値の下限値をΦlow(=Φt-δ)、上限値をΦhigh(=Φt+δ)とする。本例は、無負荷誘起電圧目標値の上限値と下限値との差Φhigh-Φlowを、減磁処理を行わない従来の電動モータのばらつき幅相当である6%に設定したものである。 FIG. 15 is a flowchart according to another embodiment of the demagnetization processing step P5 of this example. In the range of the allowable error ± δ with respect to the induced voltage target value Φt shown in FIG. 13, the lower limit value of the no-load induced voltage target value after demagnetization processing is Φlow (= Φt−δ), and the upper limit value is Φhigh (= Φt + δ). To do. In this example, the difference Φhigh−Φlow between the upper limit value and the lower limit value of the no-load induced voltage target value is set to 6%, which corresponds to the variation width of a conventional electric motor that does not perform demagnetization processing.
 図15において、最初のステップS11では、耐減磁保証をする最低電流Iminを減磁駆動電流Ideとし、ステップS12においてこれを電動モータ1に通電することで減磁処理を行う。ステップS13ではステップS12の減磁処理を行った電動モータ1の誘起電圧Φeを測定する。続くステップS14では、測定した誘起電圧Φeと目標下限値Φlowを比較し、測定した誘起電圧Φeが目標下限値Φlow以下である場合は、ステップS15へ進み、電動モータ1の部品または着磁工程や減磁工程に何らかの異常があると判断してNG判定をしたのち、この処理を終了する。 In FIG. 15, in the first step S11, the minimum current Imin for guaranteeing demagnetization resistance is set as the demagnetization drive current Ide, and in step S12, the electric motor 1 is energized to perform demagnetization processing. In step S13, the induced voltage Φe of the electric motor 1 subjected to the demagnetization process in step S12 is measured. In the subsequent step S14, the measured induced voltage Φe is compared with the target lower limit value Φlow. If the measured induced voltage Φe is equal to or lower than the target lower limit value Φlow, the process proceeds to step S15, where the components of the electric motor 1 or the magnetization process or the like After determining that there is some abnormality in the demagnetization process and making an NG determination, this process is terminated.
 ステップS14において、測定した誘起電圧Φeが目標下限値Φlowを超える場合は、ステップS16へ進み、測定した誘起電圧Φeと目標上限値Φhighを比較し、測定した誘起電圧Φeが目標上限値Φhigh未満である場合は、ステップS17へ進み、減磁処理が適切になされたものとして本処理を終了する。 In step S14, when the measured induced voltage Φe exceeds the target lower limit value Φlow, the process proceeds to step S16, the measured induced voltage Φe is compared with the target upper limit value Φhigh, and the measured induced voltage Φe is less than the target upper limit value Φhigh. If there is, the process proceeds to step S17, and this process is terminated assuming that the demagnetization process is appropriately performed.
 ステップS16において、測定した誘起電圧Φeが目標上限値Φhighを超えている場合には、減磁処理電流が不十分であるため、ステップS18へ進み、予め定めておいた最大電流Imaxを減磁駆動電流Ideとし、ステップS19においてこれを電動モータ1に通電することで再び減磁処理を行う。そして、ステップS20にて、減磁処理を行った電動モータ1の誘起電圧Φeを測定する。続くステップS21では、測定した誘起電圧Φeと目標下限値Φlowを比較し、測定した誘起電圧Φeが目標下限値Φlow以下である場合は、ステップS23へ進み、電動モータ1の部品または着磁工程や減磁工程に何らかの異常があると判断してNG判定をしたのち、この処理を終了する。 If the measured induced voltage Φe exceeds the target upper limit value Φhigh in step S16, the demagnetization processing current is insufficient, so the process proceeds to step S18, and the predetermined maximum current Imax is driven to demagnetize. The current Ide is set, and in step S19, the demagnetization process is performed again by energizing the electric motor 1. In step S20, the induced voltage Φe of the electric motor 1 subjected to the demagnetization process is measured. In the subsequent step S21, the measured induced voltage Φe is compared with the target lower limit value Φlow, and if the measured induced voltage Φe is equal to or lower than the target lower limit value Φlow, the process proceeds to step S23, where the components of the electric motor 1 or the magnetization process, After determining that there is some abnormality in the demagnetization process and making an NG determination, this process is terminated.
 これに対してステップS21において、測定した誘起電圧Φeが目標下限値Φlowを超える場合は、ステップS22へ進み、測定した誘起電圧Φeと目標上限値Φhighを比較し、測定した誘起電圧Φeが目標上限値Φhigh未満である場合は、ステップS17へ進み、減磁処理が適切になされたものとして本処理を終了する。ステップS22において、測定した誘起電圧Φeが目標上限値Φhighを超えている場合には、ステップS23へ進み、電動モータ1の部品または着磁工程や減磁工程に何らかの異常があると判断してNG判定したのち、この処理を終了する。 On the other hand, if the measured induced voltage Φe exceeds the target lower limit value Φlow in step S21, the process proceeds to step S22, the measured induced voltage Φe is compared with the target upper limit value Φhigh, and the measured induced voltage Φe is determined to be the target upper limit value. If it is less than the value Φhigh, the process proceeds to step S17, and this process is terminated assuming that the demagnetization process has been appropriately performed. If the measured induced voltage Φe exceeds the target upper limit value Φhigh in step S22, the process proceeds to step S23, where it is determined that there is some abnormality in the parts of the electric motor 1, the magnetization process, or the demagnetization process. After the determination, this process is terminated.
 図16は、減磁処理電流と無負荷誘起電圧との関係を示すグラフであり、これを用いて図15の減磁処理例の作用を説明する。図16は、永久磁石53の特性に応じて、残留磁束密度Brmax,保持力Hjcのそれぞれが上下限の場合の4本の特性線を示したものであり、磁石特性がばらついた場合でも減磁処理電流と無負荷誘起電圧の関係はこの特性線の間にある。図16において、耐減磁保証をする最低電流Iminで減磁処理を行った後、縦の太線で示す範囲の誘起電圧特性となる場合は、目標下限値Φlowと目標上限値Φhighの間にあり、適正な減磁処理が行えたことになる。 FIG. 16 is a graph showing the relationship between the demagnetization processing current and the no-load induced voltage, and the operation of the demagnetization processing example of FIG. 15 will be described using this graph. FIG. 16 shows four characteristic lines when the residual magnetic flux density Brmax and the holding force Hjc are at the upper and lower limits according to the characteristics of the permanent magnet 53, and the demagnetization is performed even when the magnet characteristics vary. The relationship between the processing current and the no-load induced voltage is between these characteristic lines. In FIG. 16, after the demagnetization process is performed with the minimum current Imin that guarantees the anti-demagnetization resistance, the induced voltage characteristics in the range indicated by the vertical bold line are between the target lower limit value Φlow and the target upper limit value Φhigh. Thus, an appropriate demagnetization process can be performed.
 ちなみに、磁石特性によっては減磁処理が十分でなく、無負荷誘起電圧が目標上限値Φhighを上回る場合があり得る。この場合は、図17に示すように、最大電流Imaxで再び減磁処理を行う。この最大電流Imaxは、永久磁石53が最も減磁し難く、初期の磁束量が最も高い場合に、無負荷誘起電圧が目標条件値Φhigh以下になるように選定される値であり、こうすることで、無負荷誘起電圧が目標上限値Φhighを下回ることになり、1回の再減磁処理によって最終的には無負荷誘起電圧を目標範囲内に収めることが可能になる。 Incidentally, depending on the magnet characteristics, the demagnetization process may not be sufficient, and the no-load induced voltage may exceed the target upper limit value Φhigh. In this case, as shown in FIG. 17, the demagnetization process is performed again with the maximum current Imax. This maximum current Imax is a value selected so that the no-load induced voltage is equal to or less than the target condition value Φhigh when the permanent magnet 53 is most difficult to demagnetize and the initial magnetic flux amount is the highest. Thus, the no-load induced voltage falls below the target upper limit value Φhigh, and it is finally possible to keep the no-load induced voltage within the target range by one re-demagnetization process.
 なお、電動モータ1の減磁処理電流と無負荷誘起電圧の特性に応じて、2水準の電流では減磁処理後の無負荷誘起電圧を目標下限値Φlowと目標上限値Φhighの間に収めることができない場合は、減磁処理電流を最小電流Iminと、中間電流Imidと、最大電流Imaxといった3段階や、それ以上に細分化してもよい。図18は、本例の減磁処理工程P5のさらに他の実施形態に係るフローチャートであり、減磁電流を3水準としたときの減磁処理工程P5のフローチャートである。 Depending on the characteristics of the demagnetization process current and the no-load induced voltage of the electric motor 1, the no-load induced voltage after the demagnetization process is kept between the target lower limit value Φlow and the target upper limit value Φhigh at two levels of current. If it is not possible, the demagnetization processing current may be subdivided into three stages, ie, minimum current Imin, intermediate current Imid, and maximum current Imax, or more. FIG. 18 is a flowchart according to still another embodiment of the demagnetization processing step P5 of this example, and is a flowchart of the demagnetization processing step P5 when the demagnetization current is set to three levels.
 図18において、最初のステップS31では、耐減磁保証をする最低電流Iminを減磁駆動電流Ideとし、ステップS32においてこれを電動モータ1に通電することで減磁処理を行う。ステップS33ではステップS32の減磁処理を行った電動モータ1の誘起電圧Φeを測定する。続くステップS34では、測定した誘起電圧Φeと目標下限値Φlowを比較し、測定した誘起電圧Φeが目標下限値Φlow以下である場合は、ステップS35へ進み、電動モータ1の部品または着磁工程や減磁工程に何らかの異常があると判断してNG判定をしたのち、この処理を終了する。 In FIG. 18, in the first step S31, the minimum current Imin for guaranteeing demagnetization resistance is set as a demagnetization drive current Ide, and in step S32, the electric motor 1 is energized to perform demagnetization processing. In step S33, the induced voltage Φe of the electric motor 1 subjected to the demagnetization process in step S32 is measured. In the subsequent step S34, the measured induced voltage Φe is compared with the target lower limit value Φlow. If the measured induced voltage Φe is equal to or lower than the target lower limit value Φlow, the process proceeds to step S35, where the components of the electric motor 1 or the magnetization process or the like After determining that there is some abnormality in the demagnetization process and making an NG determination, this process is terminated.
 ステップS34において、測定した誘起電圧Φeが目標下限値Φlowを超える場合は、ステップS36へ進み、測定した誘起電圧Φeと目標上限値Φhighを比較し、測定した誘起電圧Φeが目標上限値Φhigh未満である場合は、ステップS37へ進み、減磁処理が適切になされたものとして本処理を終了する。 If the measured induced voltage Φe exceeds the target lower limit value Φlow in step S34, the process proceeds to step S36, where the measured induced voltage Φe is compared with the target upper limit value Φhigh, and the measured induced voltage Φe is less than the target upper limit value Φhigh. If there is, the process proceeds to step S37, and the process is terminated assuming that the demagnetization process is appropriately performed.
 これに対してステップS36において、測定した誘起電圧Φeが目標上限値Φhighを超えている場合には、減磁処理電流が不十分であるため、ステップS38へ進み、予め定めておいた中間電流Imidを減磁駆動電流Ideとし、ステップS39においてこれを電動モータ1に通電することで再び減磁処理を行う。そして、ステップS40にて、減磁処理を行った電動モータ1の誘起電圧Φeを測定する。続くステップS41では、測定した誘起電圧Φeと目標下限値Φlowを比較し、測定した誘起電圧Φeが目標下限値Φlow以下である場合は、ステップS35へ進み、電動モータ1の部品または着磁工程や減磁工程に何らかの異常があると判断してNG判定をしたのち、この処理を終了する。 On the other hand, if the measured induced voltage Φe exceeds the target upper limit value Φhigh in step S36, the demagnetization processing current is insufficient, so the process proceeds to step S38, and the predetermined intermediate current Imid is set. Is demagnetized drive current Ide, and this is energized to the electric motor 1 in step S39 to perform demagnetization again. In step S40, the induced voltage Φe of the electric motor 1 subjected to the demagnetization process is measured. In the subsequent step S41, the measured induced voltage Φe is compared with the target lower limit value Φlow, and if the measured induced voltage Φe is equal to or lower than the target lower limit value Φlow, the process proceeds to step S35, where the components of the electric motor 1 or the magnetization process, After determining that there is some abnormality in the demagnetization process and making an NG determination, this process is terminated.
 ステップS41において、測定した誘起電圧Φeが目標下限値Φlowを超える場合は、ステップS42へ進み、測定した誘起電圧Φeと目標上限値Φhighを比較し、測定した誘起電圧Φeが目標上限値Φhigh未満である場合は、ステップS37へ進み、減磁処理が適切になされたものとして本処理を終了する。これに対して、ステップS42において、測定した誘起電圧Φeが目標上限値Φhighを超えている場合には、減磁処理電流が不十分であるため、ステップS43へ進み、予め定めておいた最大電流Imaxを減磁駆動電流Ideとし、ステップS44においてこれを電動モータ1に通電することで再び減磁処理を行う。そして、ステップS45にて、減磁処理を行った電動モータ1の誘起電圧Φeを測定する。続くステップS46では、測定した誘起電圧Φeと目標下限値Φlowを比較し、測定した誘起電圧Φeが目標下限値Φlow以下である場合は、ステップS48へ進み、電動モータ1の部品または着磁工程や減磁工程に何らかの異常があると判断してNG判定をしたのち、この処理を終了する。 In step S41, when the measured induced voltage Φe exceeds the target lower limit value Φlow, the process proceeds to step S42, the measured induced voltage Φe is compared with the target upper limit value Φhigh, and the measured induced voltage Φe is less than the target upper limit value Φhigh. If there is, the process proceeds to step S37, and the process is terminated assuming that the demagnetization process is appropriately performed. On the other hand, if the measured induced voltage Φe exceeds the target upper limit value Φhigh in step S42, the demagnetization processing current is insufficient, so the process proceeds to step S43 and the maximum current set in advance is determined. Imax is set as the demagnetization drive current Ide, and the demagnetization process is performed again by energizing the electric motor 1 in step S44. In step S45, the induced voltage Φe of the electric motor 1 subjected to the demagnetization process is measured. In the subsequent step S46, the measured induced voltage Φe is compared with the target lower limit value Φlow. If the measured induced voltage Φe is equal to or lower than the target lower limit value Φlow, the process proceeds to step S48, where the components of the electric motor 1 or the magnetization process or the like After determining that there is some abnormality in the demagnetization process and making an NG determination, this process is terminated.
 ステップS46において、測定した誘起電圧Φeが目標下限値Φlowを超える場合は、ステップS47へ進み、測定した誘起電圧Φeと目標上限値Φhighを比較し、測定した誘起電圧Φeが目標上限値Φhigh未満である場合は、ステップS37へ進み、減磁処理が適切になされたものとして本処理を終了する。これに対して、ステップS47において、測定した誘起電圧Φeが目標上限値Φhighを超えている場合は、ステップS48へ進み、電動モータ1の部品または着磁工程や減磁工程に何らかの異常があると判断してNG判定をしたのち、この処理を終了する。以上の減磁処理により、最大2回の再減磁処理によって最終的には無負荷誘起電圧を目標範囲内に収めることが可能になる。 If the measured induced voltage Φe exceeds the target lower limit value Φlow in step S46, the process proceeds to step S47, where the measured induced voltage Φe is compared with the target upper limit value Φhigh, and the measured induced voltage Φe is less than the target upper limit value Φhigh. If there is, the process proceeds to step S37, and the process is terminated assuming that the demagnetization process is appropriately performed. On the other hand, if the measured induced voltage Φe exceeds the target upper limit value Φhigh in step S47, the process proceeds to step S48, and if there is any abnormality in the components of the electric motor 1, the magnetization process, or the demagnetization process. After the determination and the NG determination, this process is terminated. With the above demagnetization process, the no-load induced voltage can finally fall within the target range by a maximum of two re-demagnetization processes.
 さて、図19に破線で示すように、耐減磁保証をする最低電流Iminで1回目の減磁処理を行った場合に、無負荷誘起電圧が目標上限値Φhighに一致する場合がある。このような特性を有する個体(永久磁石53)の初期の無負荷誘起電圧をΦthとすると、減磁処理を行う種々の永久磁石53の初期無負荷誘起電圧ΦeがΦthよりも低い場合には最小減磁電流Iminで減磁処理し、初期無負荷誘起電圧ΦeがΦthよりも高い場合には最大減磁電流Imaxで減磁処理することで、減磁処理後の無負荷誘起電圧を目標下限値Φlowと目標上限値Φhighの間に収めることができる。このように、初期の無負荷誘起電圧Φeに応じて、減磁処理電流を変えることで、減磁処理工程を1回で済ませることが可能になり、製造コストの削減が可能になる。図20は、本例の減磁処理工程P5のさらに他の実施形態に係るフローチャートである。 Now, as shown by the broken line in FIG. 19, when the first demagnetization process is performed with the minimum current Imin for guaranteeing the anti-demagnetization, the no-load induced voltage may coincide with the target upper limit value Φhigh. Assuming that the initial no-load induced voltage of an individual (permanent magnet 53) having such characteristics is Φth, the minimum is obtained when the initial no-load induced voltage Φe of various permanent magnets 53 to be demagnetized is lower than Φth. The demagnetization process is performed with the demagnetization current Imin. When the initial no-load induced voltage Φe is higher than Φth, the demagnetization process is performed with the maximum demagnetization current Imax. It can be set between Φlow and the target upper limit value Φhigh. Thus, by changing the demagnetization processing current according to the initial no-load induced voltage Φe, it is possible to complete the demagnetization processing step once, and the manufacturing cost can be reduced. FIG. 20 is a flowchart according to still another embodiment of the demagnetization processing step P5 of this example.
 図20において、最初のステップS51では、完全着磁処理された永久磁石53を含む電動モータ1の初期誘起電圧Φeを測定する。ステップS52では、測定した初期誘起電圧Φeと、予め検証実験等で求められた基準誘起電圧Φthとを比較し、測定した誘起電圧Φeが基準誘起電圧Φth未満である場合は、ステップS53へ進み、耐減磁保証をする最低電流Iminを減磁駆動電流Ideとする。これに対して、ステップS52において、測定した誘起電圧Φeが基準誘起電圧Φth以上である場合は、ステップS54へ進み、最大電流Imaxを減磁駆動電流Ideとする。そして、ステップS55においてこれを電動モータ1に通電することで減磁処理を行う。ステップS56ではステップS55の減磁処理を行った電動モータ1の誘起電圧Φeを測定する。 In FIG. 20, in the first step S51, the initial induced voltage Φe of the electric motor 1 including the permanent magnet 53 that has been completely magnetized is measured. In step S52, the measured initial induced voltage Φe is compared with the reference induced voltage Φth obtained in advance by a verification experiment or the like. If the measured induced voltage Φe is less than the reference induced voltage Φth, the process proceeds to step S53. The minimum current Imin that guarantees demagnetization resistance is defined as a demagnetization drive current Ide. On the other hand, if the measured induced voltage Φe is greater than or equal to the reference induced voltage Φth in step S52, the process proceeds to step S54, and the maximum current Imax is set as the demagnetization drive current Ide. In step S55, the electric motor 1 is energized to perform demagnetization processing. In step S56, the induced voltage Φe of the electric motor 1 subjected to the demagnetization process in step S55 is measured.
 ステップS57では、測定した誘起電圧Φeが目標下限値Φlowと目標上限値Φhighとの間にあるか否かを判断し、測定した誘起電圧Φeが目標下限値Φlow以下又は目標上限値Φhigh以上である場合は、ステップS59へ進み、電動モータ1の部品または着磁工程や減磁工程に何らかの異常があると判断してNG判定をしたのち、この処理を終了する。これに対して、ステップS57において、測定した誘起電圧Φeが目標下限値Φlowを超え、且つ目標上限値Φhigh未満である場合は、ステップS58へ進み、減磁処理が適切になされたものとして本処理を終了する。以上の減磁処理により、1回の最減磁処理によって最終的には無負荷誘起電圧を目標範囲内に収めることが可能になる。 In step S57, it is determined whether or not the measured induced voltage Φe is between the target lower limit value Φlow and the target upper limit value Φhigh, and the measured induced voltage Φe is equal to or less than the target lower limit value Φlow or greater than or equal to the target upper limit value Φhigh. In this case, the process proceeds to step S59, where it is determined that there is some abnormality in the parts of the electric motor 1 or in the magnetization process or the demagnetization process, and NG determination is made, and then this process is terminated. On the other hand, when the measured induced voltage Φe exceeds the target lower limit value Φlow and is lower than the target upper limit value Φhigh in step S57, the process proceeds to step S58, and this process is assumed to be appropriately performed. Exit. With the above demagnetization process, it is possible to finally bring the no-load induced voltage within the target range by one demagnetization process.
《他の実施形態》
 図21Aは、低温雰囲気及び常温雰囲気において種々の電流を印加して電動モータ1を減磁処理した後に測定した、無負荷誘起電圧の例を示すグラフであるが、電動モータ1の製品として保証したい耐減磁電流Iminを通電する場合に、減磁処理工程の雰囲気温度を低温雰囲気にすれば目的とする減磁効果が得られる。しかしながら、減磁による出力低下が問題とされる低温雰囲気は-20℃以下といった極低温の場合があり、製造ラインにこうした極低温雰囲気のゾーンを設けるのは容易でない。また、電動モータ1を極低温まで温度降下させるにはそれ相当の時間が必要となり、さらに減磁処理後に常温に戻すのにもそれ相当の時間が必要となり、製造時間が長くなる。
<< Other embodiments >>
FIG. 21A is a graph showing an example of a no-load induced voltage measured after applying various currents in a low temperature atmosphere and a normal temperature atmosphere to demagnetize the electric motor 1. When the anti-demagnetization current Imin is applied, the desired demagnetization effect can be obtained by setting the ambient temperature in the demagnetization treatment step to a low temperature atmosphere. However, a low temperature atmosphere in which a decrease in output due to demagnetization is a problem may be an extremely low temperature of −20 ° C. or less, and it is not easy to provide such a cryogenic atmosphere zone in a production line. In addition, it takes a considerable amount of time to lower the temperature of the electric motor 1 to a very low temperature, and it also takes a considerable amount of time to return to the normal temperature after the demagnetization process, resulting in a long manufacturing time.
 このため、本例では、常温雰囲気における減磁電流値を選定することで、目的とする低温雰囲気において減磁処理するのと等価な減磁効果を得ることとしている。すなわち、図21Bは図21Aと同じ減磁処理電流に対する無負荷誘起電圧の例を示すグラフであり、同図に示すように、低温雰囲気において3%減の無負荷誘起電圧を得ることを目的とする場合には、減磁電流をIminではなく、常温雰囲気における曲線と交差するときの減磁電流Ipminとする。これにより、常温雰囲気で減磁処理をした場合に、低温雰囲気においてIminの減磁電流で減磁処理した場合と同じ、3%減の無負荷誘起電圧となる電動モータを得ることができる。 For this reason, in this example, by selecting a demagnetizing current value in a normal temperature atmosphere, a demagnetizing effect equivalent to performing a demagnetizing process in a target low temperature atmosphere is obtained. That is, FIG. 21B is a graph showing an example of the no-load induced voltage with respect to the same demagnetization processing current as FIG. 21A. As shown in the figure, the object is to obtain a no-load induced voltage reduced by 3% in a low temperature atmosphere. In this case, the demagnetizing current is not Imin but the demagnetizing current Ipmin when intersecting the curve in the room temperature atmosphere. As a result, when the demagnetization process is performed in a normal temperature atmosphere, an electric motor having a 3% reduction in no-load induced voltage can be obtained, which is the same as the case where the demagnetization process is performed with a demagnetization current of Imin in a low temperature atmosphere.
 以上のように、本例の永久磁石式電動モータ及びその製造方法によれば、電動モータ1の減磁耐力が向上するので、フェライト磁石を用いた電動モータであっても低温時に駆動電流を制限する必要がなく、低温時の出力低下を抑制することができる。また、駆動電流を増加させることが可能になるので、電動モータ1の出力の向上が可能になる。 As described above, according to the permanent magnet type electric motor and the method of manufacturing the same of this example, the demagnetization resistance of the electric motor 1 is improved. Therefore, even in the case of an electric motor using a ferrite magnet, the drive current is limited at a low temperature. Therefore, it is possible to suppress a decrease in output at low temperatures. In addition, since the drive current can be increased, the output of the electric motor 1 can be improved.
 また、本例の電動モータを電気自動車の走行駆動用モータに適用した場合にあっては、駆動電流が瞬間的に通常運転状態以上に増大するケースがある。図5にて説明したように、電動モータ1の回転数が短時間の間に急変動する場合がそれにあたり、モータ電流が制御目標値に対して瞬間的に増大することがある。具体的な運転シーンとしては、スリップにより空転したタイヤがグリップを回復する場合が該当し、電流増大率は1.2~1.5倍程度に達する。スリップは路面が凍結する冬季に起きやすく、その場合は電動モータ1の永久磁石53も低温状態で減磁のリスクが高い状態と考えられる。 In addition, when the electric motor of this example is applied to a driving motor for an electric vehicle, there are cases where the driving current instantaneously increases beyond the normal operating state. As described with reference to FIG. 5, when the rotational speed of the electric motor 1 fluctuates rapidly in a short time, the motor current may increase instantaneously with respect to the control target value. A specific driving scene corresponds to a case where a tire that has slipped due to slipping recovers grip, and the current increase rate reaches about 1.2 to 1.5 times. Slip is likely to occur in winter when the road surface freezes. In this case, it is considered that the permanent magnet 53 of the electric motor 1 is also in a low temperature state and has a high risk of demagnetization.
 このような瞬間的な電流の増大で永久磁石53が減磁すると、その後において電気自動車の出力が低下し、加速や登坂性能の低下を引き起こすおそれがある。このため、従来の電動モータでは、瞬間的な電流増大を想定して耐減磁設計を行っていたが、冬季など、電動モータが低温であり、大きな電流で駆動している状態であり、且つタイヤがスリップするシーンは極めて稀であり、この稀に起こるであろう現象の対策のために電動モータの出力特性を制約せざるを得なかった。これに対して、本例の発明を適用することにより、電動モータ1の出力特性を犠牲にすることなく、電流が増大した時の減磁を抑制することが可能になる。 If the permanent magnet 53 is demagnetized due to such an instantaneous increase in current, the output of the electric vehicle is lowered thereafter, which may cause acceleration or a decrease in climbing performance. For this reason, the conventional electric motor has been designed to withstand demagnetization assuming an instantaneous current increase, but the electric motor is at a low temperature and is driven by a large current, such as in winter, and The scene where the tire slips is extremely rare, and the output characteristics of the electric motor must be constrained as a countermeasure against this rare phenomenon. On the other hand, by applying the invention of this example, it is possible to suppress demagnetization when the current increases without sacrificing the output characteristics of the electric motor 1.
1…永久磁石式電動モータ
2…ハウジング
3…フロントカバーサブアッセンブリ
 31…孔
4…リヤカバーサブアッセンブリ
5…ロータサブアッセンブリ
 51…ロータコア
  511,512…孔
 52…シャフト
 53,53a,53b,53c,53d…永久磁石
 53e…エッジ部
 54…端板
6…コイルサブアッセンブリ
 61…ステータコア
 62…コイル
 63…ティース
7…ステータサブアッセンブリ
G…ギャップ
DESCRIPTION OF SYMBOLS 1 ... Permanent magnet type electric motor 2 ... Housing 3 ... Front cover subassembly 31 ... Hole 4 ... Rear cover subassembly 5 ... Rotor subassembly 51 ... Rotor core 511, 512 ... Hole 52 ... Shaft 53, 53a, 53b, 53c, 53d ... Permanent magnet 53e ... Edge portion 54 ... End plate 6 ... Coil subassembly 61 ... Stator core 62 ... Coil 63 ... Teeth 7 ... Stator subassembly G ... Gap

Claims (11)

  1.  ロータ及びステータの一方に永久磁石を含む電動モータの製造方法であって、
     前記永久磁石を着磁する着磁処理工程と、
     前記着磁工程の後に実施され、前記着磁処理工程により着磁された永久磁石の一部を不完全着磁とする減磁処理工程と、を有し、
     前記減磁処理工程は、前記永久磁石廻りに逆磁界を発生させる減磁処理電流の位相角を所定の値に制御する電動モータの製造方法。
    A method of manufacturing an electric motor including a permanent magnet in one of a rotor and a stator,
    A magnetization treatment step of magnetizing the permanent magnet;
    A demagnetization treatment step that is performed after the magnetization step and incompletely magnetizes a part of the permanent magnet magnetized by the magnetization treatment step,
    In the demagnetizing process, the phase angle of the demagnetizing process current that generates a reverse magnetic field around the permanent magnet is controlled to a predetermined value.
  2.  前記減磁処理工程は、前記減磁処理電流の位相角を90°に制御する請求項1に記載の電動モータの製造方法。 The method of manufacturing an electric motor according to claim 1, wherein the demagnetizing treatment step controls a phase angle of the demagnetizing treatment current to 90 °.
  3.  前記減磁処理工程は、前記減磁処理電流の位相角を、前記電動モータを駆動するための駆動電流の最大位相角以上に制御する請求項1に記載の電動モータの製造方法。 The method of manufacturing an electric motor according to claim 1, wherein the demagnetization processing step controls a phase angle of the demagnetization processing current to be equal to or larger than a maximum phase angle of a driving current for driving the electric motor.
  4.  前記減磁処理工程は、前記減磁処理電流の位相角を、前記電動モータを駆動するための駆動電流の位相角範囲内で変化させる請求項1に記載の電動モータの製造方法。 The method of manufacturing an electric motor according to claim 1, wherein the demagnetizing treatment step changes a phase angle of the demagnetizing treatment current within a phase angle range of a driving current for driving the electric motor.
  5.  前記減磁処理工程は、前記減磁処理電流の位相角を、前記駆動電流の位相角範囲内で連続的に変化させる請求項4に記載の電動モータの製造方法。 5. The method of manufacturing an electric motor according to claim 4, wherein in the demagnetization processing step, the phase angle of the demagnetization processing current is continuously changed within a phase angle range of the drive current.
  6.  前記減磁処理工程は、前記減磁処理電流を直流電流とする請求項1に記載の電動モータの製造方法。 The method of manufacturing an electric motor according to claim 1, wherein the demagnetization processing step uses the demagnetization processing current as a direct current.
  7.  前記減磁処理工程は、前記減磁処理電流の位相角が、前記電動モータを駆動するための駆動電流の位相角範囲内で変化するように、前記直流の減磁処理電流を通電しながら前記永久磁石が設けられたロータを回転させる請求項6に記載の電動モータの製造方法。 In the demagnetization processing step, the DC demagnetization processing current is supplied while the phase demagnetization processing current is changed within a phase angle range of a driving current for driving the electric motor. The manufacturing method of the electric motor of Claim 6 which rotates the rotor provided with the permanent magnet.
  8.  前記減磁処理工程は、前記永久磁石廻りに逆磁界を発生させる減磁処理電流を、前記永久磁石が設けられたロータの回転に同期した交流電流とする請求項1に記載の電動モータの製造方法。 2. The electric motor manufacturing method according to claim 1, wherein in the demagnetization processing step, the demagnetization processing current for generating a reverse magnetic field around the permanent magnet is an alternating current synchronized with rotation of a rotor provided with the permanent magnet. Method.
  9.  前記減磁処理工程は、前記交流電流の位相角を、前記電動モータを駆動するための駆動電流の位相角範囲内で変化させる請求項8に記載の電動モータの製造方法。 The method of manufacturing an electric motor according to claim 8, wherein the demagnetizing step changes a phase angle of the alternating current within a phase angle range of a driving current for driving the electric motor.
  10.  前記減磁処理工程は、前記永久磁石廻りに逆磁界を発生させる減磁処理電流を、前記永久磁石が設けられたロータの回転に対して非同期の所定の交流電流とする請求項1に記載の電動モータの製造方法。 2. The demagnetizing treatment step according to claim 1, wherein a demagnetizing treatment current that generates a reverse magnetic field around the permanent magnet is a predetermined alternating current that is asynchronous with respect to rotation of a rotor provided with the permanent magnet. A method for manufacturing an electric motor.
  11.  前記減磁処理工程は、前記非同期の交流電流を、下記式で規定する周波数fsの交流電流とする請求項8に記載の電動モータの製造方法。
     fs=(Nr/60)・[{(βe-βs)/360n}+P]
     ただし、fsは交流電流の周波数、Nrは電動モータの機械角回転数(rpm)、βsは減磁処理開始時の電流位相角(deg)、βeは減磁処理終了時の電流位相角(deg)、nは1以上の整数、Pは電動モータの極対数である。
    The method of manufacturing an electric motor according to claim 8, wherein the demagnetizing treatment step uses the asynchronous alternating current as an alternating current having a frequency fs defined by the following equation.
    fs = (Nr / 60) · [{(βe−βs) / 360n} + P]
    Where fs is the frequency of the alternating current, Nr is the mechanical angular rotation speed (rpm) of the electric motor, βs is the current phase angle (deg) at the start of the demagnetization process, and βe is the current phase angle (deg) at the end of the demagnetization process. ), N is an integer of 1 or more, and P is the number of pole pairs of the electric motor.
PCT/JP2014/064462 2014-05-30 2014-05-30 Method for manufacturing permanent magnet electric motor WO2015181967A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/064462 WO2015181967A1 (en) 2014-05-30 2014-05-30 Method for manufacturing permanent magnet electric motor
JP2016523071A JP6233509B2 (en) 2014-05-30 2014-05-30 Manufacturing method of permanent magnet type electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/064462 WO2015181967A1 (en) 2014-05-30 2014-05-30 Method for manufacturing permanent magnet electric motor

Publications (1)

Publication Number Publication Date
WO2015181967A1 true WO2015181967A1 (en) 2015-12-03

Family

ID=54698341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064462 WO2015181967A1 (en) 2014-05-30 2014-05-30 Method for manufacturing permanent magnet electric motor

Country Status (2)

Country Link
JP (1) JP6233509B2 (en)
WO (1) WO2015181967A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002142414A (en) * 2000-11-02 2002-05-17 Tamagawa Seiki Co Ltd Motor torque adjustment method and device thereof
JP2008072890A (en) * 2006-09-11 2008-03-27 Samsung Kwangju Electronics Co Ltd Magnet magnetizing method for compressor motor
JP2011083066A (en) * 2009-10-02 2011-04-21 Osaka Prefecture Univ Permanent magnet assisted synchronous reluctance motor
JP2011135728A (en) * 2009-12-25 2011-07-07 Hitachi Metals Ltd Magnet embedded rotor
JP2014042421A (en) * 2012-08-23 2014-03-06 Sanyo Denki Co Ltd Permanent magnet motor and method for manufacturing permanent magnet motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002142414A (en) * 2000-11-02 2002-05-17 Tamagawa Seiki Co Ltd Motor torque adjustment method and device thereof
JP2008072890A (en) * 2006-09-11 2008-03-27 Samsung Kwangju Electronics Co Ltd Magnet magnetizing method for compressor motor
JP2011083066A (en) * 2009-10-02 2011-04-21 Osaka Prefecture Univ Permanent magnet assisted synchronous reluctance motor
JP2011135728A (en) * 2009-12-25 2011-07-07 Hitachi Metals Ltd Magnet embedded rotor
JP2014042421A (en) * 2012-08-23 2014-03-06 Sanyo Denki Co Ltd Permanent magnet motor and method for manufacturing permanent magnet motor

Also Published As

Publication number Publication date
JPWO2015181967A1 (en) 2017-04-20
JP6233509B2 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
JP5161612B2 (en) Permanent magnet type rotating electrical machine, method for assembling permanent magnet type rotating electrical machine, and method for disassembling permanent magnet type rotating electrical machine
JP5134846B2 (en) Permanent magnet motor drive system
WO2009104553A1 (en) Permanent magnet type rotary motor, assembly method for permanent magnet type rotary motor, disassembly method for permanent magnet type rotary motor, and permanent magnet type rotary motor drive system
JP5085071B2 (en) Permanent magnet type rotating electrical machine rotor
WO2013114542A1 (en) Rotor for permanent magnet-embedded electric motor, electric motor provided with same rotor, compressor provided with same electric motor, and air conditioner provided with same compressor
JP2008245367A (en) Permanent magnet type rotating electrical machine and permanent magnet motor drive system
JP5956288B2 (en) Method for manufacturing permanent magnet motor
KR101603667B1 (en) Bldc motor
US20130062985A1 (en) Brushless dc motor
JP2005304204A (en) Permanent magnet synchronous motor and drive apparatus
US20220376638A1 (en) Methods of magnetizing and controlling a variable-flux memory motor
WO2016117217A1 (en) Permanent-magnet-type rotating electrical machine
JP6233509B2 (en) Manufacturing method of permanent magnet type electric motor
JP6428772B2 (en) Manufacturing method of permanent magnet type electric motor
WO2015181965A1 (en) Permanent magnet electric motor and method for manufacturing same
KR101307058B1 (en) Permanent magnet dc motor
KR101748829B1 (en) Convergence-type dc motor
JP2007288838A (en) Embedded magnet type motor
US11936256B2 (en) Flux-mnemonic permanent magnet synchronous machine and magnetizing a flux-mnemonic permanent magnet synchronous machine
JPH07118895B2 (en) Rotating electric machine
JP2004104999A (en) Compressor, crushing method of compressor, method of demagnetizing permanent magnet motor, method of crushing permanent magnet motor
JP6021829B2 (en) Demagnetizer for permanent magnet
Sakai et al. Characteristics of a permanent magnet motor with reversible salient poles and variable magnetic flux

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893335

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016523071

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14893335

Country of ref document: EP

Kind code of ref document: A1