JP5995057B2 - Rotor of embedded magnet permanent magnet rotating electric machine and method of assembling the same - Google Patents

Rotor of embedded magnet permanent magnet rotating electric machine and method of assembling the same Download PDF

Info

Publication number
JP5995057B2
JP5995057B2 JP2012098689A JP2012098689A JP5995057B2 JP 5995057 B2 JP5995057 B2 JP 5995057B2 JP 2012098689 A JP2012098689 A JP 2012098689A JP 2012098689 A JP2012098689 A JP 2012098689A JP 5995057 B2 JP5995057 B2 JP 5995057B2
Authority
JP
Japan
Prior art keywords
magnet
rotor
spacer
permanent magnet
holding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012098689A
Other languages
Japanese (ja)
Other versions
JP2013229955A (en
Inventor
敏治 持田
敏治 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2012098689A priority Critical patent/JP5995057B2/en
Publication of JP2013229955A publication Critical patent/JP2013229955A/en
Application granted granted Critical
Publication of JP5995057B2 publication Critical patent/JP5995057B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、磁石埋込型永久磁石回転電機におけるロータの組立構造,およびその組立方法に関する。   The present invention relates to a rotor assembly structure and a method for assembling the same in a magnet-embedded permanent magnet rotating electric machine.

先ず、磁石埋込型永久磁石回転電機(IPM)を例に、その全体の組立構造を図6に示す。図6において、1は円筒状の外囲フレーム1とその両端に締結ボルト3を介してブラケット4,5を結合したモータケーシング、6は前記フレーム1の内側に支持したステータ、7はステータの内周側にギャップを隔てて対向するロータ組立体、8はロータコア、9はロータコア8の周方向に配列してその外周近くに埋設したセグメント永久磁石(以下、「永久磁石」と略称する)、10はロータコア9の両端に配した非磁性体のエンドプレート、11はロータコア8の締結ボルト、12はロータコア8を搭載したロータシャフト、13はロータシャフト12をブラケット4,5に軸支する軸受、14は冷却ファンである。   First, an entire assembly structure is shown in FIG. 6 by taking a permanent magnet rotating electrical machine (IPM) as an example. In FIG. 6, reference numeral 1 denotes a cylindrical casing frame 1 and a motor casing in which brackets 4 and 5 are connected to both ends of the frame by fastening bolts 3. Rotor assemblies facing each other with a gap on the circumferential side, 8 is a rotor core, 9 is a segment permanent magnet (hereinafter abbreviated as “permanent magnet”), which is arranged in the circumferential direction of the rotor core 8 and embedded near the outer periphery thereof. Is a non-magnetic end plate disposed at both ends of the rotor core 9, 11 is a fastening bolt of the rotor core 8, 12 is a rotor shaft on which the rotor core 8 is mounted, 13 is a bearing for pivotally supporting the rotor shaft 12 to the brackets 4 and 5, 14 Is a cooling fan.

一方、IPMモータのロータについて、鋳鉄系磁性体になるロータコアの外周面近くに穿設した磁石挿入孔に嵌入して埋設した永久磁石の漏れ磁束を抑えるために、永久磁石の磁極配列に合わせてロータコアの外周部に永久磁石を収容する凹溝を形成した上で、この凹溝に収容した永久磁石を外周側から抑え込むように電磁鋼板の積層体になる抑え材を前記凹溝と非接触の姿勢に配置した上で、この抑え材,および永久磁石をロータコアから前記凹溝に張り出すリブ状の張り出し箇所とロータコアの両端に配したエンドプレートとの間に挟み込んで固定し、さらに前記抑え材,およびコアの張り出し箇所を軸方向に貫通する棒材の両端エンドプレートに固定し、ロータの回転に伴って永久磁石,磁石抑え部材の遠心荷重を支えるようにしたロータの組立構造が知られている(例えば、特許文献1参照)。   On the other hand, for the rotor of the IPM motor, in order to suppress the leakage magnetic flux of the permanent magnet embedded in the magnet insertion hole drilled near the outer peripheral surface of the rotor core that becomes a cast iron-based magnetic body, it is matched with the magnetic pole arrangement of the permanent magnet. A concave groove that accommodates a permanent magnet is formed in the outer peripheral portion of the rotor core, and a restraining material that becomes a laminate of electromagnetic steel sheets is pressed against the concave groove so as to suppress the permanent magnet accommodated in the concave groove from the outer peripheral side. After being arranged in a posture, the restraining material and the permanent magnet are fixed by being sandwiched between rib-like projecting portions projecting from the rotor core to the concave groove and end plates arranged at both ends of the rotor core, and further the restraining material , And the protruding part of the core is fixed to both end plates of the rod that penetrates in the axial direction, and the centrifugal load of the permanent magnet and magnet holding member is supported as the rotor rotates. Assembly structure of data is known (e.g., see Patent Document 1).

特開2011−125104号公報JP 2011-125104 A

前記特許文献1に開示されているロータの組立構造によれば、永久磁石の漏れ磁束を抑えつつ、ロータの回転に伴いロータコアの凹溝内に収容した永久磁石,抑え材の遠心荷重を支えることができるものの、一方では高速回転時における耐遠心力強度の確保、ロータの組立性など面で次記のような課題が残る。   According to the assembly structure of the rotor disclosed in Patent Document 1, the centrifugal load of the permanent magnet and the restraining material accommodated in the concave groove of the rotor core is supported as the rotor rotates while suppressing the leakage magnetic flux of the permanent magnet. However, on the other hand, the following problems remain in terms of ensuring the strength of centrifugal force during high-speed rotation and assembling the rotor.

すなわち、軸方向に分割した永久磁石,および電磁鋼板積層体の抑え材をロータコアの両端に配したエンドプレートとロータコアに一体形成した前記張り出し箇所の間に挟み込んで軸方向に挟持締結した構造では、ロータコアの軸方向の長さが大きくなると、永久磁石,抑え材の中央部分に加わる遠心荷重をエンドプレート,コアの張り出し箇所で支えることかできず、このままでは高速回転に対して信頼性の高い耐遠心荷重強度を確保することが困難である。   That is, in a structure in which the permanent magnets divided in the axial direction and the restraining material of the electromagnetic steel sheet laminate are sandwiched between the end plate arranged at both ends of the rotor core and the overhanging portion formed integrally with the rotor core and clamped in the axial direction, When the axial length of the rotor core is increased, the centrifugal load applied to the permanent magnet and the central part of the restraining material cannot be supported by the end plate and the protruding part of the core. It is difficult to ensure the centrifugal load strength.

この点について特許文献1では、抑え材,およびロータコアの張り出し箇所を軸方向に貫通する棒材を追加してその両端をエンドプレートで支持するようにしているが、この棒材で抑え材の遠心荷重を支えるには、前記張り出し箇所の数を増やしてその相互間隔(棒材の支点間スパン)を狭める必要がある。しかしながら、この張り出し箇所はモータの駆動トルクに寄与せず、逆に永久磁石の漏れ磁束の経路になるために、ロータコアに一体形成した前記張り出し箇所の数が増えると、ロータコアの軸長が増加してモータのトルク密度が低下する。そのほか、ロータコアに組み込む永久磁石,抑え材は、前記張り出し箇所の相互間隔に合わせて軸方向に分割する必要があり、前記棒材の組立構造も複雑となるほか組立工数も増すなどして製品コストが嵩む。   In this regard, in Patent Document 1, a bar and a bar that penetrates the protruding portion of the rotor core in the axial direction are added and both ends thereof are supported by end plates. In order to support the load, it is necessary to increase the number of the protruding portions and narrow the mutual interval (span between fulcrums of the bar). However, since this overhanging part does not contribute to the driving torque of the motor, and conversely becomes a path for leakage flux of the permanent magnet, the axial length of the rotor core increases as the number of the overhanging parts integrally formed with the rotor core increases. This reduces the torque density of the motor. In addition, the permanent magnet and restraining material incorporated in the rotor core must be divided in the axial direction according to the mutual spacing of the overhanging parts, and the assembly structure of the bar becomes complicated and the number of assembling steps increases. Is bulky.

本発明は上記の点に鑑みなされたものであり、その目的はロータコアに埋設した永久磁石の漏れ磁束を抑えつつ、ロータコアの外周部に形成した凹溝の中に収容配置した永久磁石,およびその磁石抑え部材に加わる遠心荷重を簡易な構造で確実に支えることができるように改良した磁石埋込型永久磁石回転電機のロータ組立構造,およびその組立方法を提供することにある。   The present invention has been made in view of the above points, and its purpose is to suppress the leakage magnetic flux of the permanent magnet embedded in the rotor core while accommodating and arranging the permanent magnet in a concave groove formed in the outer peripheral portion of the rotor core, and its An object of the present invention is to provide an improved rotor assembly structure for an embedded magnet permanent magnet rotating electrical machine and an assembly method thereof so that a centrifugal load applied to a magnet holding member can be reliably supported with a simple structure.

上記目的を達成するために、本発明によれば、ロータシャフトに組み付けたロータコアに、複数のセグメント永久磁石を周方向に配列して埋設した磁石埋込型永久磁石回転電機のロータであり、その磁極配列に対応してロータコアの外周部には軸方向に延在する凹溝状の磁石スロットを形成した上で、該磁石スロットに永久磁石,および軟磁性体の磁石抑え部材をd軸方向に積層して嵌入配置したものにおいて、
前記磁石スロットの開口端部には前記磁石抑え部材と間隙を隔てて対向するスペーサ係合段部を軸方向に沿って形成した上で、該スペーサ係合段部と磁石抑え部材との間に嵌挿した非磁性金属になるパイプ状のスペーサを介して永久磁石,磁石抑え部材に加わる遠心力荷重を支えるようにし、磁石スロットの凹溝幅を永久磁石,磁石抑え部材より一回り大に設定し(請求項1)、具体的には次記のような態様で構成する。
(1)前記のロータコア,および磁石抑え部材を電磁鋼板の積層体で構成する(請求項2)。
(2)前記ロータコアと磁石抑え部材との間に介挿したパイプ状スペーサの内部を非磁性の固体で満たす(請求項)。
(3)前項()において、パイプ状スペーサの材質が銅、該スペーサの内部を満たした非磁性の固体がハンダである(請求項)。
In order to achieve the above object, according to the present invention, there is provided a rotor of a magnet embedded permanent magnet rotating electric machine in which a plurality of segment permanent magnets are embedded in a circumferential direction in a rotor core assembled to a rotor shaft, A groove-shaped magnet slot extending in the axial direction is formed on the outer peripheral portion of the rotor core corresponding to the magnetic pole arrangement, and a permanent magnet and a soft-magnet magnet holding member are placed in the d-axis direction in the magnet slot. In what is laminated and placed,
A spacer engagement step portion is formed along the axial direction at the opening end portion of the magnet slot so as to be opposed to the magnet holding member with a gap, and between the spacer engagement step portion and the magnet holding member. Supports the centrifugal load applied to the permanent magnet and magnet holding member through the pipe-shaped spacer that is inserted into the non-magnetic metal, and the groove width of the magnet slot is set to be slightly larger than the permanent magnet and magnet holding member. and (claim 1), specifically configured in the manner as follows follow.
(1) The rotor core and the magnet restraining member are composed of a laminate of electromagnetic steel sheets (Claim 2).
(2) pre-Symbol fill the interior of the pipe-shaped spacer interposed between the rotor core and the magnet pressing member in a non-magnetic solid (claim 3).
(3) In the preceding item ( 2 ), the material of the pipe-like spacer is copper, and the nonmagnetic solid filling the inside of the spacer is solder (claim 4 ).

また、本発明によれば、前記組立構造のロータを次記工程からなる組立方法により組み立てるものとする。すなわち、
第1の工程では永久磁石に磁石抑え部材をd軸方向に重ね合わせた上で、この積層体をロータコアの磁石スロット内に嵌入し、続く第2の工程で磁石スロットの開口端部に形成したスペーサ係合段部と磁石抑え部材との間に非磁性金属のパイプ状スペーサを軸方向に嵌挿する。次に、第3の工程でロータコアのシャフト貫通穴にロータシャフトを圧入してロータコアを「しまりばめ」した後、第4の工程でパイプ状スペーサの内部を非磁性の固体で満たす(請求項5)。
According to the present invention, the rotor having the assembly structure is assembled by an assembly method including the following steps. That is,
In the first step, a magnet holding member is superposed on the permanent magnet in the d-axis direction, and then this laminate is inserted into the magnet slot of the rotor core, and is formed at the opening end of the magnet slot in the subsequent second step. A non-magnetic metal pipe-like spacer is inserted between the spacer engaging step portion and the magnet holding member in the axial direction. Next, after the rotor shaft is press-fitted into the shaft through hole of the rotor core in the third step to “fit-fit” the rotor core, the interior of the pipe-shaped spacer is filled with a nonmagnetic solid in the fourth step (claims). 5).

上記組立構造になるロータによれば、次記の効果を奏することができる。
(1)ロータの組立状態では、ロータコアの磁石スロット(凹溝)に収容した永久磁石,および磁石抑え部材の積層体を、磁石スロットの開口端部に沿って軸方向に形成したスペーサ係合段部と磁石抑え部材との間の間隙に嵌挿した非磁性金属のパイプ状スペーサを介して永久磁石,磁石抑え部材の遠心荷重をその軸方向の全長域で担持することができる。
According to the rotor having the above assembly structure, the following effects can be obtained.
(1) In the assembled state of the rotor, a spacer engaging step in which a laminated body of permanent magnets and magnet holding members housed in the magnet slots (concave grooves) of the rotor core is formed in the axial direction along the opening ends of the magnet slots. The centrifugal load of the permanent magnet and the magnet holding member can be carried in the entire length region in the axial direction through a non-magnetic metal pipe-like spacer inserted into the gap between the portion and the magnet holding member.

これにより、ロータの組立工程では特許文献1の開示構造のように永久磁石,抑え材を軸方向に分割したり、抑え材,コアの張り出し箇所を貫通して両端のエンドプレートに支持する棒材を設けたりする必要が無く、ロータの組立作業性が向上する。また、ロータコアには磁石スロットを軸方向に分割する張り出し箇所を設ける必要がないので、この張り出し箇所の配列によるモータのトルク密度低下、ロータの軸長増大化も回避できる。
(2)ここで、ロータに外周部に形成した凹溝状の磁石スロットについて、その周方向の溝幅を永久磁石,磁石抑え部材より一回り大に設定しておくことにより、ロータの組立時には永久磁石と磁石抑え部材の積層体をロータのd軸方向から容易に挿入することができて組立作業性の簡易化が図れる。
(3)また、ロータの組立方法において、ロータコアに形成した凹溝状の磁石スロットに永久磁石,磁石抑え部材を収容し、次いで磁石スロットの凹溝開口端の側縁に沿って形成したスペーサ係合段部と間隙を隔てて対峙する磁石抑え部材との間に非磁性のパイプ状スペーサを軸方向に嵌挿した組立状態で、次にロータコアの中心部に穿設したシャフト挿通孔にロータシャフトを圧入(ないし焼き嵌め)して「しまりばめ」すると、「しまりばめ」荷重を受けてロータコアが僅かに変形(圧入膨れ)してパイプ状スペーサを嵌挿した部分の隙間が圧縮され、この変形を受けてスペーサのパイプが僅かに押し潰されたかたちで磁石スロットと磁石抑え部材との間に遊び隙間を残さずに密着状態に挟み込まれる。そして、この組立段階でパイプの内部にハンダ等の非磁性固体を満たすことにより、パイプ状のスペーサが中実体となって永久磁石,磁石抑え材の全長域に作用する遠心荷重をロータコアで確実に支えることができる。
(4)さらに、ロータのコア本体,および磁石抑え部材を電磁鋼板の積層体で構成することにより、コア本体と磁石スロットの張り出し箇所を鋳鉄系の磁性体で一体に構成した構造(特許文献1)と比べて、ロータコアの鉄損を低めて高トルク,大出力のモータを小型コンパクトに構成できる。
As a result, in the rotor assembly process, as in the structure disclosed in Patent Document 1, the permanent magnet and the pressing member are divided in the axial direction, or the bar member that penetrates the protruding portion of the pressing member and the core and is supported by the end plates at both ends. The assembly workability of the rotor is improved. Further, since it is not necessary to provide an overhanging portion for dividing the magnet slot in the axial direction in the rotor core, it is possible to avoid a decrease in the torque density of the motor and an increase in the axial length of the rotor due to the arrangement of the overhanging portion.
(2) Here, with respect to the concave groove-shaped magnet slot formed on the outer peripheral portion of the rotor, the circumferential groove width is set to be slightly larger than that of the permanent magnet and the magnet holding member, so that the rotor can be assembled. The laminated body of the permanent magnet and the magnet holding member can be easily inserted from the d-axis direction of the rotor, and the assembly workability can be simplified.
(3) Further, in the rotor assembling method, a permanent magnet and a magnet holding member are accommodated in a concave groove-shaped magnet slot formed in the rotor core, and then a spacer member formed along the side edge of the concave groove opening end of the magnet slot. The rotor shaft is inserted into the shaft insertion hole drilled in the center of the rotor core in the assembled state in which a non-magnetic pipe-like spacer is axially inserted between the stepped portion and the magnet holding member facing the gap. When press-fitting (or shrink fitting), the rotor core is slightly deformed (press-fitting and swollen) due to the “fitting fit” load, and the gap in the portion where the pipe-like spacer is inserted is compressed. In response to this deformation, the pipe of the spacer is slightly crushed and is sandwiched between the magnet slot and the magnet holding member without leaving any play gap. At this assembly stage, the pipe core is filled with non-magnetic solids such as solder, so that the pipe-shaped spacer becomes a solid substance, and the centrifugal load that acts on the entire length of the permanent magnet and magnet restraining material is ensured by the rotor core. Can support.
(4) Further, the core body of the rotor and the magnet holding member are made of a laminated body of electromagnetic steel plates, so that the projecting portion of the core body and the magnet slot is integrally formed of a cast iron-based magnetic body (Patent Document 1). ), The core loss of the rotor core can be reduced, and a motor with high torque and high output can be made compact and compact.

本発明の実施例によるロータの主要部構造を軸方向から見た模式図である。It is the schematic diagram which looked at the principal part structure of the rotor by the Example of this invention from the axial direction. 図1における各部品の形状図であって、(a)はロータコア,(b)は永久磁石,(c)は磁石抑え部材の模式断面図である。It is a shape figure of each component in Drawing 1, and (a) is a rotor core, (b) is a permanent magnet, and (c) is a schematic sectional view of a magnet control member. 図1に示したロータの組立手順(工程:I)の説明図である。It is explanatory drawing of the assembly procedure (process: I) of the rotor shown in FIG. 図1に示したロータの組立手順(工程:II)の説明図である。It is explanatory drawing of the assembly procedure (process: II) of the rotor shown in FIG. 図1に示したロータの組立手順(工程:III)の説明図である。It is explanatory drawing of the assembly procedure (process: III) of the rotor shown in FIG. 磁石埋込型永久磁石回転電機の構成断面図である。It is a composition sectional view of a magnet embedded type permanent magnet rotating electrical machine.

以下、本発明の実施の形態を図1〜図5に示す実施例に基づいて説明する。なお、実施例の図中で図6に対応する部材には同じ符号を付してその説明は省略する。
すなわち、永久磁石の配列に合わせてロータコア8の外周部には軸方向に延在する凹溝状の磁石スロット8aを形成し、該磁石スロット8aの凹溝内には永久磁石9,および軟磁性体の磁石抑え部材15をd軸方向に積層して嵌入配置されている。
Hereinafter, embodiments of the present invention will be described based on the examples shown in FIGS. In addition, in the figure of an Example, the same code | symbol is attached | subjected to the member corresponding to FIG. 6, and the description is abbreviate | omitted.
That is, a concave groove-shaped magnet slot 8a extending in the axial direction is formed in the outer peripheral portion of the rotor core 8 in accordance with the arrangement of the permanent magnets. The permanent magnet 9 and the soft magnetism are formed in the concave groove of the magnet slot 8a. The body magnet holding members 15 are stacked and arranged in the d-axis direction.

ここで、ロータコア8,および磁石抑え部材15は電磁鋼板の積層体である。また、永久磁石8は平角形のセグメント永久磁石(図2(b)参照)であり、磁石抑え部材15はその長手方向(軸方向)に沿って左右両側縁部に頂部より一段低い肩部15aが形成された台形形状になる。   Here, the rotor core 8 and the magnet holding member 15 are laminated bodies of electromagnetic steel plates. Further, the permanent magnet 8 is a rectangular segment permanent magnet (see FIG. 2B), and the magnet holding member 15 is a shoulder portion 15a that is one step lower than the top at the left and right side edges along the longitudinal direction (axial direction). A trapezoidal shape is formed.

一方、ロータコア8の外周部に形成した凹溝状の磁石スロット8は、その周方向の溝幅A(図2参照)を永久磁石9,磁石抑え部材15の横幅Bよりも一回り大きく(A>B)設定し、さらに凹溝開口端部の溝内側壁面には前記磁石抑え部材15の肩部15aとの間に間隙を隔てて対向する凹状のスペーサ係合段部8bがロータの軸方向に沿って形成されている。また、図示構造では永久磁石9の左右側面に対向してスペーサ係合段部8bと凹溝底面との中間に突起部8cを形成している。   On the other hand, the concave groove-shaped magnet slot 8 formed on the outer periphery of the rotor core 8 has a circumferential groove width A (see FIG. 2) that is slightly larger than the lateral width B of the permanent magnet 9 and the magnet holding member 15 (A > B) Further, on the groove inner wall surface at the opening end of the groove, a concave spacer engaging step 8b facing the shoulder 15a of the magnet pressing member 15 with a gap is provided in the axial direction of the rotor. It is formed along. Further, in the illustrated structure, a protruding portion 8c is formed in the middle between the spacer engagement step portion 8b and the bottom surface of the groove so as to face the left and right side surfaces of the permanent magnet 9.

そして、前記スペーサ係合段部8bと磁石抑え部材15の肩部15aとの間の間隙には非磁性金属製のパイプ状スペーサ16を軸方向に嵌挿して永久磁石9,磁石抑え部材15aを磁石スロット8aの凹溝底面に抑え込むようにしている。   A non-magnetic metal pipe-like spacer 16 is inserted in the gap between the spacer engaging step 8b and the shoulder 15a of the magnet holding member 15 so that the permanent magnet 9 and the magnet holding member 15a are inserted. The magnet slot 8a is held in the bottom of the concave groove.

ここで、前記のパイプ状スペーサ16は銅などで作られた非磁性金属パイプ(外径が例えば3mm程度)であり、後記のようにロータコア8をロータシャフト12に圧入して「しまりばめ」した組立段階で、パイプの内部にハンダ等の非磁性固体17を満たしてパイプ状スペーサ16の剛性を高めるようにしている。   Here, the pipe-shaped spacer 16 is a non-magnetic metal pipe (outer diameter is, for example, about 3 mm) made of copper or the like. At the assembly stage, the pipe is filled with a nonmagnetic solid 17 such as solder to increase the rigidity of the pipe-like spacer 16.

上記の組立構造によれば、永久磁石9のN極とロータコア8との間が間隙を隔てて隔離され、さらに永久磁石9に積層した軟磁性体の磁石抑え部材15とロータコア8との間には非磁性金属のパイプ状スペーサ16を介挿しているので、永久磁石9の漏れ磁束を効果的に抑制しつつ、ロータの回転に伴って発生する永久磁石10,および磁石抑え部材16の遠心荷重を、パイプ状スペーサ16を介してロータコア8に支えることができる。しかも、このパイプ状スペーサ16は磁石スロット8aの軸方向全域に延在しているので、遠心荷重をパイプ全長で分担して高速回転に伴う大きな遠心荷重も安全に支えることができる。
また、磁石スロット8aの凹溝内の側壁には永久磁石9の左右側面に細隙を隔てて対峙する突起部8c(図1参照)が形成されているので、回転電機の運転時に永久磁石9がトルク荷重を受けて定位置から周方向にずれ動いてd軸が変位するのを防ぐことができる。
According to the above assembly structure, the N pole of the permanent magnet 9 and the rotor core 8 are separated from each other with a gap between them, and further, between the magnet holding member 15 of the soft magnetic material laminated on the permanent magnet 9 and the rotor core 8. Since the non-magnetic metal pipe-like spacer 16 is interposed, the centrifugal load of the permanent magnet 10 and the magnet restraining member 16 generated as the rotor rotates while effectively suppressing the leakage magnetic flux of the permanent magnet 9. Can be supported on the rotor core 8 via the pipe-shaped spacer 16. Moreover, since the pipe-like spacer 16 extends in the entire axial direction of the magnet slot 8a, the centrifugal load can be shared by the entire length of the pipe, and a large centrifugal load accompanying high-speed rotation can be safely supported.
In addition, since the protrusions 8c (see FIG. 1) that face the left and right side surfaces of the permanent magnet 9 are formed on the side walls in the concave groove of the magnet slot 8a with a small gap therebetween, the permanent magnet 9 is operated during the operation of the rotating electrical machine. It is possible to prevent the d-axis from being displaced by receiving a torque load and moving in the circumferential direction from a fixed position.

次に、図1のロータ組立構造について、その組立工程,作業手順を図3〜図5により説明する。
まず、第1の工程では永久磁石9に磁石抑え部材15をd軸方向に重ね合わせて一体化した上で、この積層体をロータコア8の磁石スロット8aに挿入する(図3参照)。この際に、磁石スロット8aの溝幅Aを永久磁石9,磁石抑え部材15の横幅Bよりも一回り大きく(A>B)設定しておくことで、永久磁石9と磁石抑え部材15の積層体をロータコア8のd軸方向から挿入することが可能であり、特にロータコア8,永久磁石9の軸長が大である場合でも、ラジアル方向から作業性よく容易に嵌入できる。また、永久磁石9(例えば、ネオジウム磁石)は脆くて機械強度が低いが、前記のように永久磁石9に磁石抑え部材15をあらかじめ接着して一体化しておけば、ロータコア9に組み込む際には磁石抑え部材15を治具で把持して磁石スロット8aへの嵌入作業を安全に行える。
Next, the assembly process and work procedure of the rotor assembly structure of FIG. 1 will be described with reference to FIGS.
First, in the first step, the magnet holding member 15 is overlapped and integrated with the permanent magnet 9 in the d-axis direction, and this laminate is inserted into the magnet slot 8a of the rotor core 8 (see FIG. 3). At this time, the groove width A of the magnet slot 8a is set to be slightly larger (A> B) than the lateral width B of the permanent magnet 9 and the magnet holding member 15, so that the permanent magnet 9 and the magnet holding member 15 are stacked. The body can be inserted from the d-axis direction of the rotor core 8, and even when the axial lengths of the rotor core 8 and the permanent magnet 9 are particularly large, they can be easily inserted from the radial direction with good workability. Further, the permanent magnet 9 (for example, a neodymium magnet) is fragile and has low mechanical strength. However, if the magnet restraining member 15 is bonded and integrated in advance to the permanent magnet 9 as described above, The magnet holding member 15 is gripped with a jig, and the fitting operation into the magnet slot 8a can be performed safely.

続く第2の工程では、磁石スロット8aの開口端部に形成した凹状のスペーサ係合段部8bと磁石抑え部材15の肩部15aとの間に非磁性金属のパイプ状スペーサ16を軸方向に嵌挿する(図4参照)。なお、この嵌挿作業が楽に行えるようにするために、パイプ状スペーサ16はその外径を前記隙間に対して僅かなクリアランス(数百μm程度)を確保するように細めに設定しておくものとする。   In the subsequent second step, a non-magnetic metal pipe-shaped spacer 16 is axially disposed between the concave spacer engaging step 8b formed at the open end of the magnet slot 8a and the shoulder 15a of the magnet holding member 15. Insert (see FIG. 4). In order to facilitate this insertion / insertion work, the outer diameter of the pipe-like spacer 16 is set to be narrow so as to ensure a slight clearance (about several hundred μm) with respect to the gap. And

次に、第3の工程でロータコア8の軸中心に穿設したシャフト嵌挿孔にロータシャフト12を圧入,ないし焼き嵌めしてロータコア8をロータシャフト12に「しまりばめ」する(図5参照)。このシャフトの圧入によりロータコア8は「しまりばめ」荷重Fを受けて僅かに膨れ変形し、磁石スロット8aの開口端側ではパイプ状スペーサ16を嵌挿した部分の隙間が圧縮されるので、パイプ状スペーサ16はパイプ自身が僅かに押し潰された状態でスペーサ係合段部8bと磁石抑え部材15との間に隙間無く密着して挟み込まれるようになる。これにより、ロータコア9,磁石抑え部材15の寸法精度の誤差をパイプ状スペーサ16の潰れ変形により吸収させることができる。   Next, the rotor shaft 12 is press-fitted or shrink-fitted into the shaft fitting hole formed in the axial center of the rotor core 8 in the third step to “fit-fit” the rotor core 8 to the rotor shaft 12 (see FIG. 5). ). Due to the press-fitting of the shaft, the rotor core 8 is slightly swollen and deformed by receiving the “fitting fit” load F, and the gap in the portion where the pipe-like spacer 16 is inserted is compressed on the opening end side of the magnet slot 8a. The spacer 16 is sandwiched between the spacer engaging step 8b and the magnet restraining member 15 with no gap in a state where the pipe itself is slightly crushed. Thereby, the error of the dimensional accuracy of the rotor core 9 and the magnet holding member 15 can be absorbed by the crushing deformation of the pipe spacer 16.

次の第4工程では、パイプ状スペーサ16のパイプ内を非磁性固体17で満たす。これにより今まで中空体であったパイプ状のスペーサ16が中実体になって剛性が増し、永久磁石9,磁石抑え材15の全長域に加わる遠心荷重を確実に支えることができる。   In the next fourth step, the pipe of the pipe-like spacer 16 is filled with the nonmagnetic solid 17. Thereby, the pipe-shaped spacer 16 which has been a hollow body until now becomes a solid body and the rigidity is increased, and the centrifugal load applied to the full length region of the permanent magnet 9 and the magnet pressing member 15 can be reliably supported.

なお、前記の非磁性固体17に例えばハンダを採用し、このハンダを溶融状態でパイプ内に満たした後に冷却,固化させるものとし、具体的にはパイプ状スペーサ16のパイプ径に対応した太さの棒状ハンダにあらかじめ細いニクロム線(ヒータ線)を仕込んでおき、この棒状ハンダをパイプ内に挿入した状態でニクロム線に通電してハンダを溶かし、パイプ内を隙間無く満たす。そして、パイプを冷却してハンダ層を固化した後にニクロム線と一緒にパイプの端部を封じ切る。なお、パイプ状スペーサ9の内部を満たす非磁性固体17としては、ハンダ以外に例えば熱硬化性樹脂を充填して硬化させてもよい。   For example, solder is used for the nonmagnetic solid 17, and the solder is filled in the pipe in a molten state and then cooled and solidified. Specifically, the thickness of the pipe-shaped spacer 16 corresponds to the pipe diameter. First, a thin nichrome wire (heater wire) is charged in the rod-shaped solder, and the solder is melted by energizing the nichrome wire with the rod-shaped solder inserted into the pipe, so that the inside of the pipe is filled with no gap. And after cooling a pipe and solidifying a solder layer, the end part of a pipe is sealed off with a nichrome wire. In addition, as the nonmagnetic solid 17 filling the inside of the pipe-shaped spacer 9, for example, a thermosetting resin other than solder may be filled and cured.

6 ステータ
7 ロータ組立体
8 ロータコア
8a 磁石スロット
8b スペーサ係合段部
9 永久磁石
12 ロータシャフト
15 磁石抑え部材
15a 肩部
16 非磁性のパイプ状スペーサ
17 非磁性固体
6 Stator 7 Rotor Assembly 8 Rotor Core 8a Magnet Slot 8b Spacer Engagement Step 9 Permanent Magnet 12 Rotor Shaft 15 Magnet Suppression Member 15a Shoulder 16 Nonmagnetic Pipe Spacer 17 Nonmagnetic Solid

Claims (5)

ロータシャフトに組み付けたロータコアに、複数のセグメント永久磁石を周方向に配列して埋設した磁石埋込型永久磁石回転電機のロータであり、その磁極配列に対応してロータコアの外周部には軸方向に延在する凹溝状の磁石スロットを形成した上で、該磁石スロットに永久磁石,および軟磁性体の磁石抑え部材をd軸方向に積層して嵌入配置されたものにおいて、
前記磁石スロットの開口端部には前記磁石抑え部材と間隙を隔てて対向するスペーサ係合段部を軸方向に沿って形成した上で、該スペーサ係合段部と磁石抑え部材との間の間隙に嵌挿した非磁性金属のパイプ状スペーサを介して永久磁石,磁石抑え部材の遠心荷重を支えるようにし、磁石スロットの凹溝幅を永久磁石,磁石抑え部材より一回り大に設定したことを特徴とする磁石埋込型永久磁石回転電機のロータ。
A rotor of a magnet-embedded permanent magnet rotating electrical machine in which a plurality of segment permanent magnets are embedded in a circumferential direction in a rotor core assembled to a rotor shaft, and the outer periphery of the rotor core corresponds to the magnetic pole arrangement in the axial direction A groove-shaped magnet slot extending to the magnet slot, and a permanent magnet and a soft-magnet magnet holding member laminated in the d-axis direction are fitted and arranged in the magnet slot.
A spacer engagement step portion is formed along the axial direction at the opening end portion of the magnet slot and is opposed to the magnet holding member with a gap therebetween, and between the spacer engagement step portion and the magnet holding member. Supporting the centrifugal load of the permanent magnet and magnet holding member through a non-magnetic metal pipe-like spacer inserted in the gap, and setting the concave groove width of the magnet slot to be slightly larger than the permanent magnet and magnet holding member. A rotor of an embedded magnet permanent magnet rotating electric machine.
請求項1に記載のロータにおいて、ロータコア,および磁石抑え部材を電磁鋼板の積層体で構成したことを特徴とする磁石埋込型永久磁石回転電機のロータ。   The rotor according to claim 1, wherein the rotor core and the magnet holding member are made of a laminated body of electromagnetic steel plates. 請求項1または2に記載のロータにおいて、ロータコアと磁石抑え部材との間に介挿したパイプ状スペーサの内部を非磁性の固体で満たしたことを特徴とする磁石埋込型永久磁石回転電機のロータ。 The rotor according to claim 1 or 2 , wherein the interior of the pipe-like spacer inserted between the rotor core and the magnet holding member is filled with a nonmagnetic solid. Rotor. 請求項に記載のロータにおいて、パイプ状スペーサの材質が銅、該スペーサの内部を満たした非磁性の固体がハンダであることを特徴とする磁石埋込型永久磁石回転電機のロータ。 4. The rotor according to claim 3 , wherein the material of the pipe-like spacer is copper, and the nonmagnetic solid filling the inside of the spacer is solder. 請求項1ないしに記載のロータの組立方法であって、永久磁石に磁石抑え部材をd軸方向に重ね合わせた上で、この積層体をロータコアに形成した磁石スロット内に嵌入する第1の工程と、磁石スロットの開口端側部に形成したスペーサ係合段部と磁石抑え部材との間に非磁性金属のパイプ状スペーサを軸方向に嵌挿する第2の工程と、ロータコアの軸中心部に穿設したシャフト挿通孔にロータシャフトを圧入して「しまりばめ」する第3の工程と、その後にパイプ状スペーサの内部を非磁性の固体で満たす第4の工程からなる磁石埋込型永久磁石回転電機のロータ組立方法。 A rotor assembling method according to claims 1 to 3, the magnet pressing member to the permanent magnet on superimposed on the d-axis direction, the first to fit the laminate in the magnet slots formed in the rotor core A second step of axially inserting a non-magnetic metal pipe-like spacer between the spacer engaging step formed on the opening end side of the magnet slot and the magnet holding member, and the axial center of the rotor core Magnet embedding comprising a third step of press-fitting the rotor shaft into a shaft insertion hole drilled in the part and “squeeze-fitting”, and then a fourth step of filling the interior of the pipe-shaped spacer with a nonmagnetic solid A rotor assembly method for a permanent magnet rotating electric machine.
JP2012098689A 2012-04-24 2012-04-24 Rotor of embedded magnet permanent magnet rotating electric machine and method of assembling the same Expired - Fee Related JP5995057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012098689A JP5995057B2 (en) 2012-04-24 2012-04-24 Rotor of embedded magnet permanent magnet rotating electric machine and method of assembling the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012098689A JP5995057B2 (en) 2012-04-24 2012-04-24 Rotor of embedded magnet permanent magnet rotating electric machine and method of assembling the same

Publications (2)

Publication Number Publication Date
JP2013229955A JP2013229955A (en) 2013-11-07
JP5995057B2 true JP5995057B2 (en) 2016-09-21

Family

ID=49677098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012098689A Expired - Fee Related JP5995057B2 (en) 2012-04-24 2012-04-24 Rotor of embedded magnet permanent magnet rotating electric machine and method of assembling the same

Country Status (1)

Country Link
JP (1) JP5995057B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6147430B2 (en) * 2014-06-11 2017-06-14 三菱電機株式会社 Permanent magnet embedded motor
GB2546298B (en) 2016-01-14 2022-06-15 Advanced Electric Machines Group Ltd Rotor assembly
JP2022023737A (en) * 2020-07-27 2022-02-08 トヨタ自動車株式会社 Assembly method of rotor and control apparatus of rotor assembly device
CN112467908B (en) * 2020-11-30 2021-10-22 安徽美芝精密制造有限公司 Rotor punching sheet, rotor, motor, compressor and refrigeration equipment
CN112671185A (en) * 2020-12-15 2021-04-16 成都皮克电源有限公司 Clamping type assembling method for rare earth permanent magnet generator rotor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4482831A (en) * 1982-04-05 1984-11-13 Notaras John Arthur Magneto arrangement
KR100524544B1 (en) * 2004-07-20 2005-10-31 삼성광주전자 주식회사 Rotor and compressor having the same
JP2011172359A (en) * 2010-02-17 2011-09-01 Nippon Steel Corp Split rotor and electric motor

Also Published As

Publication number Publication date
JP2013229955A (en) 2013-11-07

Similar Documents

Publication Publication Date Title
US10320249B2 (en) Permanent magnet rotating electric machine and method for manufacturing same
JP4608967B2 (en) Rotor structure and rotor manufacturing method for disk-type rotating electrical machine
JP4815967B2 (en) Permanent magnet rotating electric machine
JP5044217B2 (en) Magnet fixing structure of rotating electric machine
US6897590B2 (en) Rotor assembly for a permanent magnet electrical machine comprising such a rotor assembly
JP5995057B2 (en) Rotor of embedded magnet permanent magnet rotating electric machine and method of assembling the same
WO2011114594A1 (en) Permanent magnet-type rotary generator
US9800125B2 (en) Reluctance rotor with mechanical stabilizing
JP2009195088A (en) Rotating electric machine and manufacturing method thereof
JP2009077469A (en) Magnet-embedded motor and manufacturing method therefor
JP2014187828A (en) Rotor for motor, brushless motor, method of manufacturing rotor for motor
JP2014054047A (en) Brushless motor
EP1953901A1 (en) Motor and device using the same
JP2014072971A (en) Rotor for surface magnet affixed rotary electric machine and manufacturing method thereof
JP6871378B2 (en) Rotating machine
US9673670B2 (en) Method for producing a rotor and electric machine having a rotor
JP6793462B2 (en) Rotor assembly and motors including it
JP2013223407A (en) Rotor of magnet-embedded permanent magnet rotary electric machine
JPH11355987A (en) Rotor structure for rotating machine
JP5582383B2 (en) Embedded magnet rotor
JP2006311702A (en) Stator structure of rotary electric machine
JP2011041446A (en) Method of manufacturing rotor core, rotor core manufactured by the manufacturing method, and embedded magnet type rotary electric machine having the rotor core
JP2010093988A (en) Permanent magnet type rotating machine
JP2015216786A (en) Permanent magnet embedded rotary electric machine
JP5411883B2 (en) Permanent magnet rotating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150316

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151005

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20151005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160810

R150 Certificate of patent or registration of utility model

Ref document number: 5995057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees