JP2009195088A - Rotating electric machine and manufacturing method thereof - Google Patents

Rotating electric machine and manufacturing method thereof Download PDF

Info

Publication number
JP2009195088A
JP2009195088A JP2008036326A JP2008036326A JP2009195088A JP 2009195088 A JP2009195088 A JP 2009195088A JP 2008036326 A JP2008036326 A JP 2008036326A JP 2008036326 A JP2008036326 A JP 2008036326A JP 2009195088 A JP2009195088 A JP 2009195088A
Authority
JP
Japan
Prior art keywords
fastening member
hole
resin
cylindrical fastening
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008036326A
Other languages
Japanese (ja)
Inventor
Yoichi Saito
洋一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2008036326A priority Critical patent/JP2009195088A/en
Publication of JP2009195088A publication Critical patent/JP2009195088A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotating electric machine capable of ensuring the strength of a rotor even at a high-speed rotation, the rotor equipped with a rotor core in which a plurality of magnetic plates made of a ferromagnetic material are stacked and which has end plates attached on both ends and is fastened using a fastening member. <P>SOLUTION: The rotor core configuring the rotor is formed by stacking a plurality of electromagnetic steel plates, wherein a through-hole 22 is formed outward from a position where a permanent magnet is embedded so as to extend in a shaft direction. In the through-hole 22, a cylindrical fastening member 23 for fastening the electromagnetic steel plates in cooperation with the end plates 17 are arranged so as to penetrate through the through-hole 22. A first communicating hole 25 communicating to the inside of the cylindrical fastening member 23 is formed on one of the end plates 17, and a gap Δ between the inner surface of the through-hole 22 and the cylindrical fastening member 23 is filled with a resin 28 supplied from the first communicating hole 25 and entering the gap Δ by a suction action from a second communicating hole 26 via a hole formed on the cylindrical fastening member 23. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、回転電機及びその製造方法に関する。   The present invention relates to a rotating electrical machine and a method for manufacturing the same.

回転子(ロータコア)に磁石を埋め込んだ磁石埋め込み型電動機(IPMモータ)においては、短絡磁束を低減するためブリッジ部を細くするが、遠心力に対する機械強度を高めるために積層鋼板に貫通孔をあけて、貫通孔に挿入した締結部材で補強する方法がある。また、同期リラクタンスモータの回転子として、中央部に形成された軸孔の周囲に複数個のフラックスバリア群が形成されたコア鋼板が積層されて形成されたコア鋼板積層体と、コア鋼板積層体の両側に夫々配置される端板とを、フラックスバリア群を貫通する締結部材で一体に結合させた物が提案されている(特許文献1参照。)。締結部材としてはリベットや固定ボルト及びナットの組み合わせが提案されている。
特開2003−52156号公報
In a magnet-embedded electric motor (IPM motor) in which a magnet is embedded in a rotor (rotor core), the bridge portion is narrowed to reduce short-circuit magnetic flux, but through holes are made in laminated steel sheets to increase mechanical strength against centrifugal force. There is a method of reinforcing with a fastening member inserted into the through hole. Moreover, as a rotor of a synchronous reluctance motor, a core steel plate laminate formed by laminating a core steel plate in which a plurality of flux barrier groups are formed around a shaft hole formed in a central portion, and a core steel plate laminate A product has been proposed in which end plates respectively disposed on both sides of the steel plate are integrally coupled with a fastening member penetrating the flux barrier group (see Patent Document 1). A combination of rivets, fixing bolts and nuts has been proposed as the fastening member.
JP 2003-52156 A

ところが、特許文献1のようにリベットや固定ボルト等の締結手段をフラックスバリア部に挿入する構成では、締結手段の周囲に隙間が存在するため、モータの高速運転時に、遠心力によりその隙間の分、回転子が変形する虞がある。また、フラックスバリアを利用せずに、締結部材挿通用の貫通孔を形成して、その貫通孔に締結部材を挿通する構成においても、図11に示すように、貫通孔61の内面と締結部材62の周面との間には、製造上の公差や締結部材62を挿入するため必ず隙間Δが生じる。その結果、モータの高速運転時に、前記と同様に回転子が変形する虞がある。隙間Δに樹脂を充填して埋めることも考えられるが、隙間Δは微小なため、単純に隙間Δの一端から樹脂を充填することは困難である。一方、特許文献1のようにフラックスバリアに締結部材を挿入する場合は、隙間が大きすぎて樹脂を十分充填できない虞がある。   However, in the configuration in which fastening means such as rivets and fixing bolts are inserted into the flux barrier portion as in Patent Document 1, since there is a gap around the fastening means, the clearance is separated by centrifugal force during high-speed operation of the motor. The rotor may be deformed. Further, in the configuration in which the through hole for inserting the fastening member is formed without using the flux barrier and the fastening member is inserted through the through hole, as shown in FIG. 11, the inner surface of the through hole 61 and the fastening member A gap Δ is always generated between the peripheral surface 62 and the manufacturing tolerance and the fastening member 62. As a result, the rotor may be deformed in the same manner as described above during high-speed operation of the motor. It is conceivable to fill the gap Δ with resin, but since the gap Δ is very small, it is difficult to simply fill the resin from one end of the gap Δ. On the other hand, when the fastening member is inserted into the flux barrier as in Patent Document 1, there is a possibility that the gap is too large to sufficiently fill the resin.

本発明は、前記従来の問題に鑑みてなされたものであって、その目的は、強磁性材製の磁性板が複数枚積層されるとともに両端に端板が設けられ、かつ締結部材で締結されて構成されたロータコアを備えた回転子の強度を、高速回転時にも確保することができる回転電機を提供することにある。   The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to laminate a plurality of ferromagnetic magnetic plates and to provide end plates at both ends and to be fastened by a fastening member. An object of the present invention is to provide a rotating electrical machine that can ensure the strength of a rotor having a rotor core configured as described above even during high-speed rotation.

前記の目的を達成するため、請求項1に記載の発明は、強磁性材製の磁性板が複数枚積層されたロータコアと、前記ロータコアに軸方向に延びるように形成された貫通孔と、前記ロータコアの両端に配置された端板と、前記貫通孔を貫通して配置されるとともに前記端板と協働して前記磁性板を締結するとともに、壁面に孔が形成された筒状締結部材と、前記端板のうち一方の端板に形成され、前記筒状締結部材の内部に連通する連通孔と、前記貫通孔の内面と前記筒状締結部材との隙間を埋める樹脂とを有する回転子を備えている。   In order to achieve the above object, the invention according to claim 1 is a rotor core in which a plurality of magnetic plates made of a ferromagnetic material are laminated, a through hole formed in the rotor core so as to extend in the axial direction, An end plate disposed at both ends of the rotor core; a cylindrical fastening member that is disposed through the through hole and that cooperates with the end plate to fasten the magnetic plate; And a rotor formed in one of the end plates and having a communication hole communicating with the inside of the cylindrical fastening member, and a resin filling a gap between the inner surface of the through hole and the cylindrical fastening member. It has.

この発明では、回転子を構成するロータコアは強磁性材製の磁性板が複数枚積層されるとともに、その両端に配置された端板と、ロータコアに軸方向に延びるように形成された貫通孔を貫通して配置されるとともに端板と協働して磁性板を締結する筒状締結部材により締結されている。そして、貫通孔の内面と筒状締結部材との隙間は樹脂で埋められている。したがって、貫通孔の内面と締結部材との間に隙間が存在する場合に比べて、回転子の強度を、高速回転時にも確保することができる。   In the present invention, the rotor core constituting the rotor has a plurality of ferromagnetic magnetic plates laminated, and has end plates arranged at both ends thereof and through holes formed in the rotor core so as to extend in the axial direction. It is fastened by a cylindrical fastening member that is disposed through and fastens the magnetic plate in cooperation with the end plate. And the clearance gap between the inner surface of a through-hole and a cylindrical fastening member is filled with resin. Therefore, the strength of the rotor can be ensured even during high-speed rotation, compared to the case where a gap exists between the inner surface of the through hole and the fastening member.

請求項2に記載の発明は、請求項1に記載の発明において、前記ロータコアには前記貫通孔を兼用するフラックスバリアが設けられ、前記フラックスバリア内には複数の仕切り板が前記筒状締結部材に貫通された状態で設けられ、前記筒状締結部材には前記仕切り板間と対応した箇所に前記孔が形成され、前記孔が設けられた部分を挟むように位置する前記仕切り板間の前記隙間には前記樹脂が充填されている。この発明では、フラックスバリアが貫通孔を兼用するため、筒状締結部材を挿通する専用の貫通孔を形成する必要はない。また、フラックスバリアの内面と筒状締結部材との隙間全体に樹脂が充填されるのではなく、複数の仕切り板に挟まれた箇所で筒状締結部材の壁面に孔が設けられた部分にのみ樹脂が充填されている。したがって、フラックスバリア全体に樹脂を充填する構成と異なり、樹脂が充填すべき隙間全体に充填された状態になり、回転子の強度を、高速回転時にも確保することができる。また、樹脂の使用量を減らすことができる。   The invention according to claim 2 is the invention according to claim 1, wherein the rotor core is provided with a flux barrier that also serves as the through hole, and a plurality of partition plates are provided in the cylindrical fastening member in the flux barrier. The hole is formed at a location corresponding to the space between the partition plates in the cylindrical fastening member, and the space between the partition plates positioned so as to sandwich the portion where the holes are provided. The gap is filled with the resin. In this invention, since the flux barrier also serves as a through hole, it is not necessary to form a dedicated through hole for inserting the cylindrical fastening member. In addition, the entire gap between the inner surface of the flux barrier and the cylindrical fastening member is not filled with resin, but only in a portion where a hole is provided in the wall surface of the cylindrical fastening member at a location sandwiched between a plurality of partition plates. Filled with resin. Therefore, unlike the configuration in which the entire flux barrier is filled with resin, the entire gap to be filled with resin is filled, and the strength of the rotor can be ensured even during high-speed rotation. Moreover, the usage-amount of resin can be reduced.

請求項3に記載の発明は、請求項1に記載の発明において、前記筒状締結部材には第1端部に前記孔が形成されている。前記端板のうち前記筒状締結部材の第2端部と対向する端板には前記筒状締結部材の第2端部が嵌合する凹部が形成されるとともに、前記凹部と対応する位置に筒状締結部材の内部と連通する第1連通孔が形成され、かつ前記貫通孔の内面と前記筒状締結部材の外面との隙間のみに連通する第2連通孔が形成されている。前記隙間及び前記筒状締結部材の内部に前記樹脂が充填されている。この発明では、樹脂は貫通孔の内面と筒状締結部材の外面との隙間に筒状締結部材のほぼ全長にわたって充填されているため、請求項2の構成に比べて高い強度を確保することができる。   According to a third aspect of the present invention, in the first aspect of the present invention, the cylindrical fastening member is formed with the hole at a first end. A concave portion into which the second end portion of the cylindrical fastening member is fitted is formed in an end plate facing the second end portion of the cylindrical fastening member among the end plates, and at a position corresponding to the concave portion. A first communication hole communicating with the inside of the cylindrical fastening member is formed, and a second communication hole communicating only with a gap between the inner surface of the through hole and the outer surface of the cylindrical fastening member is formed. The resin is filled in the gap and the inside of the cylindrical fastening member. In this invention, since the resin is filled in the gap between the inner surface of the through hole and the outer surface of the cylindrical fastening member over almost the entire length of the cylindrical fastening member, it is possible to ensure high strength compared to the configuration of claim 2. it can.

請求項4に記載の発明は、請求項1〜請求項3のいずれか一項に記載の発明において、前記樹脂は熱硬化性樹脂である。したがって、この発明では、樹脂に熱可塑性樹脂を使用した場合と異なり、回転電機の使用時に樹脂が軟化する虞がない。   The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the resin is a thermosetting resin. Therefore, in the present invention, unlike the case where a thermoplastic resin is used for the resin, there is no possibility that the resin is softened when the rotary electric machine is used.

請求項5に記載の発明は、強磁性材製の磁性板が複数枚積層されたロータコアと、前記ロータコアの両端に配置された端板とを有し、前記ロータコアに軸方向に延びるように形成された貫通孔を貫通して配置されるとともに、前記端板と協働して前記磁性板を締結する筒状締結部材とを備え、前記端板のうち一方の端板に前記筒状締結部材の内部に連通する連通孔が形成されている回転電機の製造方法である。そして、前記筒状締結部材を、前記貫通孔の内面と前記筒状締結部材との間に隙間を有する状態で前記貫通孔を貫通するとともに両端が前記両端板で挟持された状態に配置する工程と、前記筒状締結部材の内部に前記連通孔から樹脂を流動性を有する状態で充填するとともに前記筒状締結部材に形成された孔から前記隙間に供給する工程とを有する。また、前記隙間のうち樹脂を充填すべき箇所に前記樹脂が充填された後、前記樹脂を硬化させる工程を有する方法で回転子を製造する工程を備えている。   The invention according to claim 5 has a rotor core in which a plurality of magnetic plates made of a ferromagnetic material are laminated, and end plates disposed at both ends of the rotor core, and is formed to extend in the axial direction on the rotor core. A cylindrical fastening member that is disposed through the formed through-hole and that fastens the magnetic plate in cooperation with the end plate, and the cylindrical fastening member is disposed on one of the end plates. It is a manufacturing method of the rotary electric machine in which the communicating hole connected in the inside is formed. And the process which arrange | positions the said cylindrical fastening member in the state which penetrated the said through-hole in the state which has a clearance gap between the inner surface of the said through-hole, and the said cylindrical fastening member, and was clamped by the both end plates. And filling the inside of the cylindrical fastening member with resin from the communication hole in a fluid state and supplying the resin to the gap from the hole formed in the cylindrical fastening member. Further, the method includes a step of manufacturing a rotor by a method having a step of curing the resin after the resin is filled in a portion of the gap where the resin is to be filled.

この発明の製造方法では、筒状締結部材が、貫通孔の内面と筒状締結部材との間に隙間を有する状態で貫通孔を貫通するとともに両端が両端板で挟持された状態に配置される。そして、その状態で、筒状締結部材の内部に連通孔から樹脂が流動性を有する状態で充填されるとともに筒状締結部材に形成された孔から隙間に供給される。そして、樹脂を充填すべき隙間に樹脂が充填された後、樹脂が硬化されて回転子が製造される。したがって、その回転子を備えた回転電機は、貫通孔の内面と締結部材との間に隙間が存在する場合に比べて、回転子の強度を、高速回転時にも確保することができる。   In the manufacturing method of the present invention, the cylindrical fastening member is disposed in a state where the through hole is penetrated with a gap between the inner surface of the through hole and the cylindrical fastening member and both ends are sandwiched between both end plates. . Then, in this state, the resin is filled into the tubular fastening member in a fluid state from the communication hole and supplied to the gap from the hole formed in the tubular fastening member. And after filling resin into the gap which should be filled with resin, resin is hardened and a rotor is manufactured. Therefore, the rotating electrical machine including the rotor can ensure the strength of the rotor even during high-speed rotation, as compared with the case where a gap exists between the inner surface of the through hole and the fastening member.

本発明によれば、強磁性材製の磁性板が複数枚積層されるとともに両端に端板が設けられ、かつ締結部材で締結されて構成されたロータコアを備えた回転子の強度を、高速回転時にも確保することができる回転電機を提供することができる。   According to the present invention, a plurality of ferromagnetic magnetic plates are laminated, end plates are provided at both ends, and the strength of a rotor having a rotor core configured to be fastened by a fastening member is increased at high speed. A rotating electrical machine that can be secured sometimes can be provided.

(第1の実施形態)
以下、本発明を磁石埋め込み型電動機(IPMモータ)に具体化した第1の実施形態を図1〜図5にしたがって説明する。
(First embodiment)
Hereinafter, a first embodiment in which the present invention is embodied in a magnet-embedded electric motor (IPM motor) will be described with reference to FIGS.

図1に示すように、回転電機としての電動機10は、略筒状の本体部11aと、その開口部を覆う蓋部11bとからなるハウジング11を有し、ハウジング11の内周面に、固定子(ステータ)12が固定されている。固定子12は、円筒状で内側に複数のティース13が等間隔で設けられている。ティース13にはコイル(巻線)14が巻かれている。なお、コイル14はコイルエンドのみ図示されている。コイル14の巻き付け方法は分布巻であっても集中巻であってもよい。   As shown in FIG. 1, an electric motor 10 as a rotating electric machine has a housing 11 composed of a substantially cylindrical main body portion 11 a and a lid portion 11 b covering the opening, and is fixed to the inner peripheral surface of the housing 11. A child (stator) 12 is fixed. The stator 12 is cylindrical and a plurality of teeth 13 are provided at equal intervals on the inside. A coil (winding) 14 is wound around the teeth 13. Note that only the coil end of the coil 14 is shown. The winding method of the coil 14 may be distributed winding or concentrated winding.

固定子12の内側には、回転子(ロータ)15が配置されている。回転子15は、強磁性材製の磁性板としての円板状の電磁鋼板16aが複数枚積層されたロータコア16と、ロータコア16の両端に配置された円板状の端板17と、ロータコア16及び端板17の中心に形成された軸孔15aに貫挿された回転軸18とを備えている。そして、回転軸18は、ハウジング11の両蓋部11bの略中央に固定された軸受け19を介して、ハウジング11に対して回転可能に支持されている。   A rotor (rotor) 15 is disposed inside the stator 12. The rotor 15 includes a rotor core 16 in which a plurality of disk-shaped electromagnetic steel plates 16 a as magnetic plates made of a ferromagnetic material are stacked, a disk-shaped end plate 17 disposed at both ends of the rotor core 16, and the rotor core 16. And a rotary shaft 18 inserted through a shaft hole 15 a formed at the center of the end plate 17. The rotating shaft 18 is supported so as to be rotatable with respect to the housing 11 via a bearing 19 that is fixed to the approximate center of both the lid portions 11 b of the housing 11.

図2に示すように、ロータコア16には、周方向に複数(この実施形態では4個)に等分割された各仮想領域に永久磁石20が埋め込まれている。各永久磁石20は、断面円弧状に形成され、ロータコア16の中心側に向かって凸となるように形成された装着孔21に装着された状態で埋設されている。各永久磁石20は、着磁方向が厚さ方向となるように着磁されるとともに、隣り合う仮想領域に配置された永久磁石20同士は、ロータコア16の外周側が異なる極になるように配置されている。ロータコア16には、装着孔21の端部に連続し外周側に向かって延びるフラックスバリア(孔)21aが形成されている。   As shown in FIG. 2, the permanent magnet 20 is embedded in the rotor core 16 in each virtual region equally divided into a plurality (four in this embodiment) in the circumferential direction. Each permanent magnet 20 is formed in an arc shape in cross section, and is embedded in a state of being mounted in a mounting hole 21 formed so as to protrude toward the center side of the rotor core 16. The permanent magnets 20 are magnetized so that the magnetization direction is the thickness direction, and the permanent magnets 20 arranged in adjacent virtual regions are arranged so that the outer peripheral side of the rotor core 16 has different poles. ing. The rotor core 16 is formed with a flux barrier (hole) 21 a that continues to the end of the mounting hole 21 and extends toward the outer peripheral side.

ロータコア16には、永久磁石20が埋め込まれた位置より外周側に、軸方向に延びるように貫通孔22が形成されている。貫通孔22には、端板17と協働して電磁鋼板16aを締結する筒状締結部材23が貫通孔22を貫通して配置されている。   A through hole 22 is formed in the rotor core 16 so as to extend in the axial direction on the outer peripheral side from the position where the permanent magnet 20 is embedded. A cylindrical fastening member 23 for fastening the electromagnetic steel plate 16 a in cooperation with the end plate 17 is disposed in the through hole 22 so as to penetrate the through hole 22.

図3(c)に示すように、筒状締結部材23は、第1端部が閉塞されるとともに、壁面である周壁の第1端部に孔24が複数形成されている。図3(a),(b)に示すように、筒状締結部材23の第2端部と対向する側に設けられた端板17には、各筒状締結部材23に対応して第1連通孔25及び第2連通孔26が形成されている。詳述すると、図4(a),(b)に示すように、筒状締結部材23の第2端部と対向する端板17には、筒状締結部材23の第2端部が嵌合する凹部27が形成されるとともに、凹部27と対応する位置、本実の形態では、筒状締結部材23の筒部のみに連通する位置であり、筒状部材23と同心となる位置に筒状締結部材23の内部と連通する第1連通孔25が形成されている。また、端板17には貫通孔22の内面と筒状締結部材23の外面との隙間Δのみに連通する第2連通孔26が形成され、隙間Δ及び筒状締結部材23の内部に樹脂28が充填されている。樹脂28として熱硬化性樹脂が使用されている。なお、第1端部側の端板17にも第1端部が嵌合する凹部27が形成されており、孔24は嵌合状態で孔24が塞がれない位置で隙間Δの端部と対向する位置に形成されている。筒状締結部材23の径は、例えば、電磁鋼板16aの径の1/10〜1/20程度であり、第1連通孔25及び第2連通孔26の径は筒状締結部材23の径より小さい。そこで、図示の都合上、図3(a),(b)、図5(b)、図6(a)と、図4(a),(b)とでは、筒状締結部材23、第1連通孔25及び第2連通孔26を、径の比が異なる大きさで表している。   As shown in FIG. 3 (c), the cylindrical fastening member 23 is closed at the first end, and a plurality of holes 24 are formed at the first end of the peripheral wall that is the wall surface. As shown in FIGS. 3A and 3B, the end plate 17 provided on the side facing the second end of the cylindrical fastening member 23 has a first corresponding to each cylindrical fastening member 23. A communication hole 25 and a second communication hole 26 are formed. More specifically, as shown in FIGS. 4A and 4B, the second end of the cylindrical fastening member 23 is fitted to the end plate 17 facing the second end of the cylindrical fastening member 23. The concave portion 27 is formed, and the position corresponding to the concave portion 27, in the present embodiment, is a position that communicates only with the cylindrical portion of the cylindrical fastening member 23, and is cylindrical at a position that is concentric with the cylindrical member 23. A first communication hole 25 communicating with the inside of the fastening member 23 is formed. The end plate 17 is formed with a second communication hole 26 that communicates only with the gap Δ between the inner surface of the through hole 22 and the outer surface of the cylindrical fastening member 23, and a resin 28 is formed inside the gap Δ and the cylindrical fastening member 23. Is filled. A thermosetting resin is used as the resin 28. The end plate 17 on the first end side is also provided with a concave portion 27 in which the first end portion is fitted, and the hole 24 is an end portion of the gap Δ at a position where the hole 24 is not closed in the fitted state. It is formed in the position facing. The diameter of the cylindrical fastening member 23 is, for example, about 1/10 to 1/20 of the diameter of the electromagnetic steel plate 16 a, and the diameters of the first communication hole 25 and the second communication hole 26 are larger than the diameter of the cylindrical fastening member 23. small. Therefore, for convenience of illustration, in FIGS. 3A, 3B, 5B, and 6A, and FIGS. 4A and 4B, the cylindrical fastening member 23, the first The communication hole 25 and the second communication hole 26 are represented by sizes having different diameter ratios.

筒状締結部材23の内部に充填される樹脂28の量は、筒状締結部材23の強度によって設定される。例えば、筒状締結部材23の強度が高速回転時の遠心力で支障を来すほど変形するような値の場合は、樹脂28は筒状締結部材23の内部全体に充填されるが、筒状締結部材23の強度が高ければ、筒状締結部材23の内部に充填される樹脂28の量は、樹脂28が隙間Δ全体に充填された状態で硬化が完了するのに必要な量であればよい。   The amount of the resin 28 filled in the cylindrical fastening member 23 is set by the strength of the cylindrical fastening member 23. For example, in the case where the strength of the cylindrical fastening member 23 is such a value that it is deformed so as to hinder the centrifugal force during high-speed rotation, the resin 28 is filled in the entire tubular fastening member 23, but the tubular shape If the strength of the fastening member 23 is high, the amount of the resin 28 filled in the cylindrical fastening member 23 is an amount necessary for completing the curing in a state where the resin 28 is filled in the entire gap Δ. Good.

次に前記のように構成された回転子15の製造方法を説明する。この製造方法では、電磁鋼板16aが複数枚積層されるとともに、装着孔21に永久磁石20が装着されるとともに貫通孔22が形成されたロータコア16と、ロータコア16の両端に配置される端板と、筒状締結部材23とを準備する。ロータコア16は、プレス加工により装着孔21、フラックスバリア21a、貫通孔22及び軸孔15aが形成された電磁鋼板16aを接着剤などで仮止めした状態で準備する。   Next, a method for manufacturing the rotor 15 configured as described above will be described. In this manufacturing method, a plurality of electromagnetic steel plates 16a are laminated, the permanent magnet 20 is mounted in the mounting hole 21 and the through-hole 22 is formed, and the end plates disposed at both ends of the rotor core 16; A cylindrical fastening member 23 is prepared. The rotor core 16 is prepared in a state in which the electromagnetic steel plate 16a in which the mounting hole 21, the flux barrier 21a, the through hole 22 and the shaft hole 15a are formed by press working is temporarily fixed with an adhesive or the like.

そして、筒状締結部材23を、貫通孔22の内面と筒状締結部材23との間に隙間Δを有する状態で貫通孔22を貫通するとともに、両端が両端板17で挟持された状態に配置する工程が行われる。詳述すると、図5(a)に示すように、回転軸18が取り付けられる前の回転子15を収容可能な治具30の収容部31に、筒状締結部材23の第1端部側に配置される端板17及びロータコア16を、端板17が下側になる状態で順に配置する。次に筒状締結部材23を、貫通孔22の内面と筒状締結部材23との間に隙間Δを有する状態で貫通孔22に挿入する筒状締結部材挿入工程が行われる。筒状締結部材23は第1端部が下側になる状態で貫通孔22に挿入される。筒状締結部材23の第1端部は、端板17の凹部27に嵌合され、第2端部がロータコア16の端面から突出した状態になる。次に第1連通孔25及び第2連通孔26を有する端板17を、凹部27が筒状締結部材23の突出端と嵌合するように配置すると、図5(b)に示すように、筒状締結部材23が、貫通孔22を貫通するとともにその両端が両端板17で挟持された状態にロータコア16、端板17及び筒状締結部材23が配置される。   Then, the cylindrical fastening member 23 is disposed in a state where the through hole 22 is penetrated with a gap Δ between the inner surface of the through hole 22 and the cylindrical fastening member 23 and both ends are sandwiched between both end plates 17. The process to perform is performed. More specifically, as shown in FIG. 5A, the housing portion 31 of the jig 30 capable of housing the rotor 15 before the rotating shaft 18 is attached to the first end portion side of the cylindrical fastening member 23. The end plate 17 and the rotor core 16 to be arranged are sequentially arranged in a state where the end plate 17 is on the lower side. Next, a cylindrical fastening member insertion step is performed in which the cylindrical fastening member 23 is inserted into the through hole 22 with a gap Δ between the inner surface of the through hole 22 and the cylindrical fastening member 23. The cylindrical fastening member 23 is inserted into the through hole 22 with the first end portion being on the lower side. The first end portion of the cylindrical fastening member 23 is fitted into the recess 27 of the end plate 17, and the second end portion protrudes from the end surface of the rotor core 16. Next, when the end plate 17 having the first communication hole 25 and the second communication hole 26 is arranged so that the recess 27 is fitted to the protruding end of the cylindrical fastening member 23, as shown in FIG. The rotor core 16, the end plate 17, and the cylindrical fastening member 23 are arranged in a state where the cylindrical fastening member 23 penetrates the through hole 22 and both ends thereof are sandwiched between the both end plates 17.

次に筒状締結部材23の内部に樹脂を、流動性を有する状態で充填するとともに筒状締結部材23に形成された孔24から隙間Δに供給する樹脂供給工程が行われる。樹脂供給工程は、図6(a)に示すように、樹脂供給ノズル32を用いて端板17の第1連通孔25から筒状締結部材23内に樹脂を供給するとともに、吸引ノズル33を用いて端板17の第2連通孔26から隙間Δに吸引作用を加える状態にする。樹脂供給ノズル32は第1連通孔25に気密状態で接合されて、樹脂を加圧状態で供給する。   Next, a resin supply step is performed in which resin is filled in the cylindrical fastening member 23 in a fluid state and is supplied to the gap Δ from the hole 24 formed in the cylindrical fastening member 23. In the resin supply step, as shown in FIG. 6A, the resin is supplied into the cylindrical fastening member 23 from the first communication hole 25 of the end plate 17 using the resin supply nozzle 32 and the suction nozzle 33 is used. Then, the suction action is applied to the gap Δ from the second communication hole 26 of the end plate 17. The resin supply nozzle 32 is joined to the first communication hole 25 in an airtight state, and supplies the resin in a pressurized state.

この状態では、図6(b)に示すように、樹脂供給ノズル32から筒状締結部材23内に供給された流動可能な状態の樹脂28は、筒状締結部材23の第1端部に形成された孔24から隙間Δへと移動する。そして、隙間Δへ進入した樹脂28は、吸引ノズル33による吸引作用と樹脂供給ノズル32から供給される樹脂28による加圧作用により、次第に隙間Δの上部に向かって移動する。そして、隙間Δのうち樹脂を充填すべき箇所、この実施形態では隙間Δ全体に樹脂28が充填された後、吸引ノズル33の吸引作用及び樹脂供給ノズル32からの樹脂の供給が停止される。この樹脂供給作業が各筒状締結部材23に対して順に行われる。   In this state, as shown in FIG. 6B, the flowable resin 28 supplied from the resin supply nozzle 32 into the cylindrical fastening member 23 is formed at the first end portion of the cylindrical fastening member 23. It moves from the formed hole 24 to the gap Δ. The resin 28 that has entered the gap Δ gradually moves toward the upper portion of the gap Δ by the suction action by the suction nozzle 33 and the pressurization action by the resin 28 supplied from the resin supply nozzle 32. Then, after the resin 28 is filled in the gap Δ where the resin should be filled, in this embodiment, the entire gap Δ, the suction action of the suction nozzle 33 and the supply of the resin from the resin supply nozzle 32 are stopped. This resin supply operation is sequentially performed on each cylindrical fastening member 23.

全ての筒状締結部材23に対して樹脂の供給作業が行われた後、治具30ごと、あるいは治具30から取り出して、端板17に挟持されたロータコア16を加熱炉内に入れて、樹脂28を硬化させる工程が行われる。そして、所定時間加熱されて樹脂28が硬化した後、加熱炉から出して回転軸18を挿入固定すると、回転子15が完成する。その回転子15を用いて電動機10の組み付けを行うことにより、電動機10が製造される。   After the resin supply operation is performed on all the cylindrical fastening members 23, the entire core 30 or the jig 30 is taken out from the jig 30, and the rotor core 16 sandwiched between the end plates 17 is placed in the heating furnace. A step of curing the resin 28 is performed. Then, after the resin 28 is cured by heating for a predetermined time, the rotor 15 is completed when the rotary shaft 18 is inserted and fixed out of the heating furnace. The electric motor 10 is manufactured by assembling the electric motor 10 using the rotor 15.

次に前記のように構成された電動機10の作用を説明する。
電動機が負荷状態で駆動される場合は、固定子12のコイル14に電流が供給されて固定子12に回転磁界が発生し、回転子15に回転磁界が作用する。そして、回転磁界と永久磁石20との間の磁気的な吸引力及び反発力により回転子15が回転磁界と同期して回転する。
Next, the operation of the electric motor 10 configured as described above will be described.
When the electric motor is driven in a load state, a current is supplied to the coil 14 of the stator 12 to generate a rotating magnetic field in the stator 12 and a rotating magnetic field acts on the rotor 15. Then, the rotor 15 rotates in synchronization with the rotating magnetic field by the magnetic attractive force and the repulsive force between the rotating magnetic field and the permanent magnet 20.

各電磁鋼板16aは、貫通孔22に挿通された筒状締結部材23及び両端板17の作用により締結されている。そして、貫通孔22の内面と筒状締結部材23との隙間Δは樹脂28で埋められている。回転子15が高速で回転すると回転時に回転子15に作用する遠心力が大きくなる。そのため、貫通孔22の内面と筒状締結部材23との間に隙間Δが存在する状態では、遠心力によりその隙間Δの分、電磁鋼板16aが変形、即ち回転子15が変形する虞がある。しかし、この実施形態では、隙間Δに樹脂28が充填されて空間が無くなるため、回転子15は高速回転時の遠心力によって支障ある状態にまでは変形しない強度を確保することができる。   Each electromagnetic steel plate 16 a is fastened by the action of the cylindrical fastening member 23 inserted through the through hole 22 and both end plates 17. A gap Δ between the inner surface of the through hole 22 and the cylindrical fastening member 23 is filled with a resin 28. When the rotor 15 rotates at high speed, the centrifugal force acting on the rotor 15 during rotation increases. Therefore, in a state where there is a gap Δ between the inner surface of the through hole 22 and the cylindrical fastening member 23, the electromagnetic steel plate 16a may be deformed by the gap Δ due to centrifugal force, that is, the rotor 15 may be deformed. . However, in this embodiment, since the gap 28 is filled with the resin 28 and no space is left, the rotor 15 can have a strength that does not deform until it is disturbed by the centrifugal force during high-speed rotation.

この実施形態によれば、以下に示す効果を得ることができる。
(1)電動機10の回転子15は、強磁性材製の磁性板(電磁鋼板16a)が複数枚積層されたロータコア16と、ロータコア16に軸方向に延びるように形成された貫通孔22と、ロータコア16の両端に配置された端板17と、貫通孔22を貫通して配置されるとともに端板17と協働して電磁鋼板16aを締結する筒状締結部材23を有する。筒状締結部材23の壁面に孔24が形成され、貫通孔22の内面と筒状締結部材23との隙間が樹脂28で埋められている。したがって、貫通孔22の内面と筒状締結部材23との間に隙間Δが空間のまま存在する場合に比べて、回転子15の強度を、高速回転時にも確保することができる。
According to this embodiment, the following effects can be obtained.
(1) The rotor 15 of the electric motor 10 includes a rotor core 16 in which a plurality of ferromagnetic magnetic plates (electromagnetic steel plates 16a) are stacked, a through hole 22 formed in the rotor core 16 so as to extend in the axial direction, End plates 17 disposed at both ends of the rotor core 16 and cylindrical fastening members 23 that are disposed through the through holes 22 and fasten the electromagnetic steel plates 16 a in cooperation with the end plates 17. A hole 24 is formed in the wall surface of the cylindrical fastening member 23, and a gap between the inner surface of the through hole 22 and the cylindrical fastening member 23 is filled with a resin 28. Therefore, the strength of the rotor 15 can be ensured even during high-speed rotation, as compared with the case where the gap Δ exists between the inner surface of the through-hole 22 and the cylindrical fastening member 23 as it is.

(2)筒状締結部材23には第1端部に孔24が形成され、両端板17のうち筒状締結部材23の第2端部と対向する端板17には筒状締結部材23の第2端部が嵌合する凹部27が形成されている。その端板17には、凹部27と対応する位置に筒状締結部材23の内部と連通する第1連通孔25が形成され、かつ貫通孔22の内面と筒状締結部材23の外面との隙間Δのみに連通する第2連通孔26が形成されている。そして、樹脂28は貫通孔22の内面と筒状締結部材23の外面との隙間Δに筒状締結部材23のほぼ全長にわたって充填されている。第2連通孔から空気がぬけ、吸引も可能である。したがって、樹脂28を隙間Δに筒状締結部材23のほぼ全長にわたって充填しやすくなり、隙間Δの一部に樹脂28が充填された構成に比べて高い強度を確保することができる。   (2) A hole 24 is formed in the first end portion of the cylindrical fastening member 23, and the end plate 17 of the both end plates 17 facing the second end portion of the cylindrical fastening member 23 is formed of the cylindrical fastening member 23. A concave portion 27 into which the second end portion is fitted is formed. The end plate 17 is formed with a first communication hole 25 communicating with the inside of the cylindrical fastening member 23 at a position corresponding to the recess 27, and a gap between the inner surface of the through hole 22 and the outer surface of the cylindrical fastening member 23. A second communication hole 26 communicating only with Δ is formed. The resin 28 is filled in the gap Δ between the inner surface of the through hole 22 and the outer surface of the cylindrical fastening member 23 over almost the entire length of the cylindrical fastening member 23. Air is removed from the second communication hole, and suction is also possible. Therefore, it becomes easy to fill the resin 28 in the gap Δ over almost the entire length of the cylindrical fastening member 23, and a higher strength can be ensured compared to the configuration in which the resin 28 is filled in a part of the gap Δ.

(3)樹脂28には熱硬化性樹脂が使用されている。したがって、樹脂28に熱可塑性樹脂を使用した場合と異なり、電動機10の使用時に樹脂28が軟化する虞がない。
(4)製造工程として、筒状締結部材23を、貫通孔22の内面と筒状締結部材23との間に隙間Δを有する状態で貫通孔22を貫通するとともに両端が両端板17で挟持された状態に配置する工程を有する。また、筒状締結部材23の内部に樹脂28を第1連通孔25から流動性を有する状態で充填するとともに筒状締結部材23に形成された孔24から隙間Δに供給する工程を有する。そして、隙間Δのうち樹脂28を充填すべき箇所に樹脂28が充填された後、樹脂28を硬化させる工程を経て回転子15を製造する。したがって、樹脂28を隙間Δに充填し易い。
(3) A thermosetting resin is used for the resin 28. Therefore, unlike the case where a thermoplastic resin is used as the resin 28, there is no possibility that the resin 28 is softened when the electric motor 10 is used.
(4) As a manufacturing process, the cylindrical fastening member 23 is passed through the through hole 22 with a gap Δ between the inner surface of the through hole 22 and the cylindrical fastening member 23, and both ends are sandwiched between both end plates 17. A step of arranging in a closed state. Moreover, it has the process which fills the inside of the cylindrical fastening member 23 with the resin 28 from the 1st communicating hole 25 in the state which has fluidity | liquidity, and supplies it to the clearance gap Δ from the hole 24 formed in the cylindrical fastening member 23. Then, after the resin 28 is filled in a portion of the gap Δ where the resin 28 is to be filled, the rotor 15 is manufactured through a step of curing the resin 28. Therefore, it is easy to fill the resin 28 into the gap Δ.

(5)樹脂28を隙間Δに充填する際、樹脂供給ノズル32から加圧状態で樹脂を供給するだけでなく、吸引ノズル33で隙間Δに吸引作用を加えながら行われる。したがって、樹脂供給ノズル32による加圧だけで樹脂28を隙間Δに進入させる構成に比較して、樹脂28が隙間Δに進入し易くなる。   (5) When the resin 28 is filled in the gap Δ, not only the resin is supplied in a pressurized state from the resin supply nozzle 32 but also the suction nozzle 33 applies a suction action to the gap Δ. Therefore, the resin 28 can easily enter the gap Δ as compared with the configuration in which the resin 28 enters the gap Δ only by the pressurization by the resin supply nozzle 32.

(6)筒状締結部材23に形成された孔24は、筒状締結部材23の第1端部が凹部27に嵌合された状態において、隙間Δの端部と対向する位置に形成されている。したがって、孔24を介して筒状締結部材23の内部から隙間Δに進入して隙間Δを埋める樹脂28が容易に隙間Δ全体を埋める状態になる。   (6) The hole 24 formed in the cylindrical fastening member 23 is formed at a position facing the end of the gap Δ in a state where the first end of the cylindrical fastening member 23 is fitted in the recess 27. Yes. Therefore, the resin 28 that enters the gap Δ from the inside of the cylindrical fastening member 23 through the hole 24 and fills the gap Δ easily fills the entire gap Δ.

(7)筒状締結部材23は第1端部及び第2端部がそれぞれ端板17に形成された凹部27に嵌合された状態で両端板17間に挟持される。したがって、第1端部及び第2端部がそれぞれ端板17に当接する状態で両端板17間に挟持される構成に比べて、端板17及び電磁鋼板16aを所定の位置関係で締結するのが容易になる。   (7) The cylindrical fastening member 23 is sandwiched between the both end plates 17 in a state where the first end portion and the second end portion are fitted in the recesses 27 formed in the end plate 17 respectively. Therefore, the end plate 17 and the electromagnetic steel plate 16a are fastened in a predetermined positional relationship as compared with the configuration in which the first end portion and the second end portion are respectively sandwiched between the both end plates 17 in contact with the end plate 17. Becomes easier.

(第2の実施形態)
次に第2の実施形態を図7及び図8にしたがって説明する。この実施形態では、筒状締結部材23が挿通される貫通孔を兼用するフラックスバリア34が設けられている点と、貫通孔の内面と筒状締結部材23との間の隙間全体に樹脂28が充填されるのではなく、隙間の一部に樹脂28が充填されている点とが前記第1の実施形態と大きく異なっている。第1の実施形態と同様の部分は同一符号を付して詳しい説明を省略する。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIGS. In this embodiment, the resin 28 is applied to the entire gap between the point where the flux barrier 34 that also serves as a through hole through which the cylindrical fastening member 23 is inserted and the inner surface of the through hole and the cylindrical fastening member 23 is provided. The point that the resin 28 is filled in a part of the gap instead of being filled is greatly different from the first embodiment. The same parts as those of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図7に示すように、ロータコア16の電磁鋼板16a部分には、永久磁石20が埋め込まれた位置より外周側にはフラックスバリア34が形成されている。フラックスバリア34は、永久磁石20側の形状が永久磁石20との距離がほぼ一定となる略円弧状に形成されている。筒状締結部材23はフラックスバリア34の中央部においてフラックスバリア34に挿通されている。   As shown in FIG. 7, a flux barrier 34 is formed on the electromagnetic steel plate 16 a portion of the rotor core 16 on the outer peripheral side from the position where the permanent magnet 20 is embedded. The flux barrier 34 is formed in a substantially arc shape in which the shape on the permanent magnet 20 side has a substantially constant distance from the permanent magnet 20. The cylindrical fastening member 23 is inserted through the flux barrier 34 at the center of the flux barrier 34.

図8はフラックスバリア34内を模式的に示した図である。図8に示すように、フラックスバリア34内には複数の仕切り板35が筒状締結部材23に貫通された状態で設けられている。仕切り板35は筒状締結部材23の所定位置に固定された状態でフラックスバリア34内に配置されている。この実施形態では仕切り板35は2枚設けられている。筒状締結部材23には仕切り板35間と対応した箇所に孔24が形成され、孔24が設けられた部分を挟むように位置する仕切り板35間に樹脂28が充填されている。即ち、フラックスバリア34の内面と筒状締結部材23との隙間Δのうち、仕切り板35に挟まれた部分のみに樹脂28が充填されている。また、一対の端板17のうち、筒状締結部材23の第2端部側に配置される端板17は、第1の実施形態の端板17から第2連通孔26を省略した状態、即ち樹脂供給用の連通孔のみが形成された構成になっている。   FIG. 8 is a diagram schematically showing the inside of the flux barrier 34. As shown in FIG. 8, a plurality of partition plates 35 are provided in the flux barrier 34 so as to penetrate the cylindrical fastening member 23. The partition plate 35 is disposed in the flux barrier 34 in a state of being fixed at a predetermined position of the cylindrical fastening member 23. In this embodiment, two partition plates 35 are provided. A hole 24 is formed in the cylindrical fastening member 23 at a position corresponding to the space between the partition plates 35, and a resin 28 is filled between the partition plates 35 positioned so as to sandwich a portion where the hole 24 is provided. That is, the resin 28 is filled only in a portion sandwiched between the partition plates 35 in the gap Δ between the inner surface of the flux barrier 34 and the cylindrical fastening member 23. Moreover, the end plate 17 arrange | positioned among the pair of end plates 17 at the 2nd end part side of the cylindrical fastening member 23 is the state which abbreviate | omitted the 2nd communicating hole 26 from the end plate 17 of 1st Embodiment, That is, only the communication hole for resin supply is formed.

この構成の回転子15を製造する場合は、電磁鋼板16aとして貫通孔22に代えてフラックスバリア34を有する電磁鋼板16aが使用されたロータコア16と、端板17が治具30の収容部31内に配置される。次に孔24を挟む所定位置に仕切り板35が固定された筒状締結部材23をフラックスバリア34に挿入する。仕切り板35は、例えば、接着剤で筒状締結部材23に固定されている。次に第2連通孔26が省略された端板17を、凹部27が筒状締結部材23の突出端と嵌合するように配置する。   When the rotor 15 having this configuration is manufactured, the rotor core 16 in which the electromagnetic steel plate 16 a having the flux barrier 34 is used as the electromagnetic steel plate 16 a instead of the through hole 22, and the end plate 17 is in the housing portion 31 of the jig 30. Placed in. Next, the cylindrical fastening member 23 to which the partition plate 35 is fixed at a predetermined position sandwiching the hole 24 is inserted into the flux barrier 34. The partition plate 35 is fixed to the cylindrical fastening member 23 with an adhesive, for example. Next, the end plate 17 from which the second communication hole 26 is omitted is arranged so that the recess 27 fits with the protruding end of the cylindrical fastening member 23.

次に端板17に形成された連通孔から筒状締結部材23の内部に樹脂を、流動性を有する状態で充填する。樹脂は筒状締結部材23内に底部から充填されるとともに、孔24と対応する位置まで充填が進むと、樹脂が孔24を介して両仕切り板35間の隙間Δに進入し、隙間Δが樹脂で埋められる。予め実験等で求められた、仕切り板35間の隙間Δ全体に充填される量の樹脂が樹脂供給ノズル32から供給されるのに必要な時間経過後、樹脂供給ノズル32からの樹脂の供給が停止される。その後、樹脂の加熱硬化工程が行われて、樹脂が硬化した後、加熱炉から出して回転軸18を挿入固定すると、回転子15が完成する。その回転子15を用いて電動機10の組み付けを行うことにより、電動機10が製造される。   Next, resin is filled into the cylindrical fastening member 23 from the communication hole formed in the end plate 17 in a fluid state. The resin is filled into the cylindrical fastening member 23 from the bottom, and when filling proceeds to a position corresponding to the hole 24, the resin enters the gap Δ between the partition plates 35 through the hole 24, and the gap Δ Filled with resin. After an amount of time required for the amount of resin filled in the entire gap Δ between the partition plates 35, which is obtained in advance through experiments or the like, to be supplied from the resin supply nozzle 32, the resin is supplied from the resin supply nozzle 32. Stopped. Thereafter, a resin heat curing step is performed, and after the resin is cured, the rotor 15 is completed when the rotary shaft 18 is inserted and fixed out of the heating furnace. The electric motor 10 is manufactured by assembling the electric motor 10 using the rotor 15.

この第2の実施形態によれば、第1の実施形態の(1)、(3)及び(7)の効果に加えて以下の効果を得ることができる。
(8)ロータコア16には筒状締結部材23が挿通される貫通孔を兼用するフラックスバリア34が設けられている。したがって、筒状締結部材23を挿通する専用の貫通孔を形成する必要はない。
According to the second embodiment, the following effects can be obtained in addition to the effects (1), (3) and (7) of the first embodiment.
(8) The rotor core 16 is provided with a flux barrier 34 that also serves as a through hole through which the cylindrical fastening member 23 is inserted. Therefore, it is not necessary to form a dedicated through hole through which the cylindrical fastening member 23 is inserted.

(9)フラックスバリア34内には複数の仕切り板35が筒状締結部材23に貫通された状態で設けられ、筒状締結部材23には仕切り板35間と対応した箇所に孔24が形成され、孔24が設けられた部分を挟むように位置する仕切り板35間に樹脂28が充填されている。したがって、フラックスバリア34の内面と筒状締結部材23との隙間Δ全体に樹脂を充填せず、複数の仕切り板35に挟まれた箇所で筒状締結部材23の壁面に孔24が設けられた部分にのみ樹脂を充填すればよく、樹脂が充填すべき隙間Δ全体に充填された状態になり易く、回転子15の強度を、高速回転時にも確保することができる。また、樹脂28の使用量を減らすことができる。   (9) A plurality of partition plates 35 are provided in the flux barrier 34 so as to penetrate the cylindrical fastening member 23, and holes 24 are formed in the cylindrical fastening member 23 at locations corresponding to the space between the partition plates 35. The resin 28 is filled between the partition plates 35 positioned so as to sandwich the portion where the hole 24 is provided. Therefore, the entire clearance gap Δ between the inner surface of the flux barrier 34 and the cylindrical fastening member 23 is not filled with resin, and a hole 24 is provided in the wall surface of the cylindrical fastening member 23 at a location sandwiched between the plurality of partition plates 35. It suffices to fill the resin only in the portion, and the resin is easily filled in the entire gap Δ to be filled, and the strength of the rotor 15 can be ensured even during high-speed rotation. In addition, the amount of resin 28 used can be reduced.

実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ 第2の実施形態のように仕切り板35の間の隙間Δに樹脂28を充填する構成において、仕切り板35を設ける位置や数を変更してもよい。例えば、図9(a)に示すように、2枚一組の仕切り板35を筒状締結部材23の複数箇所に設け、樹脂28を充填すべき隙間Δを複数箇所(図9(a)では両端部寄りの2箇所)にしてもよい。この場合、回転子15の強度をより高めることができる。
The embodiment is not limited to the above, and may be embodied as follows, for example.
In the configuration in which the resin 28 is filled in the gap Δ between the partition plates 35 as in the second embodiment, the position and number of the partition plates 35 may be changed. For example, as shown in FIG. 9A, a set of two partition plates 35 is provided at a plurality of locations on the cylindrical fastening member 23, and gaps Δ to be filled with the resin 28 are provided at a plurality of locations (in FIG. 9A). You may make it 2 places near both ends. In this case, the strength of the rotor 15 can be further increased.

○ 2枚の仕切り板35間と対応する状態で筒状締結部材23に形成される孔24の位置は、2枚の仕切り板35のほぼ中央と対応する箇所に限らず、図9(b)に示すように、各仕切り板35に近い位置にそれぞれ設けてもよい。この場合、樹脂の充填時に、一組の仕切り板35で挟まれた隙間Δの下側に形成された孔24から樹脂が隙間Δ内に進入し、隙間Δを下側から埋めて、余分な樹脂28が上側の孔24から筒状締結部材23内へ排出され易くなる。   The position of the hole 24 formed in the cylindrical fastening member 23 in a state corresponding to the space between the two partition plates 35 is not limited to the position corresponding to the substantially center of the two partition plates 35, and FIG. As shown in FIG. 4, the partition plates 35 may be provided at positions close to each other. In this case, when the resin is filled, the resin enters the gap Δ from the hole 24 formed on the lower side of the gap Δ sandwiched between the pair of partition plates 35, and the gap Δ is filled from the lower side to remove the excess. The resin 28 is easily discharged from the upper hole 24 into the cylindrical fastening member 23.

○ 筒状締結部材23の端部を端板17の凹部27に嵌合するだけでなく、図10に示すように、筒状締結部材23の第2端部に天板36を設け、天板36に第1連通孔25より小径のねじ孔37を形成する。そして、ねじ孔37に螺合するボルト38を介して端板17を締め付けるようにしてもよい。この場合、ロータコア16を端板17で締結する力が強くなる。   ○ In addition to fitting the end of the cylindrical fastening member 23 into the recess 27 of the end plate 17, as shown in FIG. 10, a top plate 36 is provided at the second end of the cylindrical fastening member 23. A screw hole 37 having a smaller diameter than the first communication hole 25 is formed in 36. Then, the end plate 17 may be tightened via a bolt 38 screwed into the screw hole 37. In this case, the force for fastening the rotor core 16 with the end plate 17 is increased.

○ 第1の実施形態及び第2の実施形態において、筒状締結部材23を有底筒状ではなく両端が開放された筒状に形成してもよい。この場合でも、端板17に第1連通孔、第2連通孔を設けず、筒状締結部材23の第1端部を端板17に当接した状態で隙間Δに対する樹脂の充填を行えば、筒状締結部材23内に供給された樹脂は支障なく孔24から隙間Δに進入して、隙間Δに樹脂が充填される。   In the first embodiment and the second embodiment, the cylindrical fastening member 23 may be formed in a cylindrical shape in which both ends are opened instead of a bottomed cylindrical shape. Even in this case, if the end plate 17 is not provided with the first communication hole and the second communication hole and the first end portion of the cylindrical fastening member 23 is in contact with the end plate 17, the resin is filled in the gap Δ. The resin supplied into the cylindrical fastening member 23 enters the gap Δ from the hole 24 without hindrance, and the gap Δ is filled with the resin.

○ 隙間Δに樹脂を充填する作業は、各筒状締結部材23に対して1つずつ順に行う方法に限らず、複数の筒状締結部材23に対して同時に行ったり、全ての筒状締結部材23に対して同時に行ったりしてもよい。   The operation of filling the gap Δ with the resin is not limited to the method of sequentially performing each one on each cylindrical fastening member 23, but can be performed on a plurality of cylindrical fastening members 23 at the same time, or all the cylindrical fastening members. 23 may be performed simultaneously.

○ 隙間Δに吸引作用を及ぼすために使用する第2連通孔26の数は隙間Δ1つに対して1個に限らず、複数個設けてもよい。
○ 第1の実施形態において使用する筒状締結部材23に形成される孔24の位置や数は、第1端部側の周壁に複数個設けることに限定されない。例えば、第1端部から離れた位置に複数個設けたり、数を1個にしたりしてもよい。
The number of the second communication holes 26 used for exerting a suction action on the gap Δ is not limited to one per gap Δ, and a plurality of second communication holes 26 may be provided.
(Circle) the position and the number of the holes 24 formed in the cylindrical fastening member 23 used in the first embodiment are not limited to being provided on the peripheral wall on the first end side. For example, a plurality may be provided at a position away from the first end, or the number may be one.

○ 樹脂28は熱硬化性樹脂に限らず、電動機10の駆動時の発熱で軟化しない熱可塑性樹脂であってもよい。
○ 筒状締結部材23は筒状であればよく、円筒状に限らない。
The resin 28 is not limited to a thermosetting resin, and may be a thermoplastic resin that does not soften due to heat generated when the electric motor 10 is driven.
(Circle) the cylindrical fastening member 23 should just be a cylindrical shape, and is not restricted to a cylindrical shape.

○ 永久磁石20は各極1個に限らず、例えば、円弧状の永久磁石20を1個設ける代わりに、2個の平板状の永久磁石20をV字状に配置したり、1個の平板状の永久磁石20を径方向と直交する状態で配置するとともに、その両側に平板状の永久磁石20を外周側に向かって斜めに延びる状態で配置したりしてもよい。   ○ The permanent magnet 20 is not limited to one pole. For example, instead of providing one arc-shaped permanent magnet 20, two flat permanent magnets 20 may be arranged in a V shape, or one flat plate. The plate-like permanent magnets 20 may be arranged in a state orthogonal to the radial direction, and the plate-like permanent magnets 20 may be arranged on both sides thereof so as to extend obliquely toward the outer peripheral side.

○ ロータコア16の大きさによっては、ロータコア16の中心側に向かって凸となるように、永久磁石20を複数層設けてもよい。
○ 回転子15の極数は4極に限らず、偶数極であればよいが、4極以上が好ましく、回転子15の大きさにより適宜設定される。
Depending on the size of the rotor core 16, a plurality of layers of permanent magnets 20 may be provided so as to protrude toward the center of the rotor core 16.
The number of poles of the rotor 15 is not limited to four but may be an even number, but four or more are preferable, and are appropriately set according to the size of the rotor 15.

○ 電動機10は磁石埋め込み型の電動機に限らず、例えば、リラクタンス電動機や表面磁石型の電動機や誘導電動機に適用してもよい。
○ 電動機に限らず発電機に適用してもよい。
The motor 10 is not limited to a magnet-embedded motor, and may be applied to, for example, a reluctance motor, a surface magnet motor, or an induction motor.
○ It may be applied not only to motors but also to generators.

以下の技術的思想(発明)は前記実施形態から把握できる。
(1)請求項1〜請求項4のいずれか一項に記載の発明において、前記端板には筒状締結部材の端部が嵌合される凹部が形成され、前記筒状締結部材の内部に連通する連通孔は前記凹部に形成されている。
The following technical idea (invention) can be understood from the embodiment.
(1) In the invention according to any one of claims 1 to 4, the end plate is formed with a recess into which an end of a cylindrical fastening member is fitted, and the inside of the cylindrical fastening member The communication hole communicating with the is formed in the recess.

第1の実施形態における回転電機の模式断面図。The schematic cross section of the rotary electric machine in 1st Embodiment. 回転子をロータコアと端板の境界で切断した模式断面図。The schematic cross section which cut | disconnected the rotor at the boundary of a rotor core and an end plate. (a)は回転子の模式側面図、(b)は模式正面図、(c)は筒状締結部材の模式側面図。(A) is a model side view of a rotor, (b) is a model front view, (c) is a model side view of a cylindrical fastening member. (a)は端板に形成された両連通孔と貫通孔及び隙間の関係を示す模式図、(b)は(a)のB−B線における部分断面図。(A) is a schematic diagram which shows the relationship between the both communicating holes and through-holes, and clearance gap which were formed in the end plate, (b) is a fragmentary sectional view in the BB line of (a). (a)は一方の端板及びロータコアが治具に収容された状態の模式図、(b)は他方の端板が組み付けられた状態の模式図。(A) is a schematic diagram in a state where one end plate and a rotor core are accommodated in a jig, and (b) is a schematic diagram in a state in which the other end plate is assembled. (a)は樹脂供給ノズル及び吸引ノズルが端板に装着された状態の模式図、(b)は筒状締結部材に供給された樹脂の移動経路を示す模式斜視図。(A) is a schematic diagram in the state where the resin supply nozzle and the suction nozzle are mounted on the end plate, (b) is a schematic perspective view showing the movement path of the resin supplied to the cylindrical fastening member. 第2の実施形態の回転子をロータコアと端板の境界で切断した模式断面図。The schematic cross section which cut | disconnected the rotor of 2nd Embodiment at the boundary of a rotor core and an end plate. 筒状締結部材、フラックスバリア及び仕切り板の関係を示す模式斜視図。The model perspective view which shows the relationship between a cylindrical fastening member, a flux barrier, and a partition plate. (a)は別の実施形態における仕切り板の配置を示す模式斜視図、(b)は別の実施形態における仕切り板と孔との関係を示す模式図。(A) is a schematic perspective view which shows arrangement | positioning of the partition plate in another embodiment, (b) is a schematic diagram which shows the relationship between the partition plate and hole in another embodiment. 別の実施形態における端板と筒状締結部材との関係を示す部分断面図。The fragmentary sectional view which shows the relationship between the end plate and cylindrical fastening member in another embodiment. 従来技術の締結部材と貫通孔との関係を示す模式図。The schematic diagram which shows the relationship between the fastening member of a prior art, and a through-hole.

符号の説明Explanation of symbols

Δ…隙間、10…回転電機としての電動機、15…回転子、16…ロータコア、16a…磁性板としての電磁鋼板、17…端板、22…貫通孔、23…筒状締結部材、24…孔、25…連通孔としての第1連通孔、26…第2連通孔、27…凹部、28…樹脂、34…貫通孔を兼用するフラックスバリア、35…仕切り板。   Δ ... Gap, 10 ... Electric motor as rotating electric machine, 15 ... Rotor, 16 ... Rotor core, 16a ... Electromagnetic steel plate as magnetic plate, 17 ... End plate, 22 ... Through hole, 23 ... Cylinder fastening member, 24 ... Hole 25 ... 1st communication hole as a communication hole, 26 ... 2nd communication hole, 27 ... Recessed part, 28 ... Resin, 34 ... Flux barrier which also serves as a through-hole, 35 ... Partition plate.

Claims (5)

強磁性材製の磁性板が複数枚積層されたロータコアと、
前記ロータコアに軸方向に延びるように形成された貫通孔と、
前記ロータコアの両端に配置された端板と、
前記貫通孔を貫通して配置されるとともに前記端板と協働して前記磁性板を締結するとともに、壁面に孔が形成された筒状締結部材と、
前記端板のうち一方の端板に形成され、前記筒状締結部材の内部に連通する連通孔と、
前記貫通孔の内面と前記筒状締結部材との隙間を埋める樹脂と
を有する回転子を備えていることを特徴とする回転電機。
A rotor core in which a plurality of ferromagnetic magnetic plates are laminated;
A through hole formed in the rotor core so as to extend in the axial direction;
End plates disposed at both ends of the rotor core;
A cylindrical fastening member that is arranged through the through hole and fastens the magnetic plate in cooperation with the end plate, and has a wall formed with a hole,
A communication hole formed in one of the end plates and communicating with the inside of the cylindrical fastening member;
A rotating electrical machine comprising a rotor having a resin filling a gap between an inner surface of the through hole and the cylindrical fastening member.
前記ロータコアには前記貫通孔を兼用するフラックスバリアが設けられ、前記フラックスバリア内には複数の仕切り板が前記筒状締結部材に貫通された状態で設けられ、前記筒状締結部材には前記仕切り板間と対応した箇所に前記孔が形成され、前記孔が設けられた部分を挟むように位置する前記仕切り板間の前記隙間には前記樹脂が充填されている請求項1に記載の回転電機。   The rotor core is provided with a flux barrier that also serves as the through-hole, and a plurality of partition plates are provided in the flux barrier so as to penetrate the cylindrical fastening member, and the partitioning member is provided on the cylindrical fastening member. 2. The rotating electrical machine according to claim 1, wherein the hole is formed at a location corresponding to between the plates, and the gap is filled with the resin between the partition plates positioned so as to sandwich a portion where the hole is provided. . 前記筒状締結部材には第1端部に前記孔が形成され、前記端板のうち前記筒状締結部材の第2端部と対向する端板には前記筒状締結部材の第2端部が嵌合する凹部が形成されるとともに、前記凹部と対応する位置に筒状締結部材の内部と連通する第1連通孔が形成され、かつ前記貫通孔の内面と前記筒状締結部材の外面との隙間のみに連通する第2連通孔が形成され、前記隙間及び前記筒状締結部材の内部に前記樹脂が充填されている請求項1に記載の回転電機。   The hole is formed in the first end portion of the tubular fastening member, and the second end portion of the tubular fastening member is disposed on the end plate of the end plate that faces the second end portion of the tubular fastening member. Is formed, a first communication hole communicating with the inside of the cylindrical fastening member is formed at a position corresponding to the concave portion, and an inner surface of the through hole and an outer surface of the cylindrical fastening member The rotating electrical machine according to claim 1, wherein a second communication hole that communicates only with the gap is formed, and the resin is filled in the gap and the cylindrical fastening member. 前記樹脂は熱硬化性樹脂である請求項1〜請求項3のいずれか一項に記載の回転電機。   The rotating electrical machine according to any one of claims 1 to 3, wherein the resin is a thermosetting resin. 強磁性材製の磁性板が複数枚積層されたロータコアと、前記ロータコアの両端に配置された端板とを有し、前記ロータコアに軸方向に延びるように形成された貫通孔を貫通して配置されるとともに、前記端板と協働して前記磁性板を締結する筒状締結部材とを備え、前記端板のうち一方の端板に前記筒状締結部材の内部に連通する連通孔が形成されている回転電機の製造方法であって、
前記筒状締結部材を、前記貫通孔の内面と前記筒状締結部材との間に隙間を有する状態で前記貫通孔を貫通するとともに両端が前記両端板で挟持された状態に配置する工程と、前記筒状締結部材の内部に前記連通孔から樹脂を流動性を有する状態で充填するとともに前記筒状締結部材に形成された孔から前記隙間に供給する工程と、前記隙間のうち樹脂を充填すべき箇所に前記樹脂が充填された後、前記樹脂を硬化させる工程とを有する方法で回転子を製造する工程を備えていることを特徴とする回転電機の製造方法。
A rotor core in which a plurality of magnetic plates made of a ferromagnetic material are laminated, and end plates disposed at both ends of the rotor core, and disposed through a through hole formed in the rotor core so as to extend in the axial direction. And a cylindrical fastening member for fastening the magnetic plate in cooperation with the end plate, and a communication hole communicating with the inside of the cylindrical fastening member is formed in one of the end plates. A method of manufacturing a rotating electrical machine,
Arranging the cylindrical fastening member in a state of passing through the through hole in a state having a gap between the inner surface of the through hole and the cylindrical fastening member and having both ends sandwiched by the both end plates; Filling the inside of the cylindrical fastening member with resin from the communication hole in a fluid state and supplying the resin into the gap from a hole formed in the cylindrical fastening member; and filling the resin in the gap A method of manufacturing a rotating electrical machine, comprising: a step of manufacturing a rotor by a method including a step of curing the resin after the resin is filled in a power location.
JP2008036326A 2008-02-18 2008-02-18 Rotating electric machine and manufacturing method thereof Pending JP2009195088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008036326A JP2009195088A (en) 2008-02-18 2008-02-18 Rotating electric machine and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008036326A JP2009195088A (en) 2008-02-18 2008-02-18 Rotating electric machine and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2009195088A true JP2009195088A (en) 2009-08-27

Family

ID=41076589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008036326A Pending JP2009195088A (en) 2008-02-18 2008-02-18 Rotating electric machine and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2009195088A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011147255A (en) * 2010-01-14 2011-07-28 Mitsubishi Electric Corp Reluctance motor
JP2011147259A (en) * 2010-01-14 2011-07-28 Mitsubishi Electric Corp Reluctance motor
JP2012228020A (en) * 2011-04-18 2012-11-15 Toyota Motor Corp Rotor for rotary electric machine and rotary electric machine
CN102790456A (en) * 2012-03-05 2012-11-21 珠海格力节能环保制冷技术研究中心有限公司 Permanent magnet auxiliary synchronized reluctance motor rotor iron core, motor and assembling method of motor
JP2015502132A (en) * 2012-01-22 2015-01-19 チョーチアン ユニバーシティZhejiang University Method for manufacturing permanent magnet motor rotor
WO2015037428A1 (en) * 2013-09-13 2015-03-19 三菱電機株式会社 Permanent magnet-embedded electric motor, compressor, and refrigerating and air-conditioning device
JP2015104167A (en) * 2013-11-21 2015-06-04 本田技研工業株式会社 Manufacturing method of rotor, and end face plate
JP2015104244A (en) * 2013-11-26 2015-06-04 ファナック株式会社 Rotor having resin hole for resin filling and manufacturing method of rotor
JP2015226368A (en) * 2014-05-27 2015-12-14 本田技研工業株式会社 Rotor for rotary electric machine
JP2017135804A (en) * 2016-01-26 2017-08-03 アスモ株式会社 Manufacturing method of motor
EP3661022A1 (en) * 2011-01-26 2020-06-03 Danfoss Editron Oy Laminated rotor structure for a permanent magnet synchronous machine

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011147255A (en) * 2010-01-14 2011-07-28 Mitsubishi Electric Corp Reluctance motor
JP2011147259A (en) * 2010-01-14 2011-07-28 Mitsubishi Electric Corp Reluctance motor
EP3661022A1 (en) * 2011-01-26 2020-06-03 Danfoss Editron Oy Laminated rotor structure for a permanent magnet synchronous machine
JP2012228020A (en) * 2011-04-18 2012-11-15 Toyota Motor Corp Rotor for rotary electric machine and rotary electric machine
JP2015502132A (en) * 2012-01-22 2015-01-19 チョーチアン ユニバーシティZhejiang University Method for manufacturing permanent magnet motor rotor
CN102790456A (en) * 2012-03-05 2012-11-21 珠海格力节能环保制冷技术研究中心有限公司 Permanent magnet auxiliary synchronized reluctance motor rotor iron core, motor and assembling method of motor
WO2015037127A1 (en) * 2013-09-13 2015-03-19 三菱電機株式会社 Permanent magnet-embedded electric motor, compressor, and refrigerating and air-conditioning device
JP6009088B2 (en) * 2013-09-13 2016-10-19 三菱電機株式会社 Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
EP3046226A4 (en) * 2013-09-13 2017-02-15 Mitsubishi Electric Corporation Permanent magnet-embedded electric motor, compressor, and refrigerating and air-conditioning device
US10008893B2 (en) 2013-09-13 2018-06-26 Mitsubishi Electric Corporation Permanent magnet-embedded electric motor, compressor, and refrigerating and air-conditioning device
WO2015037428A1 (en) * 2013-09-13 2015-03-19 三菱電機株式会社 Permanent magnet-embedded electric motor, compressor, and refrigerating and air-conditioning device
JP2015104167A (en) * 2013-11-21 2015-06-04 本田技研工業株式会社 Manufacturing method of rotor, and end face plate
JP2015104244A (en) * 2013-11-26 2015-06-04 ファナック株式会社 Rotor having resin hole for resin filling and manufacturing method of rotor
JP2015226368A (en) * 2014-05-27 2015-12-14 本田技研工業株式会社 Rotor for rotary electric machine
JP2017135804A (en) * 2016-01-26 2017-08-03 アスモ株式会社 Manufacturing method of motor

Similar Documents

Publication Publication Date Title
JP2009195088A (en) Rotating electric machine and manufacturing method thereof
US6483221B1 (en) Electric motor
JP5398512B2 (en) Axial gap type permanent magnet motor, rotor used therefor, and method for manufacturing the rotor
WO2015146210A1 (en) Permanent magnet rotating electric machine and method for manufacturing same
WO2011114594A1 (en) Permanent magnet-type rotary generator
JP2007006689A (en) Rotor of motor and manufacture method therefor
EP3514921B1 (en) Dynamo-electric machine
JP2008022587A (en) Ipm rotor, manufacturing method therefor, and manufacturing apparatus
KR102209454B1 (en) Rotor for electric motor, associated motor shaft, method of producing the motor shaft and rotor
JP2009219314A (en) Rotator of rotary electric machine, and method of manufacturing the same
KR20080110731A (en) Field pole members and methods of forming same for electrodynamic machines
AU2016300248B2 (en) Rotor manufacturing method and rotor
JP6744573B2 (en) Rotor unit and method for manufacturing rotor unit
JP2011182552A (en) Rotor core, and core for rotary electric machine
EP1953901A1 (en) Motor and device using the same
JP5995057B2 (en) Rotor of embedded magnet permanent magnet rotating electric machine and method of assembling the same
JP6740865B2 (en) Brushless motor
US20220209611A1 (en) Rotating electric machine and method of manufacturing core
JP7283361B2 (en) Rotor of rotary electric machine
JP2004015998A (en) Permanent magnet version rotating machine with three-phase stator winding divided in axial direction
JP2018530303A (en) Permanent magnet type rotor and manufacturing method thereof
EP3499686A2 (en) Switched reluctance electric machine including pole flux barriers
JP2006174637A (en) Manufacturing method for stator of rotary electric machine
CN112910132B (en) Rotor and motor with same
JP2011217449A (en) Rotating electric machine and method for manufacturing rotor of the same