JP5580126B2 - 不揮発性記憶装置及びその製造方法 - Google Patents

不揮発性記憶装置及びその製造方法 Download PDF

Info

Publication number
JP5580126B2
JP5580126B2 JP2010159642A JP2010159642A JP5580126B2 JP 5580126 B2 JP5580126 B2 JP 5580126B2 JP 2010159642 A JP2010159642 A JP 2010159642A JP 2010159642 A JP2010159642 A JP 2010159642A JP 5580126 B2 JP5580126 B2 JP 5580126B2
Authority
JP
Japan
Prior art keywords
layer
nanomaterial
wiring
nanomaterial assembly
memory device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010159642A
Other languages
English (en)
Other versions
JP2012023187A (ja
Inventor
山本  和彦
賢士 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010159642A priority Critical patent/JP5580126B2/ja
Priority to US12/956,548 priority patent/US20120012805A1/en
Priority to KR1020110023743A priority patent/KR20120007438A/ko
Priority to CN2011100663491A priority patent/CN102339950A/zh
Publication of JP2012023187A publication Critical patent/JP2012023187A/ja
Application granted granted Critical
Publication of JP5580126B2 publication Critical patent/JP5580126B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/066Shaping switching materials by filling of openings, e.g. damascene method
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/884Switching materials based on at least one element of group IIIA, IVA or VA, e.g. elemental or compound semiconductors
    • H10N70/8845Carbon or carbides

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Description

本発明の実施形態は、不揮発性記憶装置及びその製造方法に関する。
近年、携帯電話、デジタルスチルカメラ、デジタルビデオカメラ、携帯型音楽プレーヤー等の小型で携帯可能な電子機器が広く使われており、これらの電子機器が取り扱うデータ量も増加している。このため、小型で大容量の不揮発性メモリデバイスの需要が増えており、大規模な市場を形成するに至っている。また、これらの電子機器が扱う画像は静止画から動画に移行し、画像に求められる解像度も増加しているため、必要とされるメモリデバイスの容量は増える一方である。
従来、不揮発性のメモリデバイスとして、NAND型及びNOR型のフラッシュメモリ、小型ハードディスク、DVD(Digital Versatile Disc)等が用いられてきた。このうち、特にNAND型フラッシュメモリは、小型で大容量化が容易であり、衝撃に強いなど、携帯用途に適したデバイスとして広く用いられてきた。
しかしながら、フラッシュメモリにおいては、記録層への電荷の注入及び引き抜きを繰り返すことによる特性の劣化が懸念されている。また、情報の書き込み、読み出し速度も不十分である。更に、大容量化のためにより一層の微細化を推し進めると、情報の読み書きに必要な電荷量が注入できなくなってしまい、動作不良となることが予想されている。
そこで、フラッシュメモリとは異なる動作原理に基づき、且つ微細化に対応できるデバイスとして、抵抗状態を可逆的に変化させることで情報を記憶する抵抗変化型メモリが注目されている。抵抗変化型メモリは、通常、抵抗変化層と、抵抗変化層を挟む電極から構成されている。抵抗変化層は、異なる二つ以上の電気抵抗状態を取ることができ、電極間に一定の閾値電圧、閾値電流又は閾値電荷を印加することにより、抵抗変化層の抵抗状態を変化させることにより、その抵抗値の違いをデータに対応させて記録することができる。また、記録したデータを非破壊で読み出すことができる。
フラッシュメモリにおいては、電荷を注入することによりトランジスタの閾値を制御してデータを記録する。このため、各メモリセルにトランジスタを設けることが必要である。これに対して、抵抗変化型メモリは、抵抗変化層を上下の電極で挟んだ単純な構造であるため、メモリセルを立体的に積層したり、制御用トランジスタを同一チップ面内に形成することが可能である。この結果、記録容量を増やしつつ実効的なセル面積を縮小することができる。なお、抵抗変化層の材料には、例えば、ニッケル酸化物(NiO)若しくはストロンチウムジルコニウム酸化物(SrZrO)等の多元系金属酸化物が提案されている。しかしながら、金属酸化物を用いた抵抗変化型記憶装置は、信頼性が低いという問題点がある。
特開2009−252974号公報
本発明の実施形態の目的は、信頼性が高い不揮発性記憶装置及びその製造方法を提供することである。
実施形態に係る不揮発性記憶装置は、第1配線と、前記第1配線上に設けられ、炭素を含む複数の微小導電体が集合したナノマテリアル集合層と、前記ナノマテリアル集合層上に設けられた第2配線と、を備える。前記ナノマテリアル集合層は、下層と、密度が前記下層の密度よりも高い上層と、を有する。そして、上方から見て、前記ナノマテリアル集合層の少なくとも下部は、前記第2配線の内側に配置されている。
他の実施形態に係る不揮発性記憶装置の製造方法は、第1配線上に、少なくとも上部にダミー層が設けられたピラー、及び前記ピラーの側面を覆い上面を露出させる層間絶縁膜を形成する工程と、前記ダミー層を除去することにより、前記層間絶縁膜の上面に凹部を形成する工程と、前記凹部内に炭素を含む複数の微小導電体が隙間を介して集合したナノマテリアル集合層を形成する工程と、前記層間絶縁膜上及び前記ナノマテリアル集合層上に導電膜を形成する工程と、前記導電膜を、前記ナノマテリアル集合層を覆うようにパターニングすることにより、第2配線を形成する工程と、を備える。前記ナノマテリアル集合層を形成する工程は、複数の前記微小導電体を含有するナノマテリアル材料を第1の厚さに塗布する工程と、前記第1の厚さに塗布された前記ナノマテリアル材料を乾燥させる工程と、前記ナノマテリアル材料を前記第1の厚さよりも薄い第2の厚さに塗布する工程と、前記第2の厚さに塗布された前記ナノマテリアル材料を乾燥させる工程と、を有する。
第1の実施形態に係る不揮発性記憶装置を例示する斜視図である。 (a)及び(b)は、第1の実施形態におけるメモリセルを例示する断面図である。 第1の実施形態におけるメモリセルを例示する平面図である。 第1の実施形態におけるナノマテリアル集合層を例示する断面図である。 (a)及び(b)は、第1の実施形態に係る不揮発性記憶装置の製造方法を例示する工程断面図である。 (a)及び(b)は、第1の実施形態に係る不揮発性記憶装置の製造方法を例示する工程断面図である。 (a)及び(b)は、第1の実施形態に係る不揮発性記憶装置の製造方法を例示する工程断面図である。 (a)及び(b)は、第1の実施形態に係る不揮発性記憶装置の製造方法を例示する工程断面図である。 (a)及び(b)は、第1の実施形態に係る不揮発性記憶装置の製造方法を例示する工程断面図である。 (a)及び(b)は、第1の実施形態に係る不揮発性記憶装置の製造方法を例示する工程断面図である。 (a)及び(b)は、第2の実施形態におけるメモリセルを例示する断面図である。 (a)及び(b)は、第2の実施形態に係る不揮発性記憶装置の製造方法を例示する工程断面図である。 (a)〜(c)は、第3の実施形態に係る不揮発性記憶装置の製造方法を例示する工程断面図である。 第4の実施形態におけるメモリセルを例示する断面図である。 第4の実施形態に係る不揮発性記憶装置の製造方法を例示する工程断面図である。
以下、図面を参照しつつ、本発明の実施形態について説明する。
先ず、第1の実施形態について説明する。
図1は、本実施形態に係る不揮発性記憶装置を例示する斜視図であり、
図2(a)及び(b)は、本実施形態におけるメモリセルを例示する断面図であり、相互に直交する断面を示し、
図3は、本実施形態におけるメモリセルを例示する平面図であり、
図4は、本実施形態におけるナノマテリアル集合層を例示する断面図である。
本実施形態に係る不揮発性記憶装置は、ReRAM(Resistance Random Access Memory:抵抗変化型メモリ)である。
先ず、本実施形態に係る不揮発性記憶装置について概略的に説明する。
本実施形態に係る不揮発性記憶装置においては、ビット線とワード線との間にピラーが設けられており、これがメモリセルとなっている。各ピラーにおいては、記録層としてのナノマテリアル集合層が設けられている。ナノマテリアル集合層は、微小導電体であるカーボンナノチューブ(Carbon nanotube:CNT)が隙間を介して緩く集合した中空構造層であり、各CNTは微小な範囲で移動することができる。例えば、あるCNTは、周囲のCNTに囲まれた空間内で、位置及び姿勢を変えることができる。CNT同士が離隔していると、下部電極層と上部電極層との間の電気抵抗は高くなる。一方、下部電極層と上部電極層との間に電圧が印加されると、隣り合うCNT同士がクーロン力によって接触し、電流経路が形成されるため、下部電極層と上部電極層との間の電気抵抗は低くなる。この状態は電圧をオフにしても持続する。そして、本実施形態においては、上方から見て、ビット線及びワード線の幅をナノマテリアル集合層の幅よりも大きくしている。これにより、ナノマテリアル集合層においては電流密度を確保しつつ、ビット線及びワード線の配線抵抗を低減することができる。
次に、本実施形態に係る不揮発性記憶装置の製造方法について概略的に説明する。
本実施形態においては、配線(例えば、ワード線)上に下部電極層及びダミー層を積層させた後、ドライエッチングによってピラーに加工する。ピラーの上部にはダミー層が設けられている。そして、ピラーの周囲を層間絶縁膜によって埋め込んだ後、平坦化処理を施し、層間絶縁膜の上面においてピラーの上面を露出させる。次に、ダミー層を除去する。これにより、層間絶縁膜の上面に凹部が形成される。次に、CNTが分散されたナノマテリアル材料を塗布し、乾燥させることにより、凹部内にナノマテリアル集合層を形成する。その後、ナノマテリアル集合層上に導電膜を形成し、この導電膜をナノマテリアル集合層を覆うようにパターニングすることにより、配線(例えば、ビット線)を形成する。これにより、ナノマテリアル集合層の側面がドライエッチングに曝されることがなく、ダメージを受けることがない。また、ナノマテリアル集合層の厚さをダミー層の厚さによって規定することができるため、厚さのばらつきが小さい。これにより、信頼性が高い不揮発性記憶装置を製造することができる。
次に、本実施形態に係る不揮発性記憶装置について詳細に説明する。
図1に示すように、本実施形態に係る不揮発性記憶装置1においては、シリコン基板11が設けられており、シリコン基板11の上層部分及び上面上には、不揮発性記憶装置1の駆動回路(図示せず)が形成されている。シリコン基板11上には、駆動回路を埋め込むように、例えばシリコン酸化物からなる層間絶縁膜12が設けられており、層間絶縁膜12上にはメモリセル部13が設けられている。
メモリセル部13においては、シリコン基板11の上面に平行な一方向(以下、「ワード線方向」という)に延びる複数本のワード線WLを含むワード線配線層14と、シリコン基板11の上面に平行な方向であって、ワード線方向に対して交差、例えば直交する方向(以下、「ビット線方向」という)に延びる複数本のビット線BLを含むビット線配線層15とが、層間絶縁膜30(図2参照)を介して交互に積層されている。また、ワード線WL同士、ビット線BL同士、ワード線WLとビット線BLとは、相互に接していない。
そして、各ワード線WLと各ビット線BLとの最近接点には、シリコン基板11の上面に対して垂直な方向(以下、「上下方向」という)に延びるピラー16が設けられている。ピラー16は、ワード線WLとビット線BLとの間に接続されている。1本のピラー16により、1つのメモリセルが構成されている。すなわち、不揮発性記憶装置1は、ワード線WLとビット線BLとの最近接点毎にメモリセルが配置されたクロスポイント型の装置である。ワード線WL、ビット線BL及びピラー16の相互間は、層間絶縁膜30(図2参照)によって埋め込まれている。
以下、ピラー16の構成を説明する。
図2(a)及び(b)に示すように、ピラー16の形状は上下方向に延びる柱状であり、例えば円柱状である。ピラー16の直径は例えば20〜100nmである。各ピラー16においては、下方から上方に向かって、バリアメタル層21、シリコンダイオード層22、下部電極層23及びナノマテリアル集合層24がこの順に積層されている。以下、下方にワード線WLが配置され、上方にビット線BLが配置されたピラー16を例に挙げて説明する。
バリアメタル層21はワード線WL(図1参照)に接している。また、ナノマテリアル集合層24の下部24aはピラー16の上部を構成しており、ナノマテリアル集合層24の上部24bはピラー16の上方においてピラー16の直上域からワード線方向にはみ出し、ビット線方向に延びている。これにより、ナノマテリアル集合層24の上部24bは、ビット線BLの直下域に配置されている。上部24bの直上域には、上部電極層25が設けられている。上部電極層25はビット線BL(図1参照)に接している。すなわち、ナノマテリアル集合層24の上部24b及び上部電極層25は、ビット線方向に配列された複数本のピラー16について共通に設けられている。また、下部24aの高さは例えば20〜50nmである。
バリアメタル層21は、例えば、チタン(Ti)層上に窒化チタン(TiN)層が積層された2層膜からなる。シリコンダイオード層22は例えばポリシリコンからなり、下層側から順に、導電形がn形のn形層、真性半導体からなるi形層、及び導電型がp形のp形層が積層されている。これにより、シリコンダイオード層22は、ビット線BLにワード線WLよりも高い電位が供給された場合にのみ電流を流し、逆方向の電流は流さない選択素子層として機能する。すなわち、シリコンダイオード層22は、電流を流すか否かを選択する選択素子層である。下部電極層23及び上部電極層25は、タングステン又は窒化チタン等の導電性材料によって形成されている。
図4に示すように、ナノマテリアル集合層24は、上述の如く、単一の導電体材料からなる連続層ではなく、CNT(カーボンナノチューブ)31が隙間32を介して集合した層である。隙間32は窒素ガス(N)又は水素ガス(H)を含む層となっており、従って、ナノマテリアル集合層24の構造は中空構造である。各CNT31の形状は筒形であり、その直径は例えば1〜2nmであり、その長さはたとえば20〜30nmである。例えば、CNT31の直径が2nmである場合には、ナノマテリアル集合層24の抵抗値を確保するために、下部24aの高さは50nm程度であることが好ましい。CNT31の長さは、ナノマテリアル集合層24の下部24aの直径よりも短いことが好ましい。また、CNT31は概ね水平方向、すなわち、ワード線方向とビット線方向がなす平面に平行な方向に延びている。ナノマテリアル集合層24の厚さ方向におけるCNT31の積層数は、例えば、数層〜数十層程度である。
そして、図2(a)、(b)及び図3に示すように、上方から見て、ピラー16の幅は、ワード線WLの幅よりも細く、ビット線BLの幅よりも細い。これにより、上方から見て、ピラー16はワード線WL及びビット線BLの内側に配置されている。すなわち、上方から見て、ピラー16を構成するバリアメタル層21、シリコンダイオード層22、下部電極層23、及びナノマテリアル集合層24の下部24aは、ナノマテリアル集合層24の上部24b、上部電極層25、ワード線WL及びビット線BLの内側に配置されている。なお、図1においては、図示の便宜上、ワード線WL、ビット線BL、ピラー16の幅は、ほぼ等しく描かれている。
次に、本実施形態に係る不揮発性記憶装置の製造方法について説明する。
図5〜図10は、本実施形態に係る不揮発性記憶装置の製造方法を例示する工程断面図であり、各図の(a)及び(b)は、相互に直交する断面を示している。
先ず、図1に示すように、シリコン基板11を用意する。シリコン基板11は、例えば、シリコンウェーハの一部である。次に、シリコン基板11の上面に、メモリセル部13を駆動するための駆動回路を形成する。次に、シリコン基板11上に層間絶縁膜12を形成する。
次に、図5(a)及び(b)に示すように、層間絶縁膜12上に層間絶縁膜17を形成する。次に、レジストパターンをマスクとしてエッチングを施すことにより、層間絶縁膜17の上面にワード線方向に延びる複数本の溝17aを形成する。次に、全面に例えばタングステン等の導電性材料を堆積させて、導電膜を形成する。次に、この導電膜の上面に対してCMP(chemical mechanical polishing:化学的機械研磨)を施し、導電膜における層間絶縁膜17の上面上に堆積された部分を除去すると共に、溝17a内に堆積された部分を残留させる。これにより、溝17a内に、層間絶縁膜17によって相互に分離された複数本のワード線WLが形成される。これらのワード線WLにより、ワード線配線層14が形成される。
次に、ワード線配線層14上に、例えばチタン及び窒化チタンを堆積させて、バリアメタル層21を形成する。次に、バリアメタル層21上にアモルファスシリコンを堆積させる。このとき、アモルファスシリコンを堆積させながら各不純物を導入して、n形層、i形層及びp形層を連続的に形成する。バリアメタル層21は、ワード線WLを形成するタングステンとシリコンダイオード層22を形成するシリコンとの反応を抑制すると共に、ワード線WLとシリコンダイオード層22との間の密着性を強化するための層である。次に、シリコンダイオード層22上にタングステン又は窒化チタン等の導電性材料を堆積させて、下部電極層23を形成する。
次に、下部電極層23上にダミー層41を形成する。ダミー層41は、下部電極層23及び後の工程において形成される層間絶縁膜30(図2参照)との間でエッチング選択比が取れる材料であればよく、例えば、シリコン窒化物(SiN)、ポリシリコン若しくは炭素(C)からなる単一層又は複合層とすることができる。バリアメタル層21、シリコンダイオード層22、下部電極層23及びダミー層41は、CVD(chemical vapor deposition:化学気相成長)法によって形成してもよく、スパッタ法によって形成してもよい。
次に、図6(a)及び(b)に示すように、ダミー層41上にレジストパターンを形成し、これをマスクとして、例えばRIE(reactive ion etching:反応性イオンエッチング)等のドライエッチングを施す。これにより、ダミー層41、下部電極層23、シリコンダイオード層22及びバリアメタル層21を選択的に除去して、ピラー42を形成する。ピラー42は、ピラー16(図1参照)を形成する予定の領域に形成し、ワード線方向及びビット線方向の双方に沿って周期的に配列されたマトリクス状に形成する。また、各ピラー16の形状は、例えば円柱形とする。
次に、図7(a)及び(b)に示すように、例えば、シリコン酸化物を堆積させて、ピラー42の周囲に層間絶縁膜30を形成する。このとき、ピラー42は層間絶縁膜30によって埋め込まれる。次に、CMPを施して層間絶縁膜30の上面を平坦化し、層間絶縁膜30の上面においてダミー層41を露出させる。すなわち、この段階において、層間絶縁膜30はピラー42の側面を覆い上面を露出させる。
次に、図8(a)及び(b)に示すように、ダミー層41(図7参照)を除去する。例えば、ダミー層41をシリコン窒化物によって形成した場合は、熱リン酸でウェットエッチングを行うことにより、層間絶縁膜30及び下部電極層23をほとんどエッチングすることなく、ダミー層41を選択的に除去することができる。これにより、層間絶縁膜30の上面に凹部43が形成される。凹部43の底面においては、下部電極層23が露出する。
次に、図9(a)及び(b)に示すように、多数のカーボンナノチューブ(CNT)を含有するナノマテリアル材料を用意する。ナノマテリアル材料には、例えば、水にCNTを分散させた分散液を用いることができる。そして、この分散液を層間絶縁膜30の上面に塗布する。このとき、分散液は凹部43内を満たし、層間絶縁膜30の上面上にも配置される。次に、ベークを行い、分散液から水分を蒸発させる。これにより、凹部43内及び層間絶縁膜30の上面上に、薄いナノマテリアル集合層が形成される。ナノマテリアル集合層においては、複数本のCNT31(図4参照)がファンデルワールス力によって緩く結合しており、CNT31間には隙間32(図4参照)が形成されている。また、分散液が乾燥して厚さが減少する過程で、CNT31が延びる方向は、水平方向に近づく。
そして、この分散液の塗布及びベークを複数回繰り返すことにより、薄いナノマテリアル集合層が複数層積層されて凹部43が埋まっていき、凹部43内に、ボイドがないナノマテリアル集合層24が形成される。また、ナノマテリアル集合層24は、層間絶縁膜30の上面上にも形成される。すなわち、ナノマテリアル集合層24の下部24aは凹部43内に配置され、上部24bは層間絶縁膜30の上面上に配置される。これにより、バリアメタル層21、シリコンダイオード層22、下部電極層23及びナノマテリアル集合層24の下部24aがこの順に積層されたピラー16が形成される。
なお、ナノマテリアル集合層24の形成に際しては、各塗布工程において分散液をなるべく薄く塗布し、分散液の塗布及びベークの実施回数を多くすることが好ましい。これにより、各CNT31が上下方向に延びる距離が小さくなり、CNT31同士の接点が多くなり、ナノマテリアル集合層24全体の抵抗変化の幅を大きくすることができる。
次に、図10(a)及び(b)に示すように、ナノマテリアル集合層24上にタングステン等の導電性材料を堆積させて、上部電極層25を形成する。次に、上部電極層25及びナノマテリアル集合層24の上部24bを、凹部43内に形成されたナノマテリアル集合層24の下部24aを覆うようにパターニングする。すなわち、上方から見て、上部電極層25及び上部24bの外縁が、下部24aの外縁の外側に位置するようにパターニングする。これにより、ナノマテリアル集合層24の上部24b及び上部電極層25がビット線方向に延びるライン状に加工される。
次に、図2(a)及び(b)に示すように、層間絶縁膜30上に上部電極層25を覆うように層間絶縁膜46を形成する。次に、層間絶縁膜46の上面に対してCMPを施すことにより、上部電極層25を露出させる。次に、全面にタングステン等の導電性材料を堆積させて導電膜を形成し、これをパターニングすることにより、上層電極層25の直上域にビット線BLを形成する。これらの複数本のビット線BLにより、ビット線配線層15が形成される。次に、層間絶縁膜46上にビット線BLを覆うように層間絶縁膜47を形成し、CMPを施すことにより、ビット線BLを露出させる。
次に、図1に示すように、ビット線BL上にピラー16を形成する。このピラー16を形成する際には、上述のワード線WL上に形成したピラー16に対して、シリコンダイオード層22におけるn形層、i形層及びp形層の積層順序を逆にする。以後、同様な方法により、ワード線配線層14、複数本のピラー16、ビット線配線層15及び複数本のピラー16を繰り返して形成する。これにより、本実施形態に係る不揮発性記憶装置1が製造される。
次に、本実施形態の動作について説明する。
本実施形態に係る不揮発性記憶装置1において、ナノマテリアル集合層24は、「高抵抗状態」と「低抵抗状態」の2つの状態を持つことができる。そのメカニズムは完全には解明されていないが、例えば、以下のように考えられる。
下部電極層23と上部電極層25との間に電圧が印加されていないときは、ナノマテリアル集合層24において、CNT31同士は概ね相互に離隔した状態にあり、ナノマテリアル集合層24は「高抵抗状態」にある。一方、下部電極層23と上部電極層25との間に電圧を印加すると、CNT31間にクーロン力が発生して、引きつけ合う。そして、この電圧を一定時間以上継続して印加すると、クーロン力によってCNT31が移動・回転し、隣のCNT31と接触し、下部電極層23と上部電極層25との間に複数本のCNT31を介した電流経路が形成される。この結果、ナノマテリアル集合層24は「低抵抗状態」となる。この状態は、下部電極層23と上部電極層25との間に電圧が印加されなくなっても、維持される。また、下部電極層23と上部電極層25との間に、例えばナノ秒オーダーの短時間のパルス電圧を印加すると、CNT31同士の接触部分が発熱し、CNT31同士が離れる。この結果、ナノマテリアル集合層24は「高抵抗状態」に戻る。このように、ナノマテリアル集合層24は「高抵抗状態」と「低抵抗状態」の2つの状態を持つことができ、これにより、2値のデータを記憶することができる。
次に、本実施形態の効果について説明する。
本実施形態によれば、カーボンナノチューブ(CNT)によって抵抗変化層が形成されており、これにより、ReRAMが実現されている。従来の金属酸化物を用いた抵抗変化層は、金属酸化物が本来絶縁体であるため、動作が不安定であるという問題点があった。これに対して、本実施形態によれば、導電体であるCNTを用いて抵抗変化層を形成しているため、低い電圧で駆動することができ、動作が安定する。これにより、信頼性が高い不揮発性記憶装置を実現することができる。
また、本実施形態においては、上方から見て、ナノマテリアル集合層24の下部24aが、ワード線WL及びビット線BLの内側に配置されている。これにより、ピラー16をワード線WL及びビット線BLよりも細くすることができる。この結果、ナノマテリアル集合層24においては、「高抵抗状態」と「低抵抗状態」との切り替えに必要な電流密度を確保しつつ、電流量を減らすことができる。一方、ワード線WL及びビット線BLは相対的に太く形成して、配線抵抗を低減することができる。これにより、ワード線WL及びビット線BLに電流を流す際の電流量及び抵抗値を低減し、電圧降下量を低減することができる。この結果、メモリセルを高集積化しても、不揮発性記憶装置1の動作を安定に保つことができる。
更に、本実施形態においては、上部にダミー層41が設けられたピラー42を形成し、これを層間絶縁膜30によって埋め込み、その後、ダミー層41を除去することにより、層間絶縁膜30の上面に凹部43を形成する。そして、凹部43内にCNT31を含むナノマテリアル材料を埋め込むことにより、ナノマテリアル集合層24を形成している。従って、ナノマテリアル集合層24の形成に際して、ナノマテリアル集合層24がエッチングされることがないため、エッチングによるダメージを受けることがない。この結果、ナノマテリアル集合層24内に欠陥が導入されることを抑制し、不揮発性記憶装置1の信頼性を高めることができる。
これに対して、仮に、バリアメタル層21、シリコンダイオード層22、下部電極層23及びナノマテリアル集合層24をこの順に積層し、これらの積層膜をドライエッチングによりパターニングしてピラー16を形成しようとすると、ナノマテリアル集合層24の側面が、ドライエッチングの際のプラズマ雰囲気に曝されることになる。しかしながら、ナノマテリアル集合層24は、CNTを分散31が隙間32を介して緩く結合したものであるため、物理的及び化学的に脆弱である。このため、ナノマテリアル集合層24の側面がプラズマとの接触、副生成物の付着、電荷の蓄積による帯電等によってダメージを受け、例えば修復不能な欠陥が導入されて、メモリセル特性が劣化してしまう。
また、このように、ナノマテリアル集合層24を広い領域に成膜する方法では、成膜時及びその後の冷却時において、ナノマテリアル集合層24に内部応力が発生する。そして、ナノマテリアル集合層24と下部電極層23との間の密着性が不十分であると、ナノマテリアル集合層24が変形して下部電極層23から剥離してしまう。このため、密着性を確保するために、ナノマテリアル集合層24を薄くしたり、組成を調整したりする等の工夫が必要となり、設計の自由度が低くなる。
これに対して、本実施形態によれば、ナノマテリアル集合層24を凹部43内に埋め込んでいるため、広い領域に成膜する場合と比較して、内部応力が小さい。また、下部電極層23とナノマテリアル集合層24との間の密着性が低い場合であっても、ナノマテリアル集合層24の位置及び形状は凹部43によって規定されるため、剥離が生じにくい。
更にまた、一般に、液体材料を塗布する場合には、塗布厚さを一定とすることが困難である。例えば、液体材料を供給するノズルの近傍は塗布厚さが厚くなり、ノズルから離れるにつれて塗布厚さが薄くなる。また、スピンコート法によってウェーハ上に液体材料を塗布する場合には、ウェーハの中心において塗布厚さが最も厚くなり、ウェーハの端部において塗布厚さが薄くなる。しかしながら、本実施形態によれば、凹部43内にナノマテリアル材料を埋め込んでナノマテリアル集合層24を形成しているため、凹部43の深さ、すなわち、ダミー層41の厚さによって、ナノマテリアル集合層24の厚さを規定することができる。なお、ダミー層41は、例えばシリコン窒化物をCVD法等によって堆積させることによって形成しているため、厚さの制御が容易である。この結果、ピラー16間でナノマテリアル集合層24の厚さを均一にすることができ、不揮発性記憶装置1の動作の信頼性を高めることができる。
更にまた、本実施形態においては、ナノマテリアル集合層24を塗布法によって形成しているため、CVD法及びスパッタ法等の気相成長法によって形成する場合とは異なり、上方から見た凹部43の中央部にボイド(す)が形成されることがない。特に、ナノマテリアル材料の塗布及び乾燥を複数回繰り返すことにより、ボイドの発生を確実に防止することができる。この結果、ナノマテリアル集合層24を均質に形成することができ、各メモリセルのデバイス構造及び電気特性を安定化させることができる。
なお、本実施形態においては、ダミー層41をシリコン窒化物によって形成し、層間絶縁膜30をシリコン酸化物によって形成し、熱リン酸によってシリコン窒化物のみを選択的に除去する例を示したが、ダミー層41の材料、層間絶縁膜30の材料及びダミー層41の除去方法の組合せは、これに限定されない。例えば、ダミー層41をBPSG(boron phosphorous silicate glass:ボロン−リン添加シリコン酸化物)によって形成し、層間絶縁膜30をTEOS(tetra ethyl ortho silicate)を原料としたシリコン酸化物によって形成し、気相フッ酸若しくは希釈フッ酸液によってエッチングを行い、エッチングレートの差を利用してBPSGを選択的に除去してもよい。又は、ダミー層41を金属タングステンによって形成し、層間絶縁膜30をシリコン酸化物によって形成し、過酸化水素水(H)、アンモニア及び水の混合液によりウェットエッチングを施し、金属タングステンのみを除去してもよい。また、金属タングステンはドライエッチングによって除去してもよい。
次に、第2の実施形態について説明する。
図11(a)及び(b)は、本実施形態におけるメモリセルを例示する断面図であり、相互に直交する断面を示す。
図11(a)及び(b)に示すように、本実施形態に係る不揮発性記憶装置2は、前述の第1の実施形態に係る不揮発性記憶装置1(図2参照)と比較して、ナノマテリアル集合層24の上部24bが設けられていない点が異なっている。すなわち、不揮発性記憶装置2においては、ナノマテリアル集合層24全体が層間絶縁膜30内に埋め込まれており、ピラー16の一部となっている。
次に、本実施形態に係る不揮発性記憶装置の製造方法について説明する。
図12(a)及び(b)は、本実施形態に係る不揮発性記憶装置の製造方法を例示する工程断面図である。
先ず、前述の第1の実施形態において説明した方法のうち、図9に示す工程までを実施する。すなわち、図9(a)及び(b)に示すように、凹部43内及び層間絶縁膜30の上面上に、ナノマテリアル集合層24を形成する。
次に、図12(a)及び(b)に示すように、全面にCMP等の平坦化処理を施すことにより、層間絶縁膜30の上面を露出させる。すなわち、ナノマテリアル集合層24の上面を、層間絶縁膜30の上面と同一平面とする。これにより、ナノマテリアル集合層24の上部24b(図9参照)が除去されて、凹部43内に埋め込まれた下部24aのみが残留する。以後の製造方法は、第1の実施形態と同様である。
本実施形態によれば、ナノマテリアル集合層24において、エッチングに曝される部分が皆無となることにより、ナノマテリアル集合層24の品質をより向上させることができる。また、上部24bが存在しないため、ナノマテリアル集合層24の厚さをより精度よく制御することができる。本実施形態における上記以外の構成、製造方法、動作及び効果は、前述の第1の実施形態と同様である。
次に、第3の実施形態について説明する。
図13(a)〜(c)は、本実施形態に係る不揮発性記憶装置の製造方法を例示する工程断面図である。
本実施形態は、前述の第1の実施形態と比較して、ダミー層41(図5〜図7参照)を形成した後にピラーに加工するのではなく、ピラー加工後に下層電極層23の上部を酸化することによってダミー層を形成する点が異なっている。
すなわち、図13(a)に示すように、ワード線配線層14上に、バリアメタル層21、シリコンダイオード層22及び下部電極層23をこの順に堆積させる。そして、下部電極層23上にレジストパターン(図示せず)を形成し、これをマスクとしてエッチングを施すことにより、下部電極層23、シリコンダイオード層22及びバリアメタル層21を選択的に除去し、ピラー51を形成する。次に、ピラー51を埋め込むように層間絶縁膜30を形成し、上面にCMPを施し、下部電極層23を露出させる。なお、CMPの代わりに、層間絶縁膜30をエッチバックしてもよい。
次に、図13(b)に示すように、酸素雰囲気中で熱処理を行うか、酸素プラズマ処理を施すことにより、下部電極層23の上部を酸化させる。これにより、下部電極層23の上部が、金属酸化物からなるダミー層52に変化する。すなわち、上部がダミー層52からなるピラー53が形成される。
次に、図13(c)に示すように、例えばウェット処理を行うことにより、ダミー層52を除去する。これにより、層間絶縁膜30の上面に凹部43が形成される。以後の工程は、前述の第1の実施形態と同様である。
本実施形態によっても、前述の第1の実施形態と同様な効果を得ることができる。本実施形態における上記以外の構成、製造方法、動作及び効果は、前述の第1の実施形態と同様である。
次に、第4の実施形態について説明する。
図14は、本実施形態におけるメモリセルを例示する断面図である。
図14に示すように、本実施形態に係る不揮発性記憶装置4においては、前述の第1の実施形態に係る不揮発性記憶装置1(図2参照)と比較して、ナノマテリアル集合層24の上部24bの上部に、高密度層24cが形成されている点が異なっている。高密度層24cの密度は、例えば、2.0g/cm以上であり、例えば、2.0〜2.2g/cmである。一方、ナノマテリアル集合層24における高密度層24c以外の部分の密度は、例えば1.8g/cm以下であり、例えば、1.5〜1.8g/cmである。高密度層24cにおける単位体積当たりのCNT31の合計長さは、ナノマテリアル集合層24における高密度層24c以外の部分における単位体積当たりのCNT31の合計長さよりも長い。
次に、本実施形態に係る不揮発性記憶装置の製造方法について説明する。
図15は、本実施形態に係る不揮発性記憶装置の製造方法を例示する工程断面図である。
図15に示すように、本実施形態においては、前述の第1の実施形態の図9に示す工程において、先ず、相対的に密度が低い低密度層55aを成膜し、次に、相対的に密度が高い高密度層55bを成膜する。例えば、低密度層55aは、塗布工程1回当たりの塗布厚さを厚くし、塗布及び乾燥の回数を少なくすることによって、形成することができる。一方、高密度層55bは、塗布工程1回当たりの塗布厚さを薄くし、塗布及び乾燥の回数を多くすることによって、形成することができる。低密度層55aがナノマテリアル集合層24の下部24a及び上部24bの下部となり、高密度層55bがナノマテリアル集合層24の高密度層24cとなる。
本実施形態によれば、ナノマテリアル集合層24を形成した後、CVD法等の気相成長法によって上部電極層25を形成する際に、タングステン等の原子がナノマテリアル集合層24の内部に侵入することを抑制できる。すなわち、高密度層24cにおいてはCNT31間の隙間32が狭いため、ナノマテリアル集合層24に高密度層24cを設けることにより、導電性材料が深く侵入しにくくなる。これにより、ナノマテリアル集合層24と上部電極層25との界面を平坦にし、ナノマテリアル集合層24の実効的な厚さを均一にすることができる。なお、低密度層55aは高密度層55bよりも脆弱であるが、本実施形態においては、低密度層55aは凹部43内に埋め込まれるため、ストレスを受けにくく、形状を保持することができる。本実施形態における上記以外の構成、製造方法、動作及び効果は、前述の第1の実施形態と同様である。
なお、前述の各実施形態においては、ナノマテリアル集合層を構成する微小導電体として、カーボンナノチューブ(CNT)を例に挙げて説明したが、本発明はこれに限定されず、微小導電体は、例えば、炭素シート、炭素チューブ、炭素球等の炭素エレメントであってもよく、より具体的には、グラフェン、フラーレン又はカーボンナノリボン等のカーボンナノマテリアルであってもよい。また、カーボンナノチューブは、シングル・ウォール、ダブル・ウォール又はマルチ・ウォールのいずれであってもよい。更に、微小導電体は炭素以外の材料によって形成されていてもよい。更にまた、ナノマテリアル集合層24の隙間32内に絶縁性の粒子を配置して、ナノマテリアル集合層24全体の抵抗値を調整してもよい。
また、前述の各実施形態においては、微小導電体を分散させた液体状のナノマテリアル材料を塗布し乾燥させることにより、ナノマテリアル集合層を形成する例を示したが、本発明はこれに限定されない。例えば、ナノマテリアル材料を散布することにより、ナノマテリアル集合層を形成してもよい。
更に、前述の各実施形態においては、選択素子をpin形のシリコンダイオード層22によって構成する例を示したが、本発明はこれに限定されない。例えば、選択素子としてMIM(metal-insulator-metal:金属−絶縁物−金属)ダイオードを用いてもよく、ダイオード以外の素子を用いてもよい。
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明及びその等価物の範囲に含まれる。また、前述の各実施形態は、相互に組み合わせて実施することができる。
以上説明した実施形態によれば、信頼性が高い不揮発性記憶装置及びその製造方法を実現することができる。
1、2、4:不揮発性記憶装置、11:シリコン基板、12:層間絶縁膜、13:メモリセル部、14:ワード線配線層、15:ビット線配線層、16:ピラー、17:層間絶縁膜、17a:溝、21:バリアメタル層、22:シリコンダイオード層、23:下部電極層、24:ナノマテリアル集合層、24a:下部、24b:上部、24c:高密度層、25:上部電極層、30:層間絶縁膜、31:カーボンナノチューブ(CNT)、32:隙間、41:ダミー層、42:ピラー、43:凹部、46:層間絶縁膜、47:層間絶縁膜、51:ピラー、52:ダミー層、53:ピラー、55a:低密度層、55b:高密度層、BL:ビット線、WL:ワード線

Claims (7)

  1. 第1配線と、
    前記第1配線上に設けられ、炭素を含む複数の微小導電体が集合したナノマテリアル集合層と、
    前記ナノマテリアル集合層上に設けられた第2配線と、
    を備え、
    前記ナノマテリアル集合層は、
    下層と、
    密度が前記下層の密度よりも高い上層と、
    を有し、
    上方から見て、前記ナノマテリアル集合層の少なくとも下部は、前記第2配線の内側に配置されていることを特徴とする不揮発性記憶装置。
  2. 上方から見て、前記ナノマテリアル集合層の全体が、前記第2配線の内側に配置されていることを特徴とする請求項1記載の不揮発性記憶装置。
  3. 前記ナノマテリアル集合層にはボイドが形成されていないことを特徴とする請求項1または2に記載の不揮発性記憶装置。
  4. 前記微小導電体はカーボンナノチューブであることを特徴とする請求項1〜3のいずれか1つに記載の不揮発性記憶装置。
  5. 前記第2配線が延びる方向は、前記第1配線が延びる方向に対して交差しており、
    複数本の前記第1配線によって構成された第1配線層と、複数本の前記第2配線によって構成された第2配線層とが交互に積層されており、
    前記ナノマテリアル集合層の少なくとも一部は、各前記第1配線と各前記第2配線との間に設けられたピラーを構成していることを特徴とする請求項1〜4のいずれか1つに記載の不揮発性記憶装置。
  6. 前記ピラー内における前記第1配線と前記ナノマテリアル集合層との間に設けられ、電流を流すか否かを選択する選択素子層と、
    前記選択素子層と前記ナノマテリアル集合層との間に設けられた電極層と、
    をさらに備えたことを特徴とする請求項5記載の不揮発性記憶装置。
  7. 第1配線上に、少なくとも上部にダミー層が設けられたピラー、及び前記ピラーの側面を覆い上面を露出させる層間絶縁膜を形成する工程と、
    前記ダミー層を除去することにより、前記層間絶縁膜の上面に凹部を形成する工程と、
    前記凹部内に炭素を含む複数の微小導電体が隙間を介して集合したナノマテリアル集合層を形成する工程と、
    前記層間絶縁膜上及び前記ナノマテリアル集合層上に導電膜を形成する工程と、
    前記導電膜を、前記ナノマテリアル集合層を覆うようにパターニングすることにより、第2配線を形成する工程と、
    を備え、
    前記ナノマテリアル集合層を形成する工程は、
    複数の前記微小導電体を含有するナノマテリアル材料を第1の厚さに塗布する工程と、
    前記第1の厚さに塗布された前記ナノマテリアル材料を乾燥させる工程と、
    前記ナノマテリアル材料を前記第1の厚さよりも薄い第2の厚さに塗布する工程と、
    前記第2の厚さに塗布された前記ナノマテリアル材料を乾燥させる工程と、
    を有することを特徴とする不揮発性記憶装置の製造方法。
JP2010159642A 2010-07-14 2010-07-14 不揮発性記憶装置及びその製造方法 Expired - Fee Related JP5580126B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010159642A JP5580126B2 (ja) 2010-07-14 2010-07-14 不揮発性記憶装置及びその製造方法
US12/956,548 US20120012805A1 (en) 2010-07-14 2010-11-30 Nonvolatile memory device and method for manufacturing same
KR1020110023743A KR20120007438A (ko) 2010-07-14 2011-03-17 불휘발성 기억 장치 및 그 제조 방법
CN2011100663491A CN102339950A (zh) 2010-07-14 2011-03-18 非易失性存储器装置及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010159642A JP5580126B2 (ja) 2010-07-14 2010-07-14 不揮発性記憶装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2012023187A JP2012023187A (ja) 2012-02-02
JP5580126B2 true JP5580126B2 (ja) 2014-08-27

Family

ID=45466211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010159642A Expired - Fee Related JP5580126B2 (ja) 2010-07-14 2010-07-14 不揮発性記憶装置及びその製造方法

Country Status (4)

Country Link
US (1) US20120012805A1 (ja)
JP (1) JP5580126B2 (ja)
KR (1) KR20120007438A (ja)
CN (1) CN102339950A (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130032772A (ko) * 2011-09-23 2013-04-02 삼성전자주식회사 하이브리드 메모리 장치, 이를 포함하는 컴퓨터 시스템, 및 하이브리드 메모리장치의 데이터 기입 및 독출 방법
US8877586B2 (en) 2013-01-31 2014-11-04 Sandisk 3D Llc Process for forming resistive switching memory cells using nano-particles
US9111611B2 (en) 2013-09-05 2015-08-18 Kabushiki Kaisha Toshiba Memory system
US10305704B1 (en) * 2018-06-07 2019-05-28 Texas Instruments Incorporated Decision feedback equalization with independent data and edge feedback loops
CN110797455B (zh) * 2018-08-02 2023-08-22 中芯国际集成电路制造(上海)有限公司 存储器件及其形成方法
CN110875426B (zh) * 2018-08-29 2023-07-18 中芯国际集成电路制造(上海)有限公司 纳米管随机存储器及其形成方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4207398B2 (ja) * 2001-05-21 2009-01-14 富士ゼロックス株式会社 カーボンナノチューブ構造体の配線の製造方法、並びに、カーボンナノチューブ構造体の配線およびそれを用いたカーボンナノチューブデバイス
US7462890B1 (en) * 2004-09-16 2008-12-09 Atomate Corporation Nanotube transistor integrated circuit layout
US7812404B2 (en) * 2005-05-09 2010-10-12 Sandisk 3D Llc Nonvolatile memory cell comprising a diode and a resistance-switching material
JP4939324B2 (ja) * 2005-12-02 2012-05-23 シャープ株式会社 可変抵抗素子及びその製造方法
KR100881055B1 (ko) * 2007-06-20 2009-01-30 삼성전자주식회사 상변화 메모리 유닛, 이의 제조 방법, 이를 포함하는상변화 메모리 장치 및 그 제조 방법
CN102027610B (zh) * 2008-04-11 2012-12-05 桑迪士克3D有限责任公司 包括碳纳米管可逆电阻切换元件的存储器单元及其形成方法
US8466044B2 (en) * 2008-08-07 2013-06-18 Sandisk 3D Llc Memory cell that includes a carbon-based memory element and methods forming the same
JP2010080518A (ja) * 2008-09-24 2010-04-08 Toshiba Corp 不揮発性記憶装置及びその製造方法
US7915637B2 (en) * 2008-11-19 2011-03-29 Nantero, Inc. Switching materials comprising mixed nanoscopic particles and carbon nanotubes and method of making and using the same

Also Published As

Publication number Publication date
US20120012805A1 (en) 2012-01-19
JP2012023187A (ja) 2012-02-02
CN102339950A (zh) 2012-02-01
KR20120007438A (ko) 2012-01-20

Similar Documents

Publication Publication Date Title
US9412789B1 (en) Stackable non-volatile resistive switching memory device and method of fabricating the same
US7670871B2 (en) Method of fabricating a phase-change memory
US8404553B2 (en) Disturb-resistant non-volatile memory device and method
US8467224B2 (en) Damascene integration methods for graphitic films in three-dimensional memories and memories formed therefrom
JP5580126B2 (ja) 不揮発性記憶装置及びその製造方法
KR101162447B1 (ko) 불휘발성 기억 장치 및 그 제조 방법
US20060281216A1 (en) Method of manufacturing a phase change RAM device utilizing reduced phase change current
US20090321711A1 (en) Nonvolatile memory element and manufacturing method thereof
TW201032315A (en) Three-dimensional semiconductor structure and method of fabricating the same
KR102144171B1 (ko) 셀 신뢰성 향상을 위한 수직 집적형 삼차원 플래시메모리 및 그 제조 방법
JP2013508986A (ja) 4倍ハーフピッチレリーフパターニングのための双側壁パターニングを用いたメモリ線および構造を形成する装置および方法
US20150072500A1 (en) Method for fabricating resistive random access memory
US8779405B2 (en) Field focusing features in a ReRAM cell
US20190334084A1 (en) Resistive random access memory structure and manufacturing method thereof
US20110198556A1 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
US20150280121A1 (en) Non-volatile memory device and methods for fabricating the same
JP2009283681A (ja) 不揮発性記憶装置及びその製造方法
US20130320284A1 (en) Field focusing features in a reram cell
JP2012059862A (ja) 不揮発性記憶装置及びその製造方法
JP2009295837A (ja) 不揮発性半導体記憶装置及びその製造方法
KR20080014219A (ko) 전기적- 기계적 비휘발성 메모리 장치 및 그 제조 방법.
JP5487178B2 (ja) メモリ用シフトレジスタ
US8258494B2 (en) Nonvolatile memory device and method for manufacturing same
US20230309325A1 (en) Vertical 1t1r structure for embedded memory
JP2010245425A (ja) 抵抗変化型不揮発性記憶装置および製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140710

LAPS Cancellation because of no payment of annual fees