JP5552916B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP5552916B2
JP5552916B2 JP2010139765A JP2010139765A JP5552916B2 JP 5552916 B2 JP5552916 B2 JP 5552916B2 JP 2010139765 A JP2010139765 A JP 2010139765A JP 2010139765 A JP2010139765 A JP 2010139765A JP 5552916 B2 JP5552916 B2 JP 5552916B2
Authority
JP
Japan
Prior art keywords
film
heat treatment
dielectric film
forming
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010139765A
Other languages
English (en)
Other versions
JP2012004448A (ja
Inventor
文生 王
智 三原
亘 中村
知広 高松
純一 渡邉
大祐 三浦
あまね 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Priority to JP2010139765A priority Critical patent/JP5552916B2/ja
Publication of JP2012004448A publication Critical patent/JP2012004448A/ja
Application granted granted Critical
Publication of JP5552916B2 publication Critical patent/JP5552916B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Description

本発明は、半導体装置の製造方法に関し、例えば、下部電極と上部電極との間に形成された誘電体膜を備える半導体装置の製造方法に関する。
強誘電体のヒステリシス特性を利用する半導体装置が実用化されている。例えば、FeRAM(Ferroelectric Random Access Memory)は、強誘電体キャパシタのヒステリシス特性を利用し、情報を不揮発的に記憶する。
強誘電体キャパシタの製造方法として、下部電極上に非晶質な第1強誘電体膜を形成した後、第1強誘電体膜を結晶化させる。その後、第1強誘電体膜上に非晶質な第2強誘電体膜を形成する。第2強誘電体上に上部電極を形成する。その後、第2強誘電体膜を結晶化させる方法が知られている。これにより、分極反転量を高く維持したままリーク電流を抑制できる。
特開2006−318941号公報
強誘電体キャパシタに電圧を複数回印加するストレスサイクルを行なうと、反転電荷量が減少することがある。ストレスサイクルを経ることよる反転電荷量の劣化特性を耐疲労特性という。一般的には、ストレスサイクルを行なっても反転電荷量は変化しないことが好ましい。すなわち、耐疲労特性が高いことが好ましい。しかしながら、例えば強誘電体キャパシタを用いたFeRAMにおいては、一定のストレスサイクルを経るとFeRAMとして機能しないことが好ましいアプリケーションがある。例えば、セキュリティ品として用いる場合、使用が終わった後も情報の読み出しが可能な場合、セキュリティの問題が生じる場合がある。そこで、反転電荷量が一定以上変化するストレスサイクルの回数を制御できることが求められる。このように耐疲労特性を制御できることが求められる。しかしながら、耐疲労特性の制御にともない、キャパシタのリーク電流の増加等キャパシタ特性が劣化することは好ましくない。
本半導体装置の製造方法は、キャパシタ特性の劣化を抑制し、かつ耐疲労特性を制御可能とすることを目的とする。
例えば、半導体基板の上方に下部電極を形成する工程と、前記下部電極上にPZTを含む第1誘電体膜を形成する工程と、前記第1誘電体膜を形成した後に、酸化性ガスを含む雰囲気中で605℃以上かつ650℃以下の温度において熱処理することにより、前記第1誘電体膜を結晶化する工程と、前記第1誘電体膜を結晶化する工程の後、前記第1誘電体膜上にPZTを含む非晶質な第2誘電体膜を形成する工程と、前記第2誘電体膜を形成した後に熱処理を行なわず上部電極の少なくとも一部の層を形成する工程と、前記上部電極の少なくとも一部の層を形成した後に酸化性ガスを含む雰囲気で熱処理することにより、前記第2誘電体膜を結晶化する工程と、前記第2誘電体膜および前記第1誘電体膜の側面が露出するように、前記第2誘電体膜および前記第1誘電体膜をエッチングする工程と、前記エッチングする工程の後、前記側面が露出した状態において酸化性ガスを含む雰囲気中で550℃以上かつ700℃以下の温度で熱処理する工程と、を含み、前記第2誘電体膜の膜厚は前記第1誘電体膜の膜厚の30%以上かつ80%以下であることを特徴とする半導体装置の製造方法を用いる。
本半導体装置の製造方法によれば、キャパシタ特性の劣化を抑制し、かつ耐疲労特性を制御可能とすることができる。
図1(a)から図1(d)は、実施例1に係る半導体装置の製造方法を示す断面図(その1)である。 図2(a)から図2(c)は、実施例1に係る半導体装置の製造方法を示す断面図(その2)である。 図3(a)から図3(c)は、実施例1に係る半導体装置の製造方法を示す断面図(その3)である。 図4は、第1誘電体膜の結晶化熱処理の温度を変えて耐疲労特性を評価した結果を示す図である。 図5は、図2(c)におけるキャパシタ膜の側面が露出した状態での熱処理の温度を変えて対疲労特性を評価した結果を示す図である。 図6は、サンプルA〜Iにおけるストレスサイクルに対する反転電荷量を測定した結果を示す図である。 図7は、図1(a)において密着層形成後の熱処理の有無による耐疲労特性を示す図である。 図8は、図1(b)において下部電極膜形成後の熱処理の有無による対疲労特性を示す図である。 図9は、実施例2に係る半導体装置の断面図である。 図10は、実施例3に係る半導体装置の断面図である。
以下、図面を参照し実施例について説明する。
強誘電体膜であるキャパシタ膜内の酸素欠損が多くなると耐疲労特性は低くなる。しかしながら、リーク電流が増大する等のキャパシタ特性が劣化する。このように、キャパシタの特性を劣化させず耐疲労特性を制御することは難しい。実施例1においては、後述するように、強誘電体膜としてPZT膜を用い、PZT膜内の中のPbを欠損させた状態でキャパシタ膜のうち下層の第1誘電体膜に対する上層の第2誘電体膜の膜厚を30%以上とすることにより、リーク電流が増大することなく耐疲労特性を制御することができる。Pbを欠損させるためには、PZT膜が露出した状態で熱処理することが好ましい。そこで、以下に説明するように、強誘電体膜が露出した状態での熱処理温度を規定した。
まず、実施例1における半導体層値の製造方法について説明する。図1(a)から図3(c)は、実施例1に係る半導体装置の製造方法を示す断面図である。図1(a)のように、半導体基板10上に、全面に絶縁膜12を形成する。実施例1においては、絶縁膜12は、TEOS(Tetra Ethoxy Silane)ガスを用いたCVD(Chemical Vapor Deposition)法を用い成膜された酸化シリコン膜である。絶縁膜12上に全面に密着層14を形成する。実施例1においては、密着層14は、膜厚が20nmの酸化アルミニウム膜であり、スパッタリング法を用い形成する。密着層14は、下部電極16と絶縁膜12とを密着させる機能を有する。
図1(b)のように、密着層14を形成した後に熱処理を行なわず、密着層14上に全面に下部電極16を形成する。実施例1においては、下部電極16は、膜厚が150nmのPt(プラチナ)膜でありスパッタリング法を用い形成する。Pt膜の成膜条件は、基板温度が350℃、スパッタリングガスがAr、成膜室内の圧力が1Pa、印加電力が0.3kWである。下部電極16は、Ir膜、Ru膜、酸化Ru膜、酸化SrRu膜を用いることもできる。Pt膜の膜厚は50nm〜150nmとすることができる。下部電極16形成後熱処理を行なわず、非晶質の貴金属酸化物膜17を形成する。実施例1においては、貴金属酸化物膜17は、膜厚が3nmの酸化プラチナ膜をスパッタリング法を用い形成する。貴金属酸化物膜17は、下部電極16の結晶性が十分に均一でない場合も均一な第1誘電体膜を得るための膜である。また、第1誘電体膜および第2誘電体膜を結晶化させる熱処理の際に、貴金属酸化物膜17内の酸素で第1誘電体膜の酸素欠損を補うことができる。貴金属酸化物膜17は、下部電極16に含まれる貴金属の酸化物であることが好ましい。貴金属酸化物膜17は、熱処理により還元され下部電極16の一部となるため、以降の図では、貴金属酸化物膜17は図示していない。
図1(c)のように、熱処理を行なわず、下部電極16上にPZT(チタン酸ジルコン酸鉛:PbZrTi1−x)を含む第1誘電体膜18を全面に形成する。実施例1においては、第1誘電体膜18は、Ca、Sr、Laが添加されたPZT膜(CSLPZT膜)であり、高周波スパッタリング法を用い形成する。膜厚t1を変えてサンプルを作製した。第1誘電体膜18の成膜条件は、ターゲットがCSLPZT、基板温度が50℃である。基板温度は、30℃以上100℃以下が好ましい。基板温度が30℃未満の場合、PZT膜の(100)配向が大きくなり結晶性が不均一になりやすいためである。また、基板温度が100℃より大きい場合、PZT膜の(101)配向および(100)配向が多くなり(111)配向が少なくなるため良好な電気特性のキャパシタが得られないためである。第1誘電体膜18は、MOCVD(Metal Organic CVD)法、ゾル・ゲル法、有機金属分解法、化学溶液堆積法を用い形成してもよい。また、第1誘電体膜18はPZTを含む膜であればよい。
PZT膜に添加されたCaは、キャパシタの抗電界を小さくするのに寄与する。Srは、インプリントによるヒステリシス特性の劣化を抑制する。Laはキャパシタのリーク電流を抑制する。Ca、SrおよびLaは、第2誘電体膜と上部電極との界面を良好な状態とする。しかし、Ca、SrおよびLaが多い場合、反転電荷量が小さくなってしまう。よって、第1および第2誘電体膜中のCa、SrおよびLaの総添加量は、10%以下であることが好ましい。
次に、酸化性ガスを含む雰囲気中で熱処理することにより、第1誘電体膜18を結晶化する。第1誘電体膜18をスパッタした状態では、第1誘電体膜18は非晶質であり、熱処理することにより、第1誘電体膜18が結晶化する。さらに、PZT膜から酸素が脱離しないように酸化性ガスを用い熱処理する。実施例1では、熱処理は、RTA(Rapid Thermal Anneal)法を用い、基板温度が620℃、熱処理時間が90秒で熱処理を行なう。酸化性ガスとしては酸素とアルゴンの混合ガスを用い、酸素の流量を25sccm、アルゴンの流量を1980sccmとする。酸化性ガスはその他の酸化性ガスでもよく、熱処理方法はRTA以外の方法でもよい。熱処理温度が高すぎるとPZTの結晶が大きくなりすぎてしまい、反転電荷量の低下およびリーク電流の増加を招く。そこで、熱処理温度は650℃以下であることが好ましい。
図1(d)のように、第1誘電体膜18上にPZTを含む非晶質な第2誘電体膜20を全面に形成する。実施例1においては、第1誘電体膜18は、Ca、Sr、Laが添加されたPZT膜であり、高周波スパッタリング法を用い形成する。膜厚t2を変えてサンプルを作製した。第2誘電体膜20の成膜条件は、第1誘電体膜18と同じである。第1誘電体膜18と第2誘電体膜20とからキャパシタ膜30が形成される。
図2(a)のように、第2誘電体膜20を形成した後に熱処理を行なわず、第2誘電体膜20上に第1導電膜22(上部電極の少なくとも一部の層)を全面に形成する。実施例1では、第1導電膜22は、膜厚が25nmの酸化イリジウム(IrO)膜であり、反応性スパッタリング法を用い形成する。ターゲットはイリジウム、成膜ガスは酸素とアルゴンの混合ガスを用いる。酸化イリジウム膜の成膜条件は、基板温度が300℃、成膜時間が8秒、成膜室内圧力が2.0Pa、アルゴンの流量が140sccm、酸素の流量が60sccm、スパッタパワーが1kWである。基板温度を150℃〜350℃程度と高温とするため、第1導電膜22は成膜時点で結晶化している。
次に、酸化性ガスを含む雰囲気中で熱処理することにより、第2誘電体膜20を結晶化する。さらに、第1誘電体膜18の結晶性をさらに高める。さらに、第2誘電体膜20から結晶粒から導電性酸化膜が成長する。これにより、第2誘電体膜20と第1導電膜22との界面が平坦化される。よって、キャパシタの電気的特性が向上する。熱処理時に酸化性ガスを用いることにより、第1導電膜22を介し、第1誘電体膜18および第2誘電体膜20に酸素が供給される。これにより、第1誘電体膜18、第2誘電体膜20および第1導電膜22の酸素欠損が補償される。また、この熱処理により、第2誘電体膜20と第1導電膜22との密着性を向上させることもできる。
実施例1では、RTA法を用い、基板温度が725℃、熱処理時間が90秒で熱処理を行なう。酸化性ガスとしては酸素とアルゴンの混合ガスを用い、酸素の流量を25sccm、アルゴンの流量を1500sccmとする。酸化性ガスはその他の酸化性ガスでもよく、熱処理方法もRTA以外の方法でもよい。
キャパシタのリーク電流のウエハ面内均一性を高めるため、基板温度は700℃〜750℃が好ましい。710℃〜740℃であることがより好ましい。また、アルゴンガスの流量は1500sccm〜3000sccmが好ましい。酸素ガス流量が大きいと、酸化イリジウムが異常成長する。一方、酸素ガス流量が小さいと第1誘電体膜18および第2誘電体膜20内の酸素欠損が生じてしまう。よって、酸素ガス流量は、10sccm〜100sccmが好ましい。
図2(b)のように、第1導電膜22上に第2導電膜24を全面に形成する。第1導電膜22と第2導電膜24とにより上部電極32が形成される。実施例1では、第2導電膜24は、膜厚が150nmの酸化イリジウム(IrO)膜であり、反応性スパッタリング法を用い形成する。ターゲットはイリジウム、成膜ガスは酸素とアルゴンの混合ガスを用いる。酸化イリジウム膜の成膜条件は、基板温度が5℃、成膜時間が59秒、成膜室内圧力が0.8Pa、アルゴンの流量が100sccm、酸素の流量が100sccm、スパッタパワーが1kWである。
第2導電膜24の酸化イリジウム(IrO)膜のO組成yは、第1導電膜22の酸化イリジウム(IrOx)膜のO組成xより大きいことが好ましい。これにより、第2導電膜24が水素の拡散をより抑制し、後の工程により、キャパシタ膜30が水素により還元されることを抑制できる。さらに、酸化イリジウム組成は化学量論的な組成であるy=2であることが好ましい。y=2の酸化イリジウムは、水素に対して触媒作用を奏することがなく、キャパシタ膜30が水素により還元されることを抑制することができる。
第2導電膜24の膜厚は70nm〜200nmが好ましい。上部電極32の膜厚を十分な厚さとすることにより、以後の工程によりキャパシタ膜30にダメージが加わることを抑制できる。
図2(c)を参照し、上部電極32上にTiN膜およびフォトレジストを形成する。形成したフォトレジストおよびTiN膜をマスクに上部電極32をドライエッチングする。フォトレジストおよびTiN膜を剥離後、酸化性ガスを含む雰囲気中で熱処理する。この熱処理はキャパシタ膜30内の酸素欠損を抑制する目的である。実施例1では、基板温度が650℃、熱処理温度が40分で熱処理する。基板温度は600℃〜700℃、熱処理時間は30分〜120分が好ましい。再びフォトレジストを形成し、フォトレジストをマスクに第2誘電体膜20および第1誘電体膜18の側面が露出するように、キャパシタ膜30をエッチングする。
次に、キャパシタ膜30の側面が露出した状態で、酸化性ガスを含む雰囲気中で熱処理する。この熱処理は、キャパシタ膜30のダメージ回復と酸素欠損の抑制を目的としている。実施例1では、酸化性ガスとして酸素ガスを用い、基板温度が650℃、熱処理温度が60分で熱処理する。酸素ガス流量は20Slmを用いた。この熱処理は、酸素と不活性ガス(例えば、アルゴン)の混合ガス雰囲気中において行なってもよい。
図3(a)のように、下部電極16上、キャパシタ膜30側面および上部電極32を保護する保護膜26を形成する。実施例1では、保護膜26は、膜厚が50nm酸化アルミニウムであり、スパッタリング法を用い形成する。保護膜26としては、酸化チタン膜、酸化タンタル膜、酸化ジルコニウム膜、窒化タンタル膜、窒化アルミニウム膜または酸窒化アルミニウム膜を用いることもできる。次に、酸化性ガスを含む雰囲気中で熱処理する。この熱処理はキャパシタ膜30内の酸素欠損を抑制する目的である。実施例1では、酸化性ガスとして酸素ガスを用い、基板温度が550℃、熱処理温度が60分で熱処理する。酸素ガス流量は20Slmを用いた。この熱処理は、酸素と不活性ガス(例えば、アルゴン)の混合ガス雰囲気中において行なってもよい。基板温度は400℃〜600℃、熱処理時間は30分〜120分が好ましい。
フォトレジストをマスクに、保護膜26、下部電極16、密着膜14をエッチングする。フォトレジストを剥離する。次に、酸化性ガスを含む雰囲気中で熱処理する。この熱処理はフォトレジストの塗布剥離等のパターニング工程に吸着した水分や不純物を除去する目的である。また、酸化性ガス中において熱処理するためキャパシタ膜30の酸素欠損を抑制する。実施例1では、酸化性ガスとして酸素ガスを用い、基板温度が650℃、熱処理温度が40分で熱処理する。酸素ガス流量は20Slmを用いた。この熱処理は、酸素と不活性ガス(例えば、アルゴン)の混合ガス雰囲気中において行なってもよい。基板温度は600℃〜700℃、熱処理時間は30分〜120分が好ましい。基板温度は640℃〜660℃であることがより好ましい。
図3(b)のように、絶縁膜12および保護膜26上に保護膜28を形成する。実施例1では、保護膜28は、膜厚が20nmの酸化アルミニウムであり、スパッタリング法を用い形成する。保護膜28としては、酸化チタン膜、酸化タンタル膜、酸化ジルコニウム膜、窒化タンタル膜、窒化アルミニウム膜または酸窒化アルミニウム膜を用いることもできる。酸化性ガスを含む雰囲気中で熱処理する。この熱処理はキャパシタ膜30内の酸素欠損の抑制およびダメージ回復が目的である。実施例1では、酸化性ガスとして酸素ガスを用い、基板温度が650℃、熱処理温度が60分で熱処理する。酸素ガス流量は20Slmを用いた。この熱処理は、酸素と不活性ガス(例えば、アルゴン)の混合ガス雰囲気中において行なってもよい。基板温度は500℃〜700℃、熱処理時間は30分〜120分が好ましい。
図3(c)のように、保護膜28を覆うように絶縁膜40を形成する。絶縁膜40はTEOS法を用い形成する。絶縁膜40内に上部電極32および下部電極16に達するコンタクトホールを形成する。コンタクトホール内に、TiW膜およびW膜を含む導電プラグ42を形成する。絶縁膜40上に、導電プラグ42に接続する配線44を形成する。配線44は、AlCu合金を含む。以上により、強誘電体膜を用いキャパシタが完成する。以降の実験において、キャパシタサイズは、50μm×50μmである。
前述のように、PZT膜中のPbを欠損させた状態で第1誘電体膜18と第2誘電体膜20との膜厚の比を最適化するため、PZT膜が露出した状態での熱処理温度を定めた。PZT膜が露出した状態での熱処理は、第1誘電体膜18の結晶化熱処理(図1(c))、キャパシタ膜30の側面が露出した状態での熱処理(図2(c))である。第2誘電体膜20形成後は熱処理することなく第1導電膜22を形成し熱処理している。よって、この熱処理は、Pbの欠損にはあまり影響しない。同様に、保護膜26を形成した後の熱処理(図3(a)および図3(b))における熱処理は、Pbの欠損にはあまり影響しない。
図4は、第1誘電体膜18の結晶化熱処理(図1(c)の熱処理)の温度を変えて耐疲労特性を評価した結果を示す図である。反転電荷両は初期値で規格化している。図4のサンプルでは、第1誘電体膜18および第2誘電体膜20の膜厚がそれぞれ90nmおよび15nmとした。第1誘電体膜18の結晶化熱処理の時間は90秒、図2(c)におけるキャパシタ膜30の側面が露出した状態での熱処理温度は350℃、時間は60分である。
図4のストレスサイクルは90℃で行い、印加電圧は5Vである。このように、後述する図6よりは厳しい条件でストレスサイクル試験を行った。図4より、熱処理温度が高くなると、耐疲労特性は悪くなる。熱処理温度が595℃〜605℃では耐疲労特性は余り変わらないが、605℃を越えると耐疲労特性は急激に悪くなる。熱処理温度が620℃以上では耐疲労特性は悪い状態でほとんど変わらない。熱処理温度とともに耐疲労特性が悪くなるのは、第1誘電体膜18中のPbが欠損するためと考えられる。図4の結果より、Pbを欠損させるには、第1誘電体膜18の熱処理温度は605℃以上であることが好ましい。さらに、610℃以上であることが好ましい。より好ましくは620℃以上である。また、リーク電流等を抑制するため熱処理温度は650℃以下が好ましい。630℃以下がより好ましい。
図5は、キャパシタ膜30の側面が露出した状態での熱処理(図2(c)の熱処理)の温度を変えて対疲労特性を評価した結果を示す図である。反転電荷量は初期値で規格化している。図5のサンプルでは、第1誘電体膜18および第2誘電体膜20の膜厚がそれぞれ90nmおよび15nmとした。キャパシタ膜30の側面が露出した状態での熱処理時間は60分、第1誘電体膜18の結晶化熱処理の温度は610℃、熱処理時間は90秒である。
図5のストレスサイクルは図4と同様に90℃で行い、印加電圧は5Vである。図5より、熱処理温度が650℃では350℃より、耐疲労特性が悪くなる。これは、キャパシタ膜30が露出した状態では、Pbの蒸発温度である550℃以上で熱処理するとキャパシタ膜30中のPbが欠損してしまうためである。PZT膜が露出した状態での図4の実験の結果から、Pb欠損をより生じさせるためには、熱処理温度は605℃以上が好ましい。さらに、610℃以上であることが好ましい。より好ましくは620℃以上である。また、リーク電流等を抑制するため熱処理温度は700℃以下が好ましい。650℃以下がより好ましい。
図4および図5の結果から、図1(c)における第1誘電体膜18の結晶化熱処理の温度を620℃、熱処理時間を90秒とした。また、図2(c)におけるキャパシタ膜30の側面が露出した状態での熱処理温度を650℃、熱処理時間を60分とした。これにより、キャパシタ膜30内のPb欠損が生じ耐疲労特性が劣化する。
表1は、図1(c)における第1誘電体膜18の膜厚t1および図1(d)における第2誘電体膜20の膜厚t2を変えて作製したサンプルA〜Iを示している。
Figure 0005552916
図6は、サンプルA〜Iにおけるストレスサイクルに対する反転電荷量を測定した結果を示す図である。ストレスサイクルは、室温において3.6Vの印加を行なった。
図6より、サンプルAでは、ストレスサイクルを行なっても反転電荷量はほとんど変化しない。一方、サンプルBでは、ストレスサイクルによって、反転電荷量が変化する。さらに、サンプルD以降では、ストレスサイクルによる反転電荷量の変化が非常に大きくなる。
以上のように、耐疲労特性を制御するためには、第2誘電体膜20の膜厚は第1誘電体膜18の膜厚の30%以上(サンプルB〜I)である。好ましくは、40%以上(サンプルD〜I)である。さらに好ましくは50%以上(サンプルE〜I)である。このように、耐疲労特性を制御するためには、第2誘電体膜20の膜厚が大きい方がよい。
このように、第2誘電体膜20の膜厚を大きくすると耐疲労特性が劣化するのは、以下の理由による。すなわち、第2誘電体膜20の膜厚が厚いと第2誘電体膜20を結晶化する際に、第2誘電体膜20が上部からも結晶化し、第1誘電体膜18と第2誘電体膜20との結晶粒がばらばらになってしまう。これにより、耐疲労特性が劣化する。
サンプルD、Fについてリーク電流を測定した。その結果、リーク電流は1×10−9A以下であり、キャパシタの特性は良いことがわかった。
しかしながら、第1誘電体膜18の膜厚t1に対する第2誘電体膜20の膜厚t2を大きくしすぎると、第1誘電体膜18と第2誘電体膜20との結晶粒が大きく異なってしまう。これにより、キャパシタ特性が劣化してしまう。よって、第2誘電体膜20の膜厚t2は第1誘電体膜18の膜厚t1の100%以下が好ましく、80%以下がより好ましい。
実施例1によれば、第1誘電体膜の結晶化を酸化性ガスを含む雰囲気中で605℃以上の温度において熱処理することにより行なう。さらに、第2誘電体膜20および第1誘電体膜18の側面が露出した状態において酸化性ガスを含む雰囲気中で550℃以上の温度で熱処理する。これにより、キャパシタ膜30中のPb欠損が生じる。さらに、第2誘電体膜20の膜厚t2を第1誘電体膜18の膜厚t1の30%以上とする。これにより、リーク特性等のキャパシタ特性の劣化なく、耐疲労特性を制御することができる。なお、キャパシタ膜30が第1導電膜22または保護膜26に覆われた状態での熱処理は、Pbの欠損が生じ難いことから、図6の結果は、これらの熱処理の温度にほとんど依存しないと考えられる。
第1誘電体膜18と第2誘電体膜20の総膜厚が厚いと低電圧動作が難しくなる。一方、薄いとリーク電流が増加してしまう。そこで、第1誘電体膜18と第2誘電体膜20の総膜厚は、50nm〜150nmであることが好ましく、90nm〜120nmであることがより好ましい。
図7は、図1(a)において密着層14形成後の熱処理の有無による耐疲労特性を示す図である。黒丸は、酸素雰囲気中において熱処理温度が650℃、熱処理時間が60秒でRTA法を用い熱処理を行なっている。黒四角は、熱処理を行なっていない。ストレスサイクルは室温において3.6Vを印加して行なっている。熱処理有り無しのサンプルにおいて第1誘電体膜18の膜厚t1は90nm、第2誘電体膜20の膜厚t2は30nmである。その他の条件は、実施例1と同じである。
図7のように、密着層14形成後に、密着層14および下部電極16形成の温度より高い温度において熱処理しない。これにより、耐疲労特性を劣化させることができる。これは、密着層14が熱処理により緻密化すると、耐疲労特性が向上するためである。
図8は、図1(b)において下部電極16形成後の熱処理の有無による対疲労特性を示す図である。黒丸は、アルゴン雰囲気中において熱処理温度が650℃、熱処理時間が60秒でRTA法を用い熱処理を行なっている。黒四角は、熱処理を行なっていない。ストレスサイクルは室温において3.6Vを印加して行なっている。熱処理有り無しのサンプルにおいて、第1誘電体膜18の膜厚t1は90nm、第2誘電体膜20の膜厚t2は30nmである。その他の条件は、実施例1と同じである。
図8のように、下部電極16形成後に、下部電極16および第1誘電体膜18形成の温度より高い温度において熱処理しない。これにより、耐疲労特性を劣化させることができる。これは、下部電極16が熱処理により結晶性が向上し耐疲労特性が向上するためである。
図8のように、下部電極16を形成した工程の後、第1誘電体膜18を形成する工程の前に熱処理を行なわないことが好ましい。
また、図7のように、半導体基板10の上方に密着層14として酸化アルミニウム膜を形成する。下部電極16を形成する工程は、酸化アルミニウム膜を形成する工程の後熱処理を行なわずプラチナ膜を形成する工程を含むことが好ましい。
図7および図8のように、密着層14を熱処理により緻密化すること、または、下部電極16を熱処理し結晶性が向上させることを行なわない。これにより、リーク電流等のキャパシタ特性を劣化させることなく、耐疲労特性を制御することができる。
また、図2(a)のように、第1導電膜22(上部電極の少なくとも一部の層)は、酸化イリジウムを含む。図2(b)のように、第2誘電体膜20を結晶化する工程の後に、第2導電膜24(上部電極の残りの層)を形成することが好ましい。
実施例2は、半導体装置と強誘電体キャパシタを集積化した例である。図9は、実施例2に係る半導体装置の断面図である。例えばシリコン基板等の半導体基板10内に、例えばSTI(Shallow Trench Isolation)法を用い素子分離領域50を形成する。トランジスタ形成領域に、例えばP型のウエル52をイオン注入法を用い形成する。ウエル52の上面に熱酸化法を用いゲート絶縁膜56を形成する。ゲート絶縁膜56上に例えばポリシリコン膜であるゲート電極58を形成する。ゲート絶縁膜56をマスクに、ウエル52内にソースまたはドレイン60を形成する。ゲート電極58の両側に、サイドウォール絶縁膜66を形成する。サイドウォール絶縁膜66をマスクに、ソースおよびドレイン60表面に例えばシリサイド領域62を形成する。また、ゲート電極58上面にシリサイド化領域64を形成する。
全面に例えば酸化窒化シリコン膜の絶縁膜70を形成する。絶縁膜70上にTEOS法を用い例えば酸化シリコン膜の層間絶縁膜72を形成する。層間絶縁膜72および絶縁膜70にコンタクトホールを形成し、コンタクトホール内にTi膜およびTiW膜が積層した密着層90およびW膜である導電層92を形成する。密着層34と導電層92とから、層間絶縁膜72を貫通する導電プラグ94が形成される。層間絶縁膜72上にシリコン窒化酸化膜74およびシリコン酸化膜76を形成する。
絶縁膜70、層間絶縁膜72、シリコン窒化酸化膜74およびシリコン酸化膜76は、例えば、図1(a)の絶縁膜12に対応する。絶縁膜12上に実施例1の図1(a)から図3(c)と同様に、キャパシタを形成する。保護膜28上に例えばTEOS法を用い層間絶縁膜80を形成する。層間絶縁膜80をCMP(Chemical Mechanical Polish)法を用い平坦化した後、層間絶縁膜80上に例えばシリコン窒化酸化膜82を形成する、シリコン窒化酸化膜82上に例えばTEOS法を用い層間絶縁膜84を形成する。層間絶縁膜80、シリコン窒化酸化膜82および層間絶縁膜84は、図3(b)の絶縁膜40に対応する。絶縁膜40にコンタクトホールを形成する。コンタクトホール内に、Ti膜およびTiW膜が積層した密着層86およびW膜である導電層88を形成する。密着層86と導電層88とから、絶縁膜40を貫通する導電プラグ42が形成される。導電プラグ42は、トランジスタのソースまたはドレイン60、下部電極16および上部電極32にそれぞれ接続されている。導電プラグ42上に配線44を形成する。以上により、実施例2に係る半導体装置が完成する。実施例2のように、強誘電体キャパシタをトランジスタと集積化させることもできる。
実施例3は、半導体装置と強誘電体キャパシタを集積化した別の例である。図10は、実施例3に係る半導体装置の断面図である。層間絶縁膜72を形成した後に、ソースおよびドレイン60に接続する導電プラグ94を形成する。層間絶縁膜72上にシリコン窒化酸化膜100およびシリコン酸化膜102を形成する。シリコン窒化酸化膜100およびシリコン酸化膜102内に密着層86および導電層106を備えた導電プラグ108を形成する。導電プラグ108は導電プラグ94の一部に接続されている。
導電プラグ108上に例えばTiN膜である下地層110を形成する。下地層110上に、実施例1のキャパシタを形成する。例えば、密着層14、下部電極16、キャパシタ膜30および上部電極32を形成する。ここで、上部電極32の最上層には、水素バリア層116として例えばIr膜が形成されている。キャパシタを覆うように、例えば酸アルミニウム膜である保護膜118および120を形成する。その後、実施例2と同様に、絶縁膜、導電プラグ42および配線44を形成する。実施例3においては、ソースまたはドレイン60上にキャパシタを積層することができる。
以上、発明の好ましい実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
実施例1〜3を含む実施形態に関し、さらに以下の付記を開示する。
(付記1)半導体基板の上方に下部電極を形成する工程と、前記下部電極上にPZTを含む第1誘電体膜を形成する工程と、前記第1誘電体膜を形成した後に、酸化性ガスを含む雰囲気中で605℃以上の温度において熱処理することにより、前記第1誘電体膜を結晶化する工程と、前記第1誘電体膜を結晶化する工程の後、前記第1誘電体膜上にPZTを含む非晶質な第2誘電体膜を形成する工程と、前記第2誘電体膜を形成した後に熱処理を行なわず上部電極の少なくとも一部の層を形成する工程と、前記上部電極の少なくとも一部の層を形成した後に酸化性ガスを含む雰囲気で熱処理することにより、前記第2誘電体膜を結晶化する工程と、前記第2誘電体膜および前記第1誘電体膜の側面が露出するように、前記第2誘電体膜および前記第1誘電体膜をエッチングする工程と、前記エッチングする工程の後、前記側面が露出した状態において酸化性ガスを含む雰囲気中で550℃以上の温度で熱処理する工程と、を含み、前記第2誘電体膜の膜厚は前記第1誘電体膜の膜厚の30%以上であることを特徴とする半導体装置の製造方法。
(付記2)前記下部電極を形成した工程の後、前記第1誘電体膜を形成する工程の前に熱処理を行なわないことを特徴とする付記1記載の半導体装置の製造方法。
(付記3)前記半導体基板の上方に酸化アルミニウム膜を形成する工程を含み、前記下部電極を形成する工程は、前記酸化アルミニウム膜を形成する工程の後熱処理を行なわず前記酸化アルミニウム膜上にプラチナ膜を形成する工程を含むことを特徴とする付記2記載の半導体装置の製造方法。
(付記4)前記上部電極の少なくとも一部の層は、酸化イリジウムを含み、前記第2誘電体膜を結晶化する工程の後に、上部電極の残りの層を形成する工程を含むことを特徴とする付記1から3のいずれか一項記載の半導体装置の製造方法。
(付記5)半導体基板の上方に下部電極を形成する工程と、前記下部電極上に強誘電体を含む第1誘電体膜を形成する工程と、前記第1誘電体膜を形成した後に、酸化性ガスを含む雰囲気中で熱処理する工程と、前記熱処理する工程の後、前記第1誘電体膜上に強誘電体を含む第2誘電体膜を形成する工程と、前記第2誘電体膜を形成した後に熱処理を行なわず上部電極を形成する工程と、前記上部電極を形成した後に酸化性ガスを含む雰囲気で熱処理する工程と、を含み、前記第2誘電体膜の膜厚は前記第1誘電体膜の膜厚の30%以上であることを特徴とする半導体装置の製造方法。
(付記6)前記第2誘電体膜の膜厚は前記第1誘電体膜の膜厚の40%以上であることを特徴とする付記1から5のいずれか一項記載の半導体装置の製造方法。
(付記7)前記第2誘電体膜の膜厚は前記第1誘電体膜の膜厚の100%以下であることを特徴とする付記1から6のいずれか一項記載の半導体装置の製造方法。
14 密着層
16 下部電極
18 第1誘電体膜
20 第2誘電体膜
22 第1導電膜
24 第2導電膜
30 キャパシタ膜
32 上部電極

Claims (3)

  1. 半導体基板の上方に下部電極を形成する工程と、
    前記下部電極上にPZTを含む第1誘電体膜を形成する工程と、
    前記第1誘電体膜を形成した後に、酸化性ガスを含む雰囲気中で605℃以上かつ650℃以下の温度において熱処理することにより、前記第1誘電体膜を結晶化する工程と、
    前記第1誘電体膜を結晶化する工程の後、前記第1誘電体膜上にPZTを含む非晶質な第2誘電体膜を形成する工程と、
    前記第2誘電体膜を形成した後に熱処理を行なわず上部電極の少なくとも一部の層を形成する工程と、
    前記上部電極の少なくとも一部の層を形成した後に酸化性ガスを含む雰囲気で熱処理することにより、前記第2誘電体膜を結晶化する工程と、
    前記第2誘電体膜および前記第1誘電体膜の側面が露出するように、前記第2誘電体膜および前記第1誘電体膜をエッチングする工程と、
    前記エッチングする工程の後、前記側面が露出した状態において酸化性ガスを含む雰囲気中で550℃以上かつ700℃以下の温度で熱処理する工程と、
    を含み、
    前記第2誘電体膜の膜厚は前記第1誘電体膜の膜厚の30%以上かつ80%以下であることを特徴とする半導体装置の製造方法。
  2. 前記下部電極を形成した工程の後、前記第1誘電体膜を形成する工程の前に熱処理を行なわないことを特徴とする請求項1記載の半導体装置の製造方法。
  3. 前記半導体基板の上方に酸化アルミニウム膜を形成する工程を含み、
    前記下部電極を形成する工程は、前記酸化アルミニウム膜を形成する工程の後熱処理を行なわず酸化アルミニウム膜上にプラチナ膜を形成する工程を含むことを特徴とする請求項2記載の半導体装置の製造方法
JP2010139765A 2010-06-18 2010-06-18 半導体装置の製造方法 Expired - Fee Related JP5552916B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010139765A JP5552916B2 (ja) 2010-06-18 2010-06-18 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010139765A JP5552916B2 (ja) 2010-06-18 2010-06-18 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2012004448A JP2012004448A (ja) 2012-01-05
JP5552916B2 true JP5552916B2 (ja) 2014-07-16

Family

ID=45536073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010139765A Expired - Fee Related JP5552916B2 (ja) 2010-06-18 2010-06-18 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP5552916B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104476847B (zh) * 2014-12-02 2017-05-17 广州方邦电子股份有限公司 一种高剥离强度挠性覆铜板及其制作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4522088B2 (ja) * 2003-12-22 2010-08-11 富士通セミコンダクター株式会社 半導体装置の製造方法
JP4659436B2 (ja) * 2004-01-28 2011-03-30 富士通セミコンダクター株式会社 半導体装置の製造方法
JP5092461B2 (ja) * 2007-03-09 2012-12-05 富士通セミコンダクター株式会社 半導体装置及びその製造方法
JP2009076747A (ja) * 2007-09-21 2009-04-09 Fujitsu Microelectronics Ltd 半導体装置の製造方法
JP5412754B2 (ja) * 2008-06-18 2014-02-12 富士通セミコンダクター株式会社 半導体装置及び半導体装置の製造方法

Also Published As

Publication number Publication date
JP2012004448A (ja) 2012-01-05

Similar Documents

Publication Publication Date Title
US9679904B2 (en) Method of manufacturing semiconductor device
JP3950290B2 (ja) キャパシタ保護膜を含む半導体メモリ素子及びその製造方法
JP6287278B2 (ja) 半導体装置及びその製造方法
US7297999B1 (en) Semiconductor device with capacitors and its manufacture method
JP4946287B2 (ja) 半導体装置及びその製造方法
US8120087B2 (en) Ferroelectric capacitor with underlying conductive film
KR20090017758A (ko) 강유전체 커패시터의 형성 방법 및 이를 이용한 반도체장치의 제조 방법
JP5672832B2 (ja) 半導体装置とその製造方法
US20070228431A1 (en) Semiconductor device and its manufacturing method
US20100320519A1 (en) Ferroelectric memory and manufacturing method thereof, and manufacturing method of ferroelectric capacitor
JP2011096818A (ja) 半導体装置及びその製造方法
JP2012151292A (ja) 半導体装置及びその製造方法
JP5018772B2 (ja) 半導体装置の製造方法
JP5552916B2 (ja) 半導体装置の製造方法
JP4579236B2 (ja) 半導体装置の製造方法
JP2009105223A (ja) 半導体装置及びその製造方法
JP5200581B2 (ja) 半導体装置及びその製造方法
JP5994466B2 (ja) 半導体装置とその製造方法
JP2012074479A (ja) 半導体装置の製造方法
JP5326256B2 (ja) 半導体装置の製造方法
JP2008192914A (ja) 半導体装置及びその製造方法
JP5007723B2 (ja) キャパシタを含む半導体装置及びその製造方法
JP5347344B2 (ja) 半導体装置の製造方法
JP2004039816A (ja) 半導体装置及びその製造方法
JP5338800B2 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140513

R150 Certificate of patent or registration of utility model

Ref document number: 5552916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees