JP5524371B1 - 移動体の位置又は向きを示す情報を取得するシステム及び方法 - Google Patents

移動体の位置又は向きを示す情報を取得するシステム及び方法 Download PDF

Info

Publication number
JP5524371B1
JP5524371B1 JP2013021466A JP2013021466A JP5524371B1 JP 5524371 B1 JP5524371 B1 JP 5524371B1 JP 2013021466 A JP2013021466 A JP 2013021466A JP 2013021466 A JP2013021466 A JP 2013021466A JP 5524371 B1 JP5524371 B1 JP 5524371B1
Authority
JP
Japan
Prior art keywords
base station
antenna
environment
robot
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013021466A
Other languages
English (en)
Other versions
JP2014153118A (ja
Inventor
亮介 横林
実則 河野
公則 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2013021466A priority Critical patent/JP5524371B1/ja
Application granted granted Critical
Publication of JP5524371B1 publication Critical patent/JP5524371B1/ja
Publication of JP2014153118A publication Critical patent/JP2014153118A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Navigation (AREA)
  • Traffic Control Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

【課題】移動体の正確な位置及び移動体の正確な向きを示す情報を取得する。
【解決手段】移動体(ロボット10)が、環境側基地局40のアンテナ配列軸の近傍である第1の位置に存在するときに、移動体側基地局(ロボット側基地局20)のアンテナ配列軸の近傍に環境側基地局40を捕捉し、第1の位置から、捕捉している環境側基地局40の方向に対し所定角度φを維持しつつ直進することにより環境側基地局40の他のアンテナ配列軸の近傍の第2の位置に到達し、上記直進に際し、第1の位置を出発してから第2の位置に至るまでの移動距離Lを計測し、角度φと移動距離Lとに基づき、自身の現在位置又は自身が現在向いている方向を求めるようにする。また好ましくは、環境側基地局40に、夫々の座標軸が所定角度(例えば45°)ずれた関係となるように複数のアンテナ群を設けるようにする。
【選択図】図24

Description

この発明は、移動体の位置又は向きを示す情報を取得するシステム及び方法に関する。
移動体の位置を把握する仕組みとして、例えば、特許文献1には、携帯端末が位置標定に用いた座標系と絶対方位との関係を示す情報である基地局情報を基地局から受信し、受信信号強度に基づき指向性アンテナの指向方向が基地局の方向を向くように誘導する画面を表示し、標定した端末位置と基地局情報とに基づき絶対方位を示す情報を出力することが記載されている。
また特許文献2には、磁北基準の方位が設定された状態で無線通信基地局アンテナの距離及び角度を測定して3次元的座標値を算出し、算出した3次元的座標値に基づきアンテナの方位角と傾斜を算出することが記載されている。
また特許文献3には、通信ネットワークが保持する各エリアの偏角情報とコンパスが出力する携帯電話機の磁北の水平成分に対する角度(電話機画面の向き)とを足し合わせ、真北に対する電話機画面の向きの水平成分の角度を求めることが記載されている。
また非特許文献1には、移動体に現在位置を取得させる技術として、パーティクルフィルタを用いたオドメトリ情報、ビジュアルオドメトリ情報、GPS情報、姿勢角情報を融合させて位置推定を行う屋外移動ロボットについて記載されている。
また非特許文献2には、基地局に設置した複数のアンテナから歩行者が携帯する携帯端末に無線信号を送信し、各アンテナから送信されてくる無線信号の位相差によって携帯端末とアンテナとの相対位置を求め、求めた相対位置(方向、距離)と基地局の絶対位置とから歩行者の現在位置を取得する位置標定システムが開示されている。
特開2011−242165号公報 特開2004−286752号公報 特開2006−94368号公報
大谷和彦、永谷圭司(東北大学)、吉田和哉(東北大学)、"GPSおよびオドメトリ機能を搭載した移動ロボットの不整地フィールドにおける位置推定実験"、第10回システムインテグレーション部門講演会(S12009)、2009年12月24日〜26日・東京 武内 保憲,河野 公則,河野 実則、" 2.4GHz帯を用いた場所検知システムの開発"、平成17年度 電気・情報関連学会中国支部第56回連合大会
昨今、地下街や倉庫・工場等の屋内を自律的に移動し、コミュニケーションサービスや清掃、警備、荷物運搬等を行うロボットの開発/研究が進められている。こうした自律移動型のロボットを利用したサービスの提供に際しては、ロボットの正確な現在位置やロボットが現在向いている方向を正確に把握することについてのニーズが少なからず存在する。
ここでロボット等の移動体の現在位置や向いている方向を取得する仕組みとしては、GPS、電子コンパス、ジャイロコンパスを用いるものが一般的である。しかしGPSは衛星から送られてくる信号を捕捉することができない環境では利用することができず、また電子コンパスは地磁気を検出できない環境では利用することができない。またジャイロコンパスは機械的な可動部分が必須となるため装置が大型化してしまう難点がある。
本発明はこのような背景に基づいてなされたものであり、移動体の位置又は向きを示す情報を取得するシステム及び方法を提供することを目的とする。
上記目的を達成するための本発明のうちの一つは、現在位置を標定しようとする無線装置に無線信号である位置標定信号を送信する無線装置と、第1のアンテナ対と第2のアンテナ対とを含むアンテナ群を有し、前記第1のアンテナ対の各アンテナによって受信される前記位置標定信号の経路差と前記第2のアンテナ対の各アンテナによって受信される前記位置標定信号の経路差とが一致するように設けられ、前記第1のアンテナ対及び前記第2のアンテナ対が、前記第1のアンテナ対及び前記第2のアンテナ対の各アンテナが平面上に矩形状に並ぶように配置され、前記第1のアンテナ対の各アンテナ又は前記第2のアンテナ対の各アンテナによって受信される前記位置標定信号の位相差Δθに基づき前記無線装置が存在する方向を求め、求めた前記方向に基づき前記無線装置の現在位置を標定する基地局と、を備えて構成される位置標定システムを用いて構成される、移動体の向きを示す情報を取得するシステムであって、移動体に設けられる前記無線装置である移動体側無線装置、前記移動体が移動するエリアの上方に設けられる前記基地局である環境側基地局、前記移動体に設けられる前記基地局である移動体側基地局、及び前記環境側基地局に設けられる前記無線装置である環境側無線装置、を備え、前記移動体は、前記環境側基地局の前記アンテナ群の前記矩形の中心を原点として前記矩形の一辺の方向に設定した座標軸であるX軸を含むXY平面に垂直な平面であるX軸方向平面、もしくは、前記矩形の中心を原点として前記X軸と直角な方向に設定した座標軸であるY軸を含むXY平面に垂直な平面であるY軸方向平面、のうちのいずれかの方向である第1の位置に存在するときに、前記移動体側基地局の前記アンテナ群の前記矩形の中心を原点として前記矩形の一辺の方向に設定した座標軸であるx軸を含むxy平面に垂直な平面であるx軸方向平面、もしくは、前記矩形の中心を原点として前記x軸と直角な方向に設定した座標軸であるy軸を含むxy平面に垂直な平面であるy軸方向平面の方向に前記環境側基地局を捕捉し、前記第1の位置から、前記捕捉した前記環境側基地局の方向に対して所定角度φを維持しつつ直進することにより前記環境側基地局の他の前記座標軸の方向の第2の位置に到達し、前記直進に際し、前記第1の位置を出発してから前記第2の位置に至るまでの移動距離Lを計測し、前記角度φと前記移動距離Lとに基づき、自身の現在位置又は自身が現在向いている方向を求めることとする。
本発明によれば、移動体の正確な現在位置又は移動体の現在向いている正確な方向を示す情報を取得することができる。また本発明は、位置標定システム(位置検知システム)から、方向(基地局から見た移動体が存在する方向)に関する情報を取得して移動体の現在位置又は移動体が現在向いている方向を取得するものであるが、位置標定システムにおいては基地局のアンテナ配列軸(X軸、Y軸、x軸、y軸)に沿って、方向の標定精度(移動体がアンテナ配列軸上に存在するか否か)の高いエリアが位置の標定精度が高いエリア(以下、標定可能エリアと称する。)の外側に拡大する。このため、本発明によれば、一つの環境側基地局によって、広範囲に亘り移動体の現在位置又は移動体が現在向いている方向を提供することができる。
本発明のうちの他の一つは、上記システムであって、前記環境側基地局は複数の前記アンテナ群を備えており、前記アンテナ群の夫々は、夫々の前記矩形の中心を一致させて夫々の前記座標軸が所定角度ずれた関係となるように設けられていることとする。
このように複数のアンテナ群を組み合わせることで、アンテナ配列軸を容易に増やすことができ、方向の標定精度が高くなるエリアを容易に拡大することができる。尚、第1のアンテナ群及び第2のアンテナ群を、夫々の矩形の中心を一致させて夫々の座標軸が45°だけずれた関係となるように設けるようにすれば、矩形の中心から45°ずつ方向が異なる8つの方向に方向の標定精度が高くなるエリアを拡大することができる。またこの場合、第1の位置及び直進に際して維持する角度φがどのような値であったとしても、長距離に亘って移動体を直進させることなく第2の位置に到達させることができる。つまり本発明によれば、アンテナ群の数を最小限に抑えつつ効率よく移動体の位置及び向きを示す情報を取得することができる。
本発明のうちの他の一つは、上記システムであって、前記環境側基地局の前記アンテナ群の前記矩形は正方形であり、前記第1の位置には、前記矩形の一の対角線の方向に設定した座標軸であるX’軸を含むX’Y’平面に垂直な平面であるX’軸方向平面、もしくは、前記矩形の他の対角線の方向に設定した座標軸であるY’軸を含むX’Y’平面に垂直な平面であるY’軸方向平面、のうちのいずれかの近傍がさらに含まれることとする。
このようにアンテナ群の各アンテナが正方形状に配置されている場合には、アンテナ群の対角線方向のアンテナを組み合わせてアンテナ対を構成することにより対角線の方向X’Y’にも標定精度の高いエリアを設けることができ、アンテナ配列軸を容易に増やすことができる。
その他、本願が開示する課題、及びその解決方法は、発明を実施するための形態の欄、及び図面により明らかにされる。
本発明によれば、移動体の位置又は向きを示す情報を取得することができる。
サービス提供システム1の概略的な構成を示す図である。 ロボット10のハードウエアを示す図である。 ロボット10が備える主な機能を示す図である。 ロボット側基地局20のハードウエアを示す図である。 ロボット側基地局20が備える主な機能を示す図である。 ロボット側無線装置30のハードウエアを示す図である。 ロボット側無線装置30が備える主な機能を示す図である。 環境側基地局40のハードウエアを示す図である。 環境側基地局40が備える主な機能を示す図である。 環境側無線装置50のハードウエアを示す図である。 環境側無線装置50が備える主な機能を示す図である。 サーバ装置60のハードウエアを示す図である。 サーバ装置60が備える主な機能を示す図である。 位置標定信号1400のデータフォーマットを示す図である。 ロボット側基地局20のアンテナ群25を構成している各アンテナ251と環境側無線装置50が備えるアンテナ55との関係を説明する図である。 環境側無線装置50とロボット側基地局20との位置関係を説明する図である。 ロボット基地局20のアンテナ群25と原点O、X軸、Y軸の関係を説明する図である。 比較的高い精度で位置標定が可能なエリアを説明する図である。 アンテナ配列軸の近傍で位置標定の精度が高くなることを説明する図である。 アンテナ配列軸の近傍で位置標定の精度が高くなることを説明する図である。 アンテナ群25の一態様を示す図である。 ロボット10がアンテナ配列軸(+X)に到達した様子を示す図である。 ロボット10がアンテナ配列軸の方向に環境側基地局40を捕捉する様子を示す図である。 ロボット10が進行方向φを決定して記憶する様子を示す図である。 ロボット10が直進する様子を示す図である。 ロボット10が他のアンテナ配列軸(−Y)に到達して自身の現在位置を求めている様子を示す図である。 絶対位置及び方向取得処理S2500を説明するフローチャートである。
図1に本発明の一実施形態として説明するシステム(以下、サービス提供システム1と称する。)の概略的な構成を示している。サービス提供システム1は、サービスの提供対象となるエリア内(以下、サービス提供エリアとも称する。)を移動する一つ以上のロボット10(移動体)、ロボット10に備えられた、ロボット側基地局20(移動体側基地局)並びにロボット側無線装置30(移動体側無線装置)、サービス提供可能エリア内の所定位置に設けられた複数の環境側基地局40、各環境側基地局40に備えられた環境側無線装置50、及びサービス提供システム1の管理センタ等に設けられたサーバ装置60を含む。
ロボット10(ロボット側基地局20、ロボット側無線装置30)、環境側基地局40、環境側無線装置50、及びサーバ装置60は、無線又は有線の通信手段(無線LAN、微弱無線、専用線、公衆回線、インターネット等)を介して互いに通信可能に接続している。
サービス提供システム1は、例えば、病院や工場、博物館等の施設において、人の業務の補助、案内、誘導、巡回監視、物品搬送、警備等の様々なサービスを提供する。ロボット10は、オドメトリ(odometry)などの手段によって自身の現在位置や姿勢を随時把握しつつ、サービス提供エリア内を自律的に移動してサービスの提供を行う。尚、本実施形態では、説明の簡単のため、ロボット10は、サービス提供エリア内の平らな床面6を移動するものとし、また複数の環境側基地局40及び複数の環境側無線装置50が、サービス提供エリアの床面6の上方に当該床面6と平行に設けられた天井面7に適宜な間隔をあけて設けられているものとする。
ロボット10に備えられたロボット側基地局20は、後述する位置標定システムの基地局として機能する。ロボット側基地局20は、環境側無線装置50から送られてくる、後述する位置標定信号を受信し、これに基づき自身8(ロボット10)から見た環境側無線装置50(環境側基地局40)が存在する方向(もしくは環境側無線装置50から見た自身が存在する方向)を標定する。
天井面7に設けられた環境側基地局40は、後述する位置標定システムの基地局として機能する。環境側基地局40は、ロボット10に備えられたロボット側無線装置30から送られてくる、後述する位置標定信号を受信し、これに基づき自身から見たロボット10が存在する方向(もしくはロボット10から見た自身が存在する方向)を標定する。
図2にロボット10のハードウエアを示している。同図に示すように、ロボット10は、前述したロボット側基地局20及びロボット側無線装置30のほか、中央処理装置11(CPU、MPU等)、記憶装置12(RAM、ROM、NVRAM、ハードディスク装置等)、入出力装置13(テンキー、タッチパネル、液晶ディスプレイ、音声認識装置、音声出力装置等)、計時装置14(RTC(Real Time Clock)、HPET(High Precision Event Timer)等)、無線通信インタフェース15、制御装置16、走行装置17、及び各種センサ18を備える。尚、ロボット側基地局20及びロボット側無線装置30のハードウエアについては後述する。
中央処理装置11は、記憶装置12に格納されているプログラムを読み出して実行することにより、ロボット10が備える各種の機能を実現する。無線通信インタフェース15は、サーバ装置60との間で無線通信を行う。
制御装置16は、例えば、ロボットアーム等の機械式駆動部の制御機構(サーボモータ、アクチュエータ)を含む。走行装置17は、例えば、動力モータ、モータ制御装置(アンプ)、変速機構、旋回制御機構を含み、ロボット10の移動や方向/姿勢の制御(前進、後進、左右旋回、加減速、傾き等の制御)や後述するアンテナ群25の指向方向の制御(もしくは後述するアンテナ配列軸の方向制御)を行う。
各種センサ18は、ロボット10の現在位置、ロボット10の状態(姿勢、動作等)を取得するセンサ(回転センサ(ロータリーエンコーダ、レゾルバ等)、角速度センサ、角加速度センサ、速度センサ、加速度センサ等)を含む。
図3にロボット10が備える主な機能を示している。同図に示すように、ロボット10は、自律移動制御部101、サービス提供処理部102、アンテナ配列軸検知部103、環境側基地局捕捉部104、直進走行制御部105、現在位置/方向取得部106、ロボット状態情報取得部107、及び情報送受信部108を備える。これらの機能は、ロボット10が備えるハードウエアによって、もしくは、ロボット10の中央処理装置11が記憶装置12に格納されているプログラムを読み出して実行することにより実現される。尚、ロボット側基地局20及びロボット側無線装置30の機能については後述する。
自律移動制御部101は、走行装置17を制御し、例えば、オドメトリや各種センサ18が出力する信号に基づきロボット10の現在位置、姿勢、移動距離等を把握しつつサービス提供エリア内でのロボット10の自律的な移動を実現する。
サービス提供処理部102は、例えば、入出力装置13、制御装置16、走行装置17を制御してロボット10が提供する各種サービスを実現する。
アンテナ配列軸検知部103は、環境側基地局40から送られてくる自身(ロボット10)の位置標定結果に基づき、自身(当該ロボット10)が、環境側基地局40の後述するアンテナ配列軸の方向に存在するか否かを検知する。尚、環境側基地局40は、ロボット10が自身のアンテナ配列軸の方向に存在するか否かを、ロボット10が自身(環境側基地局40)の後述する標定可能エリア外に存在する場合であっても正確に検知することができる。
環境側基地局捕捉部104は、自身(当該ロボット10)が環境側基地局40のアンテナ配列軸の方向のある位置(以下、第1の位置とも称する。)に存在するときに、制御装置16や走行装置17(もしくはロボット側基地局20もしくはロボット側基地局20のアンテナ群25)を制御(移動制御、旋回制御等)して、ロボット側基地局20の後述するアンテナ配列軸の方向に環境側無線装置50を捕捉し、環境側基地局40が存在する方向を把握する。尚、ロボット側基地局20は、環境側無線装置50が自身(ロボット側基地局20)の後述する標定可能エリア外に存在する場合でも、環境側無線装置50が自身のアンテナ配列軸の方向に存在するか否かを正確に検知することができる。
直進走行制御部105は、当該ロボット10が第1の位置に存在するときに、環境側基地局捕捉部104によって捕捉された環境側無線装置50が存在する方向を基準として自身の進行方向を決定し、決定した進行方向と環境側基地局40が存在する方向とがなす角度φを記憶する。そして直進走行制御部105は、決定した進行方向を維持しつつ、自身(当該ロボット10)を、第1の位置から環境側基地局40の他のアンテナ配列軸の一つの方向に到達(クロス)するまで直進させる。また上記直進に際し、直進走行制御部105は、第1の位置から上記他のアンテナ配列軸に到達(クロス)した位置(以下、第2の位置とも称する。)までの移動距離Lをオドメトリ等の方法(車輪の回転数を計測する等)によって計測する。尚、直進走行制御部105は、第2の位置に到達したか否かを、環境側基地局40から送られてくる自身(ロボット10)の位置標定結果に基づき検知する。前述したように、環境側基地局40は、ロボット10が自身のアンテナ配列軸の方向に存在するか否かを、ロボット10が自身(環境側基地局40)の後述する標定可能エリア外に存在する場合であっても正確に検知することができる。
現在位置/方向取得部106は、直進走行制御部105による直進の結果、自身(当該ロボット10)が環境側基地局40の他のアンテナ配列軸の一つの方向に到達(クロス)すると、記憶している上記角度φと、移動中に計測した移動距離L(第1の基地から第2の位置までの距離)とに基づき、自身の現在位置(第2の位置)及び自身が現在向いている方向を求める。尚、後者の自身が現在向いている方向については、ロボット10に予め設定されている機軸の方向とロボット10が直進する方向とが一致している場合は角度φそのものであり、ロボット10の機軸の方向とロボット10が直進する方向とが一致していない場合は、角度φと上記機軸の方向とに基づき求められる。
ロボット状態情報取得部107は、環境側基地局40から提供される自身の現在位置、環境側無線装置50から提供される、当該ロボット10のロボット側無線装置30から発せられた位置標定信号の受信電界強度、各種センサ18の計測値などの情報に基づき、自身(ロボット10)が現在、環境側基地局40によって正確に位置標定を行うことが可能なエリア(以下、標定可能エリアと称する。)に存在するか否かを示す情報を取得する。
情報送受信部108は、サーバ装置60と通信し、サーバ装置60からの各種情報の受信(ダウンロード)、サーバ装置60において利用される各種情報(例えば、ロボット状態情報取得部107によって取得される情報)のサーバ装置60への送信(アップロード)を行う。
図4にロボット側基地局20のハードウエアを示している。同図に示すように、ロボット側基地局20は、中央処理装置21(CPU、MPU等)、記憶装置22(RAM、ROM、NVRAM、ハードディスク装置等)、無線通信インタフェース23、アンテナ群25、及びアンテナ切替スイッチ26を備える。
中央処理装置21は、記憶装置22に格納されているプログラムを読み出して実行することにより、基地局20の様々な機能を実現する。無線通信インタフェース23は、アンテナ群25によって受信される、環境側無線装置50から送られてくる位置標定信号を復調する。尚、後述するように、環境側無線装置50は、例えば、パッシブ型のRFIDタグ等の受動型の装置として構成することもできる。その場合、無線通信インタフェース23は、環境側無線装置50に位置標定信号の送信を促す応答誘導信号(質問信号)を送信し、その応答として、環境側無線装置50から送られてくる位置標定信号を受信する。
アンテナ群25は、少なくとも4つのアンテナ251を含む。アンテナ切替スイッチ26は、アンテナ群25を構成しているいずれかのアンテナ251を、例えば、時分割方式で選択し、選択したアンテナ251を無線通信インタフェース23に接続する。アンテナ251は、例えば、指向性アンテナや円偏波指向性アンテナである。尚、壁等の障害物が存在する屋内等でサービス提供システム1が実施される場合には、アンテナ251として円偏波指向性アンテナを用いることが好ましい。円偏波の反射波(又は定在波)の偏波面は壁等での反射時に反転するため、円偏波指向性アンテナを用いることで反射波(又は定在波)を効果的に減衰させることができる。アンテナ群25は、ロボット10に固定されていてもよいし、その指向方向を変化させることができるように、サーボ機構等によりロボット10に対して可動制御可能な状態で設けられていてもよい。
図5にロボット側基地局20が備える主な機能を示している。同図に示すように、ロボット側基地局20は、位置標定信号受信部201並びに位置標定処理部202を備える。尚、これらの機能は、ロボット側基地局20が備えるハードウエアによって、もしくは、ロボット側基地局20の中央処理装置21が記憶装置22に格納されているプログラムを読み出して実行することにより実現される。
上記機能のうち、位置標定信号受信部201は、無線通信インタフェース23及びアンテナ切替スイッチ26を制御しつつ、環境側無線装置50から送られてくる後述の位置標定信号を受信する。位置標定処理部202は、位置標定信号受信部201が受信した位置標定信号に基づき、自身(ロボット10)から見た環境側無線装置50(環境側基地局40)が存在する方向(角度θ2)を標定する。
図6にロボット側無線装置30のハードウエアを示している。同図に示すように、ロボット側無線装置30は、中央処理装置31(CPU、MPU等)、記憶装置32(RAM、ROM、NVRAM等)、通信インタフェース33、位置標定信号送信回路34、及びアンテナ35を備える。尚、ロボット側無線装置30は、例えば、環境側基地局40から送られてくる無線信号の電力を利用して動作する、パッシブ型のRFIDタグ等の受動型の装置として構成することもできる。
位置標定信号送信回路34は、アンテナ35から、後述の位置標定信号を送信する。ロボット側無線装置30が受動型の装置として構成されている場合には、位置標定信号送信回路34は、環境側基地局40から応答誘導信号を受信したのに応じて位置標定信号を送信する。尚、ロボット10を壁等の障害物が存在する屋内等で用いる場合には、アンテナ35は円偏波指向性アンテナであることが好ましい。円偏波の反射波(又は定在波)の偏波面は、壁等の障害物で反射した際に反転するので、円偏波指向性アンテナを用いることで、反射波や定在波を効果的に減衰させることができるからである。アンテナ35はその指向方向が上方(天井面7の方向)もしくは斜め上方を向くように設けられている。
通信インタフェース33は、環境側基地局40やサーバ装置60と無線又は有線方式で通信する。尚、環境側基地局40とロボット10との間の通信は、後述する位置標定信号に情報を含ませることに位置標定信号を利用して行うこともできる。
図7にロボット側無線装置30が備える主な機能を示している。同図に示すように、ロボット側無線装置30は、位置標定信号送信部301、情報記憶部302、及び情報送受信部303を備える。尚、これらの機能は、ロボット側無線装置30が備えるハードウエアによって、もしくは、ロボット側無線装置30の中央処理装置31が、記憶装置32に格納されているプログラムを読み出して実行することにより実現される。
位置標定信号送信部301は、位置標定信号送信回路34を制御して、ロボット10に備えられた基地局20に受信させる、後述の位置標定信号をアンテナ35から送信する。位置標定信号送信部101は、例えば、予め設定されたタイミング(例えば、一定時間ごと、ユーザによって設定された時刻等)が到来すると位置標定信号を送信する。尚、ロボット側無線装置30が受動型の装置として構成されている場合には、位置標定信号送信部301は、環境側基地局40から送られてくる応答誘導信号に対する応答として位置標定信号を送信する。
情報記憶部302は、自身に関する情報(例えば、当該ロボット側無線装置30の設置位置を示す情報(以下、装置設置位置情報と称する。))を記憶する。尚、装置設置位置情報において、ロボット側無線装置30の設置位置は、例えば、サービス提供エリアに設定された座標系で表される。情報送受信部303は、環境側基地局40やサーバ装置60との間で各種情報の交換を行う。
図8に環境側基地局40のハードウエアを示している。同図に示すように、環境側基地局40は、中央処理装置41(CPU、MPU等)、記憶装置42(RAM、ROM、NVRAM、ハードディスク装置等)、無線通信インタフェース43、アンテナ群45、及びアンテナ切替スイッチ46を備える。尚、環境側基地局40のハードウエアはロボット側基地局20のハードウエアと同様であるので説明を省略する。
図9に環境側基地局40が備える主な機能を示している。同図に示すように、環境側基地局40は、位置標定信号受信部401、位置標定処理部402、及びロボット現在位置送信部403を備える。尚、これらの機能は、環境側基地局40が備えるハードウエアによって、もしくは、環境側基地局40の中央処理装置41が記憶装置42に格納されているプログラムを読み出して実行することにより実現される。
上記機能のうち、位置標定信号受信部401は、無線通信インタフェース43及びアンテナ切替スイッチ46を制御しつつ、ロボット側無線装置30から送られてくる後述の位置標定信号を受信する。尚、ロボット側無線装置30が受動型の装置として構成されている場合には、環境側基地局40は応答誘導信号を送信する機能を更に備える。
位置標定処理部402は、位置標定信号受信部401が受信した位置標定信号に基づき自身(環境側基地局40)から見たロボット10の現在位置を標定する。また位置標定処理部402は、位置標定信号受信部401が受信した位置標定信号に基づき、ロボット10が自身(環境側基地局40)の後述するアンテナ配列軸の方向に存在するか否かを判定する。ロボット現在位置送信部403は、位置標定処理部402によって標定されたロボット10の現在位置、もしくは判定された結果(ロボット10が自身のアンテナ配列軸の方向に存在するか否)をロボット10に通知する。
図10に環境側無線装置50のハードウエアを示している。同図に示すように、環境側無線装置50は、中央処理装置51(CPU、MPU等)、記憶装置52(RAM、ROM、NVRAM等)、通信インタフェース53、位置標定信号送信回路54、及びアンテナ55を備える。尚、環境側無線装置50は、例えば、ロボット側基地局20から送られてくる無線信号の電力を利用して動作する、パッシブ型のRFIDタグ等の受動型の装置としても構成することができる。
位置標定信号送信回路54は、アンテナ55から後述の位置標定信号を送信する。環境側無線装置50が受動型の装置として構成されている場合には、位置標定信号送信回路54は、ロボット側基地局20から応答誘導信号を受信したのに応じて位置標定信号を送信する。尚、ロボット10を壁等の障害物が存在する屋内等で用いる場合には、アンテナ55は円偏波指向性アンテナであることが好ましい。円偏波の反射波(又は定在波)の偏波面は、壁等の障害物で反射した際に反転するので、円偏波指向性アンテナを用いることで、反射波や定在波を効果的に減衰させることができるからである。
アンテナ55はその指向方向が下方(床面6の方向)もしくは斜め下方を向くように設けられている。通信インタフェース53は、ロボット10やサーバ装置60と無線又は有線方式で通信する。
図11に環境側無線装置50が備える主な機能を示している。同図に示すように、環境側無線装置50は、位置標定信号送信部501、情報記憶部502、及び情報送受信部503を備える。尚、これらの機能は、環境側無線装置50が備えるハードウエアによって、もしくは、環境側無線装置50の中央処理装置51が、記憶装置52に格納されているプログラムを読み出して実行することにより実現される。
位置標定信号送信部501は、位置標定信号送信回路54を制御して、ロボット側基地局20に受信させる、後述する位置標定信号をアンテナ55から送信する。位置標定信号送信部501は、例えば、予め設定されたタイミング(例えば、一定時間ごと、ユーザによって設定された時間等)が到来すると位置標定信号を送信する。尚、環境側無線装置50が受動型の装置として構成されている場合、位置標定信号送信部501は、ロボット側基地局20から送られてくる応答誘導信号に対する応答として位置標定信号を送信する。
情報記憶部502は、自身(環境側無線装置50)に関する情報(例えば、自身の設置位置を示す情報(以下、装置設置位置情報と称する。))を記憶する。尚、装置設置位置情報において、環境側無線装置50の設置位置は、例えば、サービス提供エリアに設定された座標系で表される。情報送受信部503は、ロボット10やサーバ装置60との間で情報交換を行う。
図12にサーバ装置60のハードウエアを示している。同図に示すように、サーバ装置60は、中央処理装置61(CPU、MPU等)、記憶装置62(RAM、ROM、NVRAM、ハードディスク装置等)、入力装置63(キーボード、マウス等)、表示装置64(液晶ディスプレイ等)、及び通信インタフェース65を備える。
中央処理装置61は、記憶装置62に格納されているプログラムを読み出して実行することにより、サーバ装置60の様々な機能を実現する。表示装置64には、例えば、ロボット10の現在位置、ロボット10が現在向いている方向、ロボット10の姿勢、ロボット10が備える各種設備の状態、ロボット10が提供するサービスに関する情報が表示される。通信インタフェース65は、ロボット10や環境側基地局40、環境側無線装置50との間で無線又は有線方式で通信を行う。
図13にサーバ装置60が備える主な機能を示している。同図に示すように、サーバ装置60は、情報収集部601、情報提供部602、及び設定情報記憶部603を備える。尚、これらの機能は、サーバ装置60が備えるハードウエアによって、もしくは、サーバ装置60の中央処理装置61が記憶装置62に格納されているプログラムを読み出して実行することにより実現される。
情報収集部601は、ロボット10や環境側基地局40から、ロボット10の情報(ロボット10が現在、標定可能エリアに存在するか否か、ロボット10が現在向いている方向、ロボット10の現在の姿勢、ロボット10が備える各種設備の状態、ロボット10が提供するサービスに関する情報等)を随時収集する。
情報提供部602は、例えば、ロボット10に対し、目的地までの誘導に関する情報、他のロボット10に関する情報(他のロボット10の現在位置、他のロボット10の移動方向等)、ロボット10の現在地周辺の情報等の各種の情報を提供する。
設定情報記憶部603は、各環境側基地局40に関する情報、例えば、サービス提供エリアに設けられている各環境側基地局40の装置設置位置情報を記憶する。
<位置標定システム>
続いて位置標定システムについて説明する。位置標定システムは、スペクトル拡散された無線信号である位置標定信号を送信する無線装置(本実施形態では、ロボット側無線装置30又は環境側無線装置50)と、位置標定信号を受信してこれに基づき標定対象(本実施形態では、ロボット10、ロボット側基地局20、ロボット側無線装置30、環境側基地局40、及び環境側無線装置50)が存在する方向や存在する位置を標定する基地局(本実施形態では、ロボット側無線装置30及び環境側基地局40)とを含んで構成される。
位置標定に際しては、無線装置が位置標定信号を送信する。一方、基地局は、アンテナ群(アンテナ群25もしくはアンテナ群45)を構成している複数のアンテナを周期的に切り換えつつ、無線装置から送られてくる位置標定信号を受信する。
図14に、無線装置から送信される位置標定信号1400のデータフォーマットを示している。同図に示すように、位置標定信号1400は、制御信号1411、測定信号1412、及び装置情報1413を含む。
このうち制御信号1411には、変調波や各種の制御信号が含まれる。測定信号1412には、数m秒程度の無変調波(例えば、基地局に対する標定対象の存在する方向や基地局から標定対象までの相対距離の検出に用いる信号(例えば2048チップの拡散符号))が含まれる。装置情報1413には、その位置標定信号1400を送信した無線装置の設置位置を示す情報(例えば、サービス提供エリアに設定されている座標系で表される。以下、これを装置設置位置情報とも称する。)や無線装置を識別するための情報(以下、無線装置IDと称する。)が含まれる。
図15は、基地局(ロボット側基地局20又は環境側基地局40。以下、ロボット側基地局20を例として説明する。)が備えるアンテナ群25を構成している複数のアンテナ251a〜251dと、環境側無線装置50が備えるアンテナ55との関係を説明する図である。同図に示すように、アンテナ群25は、位置標定信号1400の1波長(例えば、位置標定信号1400として2.4GHz帯の電波を用いた場合は波長λ=12.5cm)以下の間隔をあけて平面的に略正方形状に等間隔で隣接配置された4つの円偏波指向性アンテナ(以下、アンテナ251a〜251dと称する。)を含む。尚、各アンテナ251a〜251dは、例えば、指向方向が真上方向(天井の方向)もしくは斜め上方向を向くように設けられている。
ここで同図において、アンテナ群25の高さ位置における水平方向とアンテナ群25に対する環境側無線装置50が存在する方向とのなす角をα(ロボット側基地局20から見た環境側無線装置50が存在する方向)とすれば、
α=arcTan(D(m)/L(m))=arcSin(ΔL(cm)/3(cm))
の関係がある。尚、D(m)は、環境側無線装置50のアンテナ55の設置高さとロボット側基地局20のアンテナ群25(4つのアンテナ251a〜251dで囲まれた領域の中央部分)の高さとの差であり、L(m)は、環境側無線装置50のアンテナ55から下ろした垂線がロボット10が移動する平面と交わる点とアンテナ群25の中心とを結ぶ線分の長さであり、ΔL(cm)は、アンテナ群25を構成しているアンテナ251のうち特定の2つのアンテナ251の夫々についての、環境側無線装置50のアンテナ55までの伝搬路長の差(以下、経路差とも称する。)である。
ここでアンテナ群25を構成している特定の2つのアンテナ251の夫々が受信する位置標定信号1400の位相差をΔθとすれば、
ΔL(cm)=Δθ/(2π/λ(cm))
の関係がある。また位置標定信号1400として2.4GHz帯の電波を用いる場合はλ=12.5(cm)であるので、
α=arcSin(Δθ/π)
の関係がある。測定可能範囲(−π/2<Δθ<π/2)内では、αはΔθ(ラジアン)から算出することができるので、上式からロボット側基地局20から見た環境側無線装置50が存在する方向αを取得することができる。
図16に示すように、環境側無線装置50のアンテナ55の地上高をH(m)、基地局20のアンテナ群25の地上高をh(m)、環境側無線装置50(のアンテナ55)から下ろした垂線とロボット10が移動する平面との交点を原点として直交座標系(x、y、z)を設定した場合における、方向αのxz平面への射影をΔΦ(x)、方向αのyz平面への射影をΔΦ(y)とすれば、原点に対するロボット10の相対座標は次式から求めることができる。
Δd(x)=(H−h)×Tan(ΔΦ(x))
Δd(y)=(H−h)×Tan(ΔΦ(y))
そして原点の絶対座標を(x1,y1,0)とすれば、ロボット10の絶対座標(xx,yy,0)は次式から求めることができる。
xx=x1+Δd(x)
yy=y1+Δd(y)
尚、以上に説明した位置標定の基本原理については、例えば、特開2004−184078号公報、特開2005−351877号公報、特開2005−351878号公報、特開2006−23261号公報などにも詳述されている。
ところで、以上に説明した仕組みによって行われる位置標定に際しては、無線装置や基地局が備える水晶発振器に生じる周波数偏差に起因する誤差が問題となる。例えば、水晶発振器の周波数安定度が±0.5ppmである場合、無線装置と基地局との間には最大1ppmの周波数偏差(2400Hz)が生じ、基地局のアンテナ切替スイッチ26の切替周期を32μsとすると2400Hz×32μs×360°=27.65°の位相差(誤差)が生じることになる。そこで本実施形態の位置標定システムは、周波数偏差に起因する誤差を次のようにして相殺することにより、測定精度の向上を図っている。
まず基地局(ここではロボット側基地局20を例として説明する)のアンテナ群25の第1のアンテナ対(第1アンテナ251a及び第2アンテナ251b)が受信する位置標定信号1400の位相差Δθ1(第1アンテナ251aを基準として第2アンテナ251bの位相を測定した結果(=測定値))は、環境側無線装置50のアンテナ55から第1アンテナ251aまでの位置標定信号1400の伝搬経路と、環境側無線装置50のアンテナ55から第2アンテナ251bまでの位置標定信号1400の伝搬経路との差(経路差)によって生じる位相差の真値をΔθt1とし、上述の測定誤差をF1とすれば、次式で表すことができる。
Δθ1=Δθt1+F1 ・・・式1
一方、ロボット側基地局20のアンテナ群25の第2のアンテナ対(第3アンテナ251c及び第4アンテナ251d)が受信する位置標定信号1400の位相差Δθ2(第3アンテナ251cを基準として第4アンテナ251dの位相を測定した結果(=測定値))は、環境側無線装置50のアンテナ55から第3アンテナ251cまでの位置標定信号1400の伝搬経路と、環境側無線装置50のアンテナ55から第4アンテナ251dまでの位置標定信号1400の伝搬経路との差(経路差)によって生じる位相差の真値をΔθt2とし、測定誤差をF2とすれば、次式で表すことができる。
Δθ2=−Δθt2+F2 ・・・式2
また式1と式2の両辺の差を取ると、次のようになる。
Δθ1−Δθ2=(Δθt1−(−Δθt2))+(F1−F2) ・・・式3
ここで第1のアンテナ対と第2のアンテナ対とは、第1のアンテナ対の各アンテナ251a,251bによって受信される位置標定信号1400の経路差と第2のアンテナ対の各アンテナ251c,251dによって受信される位置標定信号1400の経路差とが一致するように、即ち位相差Δθt1と位相差Δθt2とが一致するように設けられており、この一致する値をθt=Δθt1=Δθt2とおけば、右辺の(Δθt1−(−Δθt2))の値は2θtとなる。
一方、誤差F1,F2は、第1のアンテナ対の測定時と第2のアンテナ対の測定時とで通常はほぼ一致しており、右辺の(F1−F2)の値は限りなく0に近くなる。以上より、式3は次のようになる。
θt=(Δθ1−Δθ2)/2 ・・・式4
式4から理解されるように、第1のアンテナ対と第2のアンテナ対の夫々によって位相差を測定することにより、式1、式2における測定誤差F1,F2を相殺することができる。このため、第1のアンテナ対と第2のアンテナ対の夫々によって位相差を測定することにより、位相差θtを高い精度で取得することができる。
尚、位相を測定する側(本実施形態では基地局20側)に、例えば、AGC(Automatic Gain Controller)を設けて周波数偏差を減少させるようにすれば、右辺の(F1−F2)の値をさらに0に近づけることができ、位相差θtの測定精度を更に向上させることができる。
<標定精度>
位置標定システムは、数10cmオーダという高い精度で標定対象の位置を標定することが可能である。但し前述したように、位置標定システムによる位置標定の精度は標定可能エリアの全体で必ずしも一様でなく、標定精度は基地局(ここでは基地局が環境側基地局40である場合を例として説明するが、基地局がロボット側基地局20である場合も同様に説明することができる。)がロボット側無線装置30のアンテナ35に近づくほど高くなる。
また標定精度は、環境側基地局40の各アンテナ251の配列方向、即ち図17Aに示すように、正方形状に配置された4つのアンテナ251a〜251dの中心(各アンテナ251a〜251dの夫々の中心から等距離にある点)を原点Oとして正方形の一辺の方向に設定したX軸の方向、もしくは、上記正方形の中心を原点OとしてX軸と直角な方向(上記一辺に隣接する他の一辺の方向)に設定したY軸の方向(以下、上記X軸又はY軸のことをアンテナ配列軸とも称する。)と、ロボット側無線装置30のアンテナ35の位置との関係によっても変化する。
例えば、環境側基地局40側のアンテナ群25が図17Aに示すように配列している場合には、図17Bに示すように、上記X軸を含むXY平面に垂直な平面の近傍、もしくは上記Y軸を含むXY平面に垂直な平面の近傍にロボット側無線装置30のアンテナ35が存在するときに、比較的高い標定精度が得られることが知見されており、標定可能エリアの境界付近や標定可能エリア外の環境側基地局40から所定範囲においても、方向(標定対象がアンテナ配列軸の方向に存在するか否か)については比較的高い標定精度が得られることが知見されている。ここでこのような特性となることは、例えば、次のように理解することができる。
今、環境側基地局40の各アンテナ251a〜251dとロボット側無線装置30のアンテナ35とが図18Aに示す位置関係である場合を考える。尚、同図において、ロボット側無線装置30のアンテナ35は、X軸を含むXY平面に垂直な平面の方向に存在する。また同図中、一点鎖線で示す弧線77,78は、ロボット側無線装置30のアンテナ35から送信された位置標定信号1400の波面を表している。
同図から理解されるように、アンテナ251bとアンテナ251cとの間では、ロボット側無線装置30のアンテナ35から送信された位置標定信号1400の到達時間に差がなく、またアンテナ251aとアンテナ251dとの間でも、位置標定信号1400の到達時間に差がなく、従って、アンテナ251bとアンテナ251cとの間、及びアンテナ251aとアンテナ251dとの間では、Y軸方向の位相差は0である。
一方、アンテナ251aとアンテナ251bとの間では、ロボット側無線装置30のアンテナ35から送信された位置標定信号1400の到達時間に差があり、またアンテナ251cとアンテナ251dとの間でも、位置標定信号1400の到達時間に差がある。
図18Bは、環境側基地局40のアンテナ群25とロボット側無線装置30のアンテナ35とが図18Aの位置関係にあるときに、これらをY軸の負の側から眺めた図である。同図において、符号81、82で示す実線は、夫々、ロボット側無線装置30のアンテナ35から送信される位置標定信号1400のうち、直接波として環境側基地局40のアンテナ群25に到達する位置標定信号1400である。また符号91、92で示す破線は、夫々、ロボット側無線装置30のアンテナ35から送信される位置標定信号1400のうち、間接波(マルチパス、反射波等)として環境側基地局40のアンテナ群25に到達する位置標定信号1400である。このように、環境側基地局40のアンテナ群25には、ロボット側無線装置30のアンテナ35から送信された位置標定信号1400が、間接波と直接波とが合成された形で到達する。
ここで間接波91及び間接波92に着目すれば、これらはアンテナ251b及びアンテナ251cへの到達時間とアンテナ251a及びアンテナ251dへの到達時間との間に差がある。従って、間接波91がアンテナ251b及びアンテナ251cが受信する位置標定信号1400に与える影響(アンテナ251b及びアンテナ251cが受信する直接波に与える影響)と、間接波92がアンテナ251a及びアンテナ251dが受信する位置標定信号1400に与える影響(アンテナ251a及びアンテナ251dが受信する直接波に与える影響)とは異なる。このため、間接波が存在する場合には、X軸方向の位相差の測定精度に影響が生じることになる。
一方、アンテナ251bとアンテナ251cとの間では、間接波91と間接波92との間で到達時間に差がなく、間接波91及び間接波92がアンテナ251bとアンテナ251cの夫々が受信する位置標定信号1400に与える影響(直接波に与える影響)は同じである。またアンテナ251aとアンテナ251dとの間でも、間接波91と間接波92との間で到達時間に差がなく、間接波91及び間接波92がアンテナ251aとアンテナ251dの夫々が受信する位置標定信号1400に与える影響(直接波に与える影響)は同じである。従ってY軸方向の位相差の測定精度に与える影響は小さくなる。
アンテナ配列軸の近傍で方向の標定精度が高くなることは、以上のように理解することができる。尚、以上と同様にして、ロボット側基地局20と環境側無線装置50との関係においても、ロボット側基地局20のアンテナ群25のアンテナ配列軸の近傍では方向(標定対象がロボット側基地局20のアンテナ配列軸の方向に存在するか否か)の標定精度が高くなることが理解できる。また以上によれば、間接波のみが到達するような状況においても、アンテナ配列軸の近傍では方向について比較的高い標定精度が得られることがわかる。
<アンテナ配列軸>
ところで、例えば、図17Aに示した正方形状に配置された4つのアンテナ251a〜251dからなるアンテナ群25の複数個を組み合わるようにすれば、容易にアンテナ配列軸を増やすことができる。
図19にその一態様を示す。同図に示すように、この例では、4つのアンテナ251a〜251dからなるアンテナ群25(以下、第1のアンテナ群とも称する。)と、4つのアンテナ251a’〜251d’からなるアンテナ群25(以下、第2のアンテナ群とも称する。)とを、2つのアンテナ群25の夫々の正方形の中心を原点Oに一致させて組み合わせることにより、原点から45°ずつ8方向(+X,+Y,−X,−Y,+X’,+Y’,−X’,−Y’)に延びるアンテナ配列軸が構成されるようにしている。
尚、この方法によるアンテナ配列軸の増設は、環境側基地局40及びロボット側無線基地局30のいずれについても適用することができる。またこれ以外の態様、例えば、3つ以上のアンテナ群25を組み合わせることによっても、アンテナ配列軸を増設することができる(組み合わせるアンテナ群25の数を3,4,・・・に増やすことで、アンテナ配列軸の間隔が30°、22.5°・・・と次第に狭くなる)。
一方、アンテナ群25の正方形の対角に位置する2つのアンテナ(図17Aの場合はアンテナ251aとアンテナ251c、アンテナ251bとアンテナ215d)を組み合わせることにより周波数偏差に起因する誤差を相殺するようにしても、アンテナ配列軸を増やすことができる。この場合、アンテナ配列軸は、前述した4つの方向(+X,+Y,−X,−Y)に加え、さらにアンテナ251aとアンテナ251cとを結ぶ直線の方向、及びアンテナ251bとアンテナ215dとを結ぶ直線の方向にも形成される。ここでこのようにした場合における上記誤差の相殺は、例えば、次のようにして行う。以下、図17Aに示したアンテナ群25において、対角に位置している第2アンテナ251bと第4アンテナ251dの組み合わせに着目して説明する。
まず第2アンテナ251bと第4アンテナ251dの夫々が受信する位置標定信号1400の位相差Δθ1(第2アンテナ251bを基準として第4アンテナ251dの位相を測定した結果(=測定値))は、位置標定信号1400を送信する無線装置のアンテナから各アンテナ(第2アンテナ251b及び第4アンテナ251d)までの位置標定信号1400の伝搬経路の差(経路差)によって生じる位相差の真値をΔθt1とし、上述の測定誤差をF1とし、間接波(マルチパス、反射波等)の影響をαとすれば、次式で表すことができる。
Δθ1=Δθt1+F1+α ・・・式5
一方、第4アンテナ251dを基準として第2アンテナ251bの位相を測定した場合の位相差Δθ2は、位置標定信号1400を送信する無線装置のアンテナから各アンテナ(第2アンテナ251b及び第4アンテナ251d)までの位置標定信号1400の伝搬経路の差(経路差)によって生じる位相差の真値をΔθt2とし、上述の測定誤差をF2とすれば、次式で表すことができる。
Δθ2=−Δθt2+F2−α ・・・式6
式5と式6の両辺の差を取ると、次のようになる。
(Δθ1−Δθ2)/2=((Δθt1+F+α)−(−Δθt2+F−α))/2
=((Δθt1+Δθt2)+2・α)/2
・・・式7
ここでΔθt1とΔθt2とが等しくなるように第2アンテナ251bと第4アンテナ251dとが設けられているとすれば、θt=Δθt1=Δθt2となり、式7の右辺の(Δθt1−(−Δθt2))の値は2θtとなり、式7は次のようになる。
(Δθ1−Δθ2)/2=(2・Δθt+2・α)/2
=Δθt+α ・・・式8
尚、上式には間接波の間接波の影響αが残っているが、位置標定の目的が方向の標定精度を高めること、即ちΔθt=0か否か(ロボット10が環境側基地局40のアンテナ配列軸上に存在するか否か、環境側無線装置50がロボット側基地局20のアンテナ配列軸上に存在するか否か)を精度よく測定することである場合は図18A及び図18Bとともに説明したように間接波の影響はとくに問題にならない。
<ロボットの現在位置及びロボットが向いている方向の取得>
ところで、アンテナ配列軸の近傍では方向の標定精度(ロボット10が環境側基地局40のアンテナ配列軸上に存在するか否か、環境側基地局40(環境側無線装置50)が、ロボット側基地局20のアンテナ配列軸上に存在するか否かを検知する精度)が高くなるという、位置標定システムの上記特性に着目すると、位置標定システムによる方向の標定結果のみを利用して、ロボット10の現在位置及びロボット10が向いている正確な方向を取得する仕組みを実現することができる。以下、この仕組みについて説明する。尚、以下の説明において、環境側基地局40のアンテナ群25は、図19に示す構成であるものとし、前述した8つのアンテナ配列軸の方向(+X,+Y,−X,−Y,+X’,+Y’,−X’,−Y’)では、標定可能エリア外であっても標定精度が高くなっているものとする。
まずロボット10は、ロボット側無線装置30から位置標定信号1400を繰り返し送信しつつサービス提供エリア内を自律的に移動し、環境側基地局40のいずれかのアンテナ配列軸の方向(第1の位置)に到達(クロス)する。このとき、ロボット10はサービスを提供しつつ移動してもよいし、サービスを中断した状態で移動してもよい。
図20にロボット10が自律的に移動して環境側基地局40のアンテナ配列軸の一つ(同図では+X)に到達した様子を例示している。尚、環境側基地局40のアンテナ配列軸の近傍では標定可能エリア外であっても方向の標定精度が高いため、環境側基地局40は、ロボット10が標定可能エリア外に存在する場合でも、ロボット10がアンテナ配列軸の方向に到達したか否かを精度よく判定することができる。環境側基地局40は、ロボット10が自身のアンテナ配列軸の方向に存在していることを検知すると、その旨をロボット10に通知するとともに、環境側無線装置50からの位置標定信号1400の送信を開始する。これによりロボット側基地局20は、上記位置標定信号1400を受信して環境側基地局40について位置標定を行うことが可能になる。
ロボット10は、環境側基地局40のアンテナ配列軸の一つに到達すると、そこで環境側基地局40から送られてくる位置標定信号1400を受信し、これに基づき環境側基地局40の現在位置を標定する。
続いてロボット10は、自身のアンテナ配列軸の方向に環境側基地局40を捕捉する。これはロボット10が自身の全体を旋回させることにより行ってもよいし、ロボット側基地局20のみ、もしくはロボット側基地局20のアンテナ群25のみを旋回させることにより行ってもよい。
図21にこのときの様子を示す。前述したように、ロボット側基地局20のアンテナ配列軸の近傍では、標定可能エリア外であっても方向について比較的高い標定精度が得られるのでロボット10は自身のロボット側基地局20のアンテナ配列軸の方向に環境側無線装置50(環境側基地局40)を確実に捕捉することができる。また環境側無線装置50がロボット側基地局20の標定可能エリア外に存在していても確実に環境側基地局40を捕捉することができる。
続いてロボット10は、捕捉した環境側基地局40が存在する方向を基準として自身の進行方向を決定し、決定した進行方向と、取得した環境側基地局40が存在する正確な方向(ここでは+Xとする。)とがなす角φを記憶する。このときの様子を図22に示す。
続いてロボット10は、決定した進行方向を維持しつつ、現在位置(第1の位置(+X))から環境側基地局40の他のアンテナ配列軸の一つに到達(第2の位置に到達)するまで直進する。尚、この直進に際し、ロボット10は、オドメトリ等の方法(車輪の回転数を計測する等)により、出発点からの移動距離Lを計測する。図23にロボット10が直進する様子を示す。
ロボット10は、直進を続けた結果、現在位置(第1の位置(+X))から環境側基地局40の他のアンテナ配列軸の一つの方向に到達すると、記憶している角度φと、計測した移動距離Lとに基づき、自身の現在位置(第2の位置(+Y’))を求める。
具体的には、例えば、図24に示すように、ロボット10は、自身の現在位置(第2の位置)のX座標Mを、L・sinφから求める。またX軸とY’軸とが45°ずれていることが既知であるので、ロボット10は、自身の現在位置(第2の位置)のY座標Nを、N=M=L・sinφから求める。尚、X軸及びY軸は環境側基地局40の座標系であるので、これらの軸上での位置(M,N)は、環境側基地局40から見たロボット10の絶対位置(天井面7もしくは床面6に設定された座標系で表される位置)を表していることになる。
以上によれば、ロボット10の正確な位置又はロボット10が向いている正確な方向を示す情報を取得することができる。とくにアンテナ配列軸の近傍では標定可能エリアの外側であっても方向について比較的高い標定精度が得られるので、ロボット10が標定可能エリアの外に存在する場合でも、ロボット10の正確な絶対位置及びロボット10が現在向いている正確な方向を取得することができる。またこのように一つの環境側基地局40によってロボット10の絶対位置及びロボット10が現在向いている正確な方向を取得することが可能な範囲が拡大するので、少数の環境側基地局40により広範囲に亘ってロボット10の絶対位置及びロボット10が現在向いている正確な方向を提供することができる。
また上記の例のように2つのアンテナ群25によって矩形の中心から45°方向が異なる8つの方向に方向の標定精度が高くなるエリアを形成するようにすれば、第1の位置及び角度φに拘わらず、ロボット10を長距離に亘って直進させることなく第2の位置に到達させることができる。このため、アンテナ群25の数を最小限に抑えつつロボット10の位置又はロボット10の向きを示す情報を効率よく提供することができる。
<処理例>
続いて、以上に説明した方法により、ロボット10が、自身の正確な位置及び向いている正確な方向を取得する際に行う処理(以下、絶対位置及び方向取得処理S2500と称する。)の一例を示す。図25は、絶対位置及び方向取得処理S2500の詳細を説明するフローチャートである。以下、同図とともに説明する。
ロボット10は、サービス提供エリアを自律的に移動してサービスを提供しつつ、自身の現在位置及び自身が現在向いている方向を取得するタイミングの到来をリアルタイムに監視している(S2511、S2512)。尚、上記タイミングは、例えば、ロボット10がオドメトリ等によって把握している自身の現在位置や自身が現在向いている方向に累積している誤差を補正しようとする場合に到来する。また上記タイミングは、例えば、ロボット10が自身の現在位置や自身が現在向いている方向を把握していることが前提となるサービスを提供しようとする場合に到来する。
自身の現在位置及び自身が現在向いている方向を取得するタイミングが到来すると(S2512:YES)、ロボット10は、いずれかのアンテナ配列軸に到達するまで自律走行を続ける(S2513,S2514)。
ロボット10は、いずれかアンテナ配列軸に到達したことを検知すると(S2514)、ロボット側基地局20により、環境側無線装置50からから送られてくる位置標定信号1400に基づき環境側基地局40の現在位置を標定し、自身の全体を旋回させるなどして自身のアンテナ配列軸の方向に環境側基地局40を捉える(S2515)。尚、環境側基地局40は、ロボット10が自身のアンテナ配列軸の近傍に存在することを検知すると、これを契機として環境側無線装置50からの位置標定信号1400の送信を開始し、ロボット側基地局20はこの位置標定信号1400を利用して環境側基地局40の方向を把握する。
続いてロボット10は、自身の進行方向を決定し、決定した進行方向と、取得した環境側基地局40が存在する正確な方向とがなす角φを記憶し(S2516)、角度φの方向に進行方向を維持しつつ直進する(S2517)。尚、直進に際し、ロボット10はオドメトリ等の方法により出発点からの移動距離Lをリアルタイムに計測する。
ロボット10は、直進を続けた結果、環境側基地局40の他のアンテナ配列軸の一つに到達(クロス)すると(S2518:YES)、記憶している角度φと、到達した位置(第2の位置)までの移動距離L(第1の位置から第2の位置までの距離)とに基づき、前述した方法で自身の現在位置を求める(S2519)。
その後、ロボット10は、サービスの提供を再開する(S2511)。例えば、ロボット10は、取得した自身が向いている正確な現在位置や方向を利用して、オドメトリによって把握している自身の現在位置や自身が現在向いている方向を補正する。またロボット10は、例えば、取得した自身が向いている正確な現在位置や正確な方向を利用してサービスの提供を行う。
以上に説明したように、本実施形態のサービス提供システム1によれば、アンテナ配列軸の近傍では方向の標定精度が比較的高くなるという位置標定システムの特性を利用して、ロボット10の正確な現在位置及びロボット10が現在向いている正確な方向を取得することができる。このため、ロボット10が、例えば、GPSや電子コンパス、ジャイロコンパス等を利用することができないような環境で用いられる場合でも、ロボット10は自身が現在向いている正確な方向を把握することができる。
尚、以上の説明は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれることは勿論である。
例えば、以上の実施形態では、アンテナ群25の各アンテナ251a〜251dが正方形状に配列している場合を例として説明したが、各アンテナ251a〜251dが長方形(矩形)状に配列している場合でも同様の仕組みを構成することができるとともに同様の効果を得ることができる。
ロボット10が標定可能エリア内に存在している場合には、前述した方法(図24に示した方法)によらずに通常の方法、即ち環境側基地局40が上記位置標定信号1400に基づきロボット10の現在位置や向いている方向を取得するようにしてもよい。
ロボット側基地局20のアンテナ群25とロボット側無線装置30のアンテナ35とを共用するようにしてもよい。また環境側基地局40のアンテナ群45と環境側無線装置50のアンテナ55とを共用するようにしてもよい。
本実施形態では移動体がロボット10である場合を一例として説明したが、移動体は、例えば、人、荷物、運搬車両等の他の種類のものであってもよい。またサーバ装置60の機能はロボット10や環境側基地局40において実現するようにしてもよい。
1 サービス提供システム
10 ロボット
20 ロボット側基地局
30 ロボット側無線装置
40 環境側基地局
50 環境側無線装置
101 自律移動制御部
103 アンテナ配列軸検知部
104 環境側基地局捕捉部
105 直進走行制御部
106 現在位置/方向取得部

Claims (6)

  1. 無線信号である位置標定信号を送信する無線装置と、
    第1のアンテナ対と第2のアンテナ対とを含むアンテナ群を有し、前記第1のアンテナ対の各アンテナによって受信される前記位置標定信号の経路差と前記第2のアンテナ対の各アンテナによって受信される前記位置標定信号の経路差とが一致するように設けられ、前記第1のアンテナ対及び前記第2のアンテナ対が、前記第1のアンテナ対及び前記第2のアンテナ対の各アンテナが平面上に矩形状に並ぶように配置され、前記第1のアンテナ対の各アンテナ又は前記第2のアンテナ対の各アンテナによって受信される前記位置標定信号の位相差Δθに基づき前記無線装置が存在する方向を求め、求めた前記方向に基づき前記無線装置の現在位置を標定する基地局と、
    を備えて構成される位置標定システムを用いて構成される、移動体の向きを示す情報を取得するシステムであって、
    移動体に設けられる前記無線装置である移動体側無線装置、
    前記移動体が移動するエリアの上方に設けられる前記基地局である環境側基地局、
    前記移動体に設けられる前記基地局である移動体側基地局、及び
    前記環境側基地局に設けられる前記無線装置である環境側無線装置、
    を備え、
    前記移動体は、
    前記環境側基地局の前記アンテナ群の前記矩形の中心を原点として前記矩形の一辺の方向に設定した座標軸であるX軸を含むXY平面に垂直な平面であるX軸方向平面、もしくは、前記矩形の中心を原点として前記X軸と直角な方向に設定した座標軸であるY軸を含むXY平面に垂直な平面であるY軸方向平面、のうちのいずれかの近傍である第1の位置に存在するときに、前記移動体側基地局の前記アンテナ群の前記矩形の中心を原点として前記矩形の一辺の方向に設定した座標軸であるx軸を含むxy平面に垂直な平面であるx軸方向平面、もしくは、前記矩形の中心を原点として前記x軸と直角な方向に設定した座標軸であるy軸を含むxy平面に垂直な平面であるy軸方向平面の近傍に前記環境側基地局を捕捉し、
    前記第1の位置から、前記捕捉した前記環境側基地局の方向に対して所定角度φを維持しつつ直進することにより前記環境側基地局の他の前記座標軸の近傍の第2の位置に到達し、
    前記直進に際し、前記第1の位置を出発してから前記第2の位置に至るまでの移動距離Lを計測し、
    前記角度φと前記移動距離Lとに基づき、自身の現在位置又は自身が現在向いている方向を求める
    ことを特徴とする移動体の位置又は向きを示す情報を取得するシステム。
  2. 請求項1に記載のシステムであって、
    前記環境側基地局は複数の前記アンテナ群を備えており、前記アンテナ群の夫々は、夫々の前記矩形の中心を一致させて夫々の前記座標軸が所定角度ずれた関係となるように設けられている
    ことを特徴とする移動体の位置又は向きを示す情報を取得する方法。
  3. 請求項1に記載のシステムであって、
    前記環境側基地局の前記アンテナ群の前記矩形は正方形であり、
    前記第1の位置には、前記矩形の一の対角線の方向に設定した座標軸であるX’軸を含むX’Y’平面に垂直な平面であるX’軸方向平面、もしくは、前記矩形の他の対角線の方向に設定した座標軸であるY’軸を含むX’Y’平面に垂直な平面であるY’軸方向平面、のうちのいずれかの近傍がさらに含まれる
    ことを特徴とする移動体の位置又は向きを示す情報を取得するシステム。
  4. 現在位置を標定しようとする無線装置に無線信号である位置標定信号を送信する無線装置と、
    第1のアンテナ対と第2のアンテナ対とを含むアンテナ群を有し、前記第1のアンテナ対の各アンテナによって受信される前記位置標定信号の経路差と前記第2のアンテナ対の各アンテナによって受信される前記位置標定信号の経路差とが一致するように設けられ、前記第1のアンテナ対及び前記第2のアンテナ対が、前記第1のアンテナ対及び前記第2のアンテナ対の各アンテナが平面上に矩形状に並ぶように配置され、前記第1のアンテナ対の各アンテナ又は前記第2のアンテナ対の各アンテナによって受信される前記位置標定信号の位相差Δθに基づき前記無線装置が存在する方向を求め、求めた前記方向に基づき前記無線装置の現在位置を標定する基地局と、
    を備えて構成される位置標定システムを用いて行われる、移動体の向きを示す情報を取得する方法であって、
    移動体に前記無線装置である移動体側無線装置を設けるとともに、前記移動体が移動するエリアの上方に前記基地局である環境側基地局を設け、
    前記移動体に前記基地局である移動体側基地局を設けるとともに、前記環境側基地局に前記無線装置である環境側無線装置を設け、
    前記移動体が、
    前記環境側基地局の前記アンテナ群の前記矩形の中心を原点として前記矩形の一辺の方向に設定した座標軸であるX軸を含むXY平面に垂直な平面であるX軸方向平面、もしくは、前記矩形の中心を原点として前記X軸と直角な方向に設定した座標軸であるY軸を含むXY平面に垂直な平面であるY軸方向平面、のうちのいずれかの近傍である第1の位置に存在するときに、前記移動体側基地局の前記アンテナ群の前記矩形の中心を原点として前記矩形の一辺の方向に設定した座標軸であるx軸を含むxy平面に垂直な平面であるx軸方向平面、もしくは、前記矩形の中心を原点として前記x軸と直角な方向に設定した座標軸であるy軸を含むxy平面に垂直な平面であるy軸方向平面の近傍に前記環境側基地局を捕捉し、
    前記第1の位置から、前記捕捉した前記環境側基地局の方向に対して所定角度φを維持しつつ直進することにより前記環境側基地局の他の前記座標軸の近傍の第2の位置に到達し、
    前記直進に際し、前記第1の位置を出発してから前記第2の位置に至るまでの移動距離Lを計測し、
    前記角度φと前記移動距離Lとに基づき、自身の現在位置又は自身が現在向いている方向を求める
    ことを特徴とする移動体の位置又は向きを示す情報を取得する方法。
  5. 請求項4に記載の方法であって、
    前記環境側基地局は複数の前記アンテナ群を備えており、前記アンテナ群の夫々は、夫々の前記矩形の中心を一致させて夫々の前記座標軸が所定角度ずれた関係となるように設けられている
    ことを特徴とする移動体の位置又は向きを示す情報を取得する方法。
  6. 請求項5に記載の方法であって、
    前記環境側基地局の前記アンテナ群の前記矩形は正方形であり、
    前記第1の位置には、前記矩形の一の対角線の方向に設定した座標軸であるX’軸を含むX’Y’平面に垂直な平面であるX’軸方向平面、もしくは、前記矩形の他の対角線の方向に設定した座標軸であるY’軸を含むX’Y’平面に垂直な平面であるY’軸方向平面、のうちのいずれかの近傍がさらに含まれる
    ことを特徴とする移動体の位置又は向きを示す情報を取得する方法。
JP2013021466A 2013-02-06 2013-02-06 移動体の位置又は向きを示す情報を取得するシステム及び方法 Active JP5524371B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013021466A JP5524371B1 (ja) 2013-02-06 2013-02-06 移動体の位置又は向きを示す情報を取得するシステム及び方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013021466A JP5524371B1 (ja) 2013-02-06 2013-02-06 移動体の位置又は向きを示す情報を取得するシステム及び方法

Publications (2)

Publication Number Publication Date
JP5524371B1 true JP5524371B1 (ja) 2014-06-18
JP2014153118A JP2014153118A (ja) 2014-08-25

Family

ID=51175687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013021466A Active JP5524371B1 (ja) 2013-02-06 2013-02-06 移動体の位置又は向きを示す情報を取得するシステム及び方法

Country Status (1)

Country Link
JP (1) JP5524371B1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112965091A (zh) * 2021-02-02 2021-06-15 山东理工大学 一种农业机器人定位方法及系统
CN113514797A (zh) * 2021-07-09 2021-10-19 中国人民解放军战略支援部队信息工程大学 一种uwb基站的自动标定方法
CN115619300A (zh) * 2022-11-14 2023-01-17 昆船智能技术股份有限公司 一种件箱自动装车系统及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6384254B2 (ja) * 2014-10-10 2018-09-05 株式会社デンソー 端末装置
JP6833111B1 (ja) * 2019-11-28 2021-02-24 三菱電機株式会社 表示制御装置、表示システム、及び、表示制御方法
KR102202072B1 (ko) * 2020-04-09 2021-01-12 충남대학교 산학협력단 산란체 위치 검출 시스템

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117879A (ja) * 2009-12-04 2011-06-16 Rcs:Kk 位置特定装置
JP2011117880A (ja) * 2009-12-04 2011-06-16 Rcs:Kk 広域位置特定システム
JP2011242165A (ja) * 2010-05-14 2011-12-01 Chugoku Electric Power Co Inc:The 携帯端末、及び携帯端末を用いた方位情報提供方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117879A (ja) * 2009-12-04 2011-06-16 Rcs:Kk 位置特定装置
JP2011117880A (ja) * 2009-12-04 2011-06-16 Rcs:Kk 広域位置特定システム
JP2011242165A (ja) * 2010-05-14 2011-12-01 Chugoku Electric Power Co Inc:The 携帯端末、及び携帯端末を用いた方位情報提供方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112965091A (zh) * 2021-02-02 2021-06-15 山东理工大学 一种农业机器人定位方法及系统
CN113514797A (zh) * 2021-07-09 2021-10-19 中国人民解放军战略支援部队信息工程大学 一种uwb基站的自动标定方法
CN113514797B (zh) * 2021-07-09 2023-08-08 中国人民解放军战略支援部队信息工程大学 一种uwb基站的自动标定方法
CN115619300A (zh) * 2022-11-14 2023-01-17 昆船智能技术股份有限公司 一种件箱自动装车系统及方法
CN115619300B (zh) * 2022-11-14 2023-03-28 昆船智能技术股份有限公司 一种件箱自动装车系统及方法

Also Published As

Publication number Publication date
JP2014153118A (ja) 2014-08-25

Similar Documents

Publication Publication Date Title
JP5524371B1 (ja) 移動体の位置又は向きを示す情報を取得するシステム及び方法
JP5524364B1 (ja) 自律的に移動する移動体及びその制御方法
EP3309641B1 (en) Cleaning robot and method of controlling the same
Park et al. Autonomous mobile robot navigation using passive RFID in indoor environment
US10295661B2 (en) Storage medium location detection system and program
JP6086203B2 (ja) 移動体に位置情報を提供するシステム、及び位置情報提供方法
US20130194078A1 (en) Mobile reading device, and method for locating an object that is marked with active transponder
Olszewski et al. RFID positioning robot: An indoor navigation system
JP5524373B1 (ja) 移動体の現在位置を取得するシステム及び方法
JP5579690B2 (ja) 移動体の向きを特定する方法、及び移動体の向きを特定するシステム
CN111465908A (zh) 一种分段式自主充电对接方法及移动设备、充电站
WO2019054206A1 (ja) 移動体誘導システム
KR20100059214A (ko) 실내외 위치 인식 장치
JP5555347B1 (ja) 位置検知システム及び位置検知方法
JP6026307B2 (ja) 移動体の向きを示す情報を取得するシステム及び方法
JP6106929B2 (ja) 位置標定方法、及び位置標定システム
US11402478B2 (en) System for rough localization of moveable cooperative targets during laser tracker based industrial object measurement
KR20140042346A (ko) 초기정렬 주행 시스템
KR100962674B1 (ko) 이동 로봇의 위치 추정 방법 및 이를 위한 이동 로봇
JP5917578B2 (ja) 移動体の向きを示す情報を取得するシステム及び方法
JP6106933B2 (ja) 位置標定システムの制御方法、及び位置標定システム
JP6186711B2 (ja) 位置標定方法、及び位置標定システム
JP6106928B2 (ja) 位置標定方法、及び位置標定システム
JP2008128993A (ja) 移動体の方向推定システム、及び該方向推定システムを備える移動体ナビゲーションシステム。
Shirke et al. Analysis of RFID Based Positioning Technique Using Received Signal Strength and Directional Antenna

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140409

R150 Certificate of patent or registration of utility model

Ref document number: 5524371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250